National Library of Energy BETA

Sample records for hydrogen pitch sulfur

  1. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  2. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  3. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  4. Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography

    E-Print Network [OSTI]

    Berggren, Karl K.

    The authors, demonstrated that 4.5-nm-half-pitch structures could be achieved using electron-beam lithography, followed by salty development. They also hypothesized a development mechanism for hydrogen silsesquioxane, ...

  5. Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer membrane PEM electrolyzer has been investigated as a viable system for the electrolysis step of the electrolyzer and membranes developed to limit SO2 crossover. © 2009 The Electrochemical Society. DOI: 10

  6. Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes 

    E-Print Network [OSTI]

    Harkness, J.; Doctor, R. D.

    1993-01-01

    treatment technologies widely used in the natural-gas industry. Laboratory-scale experiments with pure hydrogen sulfide indicate that conversions exceeding 90% are possible with appropriate reactor design and that the energy required to dissociate hydrogen...

  7. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  8. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  9. Mechanistic Modeling of Sulfur-Deprived Photosynthesis and Hydrogen Production in

    E-Print Network [OSTI]

    Mechanistic Modeling of Sulfur-Deprived Photosynthesis and Hydrogen Production in Suspensions linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated- modate the production of hydrogen gas by partially- deactivating O2 evolution activity, leading

  10. Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor

    E-Print Network [OSTI]

    Tobin, Roger G.

    Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor Yung Ho September 2007 We have investigated the effects of sulfur contamination on a Pt-gate silicon carbide based monitoring, solid-oxide fuel cells, and coal gasification, require operation at much higher temperatures than

  11. The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen

    E-Print Network [OSTI]

    Miu, Kevin (Kevin K.)

    2006-01-01

    The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming - the most prevalent method of hydrogen ...

  12. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  13. Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel is a critical path for the use of jet fuels in powering the commercial growth of fuel cell systems for air the fuel through adsorptive methods is not practical for long term operations. The current work describes

  14. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2006-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

  15. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2007-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

  16. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K.C. Kwon

    2009-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

  17. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  18. Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds

    SciTech Connect (OSTI)

    Horodysky, A.G.; Law, D.A.

    1987-04-28

    A process is described for making an additive for lubricant compositions comprising co-reacting: a monoolefin selected from the group consisting of butenes, propenes, pentenes, and mixtures of two or more thereof; sulfur; hydrogen sulfide; polymeric nitrogen-containing compound selected from the group consisting of succinimides, amides, imides, polyoxyazoline polymers and alkyl imidazoline compounds; and a catalytic amount of an amine selected from the group consisting of polyethylene amines and hydroxyl-containing amines; at a temperature between about 130/sup 0/C and about 200/sup 0/C and a pressure of about 0 psig to about 900 psig, the reactants being reacted in a molar ratio of olefin, polymeric nitrogen-containing compound, and hydrogen sulfide to sulfur of 2 to 0.5, 0.001 to 0.4, and 0.5 to 0.7, respectively, and the concentration of amine being between 0.5 and 10 percent of the total weight of reactants.

  19. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  20. Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

  1. Simultaneous Tracking of Sulfur Species in the Oxidation of Thiourea by Hydrogen Qingyu Gao,, Guangping Wang, Yanyan Sun, and Irving R. Epstein*,

    E-Print Network [OSTI]

    Epstein, Irving R.

    Simultaneous Tracking of Sulfur Species in the Oxidation of Thiourea by Hydrogen Peroxide Qingyu Gao,, Guangping Wang, Yanyan Sun, and Irving R. Epstein*, College of Chemical Engineering, China Uni state, is essential. A major obstacle is the difficulty of tracking the different oxidation states

  2. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect (OSTI)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  3. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  4. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  5. Process for forming sulfuric acid

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA)

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  6. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

  7. High coking value pitch

    SciTech Connect (OSTI)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  8. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  9. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    SciTech Connect (OSTI)

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

    2014-02-24

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm{sup 2} active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

  10. Upgrading mild gasification liquids to produce electrode binder pitch. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01

    The objective of this program is to investigate the production of electrode binder pitch, valued at $250--$300/ton, from mild gasification liquids. The IGT MILDGAS process pyrolyzes coal at 650--760 C and, with Illinois coal, the 400 C+ distillation residue (crude pitch) comprises 40--70% of the MILDGAS liquids, representing up to 20 wt% of maf feed coal. The largest market for pitch made from coal liquids is the aluminum industry, which uses it to make carbon anodes for electrolytic furnaces. In this project, crude MILDGAS pitch is being modified by a flash thermocracking technique to achieve specifications typical of a binder pitch. Last year, a pitch thermocracking unit was constructed for operation at 650--900 F. Process conditions are being examined to optimize the properties of the finished pitch and coke. In the current year, improvements to the thermocracker were made for better gas and pitch flow control, continuous electronic monitoring of feed rate and pressures, and improvements to allow longer tests. During the current quarter, five thermocracking tests were conducted in 100% N{sub 2}, 50% H{sub 2}/N{sub 2}, and 100% H{sub 2}. Test temperatures were 758--873 C with residence times of 1.86--2.42 s and pitch:gas ratios of 0.90--1.10 {times} 10{sup {minus}4}. Product analyses showed that there was no significant effect of H{sub 2} on the pitch sulfur content, but the pitch sulfur content was significantly reduced at higher temperature.

  11. Method of producing synthetic pitch

    DOE Patents [OSTI]

    Kennel, Elliot B. (Morgantown, WV); Stansberry, Peter G. (North Olmsted, OH); Stiller, Alfred H. (Morgantown, WV); Zondlo, John W. (Albright, WV)

    2012-07-24

    Embodiments of a method are described for modifying pitches, oils, tars, and binders by using these materials as solvents to extract organic chemicals from coal.

  12. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    SciTech Connect (OSTI)

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  13. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    E-Print Network [OSTI]

    Maddalena, Randy

    2012-01-01

    sulfide (H 2 S), carbonyl sulfide (OCS), sulfur dioxide (SOof hydrogen sulfide, carbonyl sulfide, methyl mercaptan,associated with the carbonyl sulfide that typically had very

  14. Starting pitch for carbon fibers

    SciTech Connect (OSTI)

    Uemura, S.; Takashima, H.; Kato, O.; Harakawa, M.

    1986-04-01

    This patent describes a starting pitch for producing carbon fiber. This pitch essentially consists of a mixture of (a) 100 parts by weight of a petroleum pitch and (b) 5 to 500 parts by weight of a methanol-insoluble and benzene-soluble component contained in a heavy oil obtained in a fluid catalytic cracking of petroleum. The heavy oil has a boiling range not lower than 200/sup 0/C. The component has been obtained by treating the heavy oil with methanol and benzene so as to remove methanol soluble and benzene insoluble fractions therefrom while retaining therein methanol-insoluble and benzene-soluble fractions.

  15. Method to prevent sulfur accumulation in membrane electrode assembly

    DOE Patents [OSTI]

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  16. CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H

    2007-01-31

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

  17. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  18. Thermochemical method for producing hydrogen from hydrogen sulfide

    SciTech Connect (OSTI)

    Herrington, D.R.

    1984-02-21

    Hydrogen is produced from hydrogen sulfide by a 3-step, thermochemical process comprising: (a) contacting hydrogen sulfide with carbon dioxide to form carbonyl sulfide and water, (b) contacting the carbonyl sulfide produced in (a) with oxygen to form carbon monoxide and sulfur dioxide, and (c) contacting the carbon monoxide produced in (b) with water to form carbon dioxide and hydrogen.

  19. Method of casting pitch based foam

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN)

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  20. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  1. Uses of lunar sulfur

    SciTech Connect (OSTI)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  2. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  3. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  4. Fuel-rich sulfur capture in a combustion environment

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1992-01-01

    The paper discusses the use of a refactory-lined, natural gas furnace to study the fuel-rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel-rich sulfur species hydrogen sulfide and carbonyl sulfide were monitored in a nearly continuous fashion using a gas chromatograph equiped with a flame photometric detector and an automatic system that sampled every 30 seconds. Below the fuel-rich zone, 25% excess air was added, and the ultimate fuel-lean capture was simultaneously measured using a continuous sulfur dioxide monitor. Under fuel-rich conditions, high levels of sulfur capture were obtained, and calcium utilization increased with sulfur concentration. The ultimate lean capture was found to be weakly dependent on sulfur concentration and independent of the sulfur capture level obtained in the fuel-rich zone.

  5. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  6. Sub-5 keV electron-beam lithography in hydrogen silsesquioxane resist

    E-Print Network [OSTI]

    Manfrinato, Vitor R.

    We fabricated 9–30 nm half-pitch nested Ls and 13–15 nm half-pitch dot arrays, using 2 keV electron-beam lithography with hydrogen silsesquioxane (HSQ) as the resist. All structures with 15 nm half-pitch and above were ...

