Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen Power Inc formerly Hydrogen Power International and Equitex Inc |  

Open Energy Info (EERE)

Power Inc formerly Hydrogen Power International and Equitex Inc Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.) Place Englewood, Colorado Zip 80111 Sector Hydro, Hydrogen Product Holding company operating through its majority owned subsidiaries, Hydrogen Power International, FastFunds Financial Corp and Denaris Corp. Coordinates 35.425805°, -84.487497° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.425805,"lon":-84.487497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network (OSTI)

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

3

Webinar: International Hydrogen Infrastructure Challenges-NOW...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar: International Hydrogen Infrastructure Challenges-NOW, DOE, and NEDO Webinar: International Hydrogen Infrastructure Challenges-NOW, DOE, and NEDO December 16, 2013 8:00AM...

4

Findings of Hydrogen Internal Combustion Engine Durability  

DOE Green Energy (OSTI)

Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

Garrett Beauregard

2010-12-31T23:59:59.000Z

5

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network (OSTI)

energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V fueled vehicle hydrogen dispensing system. Demonstrate hydrogen as an energy carrier. Investigate Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2

6

International Partnerships for the Hydrogen Economy Fact Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy...

7

Solar Power International  

Energy.gov (U.S. Department of Energy (DOE))

Solar Power International (SPI) will be held October 21-24 at McCormick Place in Chicago, Illinois. The event attracts more than 15,000 professionals in solar energy and related fields and offers...

8

Hydrogen-fueled internal combustion engines.  

DOE Green Energy (OSTI)

The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

2009-12-01T23:59:59.000Z

9

American Wind Power Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name American Wind Power & Hydrogen LLC Place New York, New York Zip 10022 Sector Hydro, Hydrogen, Vehicles Product AWP&H is a hydrogen transportation system integrator focused on hydrogen infrastructure, electrolysis, and hydrogen fueled internal combustion engine vehicles. References American Wind Power & Hydrogen LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Wind Power & Hydrogen LLC is a company located in New York, New York . References ↑ "American Wind Power & Hydrogen LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Wind_Power_Hydrogen_LLC&oldid=342137"

10

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

11

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

12

Hydrogen--electric power drives  

SciTech Connect

Hydrogen--electric power drives would consist of most or all of these: chilled hydrogen gas tank, liquid oxygen tank, a bank of fuel cells, dc/ac inverter, ac drive motors, solid state ac speed control, dc sputter-ion vacuum pumps, steam turbine generator set and steam condenser. Each component is described. Optional uses of low pressure extraction steam and warm condensate are listed. Power drive applications are listed. Impact on public utilities, fuel suppliers, and users is discussed.

Hall, F.F.

1978-10-01T23:59:59.000Z

13

DOE Hydrogen and Fuel Cells Program: International Hydrogen and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Roadmaps and R&D Status Cooperative R&D Projects U.S. Department of Energy Search help Home > International Hydrogen and Fuel Cell Activities Printable Version...

14

Hydrogen: Development of International Standards  

Science Conference Proceedings (OSTI)

... for Project 4. The document is the OIML model regulation for equipment used to deliver compressed gases (natural gas, hydrogen, biogas, etc.) as ...

2013-05-22T23:59:59.000Z

15

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

16

DOE Signs Cooperative Agreement for New Hydrogen Power Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant November 6, 2009 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. The new plant is a step toward commercialization of a clean technology that enables use of our country's vast fossil energy resources while addressing the need to reduce greenhouse gas emissions. HECA, which is owned by Hydrogen Energy International, BP Alternative Energy, and Rio Tinto, plans to construct an advanced integrated gasification combined cycle (IGCC) plant that will produce power by

17

HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE  

NLE Websites -- All DOE Office Websites (Extended Search)

HICEV AMERICA: HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE VEHICLE (HICEV) TECHNICAL SPECIFICATIONS Revision 0 November 1, 2004 Prepared by Electric Transportation Applications HICEV America Vehicle Specification i TABLE OF CONTENTS Minimum Vehicle Requirements 1 1. Regulatory Requirements 7 2. Chassis 8 3. Vehicle Characteristics 10 4. Drive System 11 5. Vehicle Performance 12 6. Hydrogen Fuel Storage System (HFSS) 14 7. Additional Vehicle Systems 17 8. Documentation 18 Appendices Appendix A - Vehicle Data 19 Appendix B - FMVSS Certification Methodology 26 DB12/7/04 HICEV America Vehicle Specification 2 MINIMUM VEHICLE REQUIREMENTS The HICEV America Program is sponsored by the U.S. Department of Energy Office of Transportation Technology to provide for independent assessment of hydrogen fueled, internal

18

Hydrogen-Powered Buses Brochure … 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Powered by Hydrogen EERE Information Center 1-877-EERE-INFO (1-877-337-3463) eere.energy.gov/informationcenter Prepared by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. October 2010 Source: NREL, Dennis Schroeder Source: NREL, Dennis Schroeder Hydrogen-Powered Buses Showcase Advanced Vehicle Technologies Visitors to federal facilities across the country may now have the opportunity to tour the sites in a hydrogen- powered shuttle bus. The U.S. Department of Energy (DOE) is supporting the demonstration of hydrogen-powered vehicles and hydrogen infrastructure at federal facilities across the country. Nine facilities will receive fourteen hydrogen- powered buses to demonstrate this market-ready advanced technology. Produced by Ford Motor Company, the

19

International Partnership for a Hydrogen Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding .... "With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free. President George W. Bush 2003 State of the Union Address January 28, 2003

20

The International Partnership for the Hydrogen Economy  

E-Print Network (OSTI)

. . Distributed Generation TransportationBiomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

22

DOE Hydrogen and Fuel Cells Program: International Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Partnerships Roadmaps and R&D Status Cooperative R&D Projects U.S. Department of Energy Search help Home > International > International Partnerships Printable Version International Partnerships Bilateral and multilateral hydrogen and fuel cell technology R&D cooperation and collaboration will be a central tool in advancing hydrogen and fuel cells. Two key multilateral international partnerships that are facilitating cooperative R&D efforts are: International Partnership for Hydrogen and Fuel Cells in the Economy International Energy Agency Hydrogen and Fuel Cell Implementing Agreements International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) At the April 2003 International Energy Agency Ministerial, U.S. Secretary of Energy Spencer Abraham called for the establishment of the International

23

Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants  

SciTech Connect

IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

Elias Stefanakos; Burton Krakow; Jonathan Mbah

2007-07-31T23:59:59.000Z

24

Internal combustion electric power hybrid power plant  

SciTech Connect

An internal combustion-electric motor hybrid power plant for an automotive vehicle is disclosed. The power plant includes an internal combustion engine and a direct current electric motor generator which are connected to a drive shaft for the vehicle. A clutch mechanism is provided to connect the internal combustion engine, the direct current electric motor generator and the drive shaft for selectively engaging and disengaging the drive shaft with the internal combustion engine and the motor generator. A storage battery is electrically connected to the motor generator to supply current to and receive current therefrom. Thermoelectric semi-conductors are arranged to be heated by the waste heat of the internal combustion engine. These thermoelectric semi-conductors are electrically connected to the battery to supply current thereto. The thermoelectric semi-conductors are mounted in contact with the outer surfaces of the exhaust pipe of the internal combustion engine and also with the outer surfaces of the cylinder walls of the engine.

Cummings, T.A.

1979-04-10T23:59:59.000Z

25

The International oil price and hydrogen competitiveness.  

E-Print Network (OSTI)

??Natural gas based hydrogen is expected to provide most of the hydrogen supply in the period prior to and during at least the first years (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

26

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

557 * November 2010 557 * November 2010 NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach National Renewable Energy Laboratory (NREL) Teams: Hydrogen Education, Melanie Caton; Market Transformation, Michael Ulsh Accomplishment: NREL started using its Ford hydrogen-powered internal combustion engine (H 2 ICE) bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. As the first national laboratory to receive such a bus, NREL

27

Wind-hydrogen energy systems for remote area power supply.  

E-Print Network (OSTI)

??Wind-hydrogen systems for remote area power supply are an early niche application of sustainable hydrogen energy. Optimal direct coupling between a wind turbine and an (more)

Janon, A

2009-01-01T23:59:59.000Z

28

Prospects on fuel economy improvements for hydrogen powered vehicles.  

DOE Green Energy (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

29

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

F-150 16V Hydrogen ICE Conversion - Testing Results (PDF 110 KB) 2003 Ford F-150 Pickup Truck Ford F-150 HydrogenCNG Blended Fuels Performance Testing in a Ford F-150 (up to 30%...

30

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

blends in real time and delivers 15, 20, 30 and 50% hydrogen and compressed natural gas (CNG), can be found in Hydrogen, CNG, and HCNG Dispenser System - Prototype Report (PDF 409...

31

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

is that they can run on pure hydrogen or a blend of hydrogen and compressed natural gas (CNG). That fuel flexibility is very attractive as a means of addressing the widespread lack...

32

Upcoming Webinar December 16: International Hydrogen ...  

Vehicles and Fuels; Wind ... challenges and discuss potential solutions to support the successful global commercialization of hydrogen fuel cell elect ...

33

Synfuel (hydrogen) production from fusion power  

DOE Green Energy (OSTI)

A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power.

Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

1979-01-01T23:59:59.000Z

34

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

35

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

36

Fuel for thought: the hydrogen-powered automobile  

SciTech Connect

A new clean and nondepletable fuel must be found to power automobiles if they are to survive as an economically viable mode of transportation. One such fuel is hydrogen, which was first proposed for internal combustion in 1820. The disadvantages of a hydrogen economy stem from its low boiling points, its not being a primary energy source, and the cost of present conversion technology. Its merits include having the highest energy per unit mass of the chemical fuels, water as its only product, and suitability for a range of applications. New interest in hydrogen buses and passenger cars has prompted some experimentation, but economics will ultimately determine their future. Considerations of safety have already led to guidelines and codes. Production methods include catalytic destruction of hydrocarbon fuels, coal gasification, steam-reforming of natural gas, and splitting the water molecule by electrolysis, thermolysis, or photolysis. 60 references. (DCK)

El-Mallakh, R.S.

1981-04-01T23:59:59.000Z

37

Advanced Vehicle Testing Activity- Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications (ETA) to construct and operate a hydrogen and compressed natural gas (HCNG) generation and fueling facility in Phoenix, Arizona. The HCNG facility provides pure...

38

Hydrogen storage of energy for small power supply systems  

E-Print Network (OSTI)

Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

Monaghan, Rory F. D. (Rory Francis Desmond)

2005-01-01T23:59:59.000Z

39

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel and Pressure Vessel Forum Hydrogen Fuel and Pressure Vessel Forum The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from compressed natural gas (CNG) and hydrogen vehicle deployments, and to identify R&D needs to aid the global harmonization of regulations, codes and standards to enable the successful deployment of hydrogen and fuel cell technologies. The forum also included additional discussion resulting from the DOE and U.S. Department of Transportation (DOT) co-sponsored International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009 in Washington, D.C.

40

Modeling the Prospects for Hydrogen Powered Transportation Through 2100  

E-Print Network (OSTI)

Hydrogen fueled transportation has been proposed as a low carbon alternative to the current gasoline-powered

Sandoval, Reynaldo.

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750  

DOE Green Energy (OSTI)

Hydrogen has been shown to degrade the mechanical properties of nickel-base alloys. This degradation occurs whether the material is in a hydrogen producing environment or if the material has dissolved hydrogen in the metal due to prior exposure to hydrogen. Materials behave differently under these two conditions. Therefore, the degradation due to hydrogen has been split into two categories, internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE). IHE may be defined as the embrittlement of a material that has been charged with hydrogen prior to testing or service while HEE may be defined by the embrittlement of a material in a hydrogen environment where the hydrogen may come from gaseous hydrogen or generated from a corrosion reaction. This work will compare IHE and HEE of fracture mechanics specimens. Different fugacities of hydrogen for HEE and hydrogen concentrations for IHE were examined for Alloy X-750, a nickel-base super alloy. The test results were analyzed and the role of hydrogen in IHE and HEE was evaluated. A model based on a critical grain boundary hydrogen concentration will be proposed to describe the behavior in both HEE and IHE conditions.

Symons, D.M.

1999-12-01T23:59:59.000Z

42

Study of hydrogen-powered versus battery-powered automobiles  

DOE Green Energy (OSTI)

A study conducted to compare the technological status and the resultant potential vehicle characteristics for hydrogen- and battery-powered automobiles that could be produced from 1985 to 2000 is documented in 3 volumes. The primary objectives of the study were: the assessments of applicable energy storage and propulsion technology for the two basic vehicle types (applied to four-passenger cars); a rigorous comparison of vehicle weight, size, and usefulness versus design range; and an investigation of the relative efficiencies of expending energy from various primary sources to power the subject vehicle. Another important objective, unique to hydrogen powered vehicles, was the assessment of the technology, logistics, and cost implications of a hydrogen production and delivery capability. This volume, Volume III, contains three major sections: the assessment of battery electric vehicle technology for energy storage and the drivetrain system; the technical and economic comparison of hydrogen- and battery-powered vehicles derived primarily from data in the previous vehicle technology assessments, with consideration of alternative energy sources; and a series of appendices that support the vehicle definitions and comparisons.

Donnelly, J.J. Jr.; Greayer, W.C.; Nichols, R.J.; Escher, W.J.D.

1979-05-01T23:59:59.000Z

43

Best Power International LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place Minneapolis, Minnesota Zip 55343 Product Minneapolis-based developer of photovoltaic projects. References Best Power International LLC1 LinkedIn Connections...

44

GreenPower International | Open Energy Information  

Open Energy Info (EERE)

Name GreenPower International Place Alloa, Scotland, United Kingdom Zip FK10 3LP Sector Hydro, Renewable Energy, Wind energy Product Renewable energy project developer focused on...

45

NETL: News Release - DOE Signs Cooperative Agreement for New Hydrogen Power  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2009 6, 2009 DOE Signs Cooperative Agreement for New Hydrogen Power Plant Hydrogen Energy California to Construct IGCC Plant for Clean Power Washington, D.C. - The U.S. Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. The new plant is a step toward commercialization of a clean technology that enables use of our country's vast fossil energy resources while addressing the need to reduce greenhouse gas emissions. MORE INFO Visit the Clean Coal Power Initiative (CCPI) Webpage Read the Fact Sheet HECA, which is owned by Hydrogen Energy International, BP Alternative Energy, and Rio Tinto, plans to construct an advanced integrated

46

Study of hydrogen-powered versus battery-powered automobiles  

SciTech Connect

A study has been conducted of two future candidate automobile propulsion systems that do not rely upon petroleum or natural gas as an energy source. Potential vehicle characteristics for each system have been identified. The first vehicle system employs a gaseous, hydrogen-fueled, internal combustion engine and either a liquid or metal hydride energy storage system. The second vehicle system employs an electronically controlled, electric motor powertrain and a battery energy storage system. Major tasks included in this study were the technical and economic assessments of the state of the art and future alternatives in hydrogen production and delivery, the hydrogen vehicle assessment, the battery-electric vehicle assessment, and the comparison of the principal vehicle alternative in 1985, 1990, and 2000. The comparison includes weight, size, cost, energy, and design range relationships and the implications on expenditure of all major energy sources. The study is summarized, results are presented, and conclusions are drawn. Comments are made on the future roles of hydrogen and electricity in automobile propulsion.

Donnelly, J.J. Jr.; Escher, W.J.D.; Greayer, W.C.; Nichols, R.J.

1979-05-01T23:59:59.000Z

47

Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

FORUM AGENDA FORUM AGENDA U.S. Department of Energy and Tsinghua University International Hydrogen Fuel and Pressure Vessel Forum Tsinghua University Beijing, PRC September 27 - 29, 2010 The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from CNG and hydrogen vehicle deployments, and to identify R&D needs to aid the global harmonization of regulations, codes and standards to enable the successful deployment of hydrogen and fuel cell technologies. Forum Objectives: * Address and share data and information on specific technical topics discussed at the workshop in

48

Hydrogen Fuel Cells Providing Critical Backup Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Cells Providing Critical Backup Power Hydrogen Fuel Cells Providing Critical Backup Power Hydrogen Fuel Cells Providing Critical Backup Power April 9, 2010 - 3:43pm Addthis Customers of AT&T Wireless and Pacific Gas & Electric Company will enjoy service that's both cleaner and more reliable, thanks to backup power provided by about 200 hydrogen fuel cells. The two companies are becoming early adopters of hydrogen fuel cells as backups for the main power grid. Both projects are funded by an $8.5 million Recovery Act grant to ReliOn, Inc. of Spokane, Wash., which specializes in hydrogen fuel-cell backups for businesses that need to stay functional during power failures. For utilities like PG&E, which serves about 15 million people in California, backup power is critical because it helps them locate problems at

49

Dimensioning and operating wind-hydrogen plants in power markets  

Science Conference Proceedings (OSTI)

This paper presents a two-step method for dimensioning and time-sequential operation of Wind-hydrogen (H2) plants operating in power markets. Step 1 involves identification of grid constraints and marginal power losses through load flow simulations. ... Keywords: distributed generation, hydrogen, quadratic optimization, renewable energy, weak grids, wind power

Christopher J. Greiner; Magnus Korps; Terje Gjengedal

2008-07-01T23:59:59.000Z

50

Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report  

DOE Green Energy (OSTI)

This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

2010-04-30T23:59:59.000Z

51

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

52

International Partnerships for the Hydrogen Economy Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships for the Hydrogen Economy Fact Sheet Partnerships for the Hydrogen Economy Fact Sheet "I am proposing $1.2 billion in research funding so that America can lead the world in developing clean, hydrogen powered automobiles" President George Bush, 2003 State of the Union Address, January 28, 2003 A growing number of countries have committed to accelerate the development of hydrogen and fuel cell technologies in order to improve their energy, environment and economic security. For example, those countries that have made commitments include: * The United States has committed $1.7 billion for the first five years of a long- term hydrogen infrastructure, fuel cells, and hybrid vehicle technologies development program. * The European Union has committed up to 2 billion Euros over five years to

53

Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997  

DOE Green Energy (OSTI)

This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

Provenzano, J.J.

1997-04-01T23:59:59.000Z

54

Solar-hydrogen systems for remote area power supply.  

E-Print Network (OSTI)

??Remote area power supply (RAPS) is a potential early market for solar-hydrogen systems because of the comparatively high cost of conventional energy sources such as (more)

Ali, S

2007-01-01T23:59:59.000Z

55

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

56

International Partnership for the Hydrogen Economy Ministerial Conference  

DOE Green Energy (OSTI)

This report summarizes the activities of the United States Energy Association as it conducted the initial Ministerial Meeting of the International Partnership for the Hydrogen Economy in Washington, DC on November 18-21, 2003. The report summarizes the results of the meeting and subsequent support to the Office of Energy Efficiency and Renewable Energy in its role as IPHE Secretariat.

William L. Polen

2006-04-05T23:59:59.000Z

57

Hydrogen Internal Combustion Engine (ICE) Vehicle Testing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Combustion Internal Combustion Engine (ICE) Vehicle Testing Activities James Francfort Idaho National Laboratory 2 Paper #2006-01-0433 Presentation Outline Background and goal APS Alternative Fuel (Hydrogen) Pilot Plant - design and operations Fuel dispensing and prototype dispenser Hydrogen (H2) and HCNG (compressed natural gas) internal combustion engine (ICE) vehicle testing WWW Information 3 Paper #2006-01-0433 Background Advanced Vehicle Testing Activity (AVTA) is part of DOE's FreedomCAR and Vehicle Technologies Program These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications (ETA) 4 Paper #2006-01-0433 AVTA Goal Provide benchmark data for technology modeling, research and development programs, and help fleet managers and

58

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Conference Proceedings (OSTI)

Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

Yusibani, Elin [Research Center for Hydrogen Industrial Use and Storage, AIST (Japan); Department of Physics, Universitas Syiah Kuala (Indonesia); Kamil, Insan; Suud, Zaki [Department of Physics, Institut Teknologi Bandung (Indonesia)

2010-06-22T23:59:59.000Z

59

International Partnership for Hydrogen Energy IPHE | Open Energy  

Open Energy Info (EERE)

Partnership for Hydrogen Energy IPHE Partnership for Hydrogen Energy IPHE Jump to: navigation, search Name International Partnership for Hydrogen Energy (IPHE) Place Washington, Washington, DC Zip 20004 Sector Hydro, Hydrogen Product The IPHE serves as a mechanism to organize and implement effective, efficient, and focused international research, development, demonstration and commercial utilization activities related to hydrogen and fuel cell technologies. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Hydrogen power lit Academy Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen power lit Academy Awards Hydrogen power lit Academy Awards Hydrogen power lit Academy Awards April 30, 2010 - 3:21pm Addthis This prototype mobile lighting unit, which uses energy-efficient lighting and hydrogen fuel cell power, was used during the Academy Awards. Its backers hope similar technologies can replace noisy, polluting diesel-based mobile lighting. | Photos courtesy of the Academy of Motion Picture Arts and Sciences® This prototype mobile lighting unit, which uses energy-efficient lighting and hydrogen fuel cell power, was used during the Academy Awards. Its backers hope similar technologies can replace noisy, polluting diesel-based mobile lighting. | Photos courtesy of the Academy of Motion Picture Arts and Sciences® While outstanding performances in film were being honored at this year's

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

International Power Engineering Research Collaborations  

E-Print Network (OSTI)

range from market mechanisms to renewable en- ergy integration and from specific power topics to inter- disciplinary projects. Index Terms Collaborative Research and Educa- tion, Renewable Energy, Market Mechanisms with foreign institutions in Spain, Brazil, China and Ma- laysia. The presentation discusses the objectives

Gross, George

62

International Journal of Hydrogen Energy 27 (2002) 403412 www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

International Journal of Hydrogen Energy 27 (2002) 403­412 www with the titanium atoms in the B2 TiFe surfaces. ? 2002 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved. Keywords: Hydrogen storage alloy; TiFe; Hydrogen adsorption

Kim, Jai Sam

63

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

64

NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)  

DOE Green Energy (OSTI)

Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

Not Available

2010-08-01T23:59:59.000Z

65

Simulation of a hydrogen powered medium size vehicle: application to NEDC cycle  

Science Conference Proceedings (OSTI)

Reduction of greenhouse effect gases emission is a major source of concern nowadays. Internal combustion engines, as the most widely used power generation mean for transportation represent a large share of such gases, which motivates active research ... Keywords: PEMFC, cell potential, electric vehicle, fuel cell, hydrogen

A. Slimani; N. Ait Messaoudene; H. Abdi; M. W. Naceur

2008-02-01T23:59:59.000Z

66

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)  

SciTech Connect

This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

2010-11-01T23:59:59.000Z

67

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540C and 900C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

68

Students Recreate Historic Voyage with Hydrogen Power - Materials ...  