  7. Elevator Pitch Contest 2013 | Photosynthetic Antenna Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the All Hands Meeting Published: September 17, 2013 Congratulations to winner Kirsty Hacking and runner-up Erica Wunderlich-Majumder. Check out their pitches as well as all the...

  8. Generating Synthetic Pitch Contours Using Prosodic Structure. 

    E-Print Network [OSTI]

    Clark, Robert A J

    This thesis addresses the problem of generating a range of natural sounding pitch contours for speech synthesis to convey the specific meanings of different intonation patterns. Where other models can synthesise intonation ...

  9. Prosodic phrase segmentation by pitch pattern clustering 

    E-Print Network [OSTI]

    Shimodaira, Hiroshi; Nakai, Mitsuru

    This paper proposes a novel method for detecting the optimal sequence of prosodic phrases from continuous speech based on data-driven approach. The pitch pattern of input speech is divided into prosodic segments which ...

  10. Sub-10-nm half-pitch electron-beam lithography by using poly,,methyl methacrylate... as a negative resist

    E-Print Network [OSTI]

    Berggren, Karl K.

    is of great importance for high-density magnetic storage, integrated circuits, and nanoelectronic and nanophotonic devices. Until now, hydrogen silsesquioxane HSQ and calixarene were the only two reported negative, the authors report that 10-nm half-pitch dense nanostructures can also be readily fabricated using the well

  11. Electrochemical development of hydrogen silsesquioxane by applying an electrical potential

    E-Print Network [OSTI]

    Strobel, Sebastian

    We present a new method for developing hydrogen silsesquioxane (HSQ) by using electrical potentials and deionized water. Nested-L test structures with a pitch as small as 9 nm were developed using this electrochemical ...

  12. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. Thread gauge for measuring thread pitch diameters

    DOE Patents [OSTI]

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  14. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  15. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Hu, Zhicheng (Somerville, MA)

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  16. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  17. Characterization of the pitch canker fungus, Fusarium

    E-Print Network [OSTI]

    Characterization of the pitch canker fungus, Fusarium circinatum, from Chile A. Jacobs a*, T and pine. These species are characterized by the typical Fusarium subglutinans (Wollenw. and Reinking and Marasas f. sp. pini Correll et al.] is characterized by the presence of sterile coils and the formation

  18. Abnormal Electrical Brain Responses to Pitch in

    E-Print Network [OSTI]

    the behavioral conditions we used previously to document the pitch deficit in amusic individuals.5 In that prior selected. They were considered as amusic (or not) from their scores on the Montreal Battery of Evaluation of Amusia.10 The battery involves 6 tests (180 trials) that assess various music processing components (see

  19. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  20. Adaptive pitch control for variable speed wind turbines

    DOE Patents [OSTI]

    Johnson, Kathryn E. (Boulder, CO); Fingersh, Lee Jay (Westminster, CO)

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  1. Accent phrase segmentation using transition probabilities between pitch pattern templates. 

    E-Print Network [OSTI]

    Shimodaira, Hiroshi; Nakai, Mitsuru

    1993-01-01

    This paper proposes a novel method for segmenting continuous speech into accent phrases by using a prosodic feature 'pitch pattern'. The pitch pattern extracted from input speech signals is divided into the accent segments ...

  2. Process for the thermochemical production of hydrogen

    DOE Patents [OSTI]

    Norman, John H. (La Jolla, CA); Russell, Jr., John L. (La Jolla, CA); Porter, II, John T. (Del Mar, CA); McCorkle, Kenneth H. (Del Mar, CA); Roemer, Thomas S. (Cardiff, CA); Sharp, Robert (Del Mar, CA)

    1978-01-01

    Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.

  3. Restration of Pitch Pattern of Speech Based on a Pitch Gereration Model. 

    E-Print Network [OSTI]

    Shimodaira, Hiroshi; Nakai, Mitsuru; Kumata, Akihiro

    1997-01-01

    In this paper a model-based approach for restoring a continuous fundamental frequency (F0) contour from the noisy output of an F0 extractor is investigated. In contrast to the conventional pitch trackers based on numerical ...

  4. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  5. Medium energy pitch angle distribution during substorm injected electron clouds

    E-Print Network [OSTI]

    Bergen, Universitetet i

    Medium energy pitch angle distribution during substorm injected electron clouds A. A° snes,1 J, N. �stgaard, and M. Thomsen (2005), Medium energy pitch angle distribution during substorm injected to obtain pitch angle resolved electron distribution data for measurements at energies 10 eV to 47 keV. [3

  6. Biogenic sulfur source strengths

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.; Bamesberger, W.L.

    1981-12-01

    Conclusions are presented from a 4-yr field measurement study of biogenic sulfur gas emissions from soils, and some water and vegetated surfaces, at 35 locales in the eastern and southeastern United States. More than one soil order was examined whenever possible to increase the data base obtained from the 11 major soil orders comprising the study area. Data analysis and emission model development were based upon an (80 x 80)-km/sup 2/ grid system. The measured sulfur fluxes, adjusted for the annual mean temperature for each sampling locale, weigted by the percentage of each soil order within each grid, and averaged for each of the east-west grid tiers from 47/sup 0/N to 25/sup 0/N latitude, showed an exponential north-to-south increase in total sulfur gas flux. Our model predits an additional increase of nearly 25-fold in sulfur flux between 25/sup 0/N and the equator.

  7. Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur hydrogen efficiently on a large scale.1 This process has the advantage over traditional i.e., coal gasifica

  8. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es105liang2011o.pdf More Documents & Publications CarbonSulfur...

  9. Carbon-Sulfur Bond Cleavage of Methyl-Substituted Thiophenes with Iridium(III)

    E-Print Network [OSTI]

    Jones, William D.

    polluting sulfur compounds are removed during the hydroprocessing of crude oil. Unrefined petroleum contains of a hydrogen acceptor, the thiophene was desulfurized (eq 2).4 Also, in the heterogeneous CoMo system it has

  10. Pitch-based carbon foam and composites

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN)

    2002-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  11. Process for recovery of hydrogen and

    DOE Patents [OSTI]

    James, Brian R. (Vancouver, CA); Li-Lee, Chung (Vancouver, CA); Lilga, Michael A. (Richland, WA); Nelson, David A. (Richland, WA)

    1987-01-01

    on of sulfur Abstract A process of abstracting sulfur from H.sub.2 S and generating hydrogen is disclosed comprising dissolving Pd.sub.2 X.sub.2 (.mu.-dppm).sub.2 in a solvent and then introducing H.sub.2 S. The palladium complex abstracts sulfur, forming hydrogen and a (.mu.-S) complex. The (.mu.-S) complex is readily oxidizable to a (.mu.-SO.sub.2) adduct which spontaneously loses SO.sub.2 and regenerates the palladium complex.

  12. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  13. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  14. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  15. Hydrogen production by the decomposition of water

    SciTech Connect (OSTI)

    Bowman, M.G.; Hollabaugh, C.M.

    1981-01-13

    How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolyticalthermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound mrxs so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO3 and reforming mrxs. The mrxs is recycled to sulfate formation zone (16). If desired, the SO3 can be decomposed to SO2 and O2; and the SO2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

  16. Pitch Histograms in Audio and Symbolic Music Information Retrieval Pitch Histograms in Audio and Symbolic

    E-Print Network [OSTI]

    Tzanetakis, George

    classification. Given the rapidly increasing importance of digital music distribution, as well as the fact of computer users. Up to now, genre classification for digitally stored music has been performed manually musical genre classification. A multiple-pitch detection algorithm for polyphonic signals is used

  17. Secretary Moniz's First Pitch at Fenway for Earth Day

    Broader source: Energy.gov [DOE]

    On Earth Day, Secretary Moniz was invited to throw out the first pitch at a Red Sox game. Here's how it went.

  18. Continuous sulfur removal process

    DOE Patents [OSTI]

    Jalan, deceased, Vinod (late of Concord, MA); Ryu, Jae (Cambridge, MA)

    1994-01-01

    A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed.

  19. Stratospheric sulfur oxidation kinetics

    SciTech Connect (OSTI)

    Jayne, J.T.; Worsnop, D.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States)] [and others

    1995-12-31

    Oxidation of SO2 to H2SO4 in the atmosphere is believed to involve the reaction of SO3 with water. It is commonly assumed that this is an important step leading to homogeneous nucleation of H2SO4 aerosol particles. Heterogeneous chemistry on sulfuric acid aerosols regulate much of the ozone photochemistry in the lower stratosphere and are also believed to have significant effect on the climate. Understanding aerosol loading requires a detailed knowledge of the stratospheric sulfur budget, including its oxidation kinetics. Here we present results of a laboratory project studying a key step in the oxidation process, the homogeneous reaction between SO3 and H2O vapor. Kinetic measurements are performed in a high-pressure turbulent fast-flow reactor (fabricated at MIT) which minimizes heterogeneous loss of SO3 on reactorwalls. The rate of decay of SO3 and the appearance of H2SO4 is monitored in the presence of excess water vapor. Gas phase reactants and products are detected via an atmospheric pressure chemical ionization mass spectrometer which is coupled to the exit of the flow reactor. Sulfuric acid nucleation studies can also be performed using the turbulent flow reactor. Initial measurements using a particle detector (based on Mie scattering) showed that aerosol formation and particle size distribution are controlled by varying the SO3/H2O gas ratio and the reactor temperature. Results for the reaction SO3J+ H2O show a second order dependence in water vapor density and a strong negative temperature dependence. The results, measured in the range -30C to +95C, imply that an SO3.H2O adduct and/or a water dimer species is likely involved in the reaction mechanism. Results of recent theoretical calculations on the SO3 + H2O system also support the finding that two water molecules are involved. Implications for the gas phase production of sulfuric acid in the atmosphere will be discussed.