Science Conference Proceedings (OSTI)

Sep 22, 2009 ... Like Fulton, they have fitted their ship, the New Clermont, with the innovative power source of its daya pair of 2.2-kilowatt hydrogen fuel cell...

69

International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts  

DOE Green Energy (OSTI)

The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

McConnell, R.; Symko-Davies, M.; Hayden, H.

2005-05-01T23:59:59.000Z

70

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

DOE Green Energy (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

71

Research and development of hydrogen direct-injection internal combustion engine system  

Science Conference Proceedings (OSTI)

The research and development of hydrogen-internal combustion engine (ICE) system for heavy-duty trucks, with the goal of allowing carbon dioxide (CO2)-free operation in transportation department, has been carried out. The high-pressure hydrogen ... Keywords: NOx emission reduction, NOx storage reduction catalyst, carbon dioxide-free, direct injection, heavy-duty truck, high-pressure hydrogen injector, hydrogen, internal combustion engine

Yoshio Sato; Atsuhiro Kawamura; Tadanori Yanai; Kaname Naganuma; Kimitaka Yamane; Yasuo Takagi

2009-02-01T23:59:59.000Z

72

DOE Hydrogen Analysis Repository: Wind Power Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Summary Full Title: Large-Scale Integration of Wind Power into Different Energy Systems Project ID: 124 Principal Investigator: Henrik Lund Purpose The analysis...

73

Hydrogen Isotope Separation System for the Tokamak Experimental Power Reactor  

SciTech Connect

An isotopic separation system for processing the fuel in the Tokamak Experimental Power Reactor is described. Two cryogenic distillation columns are used in sequence to recover 80% of the hydrogen from a fuel mixture originally containing equal parts of deuterium and tritium with a 1% hydrogen impurity. The hydrogen thus removed contains less than 1/2% tritium, which may be recovered in a separate system designed for that purpose. It is assumed that separation of the deuterium and the tritium is not required. A total tritium inventory of approximately 38,000 Ci (3.8 g) is projected.

Wilkes, W. R.

1976-03-01T23:59:59.000Z

74

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogenCNG blends (HCNG). The plant is used daily to fuel vehicles operated in...

75

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNG-hydrogen (HCNG) blend pressure vessels and to define next steps for...

76

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

diesel via hydrogenation Coalbiomass co-feeding for FT diesel production Various corn ethanol plant types with different process fuels * Hydrogen-powered FC systems (not...

77

Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems  

DOE Green Energy (OSTI)

Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich Demonstration Plant Research Centre, Juelich (FZJ) (Germany); Schatz Solar Hydrogen Project, Schatz Energy Research Centre, Humboldt State University (USA); INTA Solar Hydrogen Facility, INTA (Spain); Solar Hydrogen Fueled Trucks, Clean Air Now, Xerox (USA), Electrolyser (Canada); SAPHYS: Stand-Alone Small Size Photovoltaic Hydrogen Energy System, ENEA (Italy), IET (Norway), FZJ (Germany); Hydrogen Generation from Stand-Alone Wind-Powered Electrolysis Systems, RAL (United Kingdom), ENEA (Italy), DLR (Germany); Palm Desert Renewable Hydrogen Transportation Project; Schatz Energy Research Centre, City of Palm Desert (USA). Other demonstration projects are summarized in chapter 11.

Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

1999-12-31T23:59:59.000Z

78

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

79

Experimental Study of Air-Fuel Ratio Control Strategy for a Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

One of the most attractive combustive features for hydrogen fuel is its wide range of flammability. The wide flammability limits allow hydrogen engine to be operated at extremely lean airfuel ratios compared to conventional fuels. Concepts for ... Keywords: Hydrogen internal combustion engine, Air/Fuel ratio, Control strategy

Zhong-yu Zhao; Fu-shui Liu

2010-11-01T23:59:59.000Z

80

Third International Conference on Improved Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This international conference reviewed advances in materials, components, and designs for coal-fired power plants. Also showcased were results from the EPRI improved power plant project, similar collaborative European projects, and new power plants in Japan. The proceedings' 54 papers contribute to an improved international understanding of advanced coal-fired power plant technology.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International Journal of Hydrogen Energy 27 (2002) 403412 www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

International Journal of Hydrogen Energy 27 (2002) 403­412 www with the titanium atoms in the B2 TiFe surfaces. ? 2002 International Association for Hydrogen Energy. Published the mechanism of gas (hydro- gen, oxygen, nitrogen, etc.) adsorption onto metal surfaces [8­14]. For example

Kim, Jai Sam

82

International Rectifier Power Control Systems | Open Energy Information  

Open Energy Info (EERE)

Rectifier Power Control Systems Rectifier Power Control Systems Jump to: navigation, search Name International Rectifier Power Control Systems Place El Segundo, California Zip 90245 Product Originally a division of International Rectifier Corporation manufacturing semiconductor and module components for power management products. References International Rectifier Power Control Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. International Rectifier Power Control Systems is a company located in El Segundo, California . References ↑ "International Rectifier Power Control Systems" Retrieved from "http://en.openei.org/w/index.php?title=International_Rectifier_Power_Control_Systems&oldid=347055"

83

International Green Power IGP | Open Energy Information  

Open Energy Info (EERE)

IGP IGP Jump to: navigation, search Name International Green Power (IGP) Place Minneapolis, Minnesota Zip 55432 Product Minneapolis-based energy development company. IGP have an additional office in Beijing. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

DOE Hydrogen Analysis Repository: A Portfolio of Power-Trains for Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

A Portfolio of Power-Trains for Europe A Portfolio of Power-Trains for Europe Project Summary Full Title: A Portfolio of Power-Trains for Europe: A Fact-Based Analysis Project ID: 266 Principal Investigator: Brief Description: This study reports the results of a factual evaluation of battery electric vehicles, fuel cell electric vehicles, plug-in hybrid electric vehicles, and internal combustion engine vehicles for the European market based on proprietary industry data. Keywords: Alternative fuel vehicles (AFV); Fuel cell vehicles (FCV); Plug-in hybrid electric vehicles (PHEV); Costs; Greenhouse gases (GHG); Emissions; Battery electric vehicles (BEV); Internal combustion engine (ICE); Hydrogen Purpose A group of companies, government organisations and a non-governmental organization - the majority with a specific interest in fuel cell

85

Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.  

DOE Green Energy (OSTI)

Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they become worried that they would run out of fuel before encountering a facility, their motivation to purchase a hydrogen-powered vehicle decreases. At vehicle purchase time, they weigh this experience, as well as other factors such as social influence by their peers, fuel cost, and capital cost of a hydrogen vehicle. Investor agents build full-service hydrogen fueling stations (HFSs) at different locations along the highway network. They base their decision to build or not build a station on their (imperfect) estimates of the sales the station would immediately generate (based on hydrogen-powered vehicle traffic past the location and other factors), as well as the growth in hydrogen sales they could expect throughout their investment horizon. The interaction between driver and investor agents provides the basis for growth in both the number of hydrogen vehicles and number of hydrogen stations. For the present report, we have added to this mix smaller, 'bare-bones' hydrogen dispensing facilities (HDFs) of the type that owners of CHHP facilities could provide to the public. The locations of these stations were chosen to match existing facilities that might reasonably incorporate CHHP plants in the future. Unlike the larger commercial stations, these facilities are built according to exogenously supplied timetables, and no attempt has been made to model the financial basis for the facilities. Rather, our objective is to understand how the presence of these additional stations might facilitate the petroleum-to-hydrogen transition. We discuss a base case in which the HDFs are not present, and then investigate the effects of introducing HDFs in various numbers; according to different timetables; with various production capacities; and with hydrogen selling at prices above, equal to, and below the commercial stations selling price. We conclude that HDFs can indeed be helpful in accelerating a petroleum-to-hydrogen transition. Placed in areas where investors might not be willing to install large for-profit HFSs, HDFs can serve as a bridge until demand for hydrogen increases to the point where l

Mahalik, M.; Stephan, C. (Decision and Information Sciences)

2011-01-18T23:59:59.000Z

86

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

DOE Green Energy (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

87

A High Power Liquid Hydrogen Target for Parity Violation Experiments  

DOE Green Energy (OSTI)

Parity-violating electron scattering measurements on hydrogen and deuterium, such as those underway at the Bates and CEBAF laboratories, require luminosities exceeding 10{sup 38} cm{sup -2} s{sup -1}, resulting in large beam power deposition into cryogenic liquid. Such targets must be able to absorb 500 watts or more with minimal change in target density. A 40 cm long liquid hydrogen target, designed to absorb 500 watts of beam power without boiling, has been developed for the SAMPLE experiment at Bates. In recent tests with 40 {micro}A of incident beam, no evidence was seen for density fluctuations in the target, at a sensitivity level of better than 1%. A summary of the target design and operational experience will be presented.

Mark, John W.

2003-06-06T23:59:59.000Z

88

Mitigation of SCC Initiation on BWR Core Internals by Means of Hydrogen Water Chemistry During Start-Up  

Science Conference Proceedings (OSTI)

Hydrogen injection has been applied as a preventive measure against the stress corrosion cracking (SCC) phenomenon in many boiling water reactors. However, it can be applied only during normal plant operation since hydrogen is usually injected into the feedwater and this system is in standby mode during start-up operations. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Therefore, it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation.For this purpose, we installed an additional hydrogen injection system to be used during plant start-up at the Tokai-2 power station. This trial Hydrogen water chemistry During Start-up (HDS) system was applied following the 19th refueling and maintenance outage in December 2002. By comparing results obtained during this start-up with HDS to previous start-up data using normal water chemistry, we made the following observations. First, as the reactor water temperature increased from initial conditions up to 180 deg. C via nuclear heating, dissolved oxygen and hydrogen peroxide concentrations decreased to levels lower than previously observed. Second, during subsequent nuclear heating, up to 250 deg. C, the dissolved oxygen concentration did not exceed 1 ppb, and the electrochemical corrosion potential was maintained in a low range near -400 mV versus the standard hydrogen electrode.

Abe, Ayumi; Tobita, Hidehiro; Nagata, Nobuaki; Dozaki, Koji; Takiguchi, Hideki [Japan Atomic Power Company (Japan)

2005-03-15T23:59:59.000Z

89

Hydrogen Effects in Materials (5th International Conference)  

Science Conference Proceedings (OSTI)

Preventing Degradation and Predicting Response in Fracture Toughness of Ti- 6A1-4V Fan Disks Using Hydrogen Measurements .......................................... 1039.

90

International Partnerships for the Hydrogen Economy Fact Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

collaborative and cooperative efforts to advance research, development and deployment of hydrogen production, storage, transport and distribution, fuel cell technologies, common...

91

International Power Girasolar joint company | Open Energy Information  

Open Energy Info (EERE)

Girasolar joint company Jump to: navigation, search Name International Power Girasolar joint company Sector Solar Product Joint venture announced between US IPWG and...

92

Global Renewable Power International Global RPI | Open Energy...  

Open Energy Info (EERE)

RPI) Place Spain Sector Wind energy Product Spain-based developer of wind projects in Poland, Croatia and Chile. References Global Renewable Power International (Global RPI)1...

93

DOE Hydrogen Analysis Repository: Future Fuel Cell and Internal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Fuel Cell and Internal Combustion Engine Automobile Technologies Project Summary Full Title: Future Fuel Cell and Internal Combustion Engine Automobile Technologies: A...

94

Gating internal nodes to reduce power during scan shift  

Science Conference Proceedings (OSTI)

It is a common practice to gate a limited number of scan cells in order to reduce overall switching activity during shift, thereby, reducing the circuit's dynamic power consumption. In this paper, we propose a novel approach to reduce overall shift power ... Keywords: gating internal nodes, low power test, scan shift power reduction

Dheepakkumaran Jayaraman; Rajamani Sethuram; Spyros Tragoudas

2010-05-01T23:59:59.000Z

95

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2011-02-01T23:59:59.000Z

96

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2010-12-01T23:59:59.000Z

97

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV | Open  

Open Energy Info (EERE)

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Jump to: navigation, search Name Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV Place New York Zip 12110 Sector Hydro, Hydrogen Product Plug Power has entered a JV with Exxon Mobil Corporation, QuestAir Technologies and Ben Gurion University. It plans to commercialize an on-vehicle hydrogen production system for use in a fuel cell-powered lift truck application. References Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV is

98

Axion Power International Inc formerly Tamboril | Open Energy Information  

Open Energy Info (EERE)

Tamboril Tamboril Jump to: navigation, search Name Axion Power International Inc (formerly Tamboril) Place New Castle, Pennsylvania Zip 16105 Product Focused on the research and development of a new technology for supercapacitive hybrid electrical energy storage devices. References Axion Power International Inc (formerly Tamboril)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Axion Power International Inc (formerly Tamboril) is a company located in New Castle, Pennsylvania . References ↑ "Axion Power International Inc (formerly Tamboril)" Retrieved from "http://en.openei.org/w/index.php?title=Axion_Power_International_Inc_formerly_Tamboril&oldid=342468

99

China Power International Shanghai Green CLP JV | Open Energy Information  

Open Energy Info (EERE)

CLP JV CLP JV Jump to: navigation, search Name China Power International, Shanghai Green & CLP JV Place Shanghai, Shanghai Municipality, China Sector Wind energy Product China-based JV for projects development and wind turbine maintenance. References China Power International, Shanghai Green & CLP JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Power International, Shanghai Green & CLP JV is a company located in Shanghai, Shanghai Municipality, China . References ↑ "China Power International, Shanghai Green & CLP JV" Retrieved from "http://en.openei.org/w/index.php?title=China_Power_International_Shanghai_Green_CLP_JV&oldid=34352

100

Numerical modeling of hydrogen-fueled internal combustion engines  

DOE Green Energy (OSTI)

The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

Johnson, N.L.; Amsden, A.A.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants  

DOE Green Energy (OSTI)

Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 Produce Data and Analyses Task 2 Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 Commercial-Scale Hydrogen Production Task 4 Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

Stephen Schey

2009-07-01T23:59:59.000Z

102

Hydrogen peroxide-based propulsion and power systems.  

DOE Green Energy (OSTI)

Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

Melof, Brian Matthew; Keese, David L.; Ingram, Brian V.; Grubelich, Mark Charles; Ruffner, Judith Alison; Escapule, William Rusty

2004-04-01T23:59:59.000Z

103

Hydrogen sulfide stress corrosion cracking in materials for geothermal power  

DOE Green Energy (OSTI)

Studies to evaluate the performance of alloys used in geothermal power systems are reported. Alloys which are commercially available and those which have modified metallurgical structures and/or composition modifications were tested to determine the corrosive effects of the H/sub 2/S and thermal environments in geothermal fluids. Hydrogen embrittlement and sulfide stress corrosion cracking were tested. Test results showing the effects of alloy composition, tempering temperatures, fluid temperature and salt content, and ageing on sulfide stress cracking are tabulated. (LCL)

Hehemann, R.F.; Troiano, A.R.; Abu-Khater, B.; Ferrigno, S.

1976-01-01T23:59:59.000Z

104

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Working Group Meeting Focuses on Nuclear Power International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said

105

NREL: Technology Transfer - NREL's Hydrogen-Powered Bus Serves ...  

... up at NRELs on-site hydrogen fueling station, which dispenses some of the greenest hydrogen in the world made using wind and solar energy.

106

Establishment of the International Power Institute. Final technical report  

Science Conference Proceedings (OSTI)

The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

Julius E. Coles

2000-08-04T23:59:59.000Z

107

International Energy Outlook 1999 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

nuclear.jpg (5137 bytes) nuclear.jpg (5137 bytes) Nuclear electricity generation remains flat in the IEO99 reference case, representing a declining share of the world’s total electricity consumption. Net reductions in nuclear capacity are projected for most industrialized nations. In 1997, a total of 2,276 billion kilowatthours of electricity was generated from nuclear power worldwide, providing 17 percent of the world’s electricity generation. Among the countries with operating nuclear power plants, national dependence on nuclear power for electricity varies greatly (Figure 53). Ten countries met at least 40 percent of their total electricity demand with generation from nuclear reactors. The prospects for nuclear power to maintain a significant share of worldwide electricity generation are uncertain, despite projected growth of

108

NREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Melds Nature with Nanotech for Solar-Powered Hydrogen Production NREL researchers are finding ways to mimic photosynthesis by combining enzymes with nanoparticles-particles on the...

109

SunLine Transit Agency, Hydrogen Powered Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This paper provides preliminary results from an evaluation by DOE's National Renewable Energy Laboratory of hydrogen-powered transit buses at SunLine Transit Agency.

Chandler, K.; Eudy, L.

2007-02-01T23:59:59.000Z

110

Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear power plant is  

E-Print Network (OSTI)

Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear of the operation of the combined nuclear-wind-hydrogen system is discussed first, where the selling and buying.e. transmission congestion. Index Terms--wind power, nuclear power, hydrogen storage, Hydrogen Economy, power

Cañizares, Claudio A.

111

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the world’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

112

Effects of internal hydrogen on the vacancy loop formation probability in Al  

DOE Green Energy (OSTI)

The effect of internal hydrogen on the formation of vacancy dislocation loops from heavy-ion generated displacement cascades in Al has been investigated. Samples of high-purity aluminum and aluminum containing 900 and 1300 appM of hydrogen were irradiated at room temperature with 50 keV Kr+ ions. The ion dose rate was typically 2 {times} 10{sup 10}ions cm{sup {minus}2} sec{sup {minus}1} and the ion dose was between 10{sup 11} and 10{sup 13} ion cm{sup {minus}2}. Under these irradiation conditions, dislocation loops were observed in all compositions, although the formation probability was relatively low (less than 10 percent of the displacement cascades produced a vacancy loop). The loop formation probability was further reduced by the presence of hydrogen. No difference in the geometry or the size of the loops created in the hydrogen free and hydrogen charged samples was found. These results are difficult to interpret, and the explanation may lie in the distribution and form of the hydrogen. To account for the large hydrogen concentrations and from calculations of the energy associated with hydrogen entry into aluminum, it has been suggested that the hydrogen enters the aluminum lattice with an accompanying vacancy. This will create hydrogen-vacancy complexes in the material; two dimensional complexes have been detected in the hydrogen-charged, but unirradiated, samples by the small-angle x-ray scattering technique. The possibility of these complexes trapping the vacancies produced by the cascade process exists thus lowering the formation probability. However, such a mechanism must occur within the lifetime of the cascade. Alternatively, if a displacement cascade overlaps with the hydrogen-vacancy complexes, the lower atomic density of the region will result in an increase in the cascade volume (decrease in the local vacancy concentration) which will also reduce the loop formation probability.

Bui, T.X.; Sirois, E.; Robertson, I.M. (Illinois Univ., Urbana, IL (USA). Dept. of Materials Science and Engineering); Kirk, M.A. (Argonne National Lab., IL (USA))

1990-04-01T23:59:59.000Z

113

New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Patterning High-density Arrays of Nanospheres with Self Assembly Patterning High-density Arrays of Nanospheres with Self Assembly Cells Forming Blood Vessels Send Their Copper to the Edge A Molecular Cause for One Form of Deafness Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles MARCH 7, 2007 Bookmark and Share Nenad Markovic and Vojislav Stamenkovic with the new three-chamber UHV system at Argonne. Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering - a

114

Predictive models for emission of hydrogen powered car using various artificial intelligent tools  

Science Conference Proceedings (OSTI)

This paper investigates the use of artificial intelligent models as virtual sensors to predict relevant emissions such as carbon dioxide, carbon monoxide, unburnt hydrocarbons and oxides of nitrogen for a hydrogen powered car. The virtual sensors are ... Keywords: Adaptive neuro-fuzzy inference systems, Artificial intelligent techniques, Back-propagation neural networks with LevenbergMarquardt algorithm, Hydrogen emission prediction, Hydrogen powered car, UTAS artificial neural networks

Vishy Karri; Tien Nhut Ho

2009-06-01T23:59:59.000Z

115

Microsoft PowerPoint - International Pyroprocessing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLID SOLID OXIDE MEMBRANE PROCESS FOR THE REDUCTION OF OXIDES IN SPENT NUCLEAR FUEL Uday B. Pal Division of Materials Science and Engineering Department of Mechanical Engineering Boston University 2012 International Pyroprocessing Research Conference The Abbey Resort, Fontana, WI August 26-30, 2012 August 26-30, 2012 The Abbey Resort Fontana, WI Outline  Overview of the SOM Process  SOM Process for Magnesium Production  SOM Process with Electrolytic Refining for Recycling Magnesium Alloys  SOM Process for Silicon Production  SOM process for Uranium oxide reduction in spent nuclear fuel  Identify surrogate for Uranium oxide  Identify fluoride flux for dissolving the surrogate oxide  Determine stability of YSZ membrane in the chosen flux  Determine stability of reduced metal and flux-surrogate oxide system with cathode and crucible material

116

Materials in Clean Power Systems VI: Clean Coal-, Hydrogen Based ...  

Science Conference Proceedings (OSTI)

clean coal technologies, carbon sequestration, membrane-based gas separations, biofuel production, hydrogen production from various sources, etc. With an...

117

Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry  

DOE Green Energy (OSTI)

The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies & challenges to nuclear options.

Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

2004-10-04T23:59:59.000Z

118

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

2004,ACOREPower?GenRenewable Energy,LasVegas,NVthe International Renewable Hydrogen TransmissionNovember 1998, National Renewable Energy Laboratory, NREL/

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

119

DOE Hydrogen Analysis Repository: Potential for Stationary Fuel Cells to  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Hydrogen Vehicles Project Summary Full Title: Analyzing the Potential for Stationary Fuel Cells to Augment Hydrogen Availability in the Transition to Hydrogen Vehicles Project ID: 281 Principal Investigator: David Greene Brief Description: This analysis was focused on the role that combined heat and hydrogen power (CHHP) could play in increasing hydrogen refueling availability during the transition to hydrogen vehicles. Keywords: Stationary fuel cell; hydrogen; plug-in hybrid electric vehicle; hydrogen fuel cell vehicle; combined heat, hydrogen and power; internal combustion engine Performer Principal Investigator: David Greene Organization: Oak Ridge National Laboratory (ORNL)

120

Influence of Radiolysis and Hydrogen Embrittlement on the In-Service Cracking of PWR Internal Structures  

Science Conference Proceedings (OSTI)

Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steel components exposed to a high neutron flux in light water reactors is becoming an increasing concern for nuclear power plant owners. This study investigates the interaction between hydrogen in the metal and the water environment that may exacerbate the cracking process in PWRs.

1999-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind Power Forecasting Error Distributions: An International Comparison; Preprint  

DOE Green Energy (OSTI)

Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

2012-09-01T23:59:59.000Z

122

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing of New Nuclear Projects Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said Assistant Secretary for Nuclear Energy Warren F. Miller, Jr. "The group

123

Hydrogen Detection in Nuclear Power Plants: Comparison of Potential, Existing, and Innovative Technologies  

Science Conference Proceedings (OSTI)

The ability to monitor hydrogen volumes accurately and quickly within containment environments at nuclear power plants is a critical capability, especially during accident conditions where hydrogen generation may be occurring within the reactor vessel. Since the initial installation of hydrogen monitoring systems in plants following the Three Mile Island accident in 1979, new technologies have been developed and offer performance advantages when compared with existing installed sensors. In addition ...

2013-12-13T23:59:59.000Z

124

Klystron switching power supplies for the Internation Linear Collider  

Science Conference Proceedings (OSTI)

The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

Fraioli, Andrea; /Cassino U. /INFN, Pisa

2009-12-01T23:59:59.000Z

125

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

Science Conference Proceedings (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

126

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Needs Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for international nuclear fuel service frameworks. Officials from the U.S. Department of Energy (DOE) and the U.K. Nuclear Decommissioning Authority co-chaired the working group meeting. "As a key component of the international Global Nuclear Energy Partnership program, the Infrastructure Development Working Group focuses

127

Sea Solar Power International Inc | Open Energy Information  

Open Energy Info (EERE)

International Inc International Inc Jump to: navigation, search Name Sea Solar Power International Inc Place Baltimore, Maryland Zip 21230 Sector Ocean Product Ocean Thermal Energy Conversion (OTEC) technology developer. Website http://www.seasolarpower.com Coordinates 39.290555°, -76.609604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.290555,"lon":-76.609604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

129

Modelling Prospects for Hydrogen-powered Transportation Until 2100  

E-Print Network (OSTI)

from transportation are: replacement of gasoline and diesel with biofuels, all-electric cars or near improvements, such as those promised by further penetration of electric­gasoline hybrid vehicles, are probably all-electric plug-in hybrids, and hydrogen fuel cell vehicles. Although large-scale

130

Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system  

DOE Green Energy (OSTI)

This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

Edenburn, M.W.

1990-07-01T23:59:59.000Z

131

Hydrogen  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Hydrogen production ...

132

Operating Reserves and Wind Power Integration: An International Comparison  

Science Conference Proceedings (OSTI)

The determination of additional operating reserves in power systems with high wind penetration is attracting a significant amount of attention and research. Wind integration analysis over the past several years has shown that the level of operating reserve that is induced by wind is not a constant function of the installed capacity. Observations and analysis of actual wind plant operating data has shown that wind does not change its output fast enough to be considered as a contingency event. However, the variability that wind adds to the system does require the activation or deactivation of additional operating reserves. This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on the work in International Energy Agency IEA WIND Task 25 on Large-scale Wind Integration. The paper concludes with an assessment of the common themes and important differences, along with recent emerging trends.

Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Ericksen, P. B.; Gottig, A.; Rawn, B.; Frunt, J.; Kling, W. L.; Gibescu, M.; Gomez-Lazaro, E.; Robitaille, A.; Kamwa, I.

2010-01-01T23:59:59.000Z

133

DOE Hydrogen Analysis Repository: Water Use for Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Use for Power Production Water Use for Power Production Project Summary Full Title: Consumptive Water Use for U.S. Power Production Project ID: 205 Principal Investigator: Paul Torcellini Keywords: Water, energy use, electricity generation Purpose Estimate the water consumption at power plants to provide a metric for determining water efficiency in building cooling systems. Performer Principal Investigator: Paul Torcellini Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-384-7528 Email: paul_torcellini@nrel.gov Additional Performers: R. Judkoff, National Renewable Energy Laboratory; N. Long, National Renewable Energy Laboratory Period of Performance End: December 2003 Project Description Type of Project: Analysis

134

Electric Power Research Institute (EPRI) Hydrogen Briefing to...  

NLE Websites -- All DOE Office Websites (Extended Search)

and in the coming years. * Detailed business case analysis were done for: Entergy, Xcel, and Southern Company 4 Copyright 2008 Electric Power Research Institute,Inc All...

135

Hawaii Hydrogen Power Park - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Richard (Rick) E. Rocheleau (Primary Contact), Mitch Ewan Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, HI 96822 Phone: (808) 956-8346 Email: rochelea@hawaii.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805; Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC51-02R021399 A008 Project Start Date: June 29, 2009 Project End Date: December 31, 2014 Fiscal Year (FY) 2012 Objectives Island of Hawaii (Big Island) Install hydrogen fueling station infrastructure at Hawaii * Volcanoes (HAVO) National Park on the Big Island of

136

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Chicago team. On-board hydrogen storage is critical to the development of future high energy efficiency transportation technologies, such as hydrogen-powered fuel...

137

Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06  

SciTech Connect

Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in-service inspection, and codes and standards. - 5. Plant Safety Assessment and Regulatory Issues Transient and accident performance including LOCA and non-LOCA, severe accident analysis, impact of risk informed changes, accident management, assessment and management of aging, degradation and damage, life extension lessons from plant operations, probabilistic safety assessment, plant safety analysis, reliability engineering, operating and future plants. - 6. Thermal Hydraulic Analysis and Testing Phenomena identification and ranking, computer code scaling applicability and uncertainty, containment thermal hydraulics, component and integral system tests, improved code development and qualification, single and two phase flow; advanced computational thermal hydraulic methods. - 7. Core and Fuel Cycle Concepts and Experiments Core physics, advances in computational reactor analysis, in-core fuel management, mixed-oxide fuel, thorium fuel cycle, low moderation cores, high conversion reactor designs, particle and pebble bed fuel design, testing and reliability; fuel cycle waste minimization, recycle, storage and disposal. - 8. Materials and Structural Issues Fuel, core, RPV and internals structures, advanced materials issues and fracture mechanics, concrete and steel containments, space structures, analysis, design and monitoring for seismic, dynamic and extreme accidents; irradiation issues and materials for new plants. - 9. Nuclear Energy and Sustainability including Hydrogen, Desalination and Other Applications Environmental impact of nuclear and alternative systems, spent fuel dispositions and transmutation systems, fully integrated fuel cycle and symbiotic nuclear power systems, application of advanced designs to non-power applications such as the production of hydrogen, sea water desalination, heating and other co-generation applications. - 10. Near Term Issues (New) Applies to plants that have a significa

NONE

2006-07-01T23:59:59.000Z

138

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

139

DOE Hydrogen Analysis Repository: Renewable Energy Power System Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Power System Modular Simulator (RPM-Sim) Renewable Energy Power System Modular Simulator (RPM-Sim) Project Summary Full Title: Renewable Energy Power System Modular Simulator (RPM-Sim) Project ID: 104 Principal Investigator: Edward Muljadi Keywords: Renewable; hybrid electric vehicles (HEV) Purpose This is a package software program developed based on a modular concept. Each module consists of a type of equipment or an element of a power system (for example, diesel-genset, wind turbine generator, village load, rotary converter, PV-inverter module, fuel cell-inverter module (developed by Prof. Hashem Nehrir, Montana State University), electrolysis module (developed by Prof. Hosein Salehfar and Prof. Mann University of North Dakota). Performer Principal Investigator: Edward Muljadi Organization: National Renewable Energy Laboratory (NREL)

140

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

Science Conference Proceedings (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells PowerEdge units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuveras PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-Bs facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

142

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

143

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Cycle Analysis of Hydrogen-Powered Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million through FY08 * Funding received in FY07: $450k * Funding for FY08: $840k Budget * H2A team * PSAT team * NREL * Industry stakeholders Partners Timeline Barriers to Address 3 Objectives * Expand and update the GREET model for hydrogen production pathways and for applications of FCVs and other FC systems

144

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

145

Hydrogen turbines for space power systems: A simplified axial flow gas turbine model  

SciTech Connect

This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.

Hudson, S.L.

1988-01-01T23:59:59.000Z

146

Development and validation of a hybrid electric vehicle with hydrogen internal combustion engine.  

E-Print Network (OSTI)

??The motivation for the use of hydrogen as fuel is that it is renewable and can reduce emissions. Hydrogen fuel cell vehicles are still likely (more)

He, Xiaolai

2006-01-01T23:59:59.000Z

147

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

148

Production of hydrogen by photovoltaic-powered electrolysis. Task 1 report  

DOE Green Energy (OSTI)

The report presents results of a cooperative effort among the Florida Energy Office, NASA/Kennedy Space Center, the US Department of Energy and the Florida Solar Energy Center (FSEC). It reports on a task to evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. The resulting activities covered five years of effort funded at a total of $216,809. The results represent a successful, coordinated effort among two state agencies and two federal agencies. Results are reported on two separate investigations. The first investigation looked at the use of line focus concentrating photovoltaics coupled with single-cell electrolyzers to produce gaseous hydrogen. The concept, and its design, construction and operation, are presented. The objectives of the line focusing PV system are to reduce overall system cost under the assumptions that lenses and mirrors are cheaper to deploy than are PV cells, and that low-voltage, high-current dc electricity can efficiently power a single-cell elctrolyzer to produce hydrogen. The second investigation evaluated a base case cost of PV electrolysis hydrogen production based on present-day PV and electrolyzer costs and efficiencies. A second step analyzed the hydrogen costs based on a best prediction of where PV costs and efficiencies will be in 10 years. These results set the minimum cost standards that other renewable production technologies must meet or better.

Block, D.L.

1995-12-01T23:59:59.000Z

149

Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report  

DOE Green Energy (OSTI)

This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

Not Available

1994-05-01T23:59:59.000Z

150

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

151

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

152

Control of hydrogen sulfide emission from geothermal power plants  

DOE Green Energy (OSTI)

A process for controlling H/sub 2/S emissions at geothermal power plants was evaluated in laboratory scale equipment and by process engineering analysis. The process is based on scrubbing geothermal steam with a metal salt solution to selectively remove and precipitate the contained H/sub 2/S. The metal sulfide is roasted or oxygen/acid leached to regenerate the metal salt, and sulfur is rejected from the system as elemental sulfur or as sulfate. Up to 95 percent removal of H/sub 2/S from simulated geothermal steams was obtained in a 2'' diameter scrubbing column packed with 3 feet of 5/8'' Flexirings by use of a recirculating slurry of copper sulfate/copper sulfide. Information is included on the chemistry, thermodynamics, kinetics and process control aspects of the process, scrubber system design, operation, and corrosion, and design proposals and cost estimates for a H/sub 2/S removal system. (LCL)

Harvey, W.W.; Brown, F.C.; Turchan, M.J.

1976-07-01T23:59:59.000Z

153

Enhanced control of DFIG-based wind power plants to comply with the international grid codes.  

E-Print Network (OSTI)

??A review of the latest international grid codes shows that large wind power plants are stipulated to not only ride-through various fault conditions, but also (more)

Mohseni, Mansour

2011-01-01T23:59:59.000Z

154

Hydrogen supplemented diesel electric locomotive  

SciTech Connect

A system is disclosed for using internally generated electricity as the power to operate an electrolysis cell for the production of hydrogen gas. This hydrogen gas would be stored under pressure and used on demand as a fuel supplement as for hill ascension by a diesel locomotive.

Wilson, J.B.

1983-05-03T23:59:59.000Z

155

Polygeneration of SNG, hydrogen, power, and carbon dioxide from Texas lignite  

Science Conference Proceedings (OSTI)

This feasibility study has shown that siting a mine mouth lignite fed gasification plant in Texas to produce hydrogen, SNG, electric power, and carbon dioxide could be economically feasible in an era of high natural gas prices. Because of the high moisture content of the lignite the choice of gasification system becomes an important issue. Hydrogen produced from Texas lignite in a coproduction plant could be produced in the range $5.20-$6.20/MMBTU (HHV basis) equivalent to between $0.70 and $0.84 per kilogram. This range of hydrogen costs is equivalent to hydrogen produced by steam methane reforming of natural gas if the natural gas feed price was between $3.00 and $4.00/MMBTU. With natural gas prices continuing to remain above $5.00/MMBTU this concept of using Texas lignite for hydrogen production would be economically viable. For the production of SNG from Texas lignite, the costs range from $6.90-$5.00/MMBTU (HHV basis). If natural gas prices remain above $5.00/MMBTU then the configuration using the advanced dry feed gasification system would be economically viable for production of SNG. This option may be even more attractive with other low rank coals such as Wyoming subbituminous and North Dakota lignite coals that are priced lower than Texas lignite. Production of electric power from these conceptual coproduction plants provides a valuable revenue stream. The opportunity to sell carbon dioxide for EOR in Texas provided another valuable revenue stream for the plants. The break even cost of recovering the carbon dioxide ranged from about $5.50 to $7.75 per ton depending on whether SNG or hydrogen was the product.

Gray, D.; Salerno, S.; Tomlinson, G.; Marano, J.J. [Mitretek Systems, Falls Church, VA (United States)

2004-12-15T23:59:59.000Z

156

Operating Reserves and Wind Power Integration: An International Comparison; Preprint  

SciTech Connect

This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on an informal International Energy Agency Task 25: Large-scale Wind Integration.

Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O' Malley, M.; Miller, N.; Eriksen, P. B.; Gottig, A.; Rawn, B.; Gibescu, M.; Lazaro, E. G.; Robitaille, A.; Kamwa, I.

2010-10-01T23:59:59.000Z

157

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1  

DOE Green Energy (OSTI)

OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-12-01T23:59:59.000Z

158

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1  

SciTech Connect

OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-12-01T23:59:59.000Z

159

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

160

TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY  

E-Print Network (OSTI)

of hydrogen energy technologies in order to improve their energy, economic, and environmental security for hydrogen production, storage, transport, distribution and use is a multinational task that requires careful efforts to advance research, development, demonstration and commercial use of hydrogen production, storage

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

1: U.S. and International Renewable Hydrogen Demonstrationfueling station powered by renewable electricity. The systemand Natural Gas, National Renewable Energy Laboratory, U.S.

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

162

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

163

Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and design  

Science Conference Proceedings (OSTI)

Welcome to the 14th ACM/IEEE International Symposium on Low Power Electronics and Design! The 2009 edition of the ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED) welcomes you to San Francisco, the liberal fog-city of million ...

Jrg Henkel; Ali Keshavarzi; Naehyuck Chang; Tahir Ghani

2009-08-01T23:59:59.000Z

164

DOE Hydrogen and Fuel Cells Program: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search help Home > Hydrogen Storage Printable Version Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power...

165

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

166

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

167

Microsoft PowerPoint - International Projects1.pptm.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

International Program International Program Modeling Activities Boris Faybishenko Lawrence Berkeley National Laboratory Berkeley, CA DOE-EM Project Managers- Kurt Gerdes and Skip Chamberlain Performance Assessment Community of Practice Technical Exchange April 13-14, 2010, Richland, WA Outline * Review of projects formerly supported by DOE-EM * Potential International Projects and Analogue Case Studies for ASCEM - Chernobyl Cooling Pond, Ukraine - Nonclassical transport modeling-project with the Nuclear Safety Institute of RAS, Russia - Uranium Mine and Mills Tailing's Covers * Central Asia--Kazakhstan, Tajikistan, Kyrgyzstan, and Uzbekistan - Cementitious Materials for Long-Term Storage and Disposal * Conclusions and Recommendations Overall Objectives of DOE-EM International Program Modeling Activities

168

Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

169

A high power liquid hydrogen target for the Mainz A4 parity violation experiment  

E-Print Network (OSTI)

We present a new powerful liquid hydrogen target developed for the precise study of parity violating electron scattering on hydrogen and deuterium. This target has been designed to have minimal target density fluctuations under the heat load of a 20$\\mu$A CW 854.3 MeV electron beam without rastering the electron beam. The target cell has a wide aperture for scattered electrons and is axially symmetric around the beam axis. The construction is optimized to intensify heat exchange by a transverse turbulent mixing in the hydrogen stream, which is directed along the electron beam. The target is constructed as a closed loop circulating system cooled by a helium refrigerator. It is operated by a tangential mechanical pump with an optional natural convection mode. The cooling system supports up to 250 watts of the beam heating removal. Deeply subcooled liquid hydrogen is used for keeping the in-beam temperature below the boiling point. The target density fluctuations are found to be at the level 10$^{-3}$ at a beam current of 20 $\\mu$A.

I. Altarev; E. Schilling; S. Baunack; L. Capozza; J. Diefenbach; K. Grimm; Th. Hammel; D. vonHarrach; Y. Imai; E. M. Kabuss; R. Kothe; J. H. Lee; A. LopesGinja; F. E. Maas; A. SanchezLorente; G. Stephan; C. Weinrich

2005-04-25T23:59:59.000Z

170

The effect of slightly faster strain rates and internal hydrogen on uranium-0. 8 weight percent titanium alloy mechanical properties  

DOE Green Energy (OSTI)

Mechanical testing of uranium-0.8 wt % titanium (U-0.8 wt % Ti) alloys can affect the outcome of mechanical properties, primarily ductility, by varying the crosshead velocity, which changes the strain rate. However, most specifications that govern mechanical properties of this alloy reference ASTM E-8, which limits the speed to 0.5 in./in. of gage length per minute. Our current procedure for testing U-0.8 Ti is not at the maximum speed permitted in ASTM E-8, so an experiment was designed to evaluate the effect of maximizing the crosshead velocity per ASTM E-8. In order to create a fair assessment, tensile specimens were prepared that were low in internal hydrogen (0.02 ppM) and higher in internal hydrogen (0.36 ppM). External hydrogen effects were minimized by testing in a controlled environment that contained less than 10% relative humidity. Test results showed that for the low hydrogen test group, increasing the crosshead velocity caused a significant increase in reduction in area (RA), but not in elongation. For the higher hydrogen test group, increasing the speed resulted in a significant increase in RA and an increase, though not statistically significant, in elongation. Of equal importance was an observation that strongly suggests a correlation between material defects, like inclusion clusters, and higher hydrogen content, especially at the slower strain rate that would explain the erratic behavior in ductile properties associated with this alloy. As a result of this study, increasing the crosshead velocity to 0.32 in./min is recommended for mechanical testing of U-0.8 Ti alloys. 9 refs., 4 figs., 5 tabs.