  20. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  1. Continuous sulfur removal process

    DOE Patents [OSTI]

    Jalan, V.; Ryu, J.

    1994-04-26

    A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

  2. Removal of hydrogen sulfide and carbonyl sulfide from gas-streams

    SciTech Connect (OSTI)

    Deal, C.H.; Lieder, C.A.

    1982-06-01

    Hydrogen sulfide and carbonyl sulfide are removed from a gas stream in a staged procedure characterized by conversion of the hydrogen sulfide to produce sulfur in aqueous solution, hydrolysis of the carbonyl sulfide remaining in the gas stream to produce hydrogen sulfide and carbon dioxide, and removal of the hydrogen sulfide from the gas stream.

  3. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  4. Evaluation of Sulfur in Syngas

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project will define the options and costs at different scales of technology that can be used to remove sulfur from syngas.

  5. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  6. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  7. Volume efficient sodium sulfur battery

    DOE Patents [OSTI]

    Mikkor, Mati (Ann Arbor, MI)

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  8. Two Argonne teams win pitch competition, advance to national...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can be integrated into electric vehicles to help regulate the frequency of the power grid? According to the judges in the first Lab-Corps Pitch Competition, the answer is,...

  9. Spatial representation of pitch height: the SMARC effect

    E-Print Network [OSTI]

    Butterworth, Brian

    the inversion of the retinal image forces us to stand on our heads to see the world right side up that crosstalk occurs between written words and pitch at a semantic level of processing, which suggests

  10. Sulfur gas emissions from stored flue gas desulfurization solids. Final report

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1981-10-01

    The emissions of volatile, sulfur-containing compounds from the surfaces of 13 flue gas desulfurization (FGD) solids field storage sites have been characterized. The sulfur gas emissions from these storage surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling areas. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex U traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cryogenic, temperature-programmed gas chromatography using a sulfur-selective flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: the sulfur dioxide scrubbing reagent used, sludge sulfite oxidation, unfixed or stabilized (fixed) FGD solids, and ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of solids, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the solids. The FGD solids emissions may contain hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide in varying concentrations and ratios. In addition, up to four unidentified organo-sulfur compounds were found in the emissions from four different FGD solids. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 40.5 hectare (100 acre) FGD solids impoundment surface.

  11. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  12. Sulfur-Free Selective Pulping 

    E-Print Network [OSTI]

    Dimmel, D. R.; Bozell, J. J.

    1994-01-01

    an increase in pulping rate and yields, which translates to less energy required per ton of product. Less sulfur means a simplified process, lower odor emissions, and a decrease requirement for bleaching chemicals, meaning less organics being discharged...

  13. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  14. Method of preparing graphene-sulfur nanocomposites for rechargeable...

    Office of Scientific and Technical Information (OSTI)

    Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Citation Details In-Document Search Title: Method of preparing graphene-sulfur...

  15. Method of making sulfur-resistant composite metal membranes

    DOE Patents [OSTI]

    Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  16. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    DOE Patents [OSTI]

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  17. Pitch Histograms in Audio and Symbolic Music Information Retrieval

    E-Print Network [OSTI]

    Tzanetakis, George

    , genre classification for digitally stored music has been performed manually and therefore automatic and audio form. This representation is evaluated in the context of automatic musical genre classification-pitch detection, automatic musical genre classification results from symbolic and audio data are compared

  18. Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation

    E-Print Network [OSTI]

    Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation Clemens Jauch Risř National Laboratory Wind Energy Department P.O. Box 49 DK-4000 Roskilde, Denmark clemens.jauch@risoe.dk Abstract: In this paper it is investigated how active-stall wind turbines can contribute to the stabilisation of the power

  19. Optimal Pitch, Speed and Fuel Control at Sea Thomas Hellstrom

    E-Print Network [OSTI]

    Hellström, Thomas

    of a challenging research and development project for fuel saving and top-level control of a ship's performance, or unanticipated changes of the weather conditions. 3. Route planning. The fuel consumption for a ship dependsOptimal Pitch, Speed and Fuel Control at Sea Thomas Hellstr¨om Associate Professor, Department

  20. PITCH-BASED STREAMING IN AUDITORY PERCEPTION Stephen Grossbergy

    E-Print Network [OSTI]

    Grossberg, Stephen

    of Naval Research (ONR N00014-95-1-0409). Acknowledgments: The author wishes to thank Cynthia E. Bradford;July 24, 1996 Auditory Streaming, Pitch Perception, and Music Perception When we talk to a friend the sounds emitted by the friendly voice partially overlap the sounds emitted by other speakers. How do we

  1. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect (OSTI)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  2. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  3. Design and control of an autonomous variable-pitch quadrotor helicopter

    E-Print Network [OSTI]

    Cutler, Mark Johnson

    2012-01-01

    The aerospace community, particularly in academia, has seen a recent rise in the popularity of fixed-pitch quadrotor helicopters. The fixed-pitch quadrotor is popular largely because of its mechanical simplicity relative ...

  4. On the Origin of Sulfur

    E-Print Network [OSTI]

    Nils Ryde; David L. Lambert

    2005-10-05

    We present our work on the halo evolution of sulfur, based on observations of the S I lines around 9220 A for ten stars for which the S abundance was obtained previously from much weaker S I lines at 8694 A. We cannot confirm the rise and the high [S/Fe] abundances for low [Fe/H], as claimed in the literature from analysis of the 8694 A lines. The reasons for claims of an increase in [S/Fe] with decreasing [Fe/H] are probably twofold: uncertainties in the measurements of the weak 8694 A lines, and systematic errors in metallicity determinations from Fe I lines. The near-infrared sulfur triplet at 9212.9, 9228.1, and 9237.5 A are preferred for an abundance analysis of sulfur for metal-poor stars. Our work was presented in full by Ryde & Lambert (2004).

  5. Hydrogen generation having CO.sub.2 removal with steam reforming

    SciTech Connect (OSTI)

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO.sub.2 adsorbent to produce hydrogen and a spent CO.sub.2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO.sub.2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  6. How hard can it be to pitch a wind turbine blade? Moment of inertia approximately

    E-Print Network [OSTI]

    How hard can it be to pitch a wind turbine blade? Moment of inertia approximately as a small car (1 ton) on 7 m arm Morten Hartvig Hansen Wind Energy Department Risř, DTU #12;How hard can it be to pitch a wind turbine blade? Hydraulic pitch actuator for the virtual NREL 5 MW turbine · Motivation · Actuator

  7. Emission of biogenic sulfur gases from Chinese paddy soil and rice plant

    SciTech Connect (OSTI)

    Zhen Yang [Nanjing Univ. of Science and Technology (China); Li Kong [Nanjing Agricultural Univ. (China)

    1996-12-31

    Biogenic sulfur gases emitted from terrestrial ecosystem may play in important role in global sulfur cycle and have a profound influence on global climate change. But very little is known concerning emissions from paddy soil and rice plant, which are abundant in many parts of the world. As a big agricultural country, this is about 33 million hectare rice planted in China. With laboratory incubation and closed chamber method in the field, the biogenic sulfur gases emitted from Chinese paddy soil and rice plant were detected in both conditions: hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), methyl mercaptan (MSH), carbon disulfide (CS{sub 2}), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Among which, DMS was predominant part of sulfur emission. Emission of sulfur gases from different paddy field exhibit high spatial and temporal variability. The application of fertilizer and organic manure, total sulfur content in wetland, air temperature were positively correlated to the emission of volatile sulfur gases from paddy soil. Diurnal and seasonal variation of total volatile sulfur gases and DMS indicate that their emissions were greatly influenced by the activity of the rice plant. The annual emission of total volatile sulfur gases, from Nanjing paddy field is ranged from 4.0 to 9.5 mg S m{sup -2}yr{sup -1}, that of DMS is ranged from 3.1 to 6.5 mg S m{sup -2}yr{sup -1}. Rice plant could absorb COS gas, that may be one of the sinks of COS.

  8. Hydrogen production by the decomposition of water

    DOE Patents [OSTI]

    Hollabaugh, Charles M. (Los Alamos, NM); Bowman, Melvin G. (Los Alamos, NM)

    1981-01-01

    How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

  9. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  10. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  11. Hydrogen Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  12. Two stage sorption of sulfur compounds

    DOE Patents [OSTI]

    Moore, William E. (Manassas, VA)

    1992-01-01

    A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

  13. Heat Transfer Characteristics of Sulfur and Sulfur Diluted with Hydrogen Sulfide Flowing Through Circular Tubes 

    E-Print Network [OSTI]

    Stone, Porter Walwyn

    1960-01-01

    is the tube length. Letting q = q, to obtain a relationship for equivalent heat transfer, gives h d L 6t s w w w h d L ht W s s s Substituting into the equation above, 0. 8 d 0. 2 w w w =H s w d L 0. 8d 0. 2 s s s v w s This may be simpbified... isolated. The derivation of the "geometry relationship" follows that outlined in the previous section. h ? 1 30087 d ~P c ql/3 k x 0 023 v 0. 8 d -0. 2 pr -2/3 ( ~) -0. 2 (Io w'ww wow wpw 0 3354 ( P ) 1/3 k 2/3 Pr 0/3 ( P) 0. 2 1/3d -1/3 s s s s w...

  14. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  15. Safety considerations for the use of sulfur in sulfur-modified pavement materials 

    E-Print Network [OSTI]

    Jacobs, Carolyn Yuriko

    1980-01-01

    Liquid Sulfur Page v111 ix 33 33 35 IV Symptoms of Poisoning . First Aid SULFUR IN THE PAVING INDUSTRY General Sand-Asphalt-Sulfur Pavements (SAS) ', , Sulfur-Extended Asphalt Pavements (SEA) Sulfur Concrete EVALUATION OF RISKS AND SAFETY... RECOMMENDATIONS General Stationary Sources Mobile Sources Maintenance 40 41 43 43 44 45 46 Hot-Mix Recycling VI EMISSIONS MONITORING METHODS General Area Monitoring - Continuous Samplina Short Term Sampling (" Grab" Sampling) Personnel Monitoring...

  16. Pitch-angle scattering of energetic particles with adiabatic focusing

    SciTech Connect (OSTI)

    Tautz, R. C. [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Shalchi, A. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Dosch, A., E-mail: robert.c.tautz@gmail.com, E-mail: andreasm4@yahoo.com, E-mail: alexanderm.dosch@gmail.com [Center for Space Plasmas and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

    2014-10-20

    Understanding turbulent transport of charged particles in magnetized plasmas often requires a model for the description of random variations in the particle's pitch angle. The Fokker-Planck coefficient of pitch-angle scattering, which is used to describe scattering parallel to the mean magnetic field, is therefore of central importance. Whereas quasi-linear theory assumes a homogeneous mean magnetic field, such a condition is often not fulfilled, especially for high-energy particles. Here, a new derivation of the quasi-linear approach is given that is based on the unperturbed orbit found for an adiabatically focused mean magnetic field. The results show that, depending on the ratio of the focusing length and the particle's Larmor radius, the Fokker-Planck coefficient is significantly modified but agrees with the classical expression in the limit of a homogeneous mean magnetic field.

  17. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  18. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, Clayton J. (El Cerrito, CA)

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  19. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  20. An electrochemical Claus process for sulfur recovery

    SciTech Connect (OSTI)

    Pujare, N.U.; Tsai, K.J.; Sammuells, A.F. (Eltron Research, Inc., Aurora, IL (US))

    1989-12-01

    Electrochemical oxidation of H{sub 2}S to give sulfur and water was achieved at 900{degrees}C using fuel cells possessing the general configuration where anode electrocatalysts experimentally investigated for promoting the subject oxidation reaction included WS{sub 2} and the thiospinels CuNi{sub 2}S{sub 4}, CuCo{sub 2}S{sub 4}, CuFe{sub 2}S{sub 4}, and NiFe{sub 2}S{sub 4}. The predominant oxidizable electroactive species present in the fuel cell anode compartment was suggested to be hydrogen originating from the initial thermal dissociation of H{sub 2}S (H{sub 2}S {r reversible} H{sub 2} + 1/2 S{sub 2}) at fuel cell operating temperatures. Rapid anode kinetics were found for the anodic reaction with the empirical trend for exchange currents (i{sub o}) per geometric area being found to be NiFe{sub 2}S{sub 4}{gt}WS{sub 2}{gt}CuCo{sub 2}S{sub 4}{gt}CuFe{sub 2}S{sub 4}{approx equal}NiCo{sub 2}S{sub 4}{gt}CuNi{sub 2}S{sub 4}.

  1. Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Alexei Khalizov, and Renyi Zhang*

    E-Print Network [OSTI]

    Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors, water, and ammonia. A central feature of the complexes is the presence of two hydrogen bonds. Organic acid-sulfuric acid complexes show one strong and one medium-strength hydrogen bond whereas

  2. Biogenic sulfur emissions in the SURE region

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.

    1980-09-01

    The objective of this study was to estimate the magnitude of biogenic sulfur emissions from the northeastern United States - defined as the EPRI Sulfate Regional Experiment (SURE) study area. Initial laboratory efforts developed and validated a portable sulfur sampling system and a sensitive, gas chromatographic analytical detection system. Twenty-one separate sites were visited in 1977 to obtain a representative sulfur emission sampling of soil orders, suborders, and wetlands. The procedure determined the quantity of sulfur added to sulfur-free sweep air by the soil flux as the clean air was blown through the dynamic enclosure set over the selected sampling area. This study represents the first systematic sampling for biogenic sulfur over such a wide range of soils and such a large land area. The major impacts upon the measured sulfur flux were found to include soil orders, temperature, sunlight intensity, tidal effects along coastal areas. A mathematical model was developed for biogenic sulfur emissions which related these field variables to the mean seasonal and annual ambient temperatures regimes for each SURE grid and the percentage of each soil order within each grid. This model showed that at least 53,500 metric tons (MT) of biogenic sulfur are emitted from the SURE land surfaces and approximately 10,000 MT are emitted from the oceanic fraction of the SURE grids. This equates to a land sulfur flux of nearly 0.02 gram of sulfur per square meter per yr, or about 0.6% of the reported anthropogenic emissions withn the SURE study area. Based upon these data and the summertime Bermuda high clockwise circulation of maritime air across Florida and the Gulf Coast states northward through the SURE area, the total land biogenic sulfur emission contribution to the SURE area atmospheric sulfur burden might approach 1 to 2.5% of the anthropogenic.

  3. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  4. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  5. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

    E-Print Network [OSTI]

    Lyons, J. R.

    Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of ...

  6. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the bubble reactor is maintained at 2 for all the reaction experiment runs.

  7. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia.

  8. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  9. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B. (Pittsburgh, PA)

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  10. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  11. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  12. Palladium-doped Nanoporous Carbon Fibers for Hydrogen Storage

    SciTech Connect (OSTI)

    Gallego, Nidia C; Contescu, Cristian I; Bhat, Vinay V; van Benthem, Klaus; Tekinalp, Halil; Edie, Dan

    2008-01-01

    Pd-free and Pd-containing activated carbon fibers (Pd-ACF) were synthesized from isotropic pitch as a carbon precursor. The source of Pd was a palladium salt that was premixed with pitch before carbonization. Hydrogen adsorption was measured at near-ambient temperatures (5 to 80 oC) and moderate pressures (up to 20 bar). It was found that adsorption on Pd-ACF is always higher than that on corresponding ACF, and in excess of what it would be expected based solely on formation of Pd hydride. This fact can be explained based on the mechanism of hydrogen spillover. It was also found that temperature and pressure have opposite effects on physisorption and spillover. It was hypothesized that a narrow temperature range exists, where the kinetic advantage of H2 spillover in Pd-ACF overlaps synergistically with the thermodynamic advantage of physisorption, thus contributing to enhanced uptakes compared with the Pd-free carbons.

  13. Macroscopic Nanotemplating of Semiconductor Films with Hydrogen-Bonded Lyotropic Liquid Crystals**

    E-Print Network [OSTI]

    Braun, Paul

    Macroscopic Nanotemplating of Semiconductor Films with Hydrogen-Bonded Lyotropic Liquid Crystals with aqueous gel- like liquid crystals, which rapidly generates a semiconductor film of nearly uniform thickness perforated with 2.5 nm holes on a 7 nm pitch over a virtually limitless area. Liquid

  14. Fine-pitch semiconductor detector for the FOXSI mission

    E-Print Network [OSTI]

    Ishikawa, Shin-nosuke; Tajima, Hiroyasu; Tanaka, Takaaki; Watanabe, Shin; Odaka, Hirokazu; Fukuyama, Taro; Kokubun, Motohide; Takahashi, Tadayuki; Terada, Yukikatsu; Krucker, Sam; Christe, Steven; McBride, Steve; Glesener, Lindsay

    2015-01-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a NASA sounding rocket mission which will study particle acceleration and coronal heating on the Sun through high sensitivity observations in the hard X-ray energy band (5-15 keV). Combining high-resolution focusing X-ray optics and fine-pitch imaging sensors, FOXSI will achieve superior sensitivity; two orders of magnitude better than that of the RHESSI satellite. As the focal plane detector, a Double-sided Si Strip Detector (DSSD) with a front-end ASIC (Application Specific Integrated Circuit) will fulfill the scientific requirements of spatial and energy resolution, low energy threshold and time resolution. We have designed and fabricated a DSSD with a thickness of 500 {\\mu}m and a dimension of 9.6 mm x 9.6 mm, containing 128 strips with a pitch of 75 {\\mu}m, which corresponds to 8 arcsec at the focal length of 2 m. We also developed a low-noise ASIC specified to FOXSI. The detector was successfully operated in the laboratory at a temperature of -20 C and w...