Bird, E.L.

1990-10-10T23:59:59.000Z

171

HYDROGEN STORAGE SOLUTIONS IN SUPPORT OF DOD WARFIGHTER PORTABLE POWER APPLICATIONS  

DOE Green Energy (OSTI)

From Personal Digital Assistants (PDAs) to cell phones our high-tech world, today, is demanding smaller, lighter weight and higher capacity portable power devices. Nowhere has this personal power surge been more evident than in today's U.S Warfighter. The modern Warfighter is estimated to carry from 65 to 95 pounds of supplies in the field with over 30 pounds of this dedicated to portable power devices. These devices include computer displays, infrared sights, Global Positioning Systems (GPS), night vision and a variety of other sensor technologies. Over 80% of the energy needed to power these devices comes from primary (disposable) batteries. It is estimated that a brigade will consume as much as 7 tons of batteries in a 72 hour mission at a cost of $700,000. A recent comprehensive study on the energy needs of the future warrior published by the National Academy of Science in 2004 made a variety of recommendations for average power systems from 20 to 1,000 watts. For lower power systems recommendations included pursuing science and technology initiatives focused on: (1) 300 watt-hours per kilogram (Wh/kg) secondary battery technologies; (2) smart hybrids; and (3) fuel cells (with greater than 6 wt% hydrogen storage). Improved secondary (rechargeable) batteries may be the ideal solution for military power systems due to their ease of use and public acceptance. However, a 3X improvement in their specific energy density is not likely anytime soon. Today's Lithium Ion batteries, at about 150 Wh/kg, fall well short of the energy density that is required. Future battery technology may not be the answer since many experts do not predict more than a 2X improvement in Lithium battery systems over the next 10 years. That is why most auto companies have abandoned all electric vehicles in favor of fuel cells and hybrid vehicles. Fuel cells have very high specific energy densities but achieving high energy values will depend on the energy density and the storage method of its fuel. Improved methods of safely and efficiently storing larger amounts of hydrogen will be a key development area for portable fuel cell power systems. Despite their high potential energy, fuel cells exhibit low power densities. That is why many systems today are going hybrid. Hybrid systems typically combine low energy and high power components with high energy and low power components. Typical configurations include capacitors and fuel cells or batteries and fuel cells. If done correctly, a hybrid system often can have both high energy and high power density even higher than any of the individual components.

Motyka, T.

2009-01-06T23:59:59.000Z

172

Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power  

DOE Green Energy (OSTI)

OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

Brown, L.C.; Funk, J.F.; Showalter, S.K.

1999-12-15T23:59:59.000Z

173

Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production  

DOE Green Energy (OSTI)

The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept.

PARMA JR.,EDWARD J.; PICKARD,PAUL S.; SUO-ANTTILA,AHTI JORMA

2003-06-01T23:59:59.000Z

174

International data exchange for geothermal energy power production  

SciTech Connect

An approach to the problem of economic data handling and dissemination of geothermal information is the establishment of an international data exchange cooperative program with the idea to avoid unnecessary and expensive duplication of research and development effort.

Phillips, S.L.

1978-04-01T23:59:59.000Z

175

Thermodynamics of non-local materials: extra fluxes and internal powers  

E-Print Network (OSTI)

The most usual formulation of the Laws of Thermodynamics turns out to be suitable for local or simple materials, while for non-local systems there are two different ways: either modify this usual formulation by introducing suitable extra fluxes or express the Laws of Thermodynamics in terms of internal powers directly, as we propose in this paper. The first choice is subject to the criticism that the vector fluxes must be introduced a posteriori in order to obtain the compatibility with the Laws of Thermodynamics. On the contrary, the formulation in terms of internal powers is more general, because it is a priori defined on the basis of the constitutive equations. Besides it allows to highlight, without ambiguity, the contribution of the internal powers in the variation of the thermodynamic potentials. Finally, in this paper, we consider some examples of non-local materials and derive the proper expressions of their internal powers from the power balance laws.

Mauro Fabrizio; Barbara Lazzari; Roberta Nibbi

2011-04-15T23:59:59.000Z

176

OPPORTUNITIES FOR STUDENT INTERNS/RECENT GRADUATES SOUTHWESTERN POWER ADMINISTRATION  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC POWER MARKETING ELECTRIC POWER MARKETING OFFICE OF CORPORATE OPERATIONS ELECTRICAL, MECHANICAL, OR INDUSTRIAL ENGINEER Apply at www.usajobs.gov About the Division of Electric Power Marketing: The Division of Electric Power Marketing negotiates, develops, and drafts contracts and technical documents to support Southwestern's mission of marketing and delivering Federal hydropower. The Division also oversees Southwestern's program to replace major electrical and mechanical equipment at U.S. Army Corps of Engineers (Corps) hydroelectric projects. Technical aspects and length of a project's lifecycle can vary by project, but the work generally involves strong project management skills in addition to technical knowledge. Skills Needed: * Basic computer applications (Microsoft Office - Word, Excel, Outlook, etc.)

177

Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage  

E-Print Network (OSTI)

in India and China as compared to worldwide averages (Tables 1, 2). While the growth rate of renewable. The eventual goal is to fuel the vehicle with domestically produced renewable hydrogen. Renewable hydrogen can of renewable energy sources is very limited and needs to be aggressively increased. This will help combat

178

OPPORTUNITIES FOR STUDENT INTERNS/RECENT GRADUATES SOUTHWESTERN POWER ADMINISTRATION  

NLE Websites -- All DOE Office Websites (Extended Search)

RELIABILITY COMPLIANCE & TRANSMISSION POLICY RELIABILITY COMPLIANCE & TRANSMISSION POLICY OFFICE OF CORPORATE OPERATIONS ELECTRICAL, MECHANICAL, OR INDUSTRIAL ENGINEER Apply at www.usajobs.gov About the Division of Reliability Compliance and Transmission Policy: The Division of Reliability Compliance and Transmission Policy is the lead division in ensuring Southwestern is compliant with North American Electric Reliability Corporation (NERC) Reliability Standards and Federal Energy Regulatory Commission (FERC) open access transmission service policies in areas such as: * transmission system operation * balancing authority operations * hydropower operations * power system disturbance investigation * power system protective relaying * transmission system planning * power system maintenance functions

179

Bombs unbuilt : power, ideas and institutions in international politics  

E-Print Network (OSTI)

Nuclear weapons are the most powerful weapons in human history, but contrary to virtually every prediction by scholars, relatively few states have acquired them. Why are there so few nuclear weapons states? What factors ...

Walsh, James Joseph, 1959-

2001-01-01T23:59:59.000Z

180

of hydrogen-powered cars," he says. But a major hurdle remains: the cost of platinum metal  

E-Print Network (OSTI)

of hydrogen-powered cars," he says. But a major hurdle remains: the cost of platinum metal needed to produce nothing but pure water as exhaust and clean electricity for power. At the heart of every fuel cell is an advanced plastic membrane coated with a platinum catalyst. That's where the production of electricity takes

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Low-power flip-flop using internal clock gating and adaptive body bias.  

E-Print Network (OSTI)

??This dissertation presents a new systematic approach to flip-flop design using Internal Clock Gating, (ICG), and Adaptive Body-Bias, (ABB), in order to reduce power consumption. (more)

Galvis, Jorge Alberto

2006-01-01T23:59:59.000Z

182

POWERFUL PARTNERSHIPS: THE FEDERAL ROLE IN INTERNATIONAL COOPERATION  

E-Print Network (OSTI)

.6: Learning Curve Relationships for Photovoltaics, Wind Generators, and Gas Turbines 3-33 3.7: Filling 2-21 Conclusions 2-25 References 2-29 3. Foundations of International Cooperation on Energy Mechanisms for Incorporating Public Benefits 3-22 3.2: Indicators of Debt and Possible Debt for PBF Swaps 3-25

183

Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

1986-01-28T23:59:59.000Z

184

Experimental results of hydrogen distillation at the low power cryogenic column for the production of deuterium depleted hydrogen  

Science Conference Proceedings (OSTI)

The Deuterium Removal Unit (DRU) has been designed and built at the Petersburg Nuclear Physics Inst. (PNPI) to produce isotopically pure hydrogen with deuterium content less than 1 ppm. The cryogenic distillation column of 2.2 cm inner diameter and 155 cm packing height is the main element of the DRU. Column performances at different hydrogen distillation operating modes have been measured. The height equivalent to theoretical plate (HETP) for the column is 2.2 cm and almost constant over a wide range of vapour flow rates. Deuterium depleted hydrogen with a deuterium content of less than 0.1 ppm was produced in required quantity. (authors)

Alekseev, I.; Fedorchenko, O.; Kravtsov, P.; Vasilyev, A.; Vznuzdaev, M. [Petersburg Nuclear Physics Inst., Leningrad district, Gatchina, 188300 (Russian Federation)

2008-07-15T23:59:59.000Z

185

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Grid  

E-Print Network (OSTI)

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Transient Stability" #12;1st International Workshop on High Performance Computing, Networking and Analytics (University of Vermont). "Developing a Dynamic Model of Cascading Failure for High Performance Computing using

186

Welding and Repair Technology for Power Plants: Fourth RRAC International Conference  

Science Conference Proceedings (OSTI)

The Fourth International Conference on Welding and Repair Technology for Power Plants included presentations of case histories and emerging welding technologies and demonstrations of repair techniques and approaches. These proceedings provide technical information discussed during this conference regarding the repair of steam turbine rotors, discs, blades, piping, steam generators, headers, reactor pressure vessel internals, valves, pumps, combustion turbines, and other components. Sessions included nucl...

2000-09-30T23:59:59.000Z

187

Hydrogen Car Co | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Hydrogen Car Co Place Los Angeles, California Zip 90036 Sector Hydro, Hydrogen Product The Hydrogen Car Company produces hydrogen internal combustion...

188

Development of a lithium hydride powered hydrogen generator for use in long life, low power PEM fuel cell power supplies  

E-Print Network (OSTI)

This thesis studies a hybrid PEM fuel cell system for use in low power, long life sensor networks. PEM fuel cells offer high efficiency and environmental friendliness but have not been widely adopted due to cost, reliability, ...

Strawser, Daniel DeWitt

2012-01-01T23:59:59.000Z

189

Hydrogen wishes  

Science Conference Proceedings (OSTI)

Hydrogen Wishes, presented at MIT's Center for Advanced Visual Studies, explores the themes of wishes and peace. It dramatizes the intimacy and power of transforming one's breath and vocalized wishes into a floating sphere, a bubble charged with hydrogen. ...

Winslow Burleson; Paul Nemirovsky; Dan Overholt

2003-07-01T23:59:59.000Z

190

Journal of Power Sources 135 (2004) 184191 A solid oxide fuel cell system fed with hydrogen sulfide  

E-Print Network (OSTI)

, such as food processing, coke ovens, paper mills, tanneries, and petroleum refineries. Sometimes, a desulfurizer, and two recuperators. Natural gas is internally reformed, and the product, a hydrogen-rich gas sulfide and natural gas Yixin Lu, Laura Schaefer1 Department of Mechanical Engineering, University

191

www.hydrogenics.com Hydrogenics Corporation  

E-Print Network (OSTI)

integration capabilities · Control and load profile software Hydrogen Energy Storage and Power Systems · Off Power ...Powering Change #12;www.hydrogenics.com Hydrogenics Profile Designer and manufacturer-grid renewable power · On-grid community or residential power · Grid incentives for load control · Renewable

192

International Journal of Hydrogen Energy 32 (2007) 22962304 www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

wastewater had a high initial chemical oxygen demand (COD > 360 mg/L), and produced a maximum Coulombic efficiency of 26% (applied voltage of 0.41V) and a maximum hydrogen re- covery of 42% (applied voltage of 0 of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and dissolved organic carbon (DOC) in the range

193

Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 355367  

E-Print Network (OSTI)

of coal in China is very abundant, but the distribution of coal mines is unbalanced, most of which. The distribution of coal mines in China. via methanol reforming in refueling stations or onboard. At present natural gas steam reforming (NGSR), coal gasiÿcation, and water electrolysis, and hydrogen can be stored

de Weck, Olivier L.

194

OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES  

DOE Green Energy (OSTI)

Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

2011-07-14T23:59:59.000Z

195

Real-World Research and Testing: Producing and Using Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel (Hydrogen) Pilot Plant - design & operations - Hydrogen subsystem - CNG subsystem - Safety system * Fuel Dispensing * Hydrogen & HCNG Internal Combustion...

196

Conference Proceedings: EPRI-RRAC Fifth International Conference on Welding and Repair Technology for Power Plants  

Science Conference Proceedings (OSTI)

The 2002 Fifth International Conference on Welding and Repair Technology for Power Plants included presentations of case histories, emerging welding technologies, and demonstrated repair techniques and approaches. These proceedings provide technical information discussed during this conference on the repair of steam turbine rotors, disks, blades, piping, steam generators, headers, reactor pressure vessel internals, valves, pumps, combustion turbines, and other components. Sessions include nuclear and fos...

2002-10-17T23:59:59.000Z

197

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

battery- powered electric vehicles, approaches the breadth and magnitude of hydrogens public good benefits. What History

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

198

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

199

DOE Hydrogen and Fuel Cells Program: DOE Fuel Cell Power Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen production, lowering fossil energy use and greenhouse gas emissions, reducing electricity transmission congestion, lowering capital investment risk, and providing...

200

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis  

DOE Green Energy (OSTI)

The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation.

Dana R. Swalla

2008-12-31T23:59:59.000Z

202

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

203

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

204

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

Natural gas Air High-pressure hydrogen compressor Compressed hydrogen storageNatural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor Compressed hydrogen storage

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

205

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

206

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

207

Internal Resistance Identification in Vehicle Power Lithium-Ion Battery and Application in Lifetime Evaluation  

Science Conference Proceedings (OSTI)

According to the characteristic analysis of lithium-ion power battery, battery accelerate life test is carried out to obtain the relevant conclusions such as the changing trend of battery ohmic resistance in different conditions. Battery ohmic resistance ... Keywords: Lithium-ion battery, Internal resistance, Equivalent model, Lifetime evaluation

Xuezhe Wei; Bing Zhu; Wei Xu

2009-04-01T23:59:59.000Z

208

Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design  

Science Conference Proceedings (OSTI)

Welcome to the 16th ACM/IEEE International Symposium on Low-power Electronics and Design! The ISLPED'10 technical program features four exciting keynote talks (two back-to-back talks on the first two days), three Special Sessions spread over the second ...

Vojin Oklobdzija; Barry Pangle; Naehyuck Chang; Naresh Shanbhag; Chris H. Kim

2010-08-01T23:59:59.000Z

209

Proceedings: Effects of Coal Quality on Power Plants: Fifth International Conference  

Science Conference Proceedings (OSTI)

Coal quality has wide-ranging effects on handling, capacity, heat rate, availability, and maintenance of power plant equipment. EPRI's fifth international conference on coal quality featured discussions on corrosion, air toxics, heat rate, and a special session on software tools to support coal quality investigations. Such information can help utilities select coals that will enhance operations and overall generation costs.

1997-12-08T23:59:59.000Z

210

Proceedings: Welding and Repair Technology for Power Plants: Second International Conference  

Science Conference Proceedings (OSTI)

The conference on welding and repair technology for power plants included presentations of case histories, emerging welding technologies, and demonstrated repair techniques and approaches. These proceedings provide technical information discussed at the conference on the repair of turbine rotors, disks, blades, piping, steam generators, headers, reactor pressure vessel internals, valves, pumps, and other components.

1997-04-04T23:59:59.000Z

211

1996 international joint power generation conference: Proceedings. Volume 2; PWR-Volume 30  

SciTech Connect

This is volume 2 of the proceedings of the 1996 International Joint Power Generation Conference held in Houston, Texas. The topics of the paper include emerging technologies for heat exchangers, maintenance and repair of feedwater and service water heat exchangers, steam surface condensers, understanding performance test codes, reliability, availability and maintainability of units and components, economics and reliability, Kalina cycle technologies, systems development under DOE`s combustion 2000 program, improvements in turbine materials and operating environment, combined cycle steam turbine application, case histories of turbine improvements, advanced generator mechanical design improvements and upgrades, steam turbine performance improvements, improvements in turbine materials and operating environment, combustion turbines for power generation, optimization of boiler performance using CEMS, international power plant design and restructuring issues, recent improvements in utility operations, turbine generator assessment technology, environmental compliance for industrial operations, industrial energy systems and services, industrial steam generation options.

Kielasa, L. [ed.] [Detroit Edison Co., MI (United States); Weed, G.E. [ed.] [Eastman Kodak Co., Rochester, NY (United States)

1996-12-31T23:59:59.000Z

212

The SNS front-end, an injector for a high-power hydrogen-ion accelerator  

DOE Green Energy (OSTI)

The Spallation Neutron Source (SNS) will be an accelerator-based facility in Oak Ridge, TN, delivering pulsed neutron beams to experimenters. Negative hydrogen ion-beams are generated and pre-accelerated in a 2.5-MeV linac injector, or front end (FE), accelerated to 1 GeV energy by a linear accelerator system, converted into protons and accumulated in a ring accelerator, and then directed towards a mercury target to generate the neutrons. The proton beam arrives at the target in bursts of less than 1 {micro}s duration and with more than 1 MW average power. The front end has been built and commissioned by LBNL in Berkeley; shipment to ORNL is essentially complete. This paper provides an overview of FE major design features and experimental results obtained during the commissioning process. The SNS-FE can be viewed as a prototype of a high-current, high duty-factor injector for other accelerator projects or, without the elaborate MEBT, as an independent 2.5-MeV accelerator for various applications.

Keller, R.

2002-02-01T23:59:59.000Z

213

Network effects, Compatibility and the Environment: The Case of Hydrogen Powered Cars  

E-Print Network (OSTI)

The paper addresses the problem of entry barriers for a new technology hydrogen powered cars or cars with fuel cell engines if the network of its filling stations is missing or thin. We use Hotellings model of product differentiation to characterize a situation where an incumbent firm produces the old technology, compatible with the existing network of filling stations, and an entrant, who cannot use this network for its products. We assume that the entrant has to invest in remodeling existing filling stations for making them compatible. This, however, raises his costs. In the intertemporal setting of our model, the Hotelling pricing rule for exhaustible resources encourages the entrant to invest in compatibility because the price of gasoline will rise in the long run to the price of the backstop technology- fuel cells. Depending on the cost of compatibility, our model indicates three possible outcomes. Either, the costs of compatibility are too high and governmental support is required. Or the incumbent bears losses in initial periods by waiting for profits in later periods when full compatibility of the network is reached. Or the entrant benefits from the fact that the price of oil reaches the price of the backstop technology (full cells) rather soon.

Klaus Conrad

2004-01-01T23:59:59.000Z

214

Sunline Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update  

Science Conference Proceedings (OSTI)

This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California.

Chandler, K.; Eudy, L.

2007-10-01T23:59:59.000Z

215

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period February 01, 2001- April 30, 2002  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period February 01, 2001-April 30, 2002. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period was that the scheme of processing the HI/I{sub 2}/H{sub 2}O phase with phosphoric acid is being considered in addition to the reactive distillation scheme.

Brown, L. C.

2002-09-01T23:59:59.000Z

216

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period November 1, 2001- January 31, 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period November 1, 2001-January 31, 2001. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period was the size of the nuclear reactor used in the matching has been assumed to be 2400 MWt.

Brown, L. C.

2002-09-01T23:59:59.000Z

217

High Efficiency Generation of Hydrogen Fuels using Nuclear Power for the period May 1, 2002- July 31, 2002  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power for the period May 1, 2002-July 31, 2002. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period was that the sulfuric acid processing portion of the flowsheet was completed.

Brown, L.C.

2002-09-01T23:59:59.000Z

218

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period August 1, 2001-October 31, 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period August 1, 2001-October 31, 2001. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period is that a project coordination meeting was held with Sandia on October 9, 2001.

Brown, L. C.