  15. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    DOE Patents [OSTI]

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  16. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  17. Microbial Architecture of Environmental Sulfur Processes: A

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    potential impacts on water quality, including acid generation in acid mine drainage (AMD) environments, 2009. Accepted July 9, 2009. Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex

  18. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  19. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  20. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  1. Evidence for a new introduction of the pitch canker fungus Fusarium circinatum in South Africa

    E-Print Network [OSTI]

    Evidence for a new introduction of the pitch canker fungus Fusarium circinatum in South Africa E. T (FABI), University of Pretoria, Pretoria 0002 South Africa Fusarium circinatum causes pitch canker of Pinus species in many parts of the world. The fungus was first recorded in South Africa in 1990

  2. GENERATING PITCH ACCENTS IN A CONCEPT-TO-SPEECH SYSTEM USING A KNOWLEDGE BASE

    E-Print Network [OSTI]

    Williams, Sandra

    requiring particular emphasis or stress. Our pitch accenting algorithm uses a domain knowledge base the placement of pitch accents on syllables requiring particular emphasis or stress in an utterance, the subject labour intensive. However, we have demonstrated that a large knowledge base can be built automatically

  3. Test of CZT Detectors with Different Pixel Pitches and Thicknesses

    E-Print Network [OSTI]

    Qiang Li; Alfred III Garson; Ira Jung; Michael Groza; Paul Dowkontt; Richard Bose; Garry Simburger; Arnold Burger; Henric Krawczynski

    2007-12-08

    The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the company Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.

  4. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

  5. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-01-28

    During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

  7. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-04-30

    During this quarter long term and high pressure hydrogen separation experiments were performed on Eltron's composite layered membranes. Membranes were tested at 400 C and a 300 psig feed stream with 40% hydrogen for up to 400 continuous hours. In addition membranes were tested up to 1000 psig as demonstration of the ability for this technology to meet DOE goals. Progress was made in the development of new hydrogen separation cermets containing high permeability metals. A sulfur tolerant catalyst deposition technique was optimized and engineering work on mechanical and process & control reports was continued.

  8. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  10. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN FUELLED VEHICLES by Katherine Aminta Muncaster of Research Project: Can Hydrogen Win?: Exploring Scenarios for Hydrogen Fuelled Vehicles Report No.: 459 explored the conditions under which hydrogen might succeed in Canada's transportation sector in a carbon

  11. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  12. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOE HydrogenProduction Hydrogen is

  13. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    SciTech Connect (OSTI)

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  14. The SEMATECH Berkeley MET: extending EUV learning to 16-nm half pitch

    SciTech Connect (OSTI)

    Anderson, Christopher N.; Baclea-an, Lorie Mae; Denham, Paul E.; George, Simi; Goldberg, Kenneth A.; Jones, Michael; Smith, Nathan; Wallow, Thomas; Montgomery, Warren; Naulleau, Patrick P.

    2011-03-18

    Several high-performing resists identified in the past two years have been exposed at the 0.3-numerical-aperture (NA) SEMATECH Berkeley Microfield Exposure Tool (BMET) with an engineered dipole illumination optimized for 18-nm half pitch. Five chemically amplified platforms were found to support 20-nm dense patterning at a film thickness of approximately 45 nm. At 19-nm half pitch, however, scattered bridging kept all of these resists from cleanly resolving larger areas of dense features. At 18-nm half pitch, none of the resists were are able to cleanly resolve a single line within a bulk pattern. With this same illumination a directly imageable metal oxide hardmask showed excellent performance from 22-nm half pitch to 17-nm half pitch, and good performance at 16-nm half pitch, closely following the predicted aerial image contrast. This indicates that observed limitations of the chemically amplified resists are indeed coming from the resist and not from a shortcoming of the exposure tool. The imageable hardmask was also exposed using a Pseudo Phase-Shift-Mask technique and achieved clean printing of 15-nm half pitch lines and modulation all the way down to the theoretical 12.5-nm resolution limit of the 0.3-NA SEMATECH BMET.

  15. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    SciTech Connect (OSTI)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

  16. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  17. Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael Mitchell, Dilip Natarajan, Larry J. Markoski, and

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Letters Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion, and electrolyte flow rate on fuel cell performance to obtain a maximum power density of 191 mW/cm2. This flowing

  18. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  19. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOE Patents [OSTI]

    Martin, H. Lee (Knoxville, TN); Williams, Daniel M. (Oliver Springs, TN); Holt, W. Eugene (Knoxville, TN)

    1989-01-01

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive.

  20. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect (OSTI)

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter per hour [{micro}g/m{sup 2}/h]. The dominant sulfur containing compounds in the RSG emission stream were hydrogen sulfide with emission factors between 17-201 {micro}g/m{sup 2}/h, and sulfur dioxide with emission factors between 8-64 {micro}g/m{sup 2}/h. The four highest emitting samples also had a unique signature of VSC emissions including > 40 higher molecular weight sulfur-containing compounds although the emission rate for the VSCs was several orders of magnitude lower than that of the RSGs. All of the high emitting drywall samples were manufactured in China in 2005-2006. Results from Phase 1 provided baseline emission factors for drywall samples manufactured in China and in North America but the results exclude variations in environmental conditions that may exist in homes or other built structures, including various combinations of temperature, RH, ventilation rate and the influence of coatings such as texture and paints. The objective of Phase 2 was to quantify the effect of temperature and RH on the RSG emission factors for uncoated drywall, and to measure the effect of plaster and paint coatings on RSG emission factors from drywall. Additional experiments were also performed to assess the influence of ventilation rate on measured emission factors for drywall.

  1. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  2. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01

    another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

  3. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect (OSTI)

    Gorensek, M; William Summers, W

    2008-05-30

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  4. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 şC to ~750 şC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  5. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01

    induction of 2-3 Tesla made from MgB2 superconductors indirectly cooled by LH2, besides the energy efficiency, the new technique generates a homogeneous heat distribution within the metal, so that any local overheating is avoided. As an aside... SMES device in combination with Vanadium Redox-flow Batteries as a generation reserve to regulate variations of power generation demand [25]. The use of liquid hydrogen is capable of enabling the superconducting industry as it is facing resource...

  6. Enhanced pitch tracking and the processing of f0 contours for computer aided intonation teaching. 

    E-Print Network [OSTI]

    Bagshaw, Paul C; Hiller, S M; Jack, Mervyn A

    1993-01-01

    A comparative evaluation of several pitch determination algorithms (PDAs) is presented. Fundamental frequency estimates, F0, are compared with laryngeal frequency estimates, Lx. An algorithm is presented which enables Lx ...

  7. Pitch perception and harmonic resolvability in normal-hearing and hearing-impaired listeners

    E-Print Network [OSTI]

    Bernstein, Joshua G. W

    2006-01-01

    Listeners with sensorineural hearing loss are often impaired in their ability to perceive the pitch associated with the fundamental frequency (FO) of complex harmonic sounds. Four studies investigated the relationship ...

  8. Including Pitch Accent Optionality in Unit Selection Text-to-Speech Synthesis 

    E-Print Network [OSTI]

    Badino, Leonardo; Robert A J, Clark; Strom, Volker

    2008-01-01

    A significant variability in pitch accent placement is found when comparing the patterns of prosodic prominence realized by different English speakers reading the same sentences. In this paper we describe a simple approach ...

  9. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; et al

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore »cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less

  10. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Walter, Eric [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pan, Huilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zuo, Pengjian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Chen, Honghao [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liaw, Bor Y. [School of Ocean and Earth Science and Technology, Hawaii Natural Energy Institute, (United States); Yu, Xiqian [Brookhaven National Laboratory, Upton, NY (United States); Yang, Xiao-Qing [Brookhaven National Laboratory, Upton, NY (United States); Zhang, Ji-Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Jun [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  11. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  12. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  13. Update on sulfur compound distribution in NGL: Plant test data GPA Section A committee, plant design

    SciTech Connect (OSTI)

    Harryman, J.M. [Shell Oil Co., Houston, TX (United States); Smith, B. [Texaco E and P Inc., Tulsa, OK (United States)

    1996-12-31

    The mystery of why sulfur compounds could never be balanced from analyses of the product streams of NGL fractionation towers was solved by analyzing the data collected during testing completed by GPA Technical Section A in November and December of 1993 at Texaco`s Eunice, New Mexico fractionation plant. Decomposition of dimethyl disulfide (DMDS) to form methyl mercaptan within the towers is the cause of the sulfur balance discrepancies explained in the paper. The results of testing were reported to the 1994 convention, but at the time, a few weeks after completion of testing, the chemistry was not understood, i.e., what is the source of the hydrogen required to complete the formation of methyl mercaptan. This paper is an update of the previous paper and it includes the DMDS decomposition chemistry. It is essentially the body of a report completed in early 1995, excluding the Appendix of data. The 66-page Appendix may be obtained from the GPA, Tulsa.