2002-09-01T23:59:59.000Z

219

Hydrogen and Fuel Cells Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated Program Plan 2011 Hydrogen and Fuel Cells Key Goals 2 from renewables or low carbon resources Source: U.S. DOE, May 2011 Fuel Cell Market Overview 0 25 50 75 100 2008 2009 2010 USA Japan South Korea Germany Other (MW) Megawatts Shipped, Key Countries: 2008-2010 Fuel cell market continues to grow

220

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999. The highlights for this period are: (1) The methodologies for searching the literature for potentially attractive thermochemical water-splitting cycles, storing cycle and reference data, and screening the cycles have been established; and (2) The water-splitting cycle screening criteria were established on schedule.

L. C. Brown

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Internal leakage detection for feedwater heaters in power plants using neural networks  

Science Conference Proceedings (OSTI)

As interest in safety and performance of power plants becomes more serious and wide-ranging, the significance of research on turbine cycles has attracted more attention. This paper particularly focuses on thermal performance analysis under the conditions ... Keywords: CBM, COP, DCA, DP, Diagnosis, FWBP, FWH, FWP, Feedwater heater, HP FWH, HP TBN, Internal leakage, LP FWH, LP TBN, Neural network, PEPSE, SG, TD, TTD, Thermal performance, Turbine cycle, VWO

Gyunyoung Heo; Song Kyu Lee

2012-04-01T23:59:59.000Z

222

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

223

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Date: 09/05/2013 7 Date: 09/05/2013 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Jim Alkire, Sara Dillich, Dimitrios Papageorgopoulos Approved by: Rick Farmer and Sunita Satyapal Date: 09/09/13 Item: Table 1: Number of fuel cells deployments (current and planned) for applications in backup power. The funding of 903 Department of Energy (DOE) fuel cell backup power systems has led to over 3,500 industry installations and on-order backup power units with no DOE funding. Data/Assumptions/Calculations: The manufacturers providing the fuel cells for the deployments (current and planned) mentioned in Table 1 above are: Altergy Ballard / Ida Tech Hydrogenics ReliOn, Inc. Total DOE American Recovery and Reinvestment Act (ARRA) investment for these fuel cell

224

Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Retooling Today's Retooling Today's Engines for the Hydrogen Economy to someone by E-mail Share Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Facebook Tweet about Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Twitter Bookmark Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Google Bookmark Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Delicious Rank Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Digg Find More places to share Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on AddThis.com... Retooling Today's Engines for the Hydrogen Economy Hydrogen-Powered Internal Combustion Engines Gain Momentum in the Quest to

225

NREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production (Fact Sheet)  

SciTech Connect

NREL researchers are finding ways to mimic photosynthesis by combining enzymes with nanoparticles - particles on the scale of a billionth of a meter - to produce hydrogen directly from water and sunlight. This breakthrough project began in 2008 with scientists and researchers asking how they might learn from nature and develop a synthetic process that is more efficient than plants at converting sunlight to hydrogen. The goal was to find a new way to produce hydrogen that could then be commercialized inexpensively for fuel cells and other uses. Among the various approaches to making hydrogen, the NREL researchers wondered about a hybrid molecular assembly that might pair the best natural molecule with a synthesized nanoparticle. Researchers looked at using hydrogenase enzymes as one part of the equation. These biological catalysts can convert electrons and protons into hydrogen gas, or convert hydrogen into electrons and protons. The choice seemed worthwhile because the hydrogenase enzyme has some intriguing properties: a high substrate selectivity, meaning a very high preference for catalyzing reactions with protons rather than with other atoms and molecules; and fast turnover, which enables it to produce a hydrogen molecule in milliseconds.

Not Available

2011-09-01T23:59:59.000Z

226

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report (Report and Appendices)  

Science Conference Proceedings (OSTI)

This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

Chandler, K.; Eudy, L.

2008-06-01T23:59:59.000Z

227

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

228

Hydrogen as a fuel  

SciTech Connect

A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

1979-01-01T23:59:59.000Z

229

Global Assessment of Hydrogen Technologies Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a solar hydrogen economy has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

230

Global Assessment of Hydrogen Technologies Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a solar hydrogen economy has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

231

NREL: Hydrogen and Fuel Cells Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 25, 2010 New Report Identifies Ways to Reduce Cost of Fuel Cell Power Plants A new report by the National Renewable Energy Laboratory details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs. October 18, 2010 NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies NREL uses its hydrogen-powered internal combustion engine bus as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. The U.S. Department of Energy funded the lease for the bus to

232

Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

2007-08-01T23:59:59.000Z

233

International and Domestic Market Opportunities for Biomass Power: Volumes I and II  

DOE Green Energy (OSTI)

This report examines the domestic and international markets for biopower. Domestic and foreign markets present fundamentally different challenges to private power developers. Volume I focuses on the domestic market for biopower. The domestic challenge lies in finding economically viable opportunities for biopower. Vol. I outlines the current state of the U.S. biomass industry, discusses policies affecting biomass development, describes some demonstration projects currently underway, and discusses the future direction of the industry. Volume II focuses on the international market for biopower. Recent literature states that the electricity investment and policy climate in foreign markets are the key elements in successful private project development. Vol. II discusses the financing issues, policy climate, and business incentives and barriers to biopower development. As India and China are the largest future markets for biopower, they are the focus of this volume. Three other top markets- -Brazil, Indonesia, and the Philippines--are also discussed. Potential financial resources wrap up the discussion.

Not Available

1998-09-01T23:59:59.000Z

234

Risk-Based Management of Power Plant Equipment: Proceedings of the International Seminar, London, October 21 - 23, 2002  

Science Conference Proceedings (OSTI)

Research specialists, materials experts, plant engineers, senior managers, and numerous other experts from the fossil power industry presented papers at the proceedings of an international seminar targeting risk-based management of plant equipment. The focus of the seminar is the lack of national or international guidelines related to risk-based power plant assessments, reduction of maintenance-related costs, and a systematic approach for measuring the main plant risks in terms of plant safety. Held in L...

2002-11-11T23:59:59.000Z

235

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

236

Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants  

SciTech Connect

This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

Khan, T.A. [comp.] [Brookhaven National Lab., Upton, NY (United States); Roecklein, A.K. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1995-03-01T23:59:59.000Z

237

Sales Tax Exemption for Hydrogen Generation Facilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Exemption for Hydrogen Generation Facilities Tax Exemption for Hydrogen Generation Facilities Sales Tax Exemption for Hydrogen Generation Facilities < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner In North Dakota, the sale of hydrogen used to power an internal combustion engine or a fuel cell is exempt from sales tax. In addition, any equipment used by a hydrogen generation facility for the production and storage of hydrogen is exemption from sales tax. Stationary and portable hydrogen containers or pressure vessels, piping, tubing, fittings, gaskets, controls, valves, gauges, pressure regulators, safety relief devices are

238

Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production  

Science Conference Proceedings (OSTI)

This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

2013-08-01T23:59:59.000Z

239

A low-power readout circuit for nanowire based hydrogen sensor  

Science Conference Proceedings (OSTI)

This paper presents a fully integrated lock-in amplifier intended for nanowire gas sensing. The nanowire will change its conductivity according to the concentration of an absorbing gas. To ensure an accurate nanowire impedance measurement, a lock-in ... Keywords: Complex impedance measurement, Hydrogen sensor, Lock-in amplifier, Palladium nanowire, Synchronous demodulation

Jiawei Xu; Peter Offermans; Guy Meynants; Hien Duy Tong; Cees J. M. van Rijn; Patrick Merken

2010-11-01T23:59:59.000Z

240

Hydrogen monitoring for power plant applications using SiC sensors  

DOE Green Energy (OSTI)

We have developed a high-temperature gas sensing system for the detection of combustion products under harsh conditions, such as an energy plant. The sensor, based on the wide band gap semiconductor silicon carbide (SiC), is a catalytic gate field-effect device (PtSiO2SiC) that can detect hydrogen-containing species in chemically reactive, high-temperature environments. The hydrogen response of the device in an industrially robust module was determined under both laboratory and industrial conditions (1000 sccm of 350 C gas) from 52 ppm to 50% H2, with the sensor held at 620 C. From our data we find that the hydrogen adsorption kinetics at the catalystoxide interface are well fitted by the linearized Langmuir adsorption isotherm. For hydrogen monitoring in a coal gasification application, we investigated the effect of common interferants on the device response to a 20% H2 gas stream. Within our signal to noise ratio, 40% CO and 5% CH4 had no measurable effect and a 2000 ppm pulse of H2S did not poison the Pt sensing film. We have demonstrated the long-term reliability of our SiC sensor and the robustness of the sensor packaging techniques, as all the data are from a single device, obtained during 5 days of industrial measurements in addition to 480 continuous hours of operation under laboratory conditions.

Loloee, R. (Michigan State Univ., E. Lansing, MI); Chorpening, B.T.; Beer, S.K.; Ghosh, R.N. (Michigan State Univ., E. Lansing, MI)

2008-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen monitoring for power plant applications using SiC sensors  

DOE Green Energy (OSTI)

We have developed a high-temperature gas sensing system for the detection of combustion products under harsh conditions, such as an energy plant. The sensor, based on the wide band gap semiconductor silicon carbide (SiC), is a catalytic gate field-effect device (PtSiO2SiC) that can detect hydrogen-containing species in chemically reactive, high-temperature environments. The hydrogen response of the device in an industrially robust module was determined under both laboratory and industrial conditions (1000 sccm of 350 ?C gas) from 52 ppm to 50% H2, with the sensor held at 620 ?C. From our data we find that the hydrogen adsorption kinetics at the catalystoxide interface are well fitted by the linearized Langmuir adsorption isotherm. For hydrogen monitoring in a coal gasification application, we investigated the effect of common interferants on the device response to a 20% H2 gas stream. Within our signal to noise ratio, 40% CO and 5% CH4 had no measurable effect and a 2000 ppm pulse of H2S did not poison the Pt sensing film. We have demonstrated the long-term reliability of our SiC sensor and the robustness of the sensor packaging techniques, as all the data are from a single device, obtained during 5 days of industrial measurements in addition to ?480 continuous hours of operation under laboratory conditions.

Reza Loloee; Benjamin Chorpening; Steve Beer; Ruby N. Ghosha

2007-08-01T23:59:59.000Z

242

Accelerating Acceptance of Fuel Cell Backup Power Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1799 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Subcontractor: IdaTech LLC, Bend, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the performance of 20 low-temperature fuel * cell systems at two locations Optimize the maintenance of the systems and data * collection practices The project is intended to increase distributed power * generation, improve reliability and efficiency of

243

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

244

Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen  

DOE Green Energy (OSTI)

The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

Doyle, T.A.

1998-01-31T23:59:59.000Z

245

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy Laboratory 1617...

246

DOE Hydrogen and Fuel Cells Program Record 11009: Revised Portable Power Fuel Cell Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

1009 Date: May 26, 2011 1009 Date: May 26, 2011 Title: Revised Portable Power Fuel Cell Targets Originator: Jacob Spendelow, Donna Ho, Dimitrios Papageorgopoulos Approved by: Sunita Satyapal Date: July 18, 2011 Research and development targets for fuel cells deployed in portable power applications have been updated to the values listed in Tables 1-3. Table 1. Fuel cell system targets for portable power applications under 2 W 1 Units 2011 Status 2013 2015 Specific Power 2 W/kg 5 8 10 Power Density 2 W/L 7 10 13 Specific Energy 2,3 Wh/kg 110 200 230 Energy Density 2,3 Wh/L 150 250 300 Cost 4 $/system 150 130 70 Durability 5,6 hours 1500 3000 5000 Mean Time Between Failures 6,7 hours 500 1500 5000 Table 2. Fuel cell system targets for 10 - 50 W portable power applications

247

Hydrogen Research and Development Initiative - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Research and Development Initiative Hydrogen Research and Development Initiative International Safety Projects Overview Hydrogen as an Energy Carrier Global access to energy and fresh water International cooperation on safety of nuclear plants Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Major Programs The Use of Hydrogen as an Energy Carrier Bookmark and Share President Bush initiated a major program to accelerate the development of a national hydrogen economy. The goal is to reverse America's growing dependence on foreign oil by developing science and technology for commercially viable fuel cells that use hydrogen to power cars, trucks, homes, and businesses without directly emitting pollution or greenhouse

248

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

most about the vehicle. Hydrogen Vehicle Manufacturers:Hydrogen vehicle manufacturers share the same concerns asmanufacturers have similar systems in without the vehicle

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

249

Iron 'Veins' Are Secret of Promising New Hydrogen Storage ...  

Science Conference Proceedings (OSTI)

Iron 'Veins' Are Secret of Promising New Hydrogen Storage Material. ... International Journal of Hydrogen Energy, 36 (2011), pp. ...

2012-10-18T23:59:59.000Z

250

Proceedings of the 2012 International Congress on Advances in National Power Plants - ICAPP '12  

Science Conference Proceedings (OSTI)

ICAPP '12 provides a forum for leaders of the nuclear industry to exchange information, present results from their work, review the state of the industry, and discuss future directions and needs for the deployment of new nuclear power plant systems around the world. These proceedings gather 326 papers covering the following topics: 1. Water-Cooled Reactor Programs; 2. High Temperature Gas Cooled Reactors; 3. LMFR and Innovative Reactor Programs; 4. Operation, Performance and Reliability Management; 5. Plant Safety Assessment and Regulatory Issues; 6. Reactor Physics and Analysis; 7. Thermal Hydraulics Analysis and Testing; 8. Fuel Cycle and Waste Management; 9. Materials and Structural Issues; 10. Nuclear Energy and Global Environment; 11. Deployment and Cross-Cutting Issues; 12. Plant Licensing and International Regulatory Issues.

NONE

2012-07-01T23:59:59.000Z

251

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Transition to Hydrogen Fuel Cell Vehicles Biofuels in Light-Duty Vehicles Biogas Resources Characterization Biomass Integrated Gasification Combined-Cycle Power...

252

The SNS front-end, an injector for a high-power hydrogen-ion accelerator  

E-Print Network (OSTI)

Stockli, R. Welton, and M. White (SNS-ORNL); J. Power and M.VI. REFERENCES N. Holtkamp, The SNS Linac and Storage Ring:the FES Team, Status of the SNS Front-End Sys- tems, Paper

Keller, R.

2002-01-01T23:59:59.000Z

253

Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets  

SciTech Connect

A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

2013-02-12T23:59:59.000Z

254

A Design Tool for the Optimization of Stand-alone Electric Power Systems with Combined Hydrogen-Battery Energy Storage  

E-Print Network (OSTI)

A simulation design tool was developed to investigate the design and performance of stand-alone distributed renewable electric power systems. The temporal mismatch between energy production and use results in the inclusion of energy storage devices that can become an important and expensive component of these systems. To properly size all system components, a time response model with one hour resolution was developed. Specifically, the model developed here simulates one year of grid operation with the constraint that it be "stand-alone" - that is, that there be no net change in stored energy. With two storage components, hydrogen and batteries, the system size was calculated as a function of the battery storage size, and the total system was costed with battery size as the parameter. Calculations were performed for the specific case of residential use in Yuma, Arizona. In addition to determining the size and cost of this grid, it was found that the system costs using a combination of h...

Steven Vosen Combustion; S. R. Vosen; Microfiche Copy Ao; Steven R. Vosen

1997-01-01T23:59:59.000Z

255

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

2007. Determining the lowest-cost hydrogen delivery mode.International Journal of Hydrogen Energy 32, 268286.Agency, 2005. California hydrogen blueprint plan: Volume 1.

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

256

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. Task 4 Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. Task 5 Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. Task 6 Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

257

Flying on Hydrogen GeorgiaTech researchers use fuel cells to power unmanned aerial vehicle.  

E-Print Network (OSTI)

and the GeorgiaTech Research Institute (GTRI), the project was attractive as energy sources because of their high energy density. Higher energy density translates into longer endurance. Though fuel cells don't produce: Researchers have developed a hydro- gen-powered unmanned aircraft believed to be the largest to fly

Sherrill, David

258

Control of hydrogen sulfide emission from geothermal power plants. Volume I. Summary of results. Final report  

DOE Green Energy (OSTI)

A program of laboratory and pilot plant tests, detailed process and project engineering work, and process engineering and economic evaluation studies has been carried out in support of the design of a test facility for demonstration of the copper sulfate process for the removal of hydrogen sulfide from geothermal steam at turbine upstream conditions. A demonstration plant has been designed which is capable of removing 99% of the H/sub 2/S, 90% of the NH/sub 3/, and significant amounts of H/sub 3/BO/sub 3/ and particulates from 100,000 lb/hr of geothermal steam of The Geysers composition. Criteria for the mechanical and process design of the scrubber have been confirmed in field tests of fifty hours duration on an eight-inch diameter scrubber at PG and E's Unit No. 7, The Geysers. The background of the problem and the technical approach to its solution, the scope and results of the first-phase laboratory testing, the scope and results of the experimental and analytical studies carried out in the second phase, and a description of the configuration of the demonstration plant and the test plan for its operation are summarized. (MHR)

Brown, F.C.; Harvey, W.W.; Warren, R.B.

1979-01-01T23:59:59.000Z

259

Microsoft PowerPoint - Powerpoint_WebInternal.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Internal Internal Emitters Radioactive material within the body within the body Internal Emitters Internal Emitters Internal emitters are any radioactive materials that are retained in the body. There are many elements which can b id d i t l itt be considered internal emitters There are some natural internal emitters in ' b d h 40 K 14 C d 3 H everyone's body, such as 40 K, 14 C, and 3 H  These come from the food we eat and the air we breathe  We must have these materials to be healthy. y  These produce very, very low doses of radiation Sometimes internal emitters are used for therapy to kill cancer cells.  These give off very high doses, but usually have very short half lives  A calculated dose is carefully selected to be directed at a specific target  A calculated dose is carefully selected to be directed at a specific target

260

Proceedings of the first international workshop on High performance computing, networking and analytics for the power grid  

Science Conference Proceedings (OSTI)

It is our great pleasure to welcome you to the 1st International Workshop on High Performance Computing, Networking and Analytics for the Power Grid -- HiPCNA-PG 2011. Sensor deployments on the grid are expected to increase geometrically in the ...

Daniel Chavarra-Miranda; Bora Akyol

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NIST Hydrogen Storage in Thin Films  

Science Conference Proceedings (OSTI)

Hydrogen Storage Optimization in Thin Film Combinatorial Alloys. ... Magnesium Thin Films," International Journal of Hydrogen Energy, doi:10.1016/j ...

2013-04-01T23:59:59.000Z

262

Zero emission coal: a future source of clean electric power and hydrogen  

DOE Green Energy (OSTI)

The pairing of two novel technologies may permit coal energy to satisfy a dramatically increasing world energy demand for the next few hundred years. This can be done while virtually eliminating not only airborne SO{sub x}, NO{sub x}, mercury and particulate emissions, but also the main greenhouse gas, carbon dioxide (CO{sub 2}). The Zero Emission Coal Alliance, a collaboration of approximately 20 international industrial and government entities is investigating these concepts with the objective of completing the first pilot plant within 5 years. Paradoxically, climate change was not the overriding consideration that drove the development of these inventions. The more important consideration was that, if world carbon use continues to accelerate at rates even close to those in the last century, carbon from fossil fuels will overwhelm the natural CO{sub 2} sinks. In this view, the 'Kyoto' objectives are almost meaningless and misdirect enormous resources - both human and financial. If a world population of 10 billion reaches a standard of living comaprable, on the average, to that of the US in 2000 (with similar carbon use), then world yearly CO{sub 2} emissions will be ten times their current level. Carbon (in the form of coal) is our most important energy resource. The Challenge is to find sustainable ways of using it.

Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

263

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

264

Guide to authorization procedures for the international export of electricity and electric power lines crossing international borders  

SciTech Connect

The Economic Regulatory Administration (ERA) has prepared this guide to assist utilities and other entities in filing applications for (1) authorizations to export electricity and (2) Presidential Permits. The guide is not intended to be all inclusive; however, it will provide an applicant with the type of information required in the application, define lead times, and direct an applicant to the proper source documents for preparing a complete application. The booklet is organized into two sections. The first part outlines the procedures for preparing an application for authorization to export electricity. The second part outlines the procedures for applying for a Presidential Permit to construct, connect, operate, or maintain electric transmission facilities at international boundaries.

Not Available

1980-11-01T23:59:59.000Z

265

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

266

Detroit Commuter Hydrogen Project  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

Brooks, Jerry; Prebo, Brendan

2010-07-31T23:59:59.000Z

267

The effects of blending hydrogen with methane on engine operation, efficiency, and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

-01-0474 -01-0474 The effects of blending hydrogen with methane on engine operation, efficiency, and emissions Thomas Wallner and Henry K. Ng Argonne National Laboratory Robert W. Peters University of Alabama at Birmingham Copyright © 2007 SAE International ABSTRACT Hydrogen is considered one of the most promising future energy carriers and transportation fuels. Because of the lack of a hydrogen infrastructure and refueling stations, widespread introduction of vehicles powered by pure hydrogen is not likely in the near future. Blending hydrogen with methane could be one solution. Such blends take advantage of the unique combustion properties of hydrogen and, at the same time, reduce the demand for pure hydrogen. In this paper, the authors analyze the combustion properties of hydrogen/methane

268

Help Design the Hydrogen Fueling Station of Tomorrow | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Make Your Mark in the 2011 Hydrogen Student Design Contest A hydrogen-powered Toyota Prius pulls up to Humboldt State University's student designed hydrogen fueling...