  14. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect (OSTI)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

  15. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack (Atlanta, GA); Sather, Norman F. (Naperville, IL); Huang, Hann S. (Darian, IL)

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  16. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The...

  17. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  18. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of...

  19. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  20. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  1. SU-E-I-60: The Correct Selection of Pitch and Rotation Time for Optimal CT Scanning : The Big Misconception

    SciTech Connect (OSTI)

    Ranallo, F; Szczykutowicz, T

    2014-06-01

    Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise and dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.

  2. Hydrogen Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipmentpDepartmentHydrogen: Over

  3. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage

    SciTech Connect (OSTI)

    Yang, B; Malkhandi, S; Manohar, AK; Prakash, GKS; Narayanan, SR

    2014-07-03

    Rechargeable iron-air and nickel-iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is "de-passivation" that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.

  4. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  5. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  6. Multiple-sulfur isotope effects during photolysis of carbonyl sulfide

    E-Print Network [OSTI]

    Lin, Ying

    Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS) to carbon monoxide (CO) and elemental sulfur (S[superscript 0]). The OCS gas at 3.7 to 501 ...

  7. EPA Diesel Rule and the Sulfur Effects (DECSE) Project

    SciTech Connect (OSTI)

    2009-05-08

    The VT program collaborated with industry stakeholders and the EPA (in an effort initiated in 1998 called Diesel Emission Control – Sulfur Effects study, otherwise known as DECSE) to quantify the effects of fuel sulfur on emission control technologies.

  8. FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT

    SciTech Connect (OSTI)

    Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D; Amy Ekechukwu, A

    2006-08-03

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by concentration of the sulfuric acid. Various cell configurations were examined with respect to the deposition of electrocatalyst and use of conductive carbon materials such as carbon cloth and carbon paper. Findings from these evaluations and the results of the membrane and electrocatalyst testing, we prepared three different membrane electrode assemblies (MEA) for electrolyzer testing. The first MEA consisted of a Nafion{reg_sign} membrane with platinum electrocatalyst deposited on carbon cloths, which were heat pressed onto the membrane, an assembly identical to those used in proton exchange membrane fuel cells. The second MEA also used a Nafion membrane with the electrocatalysts deposited directly onto the membrane. The third MEA proved similar to the second but utilized a PBI membrane in place of the Nafion{reg_sign} membrane. Tailor of the membrane and catalysts properties for the SDE system was concluded as a required step for the technology to move forward. It was also recommended the evaluation of the tested and new developed materials at conditions closer to the SDE operating conditions and for longer period of time.

  9. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-07-29

    During this quarter catalyst stability studies were performed on Eltron's composite layered membranes. In addition, permeation experiments were performed to determine the effect of crystallographic orientation on membrane performance. Sintering conditions were optimized for preparation of new cermets containing high permeability metals. Theoretical calculations were performed to determine potential sulfur tolerant catalysts. Finally, work was continued on mechanical and process & control documentation for a hydrogen separation unit.

  10. Liquid Hydrogen Bubble Chambers

    E-Print Network [OSTI]

    Alvarez, Luis W.

    1956-01-01

    t No. W - 7 4 0 5 -eng-48 ,LIQUID HYDROGEN EUSBLE CHA,MBEEZSand 3erkeley to iind if liquid hydrogen could be used as thethat supezheated 'liquid hydrogen could be made to boil

  11. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    1096 (1990). S. Furuhama, "Hydrogen Engine Systems for LandGelse, "The Mercedes-Benz Hydrogen Engine for Application inI do assume that the hydrogen engines would run ultra lean,

  12. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOE Patents [OSTI]

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  13. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOE Patents [OSTI]

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  14. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Chang, John C. S. (Cary, NC)

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  15. Mass-independent sulfur isotope fractionation during photochemistry of sulfur dioxide

    E-Print Network [OSTI]

    Whitehill, Andrew (Andrew Richard)

    2015-01-01

    Mass-independent sulfur isotope signatures are observed in Archean and early Paleoproterozoic sedimentary sulfate and sulfide minerals, and provide the most robust constraints on early atmospheric oxygen levels. Smaller ...

  16. Policy Analysis Changing Trends in Sulfur Emissions

    E-Print Network [OSTI]

    Jacobson, Mark

    Goddard Institute for Space Studies, New York, New York, and Disaster Prevention Research Institute, Kyoto in Asia where the pressing environ- mental problems of urban pollution, acid deposition, and climate change are intimately linked to sulfur (1). Over the last 25 years the primary energy demand in Asia has

  17. On the galactic chemical evolution of sulfur

    E-Print Network [OSTI]

    N. Ryde; D. L. Lambert

    2003-12-02

    Sulfur abundances have been determined for ten stars to resolve a debate in the literature on the Galactic chemical evolution of sulfur in the halo phase of the Milky Way. Our analysis is based on observations of the S I lines at 9212.9, 9228.1, and 9237.5 A for stars for which the S abundance was obtained previously from much weaker S I lines at 8694.0 and 8694.6 A. In contrast to the previous results showing [S/Fe] to rise steadily with decreasing [Fe/H], our results show that [S/Fe] is approximately constant for metal-poor stars ([Fe/H] < -1) at [S/Fe] = +0.3. Thus, sulfur behaves in a similar way to the other alpha elements, with an approximately constant [S/Fe] for metallicities lower than [Fe/H] = -1. We suggest that the reason for the earlier claims of a rise of [S/Fe] is partly due to the use of the weak S I 8694.0 and 8694.6 A lines and partly uncertainties in the determination of the metallicity when using Fe I lines. The S I 9212.9, 9228.1, and 9237.5 A lines are preferred for an abundance analysis of sulfur for metal-poor stars.

  18. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-01-01

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  19. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  20. Hydrogen and Infrastructure Costs

    Broader source: Energy.gov (indexed) [DOE]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

  1. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  2. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  3. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  4. Method and apparatus for controlling pitch and flap angles of a wind turbine

    DOE Patents [OSTI]

    Deering, Kenneth J. (Seattle, WA); Wohlwend, Keith P. (Issaquah, WA)

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  5. Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar

    SciTech Connect (OSTI)

    Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

    2006-10-15

    In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

  6. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect (OSTI)

    Harruff, L.G.; Bushkuhl, S.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  7. A study of the reactions of arsinic and arsonic acids with hydrogen sulfide and hydrogen selenide 

    E-Print Network [OSTI]

    Applegate, Cynthia Annette

    1986-01-01

    -diarsa-2, 3, 5-triselenacyclopentane 35 Bond angles in 1, 4&ipheny1-1, 4-diarsa-2, 3, 5-triselenacyclopentane 79 80 INTRODUCTION Many arsenic sulfides occur naturally in the form of minerals due to the natural affinity of arsenic and sulfur for one... another [I]. Arsemc trisulfide, As, S, an orange or yellow powder, is found in nature as the mineral orpiment. Arsenic trisulfide can be prepared by passing a stream of hydrogen sulfide through an acidic solution of arsenic trioxide. Arsenic disulfide...

  8. Cosmic-ray pitch-angle scattering in imbalanced MHD turbulence simulations

    E-Print Network [OSTI]

    Weidl, Martin S; Teaca, Bogdan; Schlickeiser, Reinhard

    2015-01-01

    Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  9. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  10. Safetygram #9- Liquid Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  11. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  12. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  13. Costs to reduce sulfur dioxide emissions

    SciTech Connect (OSTI)

    None

    1982-03-01

    Central to the resolution of the acid rain issue are debates about the costs and benefits of controlling man-made emissions of chemicals that may cause acid rain. In this briefing, the position of those who are calling for immediate action and implicating coal-fired powerplants as the cause of the problem is examined. The costs of controlling sulfur dioxide emissions using alternative control methods available today are presented. No attempt is made to calculate the benefits of reducing these emissions since insufficient information is available to provide even a rough estimate. Information is presented in two steps. First, costs are presented as obtained through straightforward calculations based upon simplifying but realistic assumptions. Next, the costs of sulfur dioxide control obtained through several large-scale analyses are presented, and these results are compared with those obtained through the first method.