269

U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report  

DOE Green Energy (OSTI)

The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

Not Available

2008-04-01T23:59:59.000Z

270

Imaging spectroscopy diagnosis of internal electron temperature and density distributions of plasma cloud surrounding hydrogen pellet in the Large Helical Device  

SciTech Connect

To investigate the behavior of hydrogen pellet ablation, a novel method of high-speed imaging spectroscopy has been used in the Large Helical Device (LHD) for identifying the internal distribution of the electron density and temperature of the plasma cloud surrounding the pellet. This spectroscopic system consists of a five-branch fiberscope and a fast camera, with each objective lens having a different narrow-band optical filter for the hydrogen Balmer lines and the background continuum radiation. The electron density and temperature in the plasma cloud are obtained, with a spatial resolution of about 6 mm and a temporal resolution of 5 Multiplication-Sign 10{sup -5} s, from the intensity ratio measured through these filters. To verify the imaging, the average electron density and temperature also have been measured from the total emission by using a photodiode, showing that both density and temperature increase with time during the pellet ablation. The electron density distribution ranging from 10{sup 22} to 10{sup 24} m{sup -3} and the temperature distribution around 1 eV have been observed via imaging. The electron density and temperature of a 0.1 m plasma cloud are distributed along the magnetic field lines and a significant electron pressure forms in the plasma cloud for typical experimental conditions of the LHD.

Motojima, G.; Sakamoto, R.; Goto, M.; Matsuyama, A.; Yamada, H. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan); Mishra, J. S. [Graduate University for Advanced Studies, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan)

2012-09-15T23:59:59.000Z

271

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

Torres, P. Patel. Distributed Generation of Hydrogen Usingis the concept o f distributed generation (DG): electricitylikely to encourage distributed generation, possibly even

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

272

Assessment of RELAP5/MOD2 against a natural circulation experiment in Nuclear Power Plant Borssele. International Agreement Report  

Science Conference Proceedings (OSTI)

As part of the ICAP (International Code Assessment and Applications Program) agreement between ECN (Netherlands Energy Research Foundation) and USNRC, ECN has performed a number of assessment calculations for the thermohydraulic system analysis code RELAP5/MOD2/36.05. This document describes the assessment of this computer program versus a natural circulation experiment as conducted at the Borssele Nuclear Power Plant. The results of this comparison show that the code RELAP5/MOD2 predicts well the natural circulation behaviour of Nuclear Power Plant Borssele.

Winters, L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

1993-07-01T23:59:59.000Z

273

Measurement of the hydrogen recombination coefficient in the TEXT tokamak as a function of outgassing and power radiated during tokamak discharges  

DOE Green Energy (OSTI)

The global recombination rate coefficient k/sub r/ for hydrogen has been measured in the TEXT tokamak vacuum vessel for various surface conditions. An attempt was made to correlate the measured values of k/sub r/ with residual gas analyzer (RGA) data taken before each measurement of k/sub r/ and with the power radiated during tokamak discharges produced after each measurement of k/sub r/. The results show that k/sub r/ increases during a series of tokamak discharges, k/sub r/ is relatively insensitive to power radiated during tokamak discharges, and k/sub r/ increases with the RGA measurements of mass 28 and 40 but not with those of mass 18. In addition, it was found that the mass 18 (H/sub 2/O) signal decreases as glow discharge experiments with hydrogen were performed.

Langley, R.A.; Rowan, W.L.; Bravenec, R.V.; Nelin, K.

1986-10-01T23:59:59.000Z

274

Measurement of the hydrogen recombination coefficient in the TEXT tokamak as a function of outgassing and power radiated during tokamak discharges  

DOE Green Energy (OSTI)

The global recombination rate coefficient k/sub r/ for hydrogen has been measured in the TEXT tokamak vacuum for various surface conditions. An attempt was made to correlate the measured values of k/sub r/ with RGA data taken prior to each k/sub r/ measurement and with the power radiated during tokamak discharges produced after each k/sub r/ measurement. The results show that: k/sub r/ increases during a series of tokamak discharges, k/sub r/ is relatively insensitive to power radiated during tokamak discharges, k/sub r/ increases with the RGA measurements of mass 28 and 40 but not with mass 18. In addition, it was found that the RGA mass 18 (H/sub 2/O) signal decreased as glow discharge experiments with hydrogen were performed.

Langley, R.A.; Rowan, W.L.; Bravinec, R.V.; Nelin, K.

1986-01-01T23:59:59.000Z

275

ACEEE International Journal on Electrical and Power Engineering, Vol. 1, No. 1, Jan 2010 2010 ACEEE  

E-Print Network (OSTI)

ACEEE DOI: 01.ijepe.01.01.06 Direct Model Reference Adaptive Internal Model Controller for DFIG Wind internal model Controller, MIT Rule, DFIG, wind farms. NOMENCLATURE sV =stator voltage [V] sR =stator-third of China's vast landmass is suffering from acid rain caused by its rapid industrial growth. DFIG

Paris-Sud XI, Université de

276

Circuits of power in creating de jure standards: shaping an international information systems security standard  

Science Conference Proceedings (OSTI)

This paper addresses the role of power and politics in setting standards. It examines the interaction of external contingencies, powerful agents, resources, meaning, and membership of relevant social and institutional groupings in generating successful ... Keywords: information systems security management, information systems security standards, institutionalization, power and politics, security management code of practice

James Backhouse; Carol W. Hsu; Leiser Silva

2006-08-01T23:59:59.000Z

277

Development of Standards in Support of Hydrogen-Fueled ...  

Science Conference Proceedings (OSTI)

The Society of Automotive Engineers International (SAE) has proposed a Hydrogen Fuel Quality Specification Guideline. ...

2012-10-01T23:59:59.000Z

278

Transportation and Stationary Power  

E-Print Network (OSTI)

heat, hydrogen and power (CHHP) "trigeneration" systems can hypothetically be configured to provide (1

279

THE EFFECT OF CO ON HYDROGEN PERMEATION THROUGH PD AND INTERNALLY OXIDIZED AND UN-OXIDIZED PD ALLOY MEMBRANES  

DOE Green Energy (OSTI)

The H permeation of internally oxidized Pd alloy membranes such as Pd-Al and Pd-Fe, but not Pd-Y alloys, is shown to be more resistant to inhibition by CO(g) as compared to Pd or un-oxidized Pd alloy membranes. The increased resistance to CO is found to be greater at 423 K than at 473 K or 523 K. In these experiments CO was pre-adsorbed onto the membranes and then CO-free H{sub 2} was introduced to initiate the H permeation.

Shanahan, K.; Flanagan, T.; Wang, D.

2010-10-20T23:59:59.000Z

280

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations...  

NLE Websites -- All DOE Office Websites (Extended Search)

and use (such as in fuel cell and internal combustion engine technologies), to minimize production costs, and to develop methods for hydrogen infrastructure design, construction,...

282

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

Alternative Energy Storage Medium for Hydrogen Fuel Cells:Alternative Energy Storage Medium for Hydrogen Fuel Cells:based energy storage system to produce hydrogen for a fuel

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

283

Storing Hydrogen  

DOE Green Energy (OSTI)

Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

2010-05-31T23:59:59.000Z

284

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

285

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

286

Hydrogen diffusion in Lead Zirconate Titanate and Barium Titanate  

SciTech Connect

Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ?32?MPa. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

Alvine, Kyle J.; Vijayakumar, M.; Bowden, Mark E.; Schemer-Kohrn, Alan L.; Pitman, Stan G.

2012-08-28T23:59:59.000Z

287

Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen  

SciTech Connect

The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

Doyle, T.A.

1998-01-31T23:59:59.000Z

288

NMR Study of Borohydrides for Hydrogen Storage Applications.  

E-Print Network (OSTI)

??There is great interest today in developing a hydrogen economy, and hydrogen powered vehicles to replace vehicles powered by fossil fuels. This presents many challenges (more)

Shane, David

2011-01-01T23:59:59.000Z

289

Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

2013-10-01T23:59:59.000Z

290

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

291

Hydrogen Fuel Quality  

DOE Green Energy (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

292

DOE Hydrogen Analysis Repository: Hydrogen Production by  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

293

Microsoft PowerPoint - Francfort 41st Power Sources Conference - backup.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Technology Vehicle Testing - 41 st Power Sources Conference Jim Francfort INEEL/CON-04-01691 DOE - Advanced Vehicle Testing Activity Presentation Outline * AVTA Goal * AVTA Testing Partners * Light-Duty Hybrid Electric Vehicle Testing * Hydrogen Fuel Pilot Plant * Hydrogen Internal Combustion Engine (ICE) Vehicle Testing * Neighborhood & Urban Electric Vehicles * WWW Information Address DOE - Advanced Vehicle Testing Activity AVTA Goal * Benchmark & validate the performance of light-, medium-, & heavy-duty vehicles that feature one or more advanced technologies, including: - ICE's burning advanced fuels, such as 100% hydrogen and hydrogen/CNG-blended fuels - Hybrid electric, pure electric, & hydraulic drive systems - Advanced batteries & engines -

294

DOE Hydrogen Analysis Repository: Life Cycle Analysis of Vehicles for  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis of Vehicles for Canada Life Cycle Analysis of Vehicles for Canada Project Summary Full Title: Life Cycle Analysis of Vehicles Powered by a Fuel Cell and by Internal Combustion Engine for Canada Project ID: 117 Principal Investigator: Xianguo Li Purpose In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station.

295

WEB-BASED RESOURCES ENHANCE HYDROGEN SAFETY KNOWLEDGE  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys Fuel Cell Technologies Program addresses key technical challenges and institutional barriers facing the development and deployment of hydrogen and fuel cell technologies with the goal of decreasing dependence on oil, reducing carbon emissions and enabling reliable power generation. The Safety, Codes & Standards program area seeks to develop and implement the practices and procedures that will ensure safety in the operation, handling and use of hydrogen and hydrogen systems for all projects and utilize these practices and lessons learned to promote the safe use of hydrogen. Enabling the development of codes and standards for the safe use of hydrogen in energy applications and facilitating the development and harmonization of international codes and standards are integral to this work.

Weiner, Steven C.; Fassbender, Linda L.; Blake, Chad; Aceves, Salvador; Somerday, Brian P.; Ruiz, Antonio

2013-06-18T23:59:59.000Z

296

8. annual U.S. hydrogen meeting: Proceedings  

DOE Green Energy (OSTI)

The proceedings contain 35 papers arranged under the following topical sections: Government`s partnership role for hydrogen technology development; Government/industry partnerships -- Demonstrations; Entering the market -- Partnerships in transportation; Hydrogen -- The aerospace fuel; Codes and Standards; Advanced technologies; and Opportunities for partnerships in the utility market. Of the three markets identified (transportation, power production, and village power) papers are presented dealing with the first two. Three parts of the transportation market were covered: cars, trucks, and buses. Progress was reported in both fuel cell and internal combustion engine vehicle propulsion systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1997-01-01T23:59:59.000Z

297

Modeling the performance of the piston ring-pack with consideration of non-axisymmetric characteristics of the power cylinder system in internal combustion engines  

E-Print Network (OSTI)

The performance of the piston ring-pack is directly associated with the friction, oil consumption, wear, and blow-by in internal combustion engines. Because of non-axisymmetric characteristics of the power cylinder system, ...

Liu, Liang, 1971-

2005-01-01T23:59:59.000Z

298

Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

Piedrafita, R.

1986-02-18T23:59:59.000Z

299

Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint  

DOE Green Energy (OSTI)

One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

2013-10-01T23:59:59.000Z

300

Catal International Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Product Catal has worked together with LIFE-IC on the "hydrogen producing steam reformer" project. References Catal International Ltd.1 LinkedIn Connections...

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces...

302

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

303

Microsoft PowerPoint - Pittsburgh International Airport to Morgantown Site Directions.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Pittsburgh International Airport to Pittsburgh International Airport to Morgantown Site, Morgantown, WV 1. Exit airport on US-60S toward Pittsburgh/I-79S (follow signs to Pittsburgh, proceed ~7 miles). 2. Merge onto US-22E/US-30E toward Pittsburgh (proceed ~3 miles). 3. Merge onto I-79S toward WASHINGTON, PA (proceed ~25 miles). I-70 East merges with I-79, continue on I-70E/I-79S. 4. Merge RIGHT at Exit 21 onto I-79S toward MORGANTOWN, WV (proceed ~39 miles). 5 T k EXIT 155 STAR CITY EXIT t WV 7 WEST VIRGINIA UNIVERSITY 5. Take EXIT 155, STAR CITY EXIT at WV-7, WEST VIRGINIA UNIVERSITY. 6. Turn LEFT onto CHAPLIN HILL RD. Proceed to 2 nd light (US-19 intersection). 7. Bear RIGHT onto US-19; move into left lane; proceed to first light past bridge. 8. Turn left onto BOYERS AVE. 9. At intersection turn RIGHT onto UNIVERSITY AVE.

304

Electrical generation plant design practice intern experience at Power Systems Engineering, Inc.: an internship report  

E-Print Network (OSTI)

A survey of the author's internship experience with Power Systems Engineering, Inc. during the period September 1980 through August, 1981 is presented. During this onr year internship, the author was assigned to two engineering projects. One involved design of a 480 MW power plant. The other was the design of a 8.2 MW induction generator for cogeneration. The author's activities during this period can be categorized into two major areas. First, technically oriented, he designed protective relaying and SCADA systems for the projects. Secondly, he assisted the Project Manager in project management activities such as project progress and cost control. The intent of this report is to prepare a training manual for PSE young engineers. It covers both technical guidelines for power plant design and nonacademic professional codes. Although this report is primarily written for young engineers, it can also be used as a reference by older and experienced engineers.

Lee, Ting-Zern Joe, 1950-

1981-12-01T23:59:59.000Z

305

Trojan Nuclear Power Plant Reactor Vessel and Internals Removal: Trojan Nuclear Plant Decommissioning Experience  

Science Conference Proceedings (OSTI)

One goal of the EPRI Decommissioning Technology Program is to capture the growing utility experience in nuclear plant decommissioning activities for the benefit of other utilities facing similar challenges in the future. This report provides historical information on the background, scope, organization, schedule, cost, contracts, and support activities associated with the Trojan Nuclear Plant Reactor Vessel and Internals Removal (RVAIR) Project. Also discussed are problems, successes, and lessons learned...

2000-10-16T23:59:59.000Z

306

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

for distributed power generation and/or hydrogen. Inpro- mote distributed power generation and stationary fuelthermal effi- ciency of power generation. Typical uses of

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

307

Internal Technical Report, Heat Exchanger Sizing for 20 MW Geothermal Power Plants at MX Sites  

DOE Green Energy (OSTI)

This report presents the details of the analyses used to size the heaters, steam condenser, and working fluid condenser for a proposed 20 MW geothermal power plant application at MX sites in the southwest. These units would use a mixture of hydrocarbons (90% isobutane--10% n-hexane) to extract energy from moderate temperature resources (resource temperatures of 365 F, 400 F, and 450 F were considered). The working fluid will be maintained at supercritical pressures in the heater units. Studies have shown that this cycle will provide a significant net power increase over standard dual boiling single fluid cycles currently in use, e.g., the Raft River 5 MW pilot plant.

Kochan, R.J.; Bliem, C.J.

1981-12-01T23:59:59.000Z

308

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

DOE Green Energy (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

309

Documentation of the status of international geothermal power plants and a list by country of selected geothermally active governmental and private sector entities  

DOE Green Energy (OSTI)

This report includes the printouts from the International Geothermal Power Plant Data Base and the Geothermally Active Entity Data Base. Also included are the explanation of the abbreviations used in the power plant data base, maps of geothermal installations by country, and data base questionnaires and mailing lists.

Not Available

1992-10-01T23:59:59.000Z

310

Hydrogen Publications  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. ... These articles, of interest to the hydrogen community, can be viewed by clicking on the title. ...

311

Properties Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. PROPERTIES, ... For information on a PC database that includes hydrogen property information click here. ...

312

Hydrogen Use and Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

313

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

314

Pathos and policy: the power of emotions in shaping perceptions of international relations  

E-Print Network (OSTI)

Current approaches to foreign policy decision making and international conflict have ignored the role of emotions as variables influencing foreign policy choices. However, a growing area of political research suggests that emotions are of critical importance to many aspects of political life. Predominant foreign policy decision making models currently attend to either rational calculations or â??coldâ?? cognitive processes and heuristics. These models provide little theoretical space for propositions about how enduring and intense emotions such as hatred and fear influence perceptions and interpretations of interstate conflict. In this paper we propose a model which addresses this deficiency in foreign policy decision making research. A theory of emotions is introduced and integrated into the existing research on foreign policy decision making. Hypotheses pertaining to the influence of negative emotions on information processing and choice in international relations are derived from the model and tested in a multimethod setting. Findings are reported and discussed within the framework of existing empirical research on process-oriented models of foreign policy decision making.

Skorick, J Mark

2005-08-01T23:59:59.000Z

315

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Application of Hydrogen Industrial Application of Hydrogen Manufacture from Fossil Fuels with Geological Storage of CO 2 Iain W. Wright CO2 Project Manager, BP International 2 Agenda * What is Required for Commercial Deployment of CCS? * A Business Model for Hydrogen to Power Generation * What will Geological Storage Look Like? * Two BP-led Demonstration Projects: - Carson California (2011) - Peterhead, Scotland (2010): - CO2 Storage in the Miller Depleted Oilfield * Summary 3 Commercial Deployment of CCS $/T CO 2 CCS Costs CCS Benefits Hi Purity CO 2 EOR/Storage $100 EU ETS, CDM, JI $10-25 2008, 2012? 2006 When is Crossover?? Widespread Deployment EOR/EGR Time 4 Hydrogen to Power: A Business Model H 2 Pre-combustion of natural gas (syngas manufacture) Combined Cycle Power Generation CO 2 CO 2 Storage

316

2005 DOE Hydrogen Program Review: Hydrogen Codes and Standards  

DOE Green Energy (OSTI)

A PowerPoint presentation given as part of the 2005 Hydrogen Program Review, May 24, 2005, in Washington, D.C.

Ohi, J.

2005-05-01T23:59:59.000Z

317

DOE Hydrogen Analysis Repository: PV-Hydrogen System Simulator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach: The photovoltaic hydrogen system has a photovoltaic array with an optional maximum power point tracker that supplies electrical energy to the system. This electrical...

318

Development of a Low-Cost 3-10 kW Tubular SOFC Power System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Norman Bessette Acumentrics Corporation 20 Southwest Park Westwood, MA 02090 Phone: (781) 461-8251; Email: nbessette@acumentrics.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-03NT41838 Project Start Date: April 1, 2008 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives The goal of the project is to develop a low-cost 3-10 kW solid oxide fuel cell (SOFC) power generator capable of meeting multiple market applications. This is accomplished by: Improving cell power and stability * Cost reduction of cell manufacturing

319

Hydrogen Storage Using Electric Field Enhanced Adsorption  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Materials in Clean Power Systems V: Clean Coal-, Hydrogen...

320

Materials research for hydrogen-cooled superconducting power transmission lines. Sixth quarterly report, April 1, 1981-June 30, 1981  

DOE Green Energy (OSTI)

The objectives of this three-year program are to: perform dielectric breakdown and loss measurements in liquid hydrogen and liquid-hydrogen-impregnatd synthetic dielectrics at temperatures between 14 and 20/sup 0/K and at hydrostatic pressures up to 5 atmospheres and to determine the effects of dissolved impurities/additives in the liquid; and characterize the self-field and low-field superconducting properties of high-critical temperature materials at temperatures between approximately 14 and 20/sup 0/K. During the current reporting period, the following was accomplished. The construction of the dielectric test apparatus continued and the system of small electrodes was completed. Difficulties were encountered in the construction of the LH/sub 2/ vessels and the junction box, which have retarded their completion. Other work to be performed at the Westinghouse R and D Center on the dielectrics part of this project has been postponed indefinitely due to the shortage of funding.

Sletten, A.M.; Braginski, A.I.; Rosado, M.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Powertech: Hydrogen Expertise Storage Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

- Stations 700 bar Retail Stations 700 bar Retail Stations (Shell Newport Beach) Hydrogen Energy Storage Projects (BC Hydro Renewable Power - HARP) Lightweight Transport Trailers...