  14. EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D.; Elvington, M.; Colon-Mercado, H.

    2009-11-11

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  15. Pitch pine (Pinus rigida Mill.) invasion of Cape Cod pond shores alters abiotic environment and inhibits indigenous

    E-Print Network [OSTI]

    Orians, Colin

    Pitch pine (Pinus rigida Mill.) invasion of Cape Cod pond shores alters abiotic environment 25 April 2003 Abstract Invasion by pitch pine (Pinus rigida Mill.) on coastal plain pond shores may that had been invaded by P. rigida and those that had not on two Cape Cod ponds. Soil under living pines

  16. Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a , S. Y. Liang2 , R, USA a jjmiau@mail.ncku.edu.tw Keywords: vertical-axis wind turbine, pitch control, wind of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results

  17. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  18. Pitch angle distribution analysis of radiation belt electrons based on Combined Release and Radiation Effects Satellite

    E-Print Network [OSTI]

    Li, Xinlin

    Pitch angle distribution analysis of radiation belt electrons based on Combined Release and Radiation Effects Satellite Medium Electrons A data J. L. Gannon,1 X. Li,1 and D. Heynderickx2 Received 13 the Medium Electrons A instrument on the Combined Release and Radiation Effects Satellite (CRRES), a survey

  19. ORIGINAL PAPER Effect of Pitch and Roll Static Angle on Lubricant Transfer

    E-Print Network [OSTI]

    Siegel, Paul H.

    ORIGINAL PAPER Effect of Pitch and Roll Static Angle on Lubricant Transfer Between Disk and Slider static angle on lubricant transfer between a disk and a slider in a hard disk drive. The lubricant- cant distribution on the disks was obtained using optical surface analysis. Lubricant transfer from

  20. The SEMATECH Berkeley MET pushing EUV development beyond 22-nm half pitch

    SciTech Connect (OSTI)

    Naulleau, P.; Anderson, C. N.; Backlea-an, L.-M.; Chan, D.; Denham, P.; George, S.; Goldberg, K. A.; Hoef, B.; Jones, G.; Koh, C.; La Fontaine, B.; McClinton, B.; Miyakawa, R.; Montgomery, W.; Rekawa, S.; Wallow, T.

    2010-03-18

    Microfield exposure tools (METs) play a crucial role in the development of extreme ultraviolet (EUV) resists and masks, One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET, Using conventional illumination this tool is limited to approximately 22-nm half pitch resolution. However, resolution enhancement techniques have been used to push the patterning capabilities of this tool to half pitches of 18 nm and below, This resolution was achieved in a new imageable hard mask which also supports contact printing down to 22 nm with conventional illumination. Along with resolution, line-edge roughness is another crucial hurdle facing EUV resists, Much of the resist LER, however, can be attributed to the mask. We have shown that intenssionally aggressive mask cleaning on an older generation mask causes correlated LER in photoresist to increase from 3.4 nm to 4,0 nm, We have also shown that new generation EUV masks (100 pm of substrate roughness) can achieve correlated LER values of 1.1 nm, a 3x improvement over the correlated LER of older generation EUV masks (230 pm of substrate roughness), Finally, a 0.5-NA MET has been proposed that will address the needs of EUV development at the 16-nm node and beyond, The tool will support an ultimate resolution of 8 nm half-pitch and generalized printing using conventional illumination down to 12 nm half pitch.

  1. Pipelined Broadcast on Ethernet Switched Clusters Pitch Patarasuk Ahmad Faraj Xin Yuan

    E-Print Network [OSTI]

    Yuan, Xin

    Pipelined Broadcast on Ethernet Switched Clusters Pitch Patarasuk Ahmad Faraj Xin Yuan Department}@cs.fsu.edu Abstract We consider unicast-based pipelined broadcast schemes for clusters connected by multiple Ethernet switches. By splitting a large broadcast message into segments and broadcasting the segments in a pipelined

  2. Wind Turbine Pitch Optimization Benjamin Biegel Morten Juelsgaard Matt Kraning Stephen Boyd Jakob Stoustrup

    E-Print Network [OSTI]

    Wind Turbine Pitch Optimization Benjamin Biegel Morten Juelsgaard Matt Kraning Stephen Boyd Jakob-controlled wind tur- bine. When placed in a wind field, the turbine experiences several mechanical loads, which measurements, with no knowledge of the wind field or wind turbine model. I. INTRODUCTION Wind turbines

  3. Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine

    E-Print Network [OSTI]

    Tullis, Stephen

    Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine Andrzej J. Fiedler ABSTRACT A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT in an open-air wind tunnel facility to investigate the effects of preset toe-in and toe-out turbine blade

  4. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  5. Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST

    E-Print Network [OSTI]

    Chen, Zhe

    Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST Yunqian University, China jiz@seu.edu.cn Abstract-With the increase of wind turbine dimension and capacity, the wind turbine structures are subjected to prominent loads and fatigue which would reduce the lifetime of wind

  6. Ris-R-1500(EN) Control design for a pitch-regulated, vari-

    E-Print Network [OSTI]

    Risř-R-1500(EN) Control design for a pitch-regulated, vari- able speed wind turbine Morten H speed wind tur- bine Department: Wind Energy Department Risř-R-1500(EN) January 2005 ISSN 0106-2840 ISBN wind speed, which can be almost removed by changing the parameters of the frequency converter

  7. Aalborg Universitet Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind

    E-Print Network [OSTI]

    Hu, Weihao

    angles are adjusted separately according to the generator output power and the azimuth angle of the wind Wind Turbines Zhang, Yunqian; Hu, Weihao; Chen, Zhe; Cheng, Ming Published in: Proceedings of the 10th Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines. In Proceedings

  8. A Knowledge Discovery Model of Identifying Musical Pitches and Instrumentations in Polyphonic Sounds.

    E-Print Network [OSTI]

    Ras, Zbigniew W.

    signal processing, general biomedical signal processing and speech enhancement, to name a few, em- braced to monophonic digital signals are common. Conversely, successful detection of multiple pitches and timbres in polyphonic time-invariant music signals remains a challenge. A review of these methods, sometimes called

  9. Pitch perception: A dynamical-systems perspective Julyan H. E. Cartwright*

    E-Print Network [OSTI]

    Oro, Daniel

    vowel sounds in human speech and vocalizations of many other animals. Evidence for the importance of spectral periodicity in sound processing by humans is that noisy stimuli exhibiting this property also periodicity (2­5). Virtual Pitch For a harmonic stimulus like Fig. 1b (a periodic signal), there is a natural

  10. Multi-target pitch tracking of vibrato sources in noise using the GM-PHD filter

    E-Print Network [OSTI]

    Plumbley, Mark

    Multi-target pitch tracking of vibrato sources in noise using the GM-PHD filter Dan Stowell the Gaussian mix- ture PHD filter (GM-PHD filter), using a Gaussian mixture (GM) to represent state and having improved performance (Vo & Ma, 2006; Mahler, 2007). The GM-PHD filter has similarities to a HMM- or Kalman

  11. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  12. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  13. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  14. Hydrogen production by methanogens under low-hydrogen conditions

    E-Print Network [OSTI]

    Valentine, DL; Valentine, DL; Blanton, DC; Reeburgh, WS

    2000-01-01

    greatly decreased hydrogen production. The addition ofThe lack of sustained hydrogen production by the cultures inMethanogens · Hydrogen production · Storage compounds ·

  15. Effects of grit roughness and pitch oscillations on the S809 airfoil

    SciTech Connect (OSTI)

    Ramsay, R.F.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1995-12-01

    An S809 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3{times}5 subsonic wind tunnel (3{times}5) under steady flow and stationary model conditions, and also with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was developed to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from {minus}20, to +40 {degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used; {plus_minus} 5.5{degrees} and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions means the model was in pitch oscillation about the quarter chord. In general, the unsteady maximum lift coefficient was from 4% to 86% higher than the steady state maximum lift coefficient, and variation in the quarter chord pitching moment coefficient magnitude was from {minus}83% to 195% relative to steady state values at high angles of attack. These findings indicate the importance of considering the unsteady flow behavior occurring in wind turbine operation to obtain accurate load estimates.

  16. Oxygen addition to sulfur of metal thiolates 

    E-Print Network [OSTI]

    Soma, Takako

    1996-01-01

    chemistry. The oxidation reactions of metal thiolates by hydrogen peroxide, molecular oxygen, dioxiranes, and peracids have been reviewed. The compounds resulting from oxidation and oxygenation of nickel thiolate complexes have been isolated, separated...