322

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

323

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

324

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

325

Renewable Combined Heat and Power Dairy Operations  

E-Print Network (OSTI)

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

326

Intern experience at Dallas Power and Light Company: an internship report  

E-Print Network (OSTI)

A survey of the author's internship experience with the Dallas Power & Light Company during the period January, 1979 through January, 1980 is presented. During this one year internship, the author worked as an engineer in the Executive Department. The intent of this report is to demonstrate that this experience fulfills the requirements for the Doctor of Engineering internship. The author's activities during this period can be categorized into two major areas. First, technically oriented, in which he developed a model to project future electrical demands based on land usage, and a computer program that implements this model. Secondly, a selection of non-technical business oriented areas were investigated. The tasks in these areas offered him the opportunity to be exposed to the organization and operation of an investor owned public utility company and to gain experience in a non-academic business environment.

Fischer, Roger Lewis, 1945-

1980-05-01T23:59:59.000Z

327

HEATMAPCHP - The International Standard for Modeling Combined Heat and Power Systems  

E-Print Network (OSTI)

HEATMAPCHP is a software tool that can provide a comprehensive simulation of proposed and existing combined heat and power (CHP) plant and system applications, The software model provides a fully integrated analysis of central power production plants that are linked to district energy applications using hot water or steam for heating and/or chilled water-cooling and/or refrigeration connected to a network of buildings or other residential commercial, institutional, or industrial facilities. The program will provide designers, planners. engineers, investors, utilities, and operators with extensive technical, economical, and air emission information about a specific CHP application. The software can also be a valuable tool for community, military, regional, or national planners in defining all aspects of developing, evaluating, and justifying a new CHP project or upgrading an existing thermal system for CHP. Program output may be used to evaluate existing system performance or model the effects of various potential alternative system strategies including upgrades, expansions or conversion of thermal fluids (e.g., steam to hot water). A major feature of the program is its capability to comprehensively analyze a central CHP plant interface application involving thermal storage for both heating and cooling systems in conjunction with various technical distribution parameters covering both the supply and return elements of an extensive piping distribution system. Important features of the software include: the capability to utilize a myriad of fuel and equipment options; determination of air emission impacts that can result from CHP or central energy plant implementation; and the evaluation of extensive economic scenarios including the influence of environmental taxes on a variety of fuel alternatives.

Bloomquist, R. G.; O'Brien, R. G.

2000-04-01T23:59:59.000Z

328

Optimized hydrogen piston engines  

DOE Green Energy (OSTI)

Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

Smith, J.R.

1994-05-10T23:59:59.000Z

329

Sustainable hydrogen production  

SciTech Connect

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

330

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

331

Advanced Materials and Concepts for Portable Power Fuel Cells - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report P. Zelenay (Primary Contact), H. Chung, C.M. Johnston, Y.S. Kim, Q. Li, D. Langlois, D. Spernjak, P. Turner, G. Wu Materials Physics and Applications Division Los Alamos National Laboratory (LANL) Los Alamos, NM 87545 Phone: (505) 667-0197 Email: zelenay@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Subcontractors: * R.R. Adzic (PI), S. Bliznakov, M. Li, P. Liu, K. Sasaki, M.-P. Zhou Brookhaven National Laboratory, Upton, NY * Y. Yan (PI), S. Alia, J. Zheng University of Delaware, Newark, DE

332

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network (OSTI)

V.I. Glebov, Hydrogen storage in capillary arrays, EnergyHydrogen Storage in Microspheres - Final Report, EnergyHydrogen Production and Storage - R&D Priorities and Gaps, International Energy

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

333

Renewable Hydrogen: Integration, Validation, and Demonstration  

DOE Green Energy (OSTI)

This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

Harrison, K. W.; Martin, G. D.

2008-07-01T23:59:59.000Z

334

Engines - Spark Ignition Engines - Hydrogen Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

large-scale hydrogen infrastructure by using the well-known and widely used internal combustion engine as the device that transforms the energy stored in hydrogen into motion. The...

335

Hydropower to Hydrogen: Feasibility Study  

Science Conference Proceedings (OSTI)

Hydrogen is being considered as a transportation fuel of the future due to its abundance in nature and the many different methods available to produce it. Hydrogen is also the cleanest burning of all fuels available today. However, there is limited infrastructure available to support the use of hydrogen as an alternative fuel for land transportation. In order to promote hydrogen as an alternative transportation fuel, the New York Power Authority (NYPA) commissioned EPRI/Nexant to conduct a feasibility st...

2007-06-13T23:59:59.000Z

336

Hydrogen Highways  

E-Print Network (OSTI)

Joan Ogden, The Hope for Hydrogen, Issues in Science andand James S. Cannon. The Hydrogen Energy Transition: MovingHydrogen Highways BY TIMOTHY LIPMAN H 2 T H E S TAT E O F C

Lipman, Timothy

2005-01-01T23:59:59.000Z

337

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

338

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

339

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents (OSTI)

A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

1993-05-18T23:59:59.000Z

340

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents (OSTI)

A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

342

Hydrogen Purity Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

343

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

344

Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dan Hennessy (Primary Contact), Jim Banna Delphi Automotive Systems, LLC 300 University Drive m/c 480-300-385 Auburn Hills, MI 48326 Phone: (248) 732-0656 Email: daniel.t.hennessy@delphi.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000478 Subcontractors: * Electricore, Inc., Valencia, CA * PACCAR, Inc., Bellevue, WA * TDA Research, Inc., Wheat Ridge, CO Project Start Date: August 1, 2009 Project End Date: April 30, 2013 Objectives

345

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

346

DOE Announces Webinars on Hydrogen-Compatible Materials, the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Webinars on Hydrogen-Compatible Materials, the Distributed Wind Power Market, and More DOE Announces Webinars on Hydrogen-Compatible Materials, the Distributed Wind...

347

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

348

DOE Hydrogen Analysis Repository: H2CAS Model  

NLE Websites -- All DOE Office Websites (Extended Search)

decisions and actions of drivers; hydrogen fueling station investors; combined heat, hydrogen, and power system owners; and vehicle original equipment manufacturers are modeled....

349

DOE Hydrogen and Fuel Cells Program: Permitting Hydrogen Facilities Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy The objective of this U.S. Department of Energy Hydrogen Permitting Web site is to help local permitting officials deal with proposed hydrogen fueling stations, fuel cell installations for telecommunications backup power, and other hydrogen projects. Resources for local permitting officials who are looking to address project proposals include current citations for hydrogen fueling stations and a listing of setback requirements on the Alternative Fuels & Advanced Vehicle Data Center Web site. In addition, this overview of telecommunications fuel cell use and an animation that demonstrates telecommunications site layout using hydrogen fuel cells for backup power should provide helpful

350

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

351

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy ■ Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

352

On-board hydrogen storage system using metal hydride  

DOE Green Energy (OSTI)

A hydrogen powered hybrid electric bus has been developed for demonstration in normal city bus service in the City of Augusta, Georgia, USA. The development team, called H2Fuel Bus Team, consists of representatives from government, industry and research institutions. The bus uses hydrogen to fuel an internal combustion engine which drives an electric generator. The generator charges a set of batteries which runs the electric bus. The hydrogen fuel and the hybrid concept combine to achieve the goal of near-zero emission and high fuel efficiency. The hydrogen fuel is stored in a solid form using an on-board metal hydride storage system. The system was designed for a hydrogen capacity of 25 kg. It uses the engine coolant for heat to generate a discharge pressure higher than 6 atm. The operation conditions are temperature from ambient to 70 degrees C, hydrogen discharge rate to 6 kg/hr, and refueling time 1.5 hours. Preliminary tests showed that the performance of the on-board storage system exceeded the design requirements. Long term tests have been planned to begin in 2 months. This paper discusses the design and performance of the on-board hydrogen storage system.

Heung, L.K.

1997-07-01T23:59:59.000Z

353

Development of design and simulation model and safety study of large-scale hydrogen production using nuclear power.  

DOE Green Energy (OSTI)

Before this LDRD research, no single tool could simulate a very high temperature reactor (VHTR) that is coupled to a secondary system and the sulfur iodine (SI) thermochemistry. Furthermore, the SI chemistry could only be modeled in steady state, typically via flow sheets. Additionally, the MELCOR nuclear reactor analysis code was suitable only for the modeling of light water reactors, not gas-cooled reactors. We extended MELCOR in order to address the above deficiencies. In particular, we developed three VHTR input models, added generalized, modular secondary system components, developed reactor point kinetics, included transient thermochemistry for the most important cycles [SI and the Westinghouse hybrid sulfur], and developed an interactive graphical user interface for full plant visualization. The new tool is called MELCOR-H2, and it allows users to maximize hydrogen and electrical production, as well as enhance overall plant safety. We conducted validation and verification studies on the key models, and showed that the MELCOR-H2 results typically compared to within less than 5% from experimental data, code-to-code comparisons, and/or analytical solutions.

Gelbard, Fred; Oh, Seungmin (Purdue University, West Lafayette, IN); Rodriguez, Salvador B.; Revankar, Shripad T. (Purdue University, West Lafayette, IN); Gauntt, Randall O.; Cole, Randall K., Jr.; Espinosa, Flor (University of New Mexico, Albuquerque, NM); Drennen, Thomas E.; Tournier, Jean-Michel (University of New Mexico, Albuquerque, NM); Hogan, Kevin (Texas A& M University, College Station, TX); Archuleta, Louis (OMICRON Safety and Risk, Inc., Albuquerque, NM); Malczynski, Leonard A.; Vierow, Karen (Texas A& M University, College Station, TX); McFadden, Katherine Letizia; Martin, William Joseph; El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Louie, David L. Y. (OMICRON Safety and Risk, Inc., Albuquerque, NM)

2007-10-01T23:59:59.000Z

354

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

355

Interpretation of the Spatial Power Spectra of Neutral Hydrogen in the Galaxy and in the Small Magellanic Cloud  

E-Print Network (OSTI)

Recent 21 cm radio observations of H$_I$ regions in the Small Magellanic Cloud, have revealed spatial power spectra of the intensity, which are quite similar in shape to those previously deduced for the Galaxy. The similarity, in spite the differences in the physical parameters between the Galaxy and the SMC, suggests that the shape of the power spectra reflects some underlying mechanism which is not too sensitive to the environmental specifics. In this paper we present an interpretation for the observational power spectra in terms of a large scale turbulence in the interstellar medium, in which the emitting H$_I$ regions are embedded. The turbulence gives rise to density fluctuations which lead to the observed intensity fluctuations, in the H$_I$ regions. The observational power spectra are used to deduce the turbulence spectral function. In the SMC, the turbulence largest eddies are comparable in scale to the SMC itself. This implies that turbulent mixing should have smoothed out any large scale abundance gradients. Indeed, this seems to be the case, observationally. The turbulence is also expected to amplify and shape up the large scale magnetic field. Indeed, the observational data indicate the existence of a large scale disordered field of the strength expected from energy equilibrium with the turbulent velocity field. The large scale turbulence is most probably generated by instabilities in the large scale flows induced by the tidal close encounter with the LMC $ \\sim 2\\times 10^8{\\rm yr}$ ago. The life-time of the largest eddies is $\\sim 4\\times 10^8{\\rm yr}$ so the turbulence had not yet enough time to decay and persists even though the energy source is no longer there.

Itzhak Goldman

2000-05-01T23:59:59.000Z

356

Green Power Network: International  

NLE Websites -- All DOE Office Websites (Extended Search)

a Canadian firm engaged in the world-wide marketing of green energy products derived from hydro and wind energy projects located in Canada. Currently, Vision Quest offers several...

357

Fuel cell systems for personal and portable power applications  

SciTech Connect

Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

Fateen, S. A. (Shaheerah A.)

2001-01-01T23:59:59.000Z

358

EVermont Renewable Hydrogen Production and Transportation Fueling System  

DOE Green Energy (OSTI)

A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

Garabedian, Harold T.

2008-03-30T23:59:59.000Z

359

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

360

Hydrogen fueling station development and demonstration  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of a National Center for Hydrogen Technology  

DOE Green Energy (OSTI)

In November 2005, the Energy & Environmental Research Center (EERC), ePowerSynergies, Inc. (ePSI), and Resurfice Corporation teamed to develop, produce, and demonstrate the world's first and only fuel cell-powered ice resurfacer. The goals of this project were: {sm_bullet} To educate the public on the readiness, practicality, and safety of fuel cells powered by hydrogen fuel and {sm_bullet} To establish a commercialization pathway in an early-adopter, niche market. The vehicle was developed and produced in a short 3-month span. The vehicle made its world debut at U.S. Senator Byron Dorgan's (D-ND) 2005 Hydrogen Energy Action Summit. Subsequently, the vehicle toured North America appearing at numerous public events and conferences, receiving much attention from international media outlets.

Jay C. Almlie; Bruce Wood; Rich Schlupp

2007-03-01T23:59:59.000Z

362

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

363

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

364

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

365

Materials for Hydrogen Production, Separation, and Storage  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Materials in Clean Power Systems VII: Clean Coal-, Hydrogen ... and Fuel Cells: Materials for Hydrogen Production, Separation, and Storage .... Mixed Conducting Molten Salt Electrolyte for Na/NiCl2 Cell: Tannaz Javadi1;...

366

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

electrical power generation, and natural gas and other fuelon natural gas for the generation of about 36% of its power,Natural gas- based hydrogen dominates, along with experiments with electrolysis and biogas. Distributed power generation

Lipman, Timothy; Kammen, Daniel; Ogden, Joan; Sperling, Dan

2004-01-01T23:59:59.000Z

367

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Performing  

NLE Websites -- All DOE Office Websites (Extended Search)

Performing Organization Performing Organization Below are hydrogen analyses and analytical models grouped by performing organization. A B D E F G I L M N O P R S T U W A Aalborg University Wind Power Integration Air Products and Chemicals, Inc. Ceramic Membrane Reactors for Converting Natural Gas to Hydrogen Hydrogen Energy Station Validation Anhui University of Technology Well-to-Wheels Analysis of Hydrogen Fuel-Cell Vehicle Pathways in Shanghai Argonne National Laboratory (ANL) Advanced Vehicle Introduction Decisions (AVID) Model AirCRED Model All Modular Industry Growth Assessment (AMIGA) Model Biofuels in Light-Duty Vehicles Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power Cost Implications of Hydrogen Quality Requirements

368

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Working With Argonne Contact TTRDC Thermochemical Cycles for Hydrogen Production Argonne researchers are studying thermochemical cycles to determine their potential...

369

Hydrogen Generation From Electrolysis  

SciTech Connect

Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of todays technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available today that perform in a range of efficiencies, >95%, that are suitable for the overall operational goals. The balance of plant scales well both operationally and in terms of cost becoming a smaller portion of the overall cost equation as the systems get larger. Capital cost reduction of the cell stack power supplies is achievable by modifying the system configuration to have the cell stacks in electrical series driving up the DC bus voltage, thereby allowing the use of large-scale DC power supply technologies. The single power supply approach reduces cost. Elements of the cell stack cost reduction and efficiency improvement work performed in the early stage of the program is being continued in subsequent DOE sponsored programs and through internal investment by Proton. The results of the trade study of the 100 kg H2/day system have established a conceptual platform for design and development of a next generation electrolyzer for Proton. The advancements started by this program have the possibility of being realized in systems for the developing fueling markets in 2010 period.

Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

2009-03-06T23:59:59.000Z

370

The hydrogen hybrid option  

SciTech Connect

The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

Smith, J.R.

1993-10-15T23:59:59.000Z

371

International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability  

Science Conference Proceedings (OSTI)

This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

Not Available

1993-10-01T23:59:59.000Z

372

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

373

Hydrogen Radialysis  

INL scientists have invented a process of forming chemical compositions, such as a hydrides which can provide a source of hydrogen. The process exposes the chemical composition decaying radio-nuclides which provide the energy to with a hydrogen source ...

374

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

375

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

376

Hydrogen spillover: Its "diffusion" from catalysis to hydrogen storage community  

DOE Green Energy (OSTI)

Dissociative adsorption of hydrogen on catalyst sites followed by surface diffusion (spillover) to a carbon support was first reported for Pt-carbon catalysts (Robell, 1964) and was soon accepted as a valid step of numerous catalytic reactions. However, the concept of metal-assisted hydrogen storage (Schwarz, 1988) based on spillover entered much later the hydrogen community (Lueking and Yang, 2002) and is gaining recognition slowly as an alternate approach for enhancing hydrogen storage capacity of microporous materials for fuel-cell powered vehicles. This talk will analyze the significance and limits of the spillover mechanism for adsorptive storage of hydrogen, with examples of enhanced hydrogen uptake on Pd-containing activated carbon fibers. Evidence of the atomic nature of spilt-over hydrogen will be presented based on experimental results from inelastic neutron spectroscopy studies. Research sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy under contract with UT-Battelle, LLC.

Contescu, Cristian I [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL

2009-01-01T23:59:59.000Z

377

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

378

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

379

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

380

Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests  

DOE Green Energy (OSTI)

Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy  

E-Print Network (OSTI)

A. Weiss. 2006. Future Fuel Cell and Internal CombustionPress. Hydrogen and Fuel Cell Technical Advisory Committee.September 10. Hydrogen and Fuel Cell Technical Advisory

Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

2008-01-01T23:59:59.000Z

382

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

DOE Green Energy (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

383

Hydrogen production costs -- A survey  

SciTech Connect

Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

Basye, L.; Swaminathan, S.

1997-12-04T23:59:59.000Z

384

LLNL input to FY94 hydrogen annual report  

DOE Green Energy (OSTI)

This report summarizes the FY 1994 progress made in hydrogen research at the Lawrence Livermore National Laboratory. Research programs covered include: Technical and Economic Assessment of the Transport and Storage of Hydrogen; Research and Development of an Optimized Hydrogen-Fueled Internal Combustion Engine; Hydrogen Storage in Engineered Microspheres; Synthesis, Characterization and Modeling of Carbon Aerogels for Hydrogen Storage; Chemical Kinetic Modeling of H2 Applications; and, Municipal Solid Waste to Hydrogen.

Schock, R.N.; Smith, J.R.; Rambach, G.; Pekala, R.W.; Westbrook, C.K.; Richardson, J.H.

1994-12-16T23:59:59.000Z

385

AlumiFuel Power Inc | Open Energy Information  

Open Energy Info (EERE)

search Name AlumiFuel Power Inc. Place Philadelphia, Pennsylvania Sector Hydro, Hydrogen Product Philadelphia-based hydrogen gas generator. References AlumiFuel Power Inc.1...

386

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C.L.; Russell, L.H.

1981-06-23T23:59:59.000Z

387

Proceedings NATIONAL HYDROGEN VISION MEETING  

E-Print Network (OSTI)

introduction to market (e.g. subsidized high quality power) · Possibility of crude oil production peaking's Plan directs us to explore the possibility of a hydrogen economy..." Spencer Abraham, Secretary/market inertia Availability of oil and gas resources #12;Proceedings for National Hydrogen Vision Meeting 2

388

Energy Basics: Power Tower Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

389

Hydrogen ICE Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energys FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

390

Palladium-hydrogen Interaction in Dislocations: Trapping and ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Materials in Clean Power Systems V: Clean Coal-, Hydrogen...

391

NREL GIS Data: United States Hydrogen Potential From Renewable...  

Open Energy Info (EERE)

hydrogen development locally and regionally. These additional resources include offshore wind, concentrating solar power, geothermal, hydropower, photoelectrochemical, and...

392

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Data  

NLE Websites -- All DOE Office Websites (Extended Search)

to hydrogen development locally and regionally. These additional resources include offshore wind, concentrating solar power, geothermal, hydropower, photoelectrochemical,...

393

Materials Reliability Program: Sensitivity Studies for Functionality Analysis of Reactor Internals of Westinghouse-Designed Power Plants (MRP-356)  

Science Conference Proceedings (OSTI)

In developing the Pressurized Water Reactor Internals Inspection and Evaluation Guidelines (MRP-227, Rev. 0), a semi-empirical material behavior model for irradiated austenitic stainless steels was developed for the degradation mechanisms applicable to the internals. Functionality analyses predicting aging up to 60 years were performed using the material model. MRP-230 results indicate that susceptibility to irradiation-assisted stress corrosion cracking (IASCC) is governed by two competing ...

2013-08-13T23:59:59.000Z

394

Many Pathways to Renewable Hydrogen (Presentation)  

DOE Green Energy (OSTI)

Presentation on the paths to renewable hydrogen presented by Robert Remick at the 2008 PowerGen: Renewable Energy and Fuels 2008 conference.

Remick, R.

2008-02-01T23:59:59.000Z

395

US National Outreach and Hydrogen Standards Development  

Science Conference Proceedings (OSTI)

... of legal metrology requirements for these installations. ... such as hydro, wind, and solar power. ... In this particular installation, gaseous hydrogen is ...

2011-09-26T23:59:59.000Z

396

Fuel Cell Technologies Office: Hydrogen Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

nuclear; biomass; and other renewable energy technologies, such as wind, solar, geothermal, and hydro-electric power. The overall challenge to hydrogen production is cost...

397

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

3.6,Focus:RenewableEnergy forHydrogenProductioninFocus:RenewableEnergyfor PowerProductionandHybrid

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

398

Fermentative Approaches to Hydrogen Production (Presentation)  

DOE Green Energy (OSTI)

A PowerPoint presentation given as part of the 2005 Hydrogen Program Review, May 23-26, 2005, in Washington, D.C.

Maness, P. C.; Czernik, S.; Smolinski, S.

2005-05-01T23:59:59.000Z

399

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

400

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

402

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

the batteries, and to power accessories like the air condi- tioner and heater. Hybrid electric cars can exceed#12;#12;Hydrogen Fuel Cell Engines MODULE 8: FUEL CELL HYBRID ELECTRIC VEHICLES CONTENTS 8.1 HYBRID ELECTRIC VEHICLES .................................................................................. 8-1 8

403

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

about $0.50/gJ to the price of biomass-derived hydrogen (biomass (Larson and Katofsky, 1992). The fuel retati pricebiomass instead of from solar power, the production cost would be much lower (Table 5), and the breakeven gasoline price

Delucchi, Mark

1992-01-01T23:59:59.000Z

404

Fuel Cell Technologies Office: International Partnership for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership for Hydrogen and Fuel Cells in the Economy to someone by E-mail Share Fuel Cell Technologies Office: International Partnership for Hydrogen and Fuel Cells in the...

405

Solar powered unitized regenerative fuel cell system  

Science Conference Proceedings (OSTI)

Solar hydrogen system is a unique power system that can meet the power requirement for the energy future demand, in such a system the hydrogen used to be the energy carrier which can produced through electrolysis by using the power from the PV during ... Keywords: electrolyzer, fuel cell, hydrogen, photovoltaic, regenerative, solar hydrogen system

Salwan S. Dihrab; , Kamaruzzaman Sopian; Nowshad Amin; M. M. Alghoul; Azami Zaharim

2008-02-01T23:59:59.000Z

406

Solar photoproduction of hydrogen. IEA technical report of the IEA Agreement of the Production and Utilization of Hydrogen  

DOE Green Energy (OSTI)

The report was prepared for the International Energy Agency (IEA) Hydrogen Program and represents the result of subtask C, Annex 10 - Photoproduction of Hydrogen. The concept of using solar energy to drive the conversion of water into hydrogen and oxygen has been examined, from the standpoints of potential and ideal efficiencies, measurement of (and how to calculate) solar hydrogen production efficiencies, a survey of the state-of-the-art, and a technological assessment of various solar hydrogen options. The analysis demonstrates that the ideal limit of the conversion efficiency for 1 sun irradiance is {approximately}31% for a single photosystem scheme and {approximately}42% for a dual photosystem scheme. However, practical considerations indicate that real efficiencies will not likely exceed {approximately}10% and {approximately}16% for single and dual photosystem schemes, respectively. Four types of solar photochemical hydrogen systems have been identified: photochemical systems, semiconductor systems, photobiological systems, and hybrid and other systems. A survey of the state-of-the-art of these four types is presented. The four types (and their subtypes) have also been examined in a technological assessment, where each has been examined as to efficiency, potential for improvement, and long-term functionality. Four solar hydrogen systems have been selected as showing sufficient promise for further research and development: (1) Photovoltaic cells plus an electrolyzer; (2) Photoelectrochemical cells with one or more semiconductor electrodes; (3) Photobiological systems; and (4) Photodegradation systems. The following recommendations were presented for consideration of the IEA: (1) Define and measure solar hydrogen conversion efficiencies as the ratio of the rate of generation of Gibbs energy of dry hydrogen gas (with appropriate corrections for any bias power) to the incident solar power (solar irradiance times the irradiated area); (2) Expand support for pilot-plant studies of the PV cells plus electrolyzer option with a view to improving the overall efficiency and long-term stability of the system. Consideration should be given, at an appropriate time, to a full-scale installation as part of a solar hydrogen-based model community; (3) Accelerate support, at a more fundamental level for the development of photoelectrochemical cells, with a view to improving efficiency, long-term performance and multi-cell systems for non-biased solar water splitting; (4) Maintain and increase support for fundamental photobiological research with the aim of improving long-term stability, increasing efficiencies and engineering genetic changes to allow operation at normal solar irradiances; and (5) Initiate a research program to examine the feasibility of coupling hydrogen evolution to the photodegradation of waste or polluting organic substances.

Bolton, J.R. [Dept. of Chemistry, Univ. of Western Ontario, London, Ontario (CA) N6A 5B7

1996-09-30T23:59:59.000Z

407

Compressed Hydrogen and PEM Fuel Cell System  

DOE Green Energy (OSTI)

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

408

Hydrogen Safety  

Science Conference Proceedings (OSTI)

... ASHRAE 62.1, 7 air changes per hour, 100 ... I, Division II, Group B: testing and research laboratory; ... Planning Guidance for Hydrogen Projects as a ...

2012-10-09T23:59:59.000Z

409

Power Spectrum Analysis of Mount-Wilson Solar Diameter Measurements: Evidence for Solar Internal R-mode Oscillations  

E-Print Network (OSTI)

This article presents a power-spectrum analysis of 39,024 measurements of the solar diameter made at the Mount Wilson Observatory from 1968.670 to 1997.965. This power spectrum contains a number of very strong peaks. We find that eight of these peaks agree closely with the frequencies of r-mode oscillations for a region of the Sun where the sidereal rotation frequency is 12.08 year$^{-1}$. We estimate that there is less than one chance in ten to the sixth power of finding this pattern by chance.

Sturrock, Peter A

2010-01-01T23:59:59.000Z

410

A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 | Open Energy  

Open Energy Info (EERE)

A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Jump to: navigation, search Tool Summary Name: A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Agency/Company /Organization: US DOT Focus Area: Vehicles Topics: Analysis Tools Website: www.fuelcells.org/wp-content/uploads/2012/02/busreport.pdf From 2002-2007 > 20 cities in the US, Europe, China, Japan & Australia demonstrated buses powered by fuel cells or hydrogen-fueled internal combustion engines. The resulting report analyzes lessons learned from the demonstrations, identifies key remaining challenges for introduction of the technology, & suggests potential roles for government in supporting commercialization of fuel cell buses. How to Use This Tool This tool is most helpful when using these strategies:

411

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

412

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

413

Characterization of oil transport in the power cylinder of internal combustion engines during steady state and transient operation  

E-Print Network (OSTI)

Engine friction, wear, and oil consumption are some of the primary interests for the automotive industry. However, there is currently a lack of understanding of the fundamentals involving oil transport inside the power ...

Przesmitzki, Steve (Steve Victor)

2008-01-01T23:59:59.000Z

414

A Simplified Integrated Model for Studying Transitions to a Hydrogen Economy  

E-Print Network (OSTI)

654. Mintz, M. , et al. , Hydrogen: On the Horizon of Just aa Refueling Infrastructure for Hydrogen Vehicles: A SouthernInternational Journal of Hydrogen Energy, 1999. 24: p. 709-

Yang, Christopher; Ogden, Joan M

2004-01-01T23:59:59.000Z

415

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

International Journal of Hydrogen Energy, 30(7): 701-718.of a fossil fuel-based hydrogen infrastructure with carbonPartnering for the Global Hydrogen Future, NHA Conference,

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

416

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Energy Group l 19 l R e n e w a b l e Hydrogen Table 1: U.S.International Renewable Hydrogen Demonstration Projects (CONTINUED) U.S. ProjectS Hydrogen Production from

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

417

Hydrogen storage and integrated fuel cell assembly  

DOE Patents (OSTI)

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

Gross, Karl J. (Fremont, CA)

2010-08-24T23:59:59.000Z

418

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

Hydrogen Using NH3-Fueled SOFC Systems, Ammonia - The Keysolid oxide fuel cell (SOFC) systems as these are relativelyper kW in an ammonia-based SOFC system compared with about $

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

419

Purdue Hydrogen Systems Laboratory  

DOE Green Energy (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

420

Investigation of bromine-complexed hydrogen/bromine regenerative fuel cells for portable electric power. Final report, July 1982-May 1984  

SciTech Connect

A novel polyethylene glycol-bromine complexing system was developed which significantly lowers the vapor pressure of bromine in a hydrogen/bromine fuel cell. The effect of temperature and acid concentration on complex formation were studied. Heats of formation and rate constants for complex dissociation were measured. A cathode was optimized for use with bromine in a hydrogen/bromine fuel cell. Fuel cell performance utilizing the complex as a source of bromine was investigated.

Kosek, J.A.; LaConti, A.B.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Onboard Plasmatron Hydrogen Production for Improved Vehicles  

SciTech Connect

A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

2005-12-31T23:59:59.000Z

422

Onboard Plasmatron Hydrogen Production for Improved Vehicles  

DOE Green Energy (OSTI)

A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

2005-12-31T23:59:59.000Z

423

Hydrogen production  

SciTech Connect

The production of hydrogen by reacting an ash containing material with water and at least one halogen selected from the group consisting of chlorine, bromine and iodine to form reaction products including carbon dioxide and a corresponding hydrogen halide is claimed. The hydrogen halide is decomposed to separately release the hydrogen and the halogen. The halogen is recovered for reaction with additional carbonaceous materials and water, and the hydrogen is recovered as a salable product. In a preferred embodiment the carbonaceous material, water and halogen are reacted at an elevated temperature. In accordance with another embodiment, a continuous method for the production of hydrogen is provided wherein the carbonaceous material, water and at least one selected halogen are reacted in one zone, and the hydrogen halide produced from the reaction is decomposed in a second zone, preferably by electrolytic decomposition, to release the hydrogen for recovery and the halogen for recycle to the first zone. There also is provided a method for recovering any halogen which reacts with or is retained in the ash constituents of the carbonaceous material.

Darnell, A.J.; Parkins, W.E.

1978-08-08T23:59:59.000Z

424

Hydrogen Bibliography  

DOE Green Energy (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

425

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

426

Microsoft PowerPoint - To NETL Pittsburgh Site from the Pittsburgh International Airport Directions.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

the Pittsburgh International Airport the Pittsburgh International Airport 1. Exit airport and follow signs for PITTSBURGH, which will take you onto ROUTE 60 SOUTH. 2. ROUTE 60 becomes ROUTE 22-30, also know as I-279 the "PARKWAY WEST." 3. Stay on Route 22-30/I-279 the "PARKWAY WEST" until you reach EXIT 5B, labeled TRUCK ROUTE 19 SOUTH/ROUTE 51 SOUTH UNIONTOWN Note: This exit is on the FAR RIGHT 19 SOUTH/ROUTE 51 SOUTH, UNIONTOWN. Note: This exit is on the FAR RIGHT just BEFORE the FORT PITT TUNNEL - do not go into the Tunnel. 4. Continue down ROUTE 51 SOUTH for approximately 7.5 miles. 5. Look for a CVS Pharmacy on the right-hand side of the road. SLOW DOWN since you will soon be exiting off ROUTE 51 SOUTH at the CLOVERLEAF EXIT. 6. After passing CVS (2.5 miles) take the very first road to your RIGHT.

427

Microsoft PowerPoint - Francfort slides.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

- HydrogenCNG production and fueling Station - Hydrogen internal combustion engine (ICE) vehicle testing - Hybrid, urban, and neighborhood electric vehicle testing - Airport...

428

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives  

SciTech Connect

The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

Not Available

1980-06-01T23:59:59.000Z

429

Development of a partnership with government and industry to accelerate the commercialization of hydrogen. Final report, November 1, 1996--October 31, 1997  

SciTech Connect

The National Hydrogen Association (NHA) was born out of a Hydrogen Workshop, November 16 and 17, 1988, held at the Electric Power Research Institute in Palo Alto, California. The following mission statement was adopted and remains the statement of the organization: to foster the development of hydrogen technologies and their utilization in industrial and commercial applications and to promote the transition role of hydrogen in the energy field. This final technical report provides a summary of the activities performed by the NHA. Activities are broken down by task area, and include the following: Information exchange within the NHA; Information exchange within the hydrogen industry; Information exchange with other critical industries and the public; Annual US hydrogen meeting; Codes and standards which includes establishing industry consensus on safety issues; Industry perspective and needs; and Administrative. Appendices to this report include the following: Role of the NHA in strategic planning for the hydrogen economy--An international initiative; Hydrogen safety report; and Implementation plan workshop II, whose purpose was to seek commercialization scenarios and strategies to introduce hydrogen in near-term transportation and power markets.

1998-09-01T23:59:59.000Z

430

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiatives Spur Initiatives Spur Private Industry Investment Presented by Gardiner Hill Manager, Group Technology, BP 5 th Annual Conference on Carbon Capture and Sequestration May 9, 2006 "The Carson Hydrogen Power Project" Carson Hydrogen Power Project Sponsors and Participants * BP - Global leader in decarbonized fuels projects, including gasification projects and GHG sequestration CO 2 Capture Project, In Salah, Peterhead and others * Edison International/Edison Mission Energy - Pioneer in IGCC: 120 MW Cool Water IGCC facility, 1 st commercial scale clean coal power project 528 MW ISAB IGCC in Italy, 1 st large scale deployment of IGCC technology * Fluor - one of the world's largest publicly-held EPC contractors leader in the design of clean coal, clean fuels, & carbon capture

431

The Hydrogen Futures Simulation Model (H[2]Sim) technical description.  

SciTech Connect

Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production, storage, transport and end use options in the year 2020. Based on the model's default assumptions, estimated hydrogen production costs range from 0.68 $/kg for coal gasification to as high as 5.64 $/kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust; for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options when electricity drops below 1 cent/kWhr. Delivered 2020 hydrogen costs are likely to be double the estimated production costs due to the inherent difficulties associated with storing, transporting, and dispensing hydrogen due to its low volumetric density. H2Sim estimates distribution costs ranging from 1.37 $/kg (low distance, low production) to 3.23 $/kg (long distance, high production volumes, carbon sequestration). Distributed hydrogen production options, such as on site natural gas, would avoid some of these costs. H2Sim compares the expected 2020 per mile driving costs (fuel, capital, maintenance, license, and registration) of current technology internal combustion engine (ICE) vehicles (0.55$/mile), hybrids (0.56 $/mile), and electric vehicles (0.82-0.84 $/mile) with 2020 fuel cell vehicles (FCVs) (0.64-0.66 $/mile), fuel cell vehicles with onboard gasoline reformation (FCVOB) (0.70 $/mile), and direct combustion hydrogen hybrid vehicles (H2Hybrid) (0.55-0.59 $/mile). The results suggests that while the H2Hybrid vehicle may be competitive with ICE vehicles, it will be difficult for the FCV to compete without significant increases in gasoline prices, reduced predicted vehicle costs, stringent carbon policies, or unless they can offer the consumer something existing vehicles can not, such as on demand power, lower emissions, or better performance.

Jones, Scott A.; Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Lutz, Andrew E.; Rosthal, Jennifer Elizabeth

2004-10-01T23:59:59.000Z

432

The Hydrogen Futures Simulation Model (H[2]Sim) technical description.  

DOE Green Energy (OSTI)

Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production, storage, transport and end use options in the year 2020. Based on the model's default assumptions, estimated hydrogen production costs range from 0.68 $/kg for coal gasification to as high as 5.64 $/kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust; for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options when electricity drops below 1 cent/kWhr. Delivered 2020 hydrogen costs are likely to be double the estimated production costs due to the inherent difficulties associated with storing, transporting, and dispensing hydrogen due to its low volumetric density. H2Sim estimates distribution costs ranging from 1.37 $/kg (low distance, low production) to 3.23 $/kg (long distance, high production volumes, carbon sequestration). Distributed hydrogen production options, such as on site natural gas, would avoid some of these costs. H2Sim compares the expected 2020 per mile driving costs (fuel, capital, maintenance, license, and registration) of current technology internal combustion engine (ICE) vehicles (0.55$/mile), hybrids (0.56 $/mile), and electric vehicles (0.82-0.84 $/mile) with 2020 fuel cell vehicles (FCVs) (0.64-0.66 $/mile), fuel cell vehicles with onboard gasoline reformation (FCVOB) (0.70 $/mile), and direct combustion hydrogen hybrid vehicles (H2Hybrid) (0.55-0.59 $/mile). The results suggests that while the H2Hybrid vehicle may be competitive with ICE vehicles, it will be difficult for the FCV to compete without significant increases in gasoline prices, reduced predicted vehicle costs, stringent carbon policies, or unless they can offer the consumer something existing vehicles can not, such as on demand power, lower emissions, or better performance.

Jones, Scott A.; Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Lutz, Andrew E.; Rosthal, Jennifer Elizabeth

2004-10-01T23:59:59.000Z

433

Adsorption Behavior of Hydrogen and Deuterium on Natural Mordenite Adsorbent at 77 K  

Science Conference Proceedings (OSTI)

Hydrogen/Tritium Behavior / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

Kenzo Munakata; Yoshinori Kawamura

434

Overview of U.S. Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Hydrogen and Fuel United States Hydrogen and Fuel Cell Activities U.S. Department of Energy Dr. Sunita Satyapal Fuel Cell Technologies Program CNG and Hydrogen Lessons Learned Workshop December 10, 2009 2 Workshop Objectives * To coordinate lessons learned from compressed natural gas and hydrogen vehicles * Collect feedback from demonstration activities and real world applications in the United States and internationally * Identify additional RD&D to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international codes and standards harmonization * Identify potential future collaborations, workshops, education and communication strategies 3 Hydrogen and Fuel Cells - Where are we today? Fuel Cells for Transportation

435

Hydrogen: Helpful Links & Contacts  

Science Conference Proceedings (OSTI)

Helpful Links & Contacts. Helpful Links. Hydrogen Information, Website. ... Contacts for Commercial Hydrogen Measurement. ...

2013-07-31T23:59:59.000Z

436

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

437

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

438

Hydrogen Energy Technology Geoff Dutton  

E-Print Network (OSTI)

applications Low power CHP - higher power density than SOFC Start up time 1-3 s Requires CO levels AlO2 Noble metal catalysts usually not required at this temperature Solid oxide (SOFC) Stabilised in Padro and Putsche (1999)2 600 0.06 SOFC Direct methanol Page 23 #12;Hydrogen systems Ogden and co

Watson, Andrew

439

Atomic Transport/ Dense Metallic Hydrogen Separation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Worcester Polytechnic Institue Shell International Exploration & Production University of Colorado Power & Energy NETL Lawrence Livermore...

440

Hydrogen Optical Fiber Sensors  

DOE Green Energy (OSTI)

Optically-based hydrogen sensors promise to deliver an added level of safety as hydrogen and fuel cell technologies enter the mainstream. More importantly, they offer reduced power consumption and lower cost, which are desirable for mass production applications such as automobiles and consumer appliances. This program addressed two of the major challenges previously identified in porous optrode-based optical hydrogen sensors: sensitivity to moisture (ambient humidity), and interference from the oxygen in air. Polymer coatings to inhibit moisture and oxygen were developed in conjunction with newer and novel hydrogen sensing chemistries. The results showed that it is possible to achieve sensitive hydrogen detection and rapid response with minimal interference from oxygen and humidity. As a result of this work, a new and more exciting avenue of investigation was developed: the elimination of the porous optrode and deposition of the sensor chemistry directly into the polymer film. Initial results have been promising, and open up a wider range of potential applications from extended optical fiber sensing networks, to simple plastic "stickers" for use around the home and office.

Lieberman, Robert A.; Beshay, Manal; Cordero, Steven R.

2008-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen power international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

International Conference on Engineering Education August 6 -- 10, 2001 Oslo, Norway CHALLENGES IN THE TEACHING OF ELECTRICAL POWER  

E-Print Network (OSTI)

Teaching and research in electrical power engineering has a long history and it is still the cornerstone of the modern society. Since the early days of electricity there has been major development especially in electronics and information technology. These changes have had and are having a dramatic impact on electrical power engineering. It is our feeling that the needs to check the curricula have not yet been realized in a sufficient level. We believe, that it is necessary to think the content of the basic courses appropriate for the modern needs and to attract more students. The paper discusses the background of the changes and describes some actions done at Helsinki University of Technology. One of these has for example been enhancing the natural link between teaching and research.

Engineering Motivation Of

2001-01-01T23:59:59.000Z

442

Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FUEL CELL TECHNOLOGIES PROGRAM FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up a significant amount of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required

443

Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report  

SciTech Connect

The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

NONE

1993-12-31T23:59:59.000Z

444

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Principal  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Investigator Principal Investigator Below are hydrogen analyses and analytical models grouped by principal investigator. | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | R | S | T | U | V | W A Portfolio of Power-Trains for Europe Review of FreedomCAR and Fuel Partnership Ahluwalia, Rajesh Fuel Cell Systems Analysis GCtool-ENG Ahluwalia, Rajesh K. Hydrogen Storage Systems Analysis Ahmed, Shabbir Cost Implications of Hydrogen Quality Requirements Fuel Quality Effects on Stationary Fuel Cell Systems Fuel Quality in Fuel Cell Systems Quick Starting Fuel Processors - A Feasibility Study Amos, Wade Biological Water-Gas Shift Costs of Storing and Transporting Hydrogen Photobiological Hydrogen Producti