  17. Final Report for project titled "New fluoroionomer electrolytes with high conductivity and low SO2 crossover for use in electrolyzers being developed for hydrogen production from nuclear power plants"

    SciTech Connect (OSTI)

    Dennis W. Smith; Stephen Creager

    2012-09-13

    Thermochemical water splitting cycles, using the heat of nuclear power plants, offer an alternate highly efficient route for the production of hydrogen. Among the many possible thermochemical cycles for the hydrogen production, the sulfur-based cycles lead the competition in overall energy efficiency. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce hydrogen. The Savannah River National Laboratory (SRNL) selected the fuel cell MEA design concept for the SDE in the HyS process since the MEA concept provides a much smaller cell footprint than conventional parallel plate technology. The electrolyzer oxidizes sulfur dioxide to form sulfuric acid at the anode and reduces protons to form hydrogen at the cathode. The overall electrochemical cell reaction consists of the production of H{sub 2}SO{sub 4} and H{sub 2}. There is a significant need to provide the membrane materials that exhibit reduced sulfur dioxide transport characteristics without sacrificing other important properties such as high ionic conductivity and excellent chemical stability in highly concentrated sulfuric acid solutions saturated with sulfur dioxide. As an alternative membrane, sulfonated Perfluorocyclobutyl aromatic ether polymer (sPFCB) were expected to posses low SO2 permeability due to their stiff backbones as well as high proton conductivity, improved mechanical properties. The major accomplishments of this project were the synthesis, characterizations, and optimizations of suitable electrolyzers for good SDE performance and higher chemical stability against sulfuric acid. SDE performance results of developed sPFCB polyelectrolytes have shown that these membranes exhibit good chemical stability against H{sub 2}SO{sub 4}.

  18. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  19. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  20. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen...

  1. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  2. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01

    the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

  3. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas....

  4. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of...

  5. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01

    carbon emissions from a hydrogen fuel cell vehicle will beis threefold. First, hydrogen fuel cell vehicles appear tobecome competitive and if hydrogen fuel can be made widely

  6. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-11-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and 400 square cells/inch{sup 2}, {gamma}-Al{sub 2}O{sub 3}-wash-coated monolithic catalyst, and various reactors such as a micro packed-bed reactor, a micro bubble reactor, and a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam.

  7. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars II. Sulfur and Phosphorus

    E-Print Network [OSTI]

    Channon Visscher; Katharina Lodders; Bruce Fegley Jr

    2006-06-06

    Thermochemical equilibrium and kinetic calculations are used to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. The results are independent of particular model atmospheres and, in principle, the equilibrium composition along the pressure-temperature profile of any object can be determined. Hydrogen sulfide (H2S) is the dominant S-bearing gas throughout substellar atmospheres and approximately represents the atmospheric sulfur inventory. Silicon sulfide (SiS) is a potential tracer of weather in substellar atmospheres. Disequilibrium abundances of phosphine (PH3) approximately representative of the total atmospheric phosphorus inventory are expected to be mixed upward into the observable atmospheres of giant planets and T dwarfs. In hotter objects, several P-bearing gases (e.g., P2, PH3, PH2, PH, HCP) become increasingly important at high temperatures.

  8. More Economical Sulfur Removal for Fuel Processing Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    crude oil it is present in sulfur-containing organic compounds which are converted into hydrocarbons and H 2 S during the removal process (hydrodesulfurization). In both cases,...

  9. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2003-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 60-{micro}m C-500-04 alumina catalyst particles and a PFA differential fixed-bed micro reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into elemental sulfur were carried out for the space time range of 0.01-0.047 seconds at 125-155 C to evaluate effects of reaction temperatures, moisture concentrations, reaction pressures on conversion of hydrogen sulfide into elemental sulfur. Simulated coal gas mixtures consist of 61-89 v% hydrogen, 2,300-9,200-ppmv hydrogen sulfide, 1,600-4,900 ppmv sulfur dioxide, and 2.6-13.7 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 100-110 cm{sup 3}/min at room temperature and atmospheric pressure (SCCM). The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 28-127 psia. The following results were obtained based on experimental data generated from the differential reactor system, and their interpretations, (1) Concentration of moisture and concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the moisture range of 2.5-13.6 v% moisture at 140 C and 120-123 psia. (2) Concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the temperature range of 135-145 C at 5-v% moisture and 112-123 psia. However, reaction rates of H{sub 2}S with SO{sub 2} appear to decrease slightly with increased reaction temperatures over the temperature range of 135-145 C at 5-v% moisture and 112-123 psia. (3) Concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the pressure range of 28-123 psia at 5-v% moisture and 140 C. However, reaction rates of H{sub 2}S with SO{sub 2} increase significantly with increased reaction pressures over the pressure range of 28-123 psia at 5-v% moisture and 140 C.

  10. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  11. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  12. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  13. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  14. Nonflame, source-induced sulfur fluorescence detector for sulfur-containing compounds

    SciTech Connect (OSTI)

    Gage, D.R.; Farwell, S.O.

    1980-12-01

    Results of some preliminary investigations of the fluorescence spectra of S/sub 2/ and the non-flame production of S/sub 2/ from sulfur-containing molecules are reported. Passage of the gas to be analyzed through a catalyst-oven containing a plug of NiO/sub 2//Al/sub 2/O/sub 3/ catalyst containing 10 wt% NiO/sub 2/ and heated to 400/sup 0/C resulted in conversion of H/sub 2/S to S/sub 2/ and elemental sulfur. The S/sub 2/ was detected by measurement of its fluorescence bands at 260 and 310nm, and elemental sulfur condensed on the cool parts of the apparatus. However, determination of sulfur-content of gas mixtures with the apparatus described herein were not as repeatable as desired, and the work is being continued on various facets of the non-flame system with work being directed toward the evaluation of different catalysts, catalyst temperature, design of a smaller detector geometry utilizing a pulsed-light excitation source, a windowless cell, and optical filters instead of monochromators to select the S/sub 2/ excitation and emission wavelengths. (BLM)

  15. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOE Patents [OSTI]

    Mamantov, Gleb (Knoxville, TN)

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  16. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  17. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, Nand K. (Bethel Park, PA); Ruether, John A. (McMurray, PA); Smith, Dennis N. (Herminie, PA)

    1988-01-01

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  18. An Evolutionary Arms Race for Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTestAn Evolutionary Arms Race for Sulfur An

  19. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  20. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  1. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  2. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  3. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

  4. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect (OSTI)

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO[sub x], the addition of Pt increased the selectivity of hydrogenation over isomerization.

  5. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect (OSTI)

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO{sub x}, the addition of Pt increased the selectivity of hydrogenation over isomerization.

  6. Henry`s law solubilities and Setchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements

    SciTech Connect (OSTI)

    De Bruyn, W.J.; Swartz, E.; Hu, J.H. [Boston College, Chestnut Hill, MA (United States)] [and others] [Boston College, Chestnut Hill, MA (United States); and others

    1995-04-20

    Biogenically produced reduced sulfur compounds, including dimethylsulfide (DMS, CH{sub 3}SCH{sub 3}), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}SH), and carbonyl sulfide (OCS), are a major source of sulfur in the marine atmosphere. This source is estimated to contribute 25-40% of global sulfur emissions. These species and their oxidation products, dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}), and methane sulfonic acid (MSA), dominate the production of aerosol and cloud condensation nuclei (CCN) in the clean marine atmosphere. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion-produced sulfur oxides over the oceans. Using a newly developed bubble column apparatus, a series of aqueous phase uptake studies have been completed for the reduced sulfur species DMS, H{sub 2}S, CS{sub 2}, CH{sub 3}SH, and OCS. Aqueous phase uptake has been studied as a function of temperature (278-298 K), pH (1-14), H{sub 2}O{sub 2} concentration (0-1 M), NaCl concentration (0-5 M), and (NH{sub 4}){sub 2}SO{sub 4} concentration (0-4 M). The Henry`s law coefficients for CH{sub 3}SH and CS{sub 2} were determined for the first time, as were the Setchenow coefficients for all the species studied. 33 refs., 8 figs., 2 tabs.

  7. Using ISC & GIS to predict sulfur deposition from coal-fired power plants 

    E-Print Network [OSTI]

    Lopez, Jose Ignacio

    1993-01-01

    The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

  8. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  9. Anti-Hydrogen Jonny Martinez

    E-Print Network [OSTI]

    Budker, Dmitry

    Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

  10. ccsd-00000318(version1):29Apr2003 Calculation of muon transfer from muonic hydrogen to atomic oxygen

    E-Print Network [OSTI]

    Boyer, Edmond

    ), the problem corresponds to an ultra-cold collision. The close-coupling time-independent quantum equations explanation. Werthm¨uller et al [4] suggest the existence of a resonance at low energies. It is worth to stress that such an increase has not been observed in the case of muonic hydrogen colliding with sulfur

  11. Filamentous carbon catalytic deposition of coal-tar pitch fraction on corundum

    SciTech Connect (OSTI)

    Martynkova, G.S.; Supova, M.

    2007-01-15

    Our work was focused on deposition of volatile hydrocarbons of carbonaceous precursor on corundum wafer, taking advantage of a metallic catalyst incorporated in precursor. Coal tar-pitch, namely a fraction soluble in toluene, served as precursor material for deposition of filamentous material. The toluene-soluble fraction of tar-pitch originally contained metallic particles of iron and nickel. During heat treatment up to 1000{sup o}C, metallic particles accompanied the volatile hydrocarbons conducive to forming a filamentous deposit. The deposit obtained demonstrates a semicrystalline material that has an irregular filamentous structure with an average filament diameter of 30 {mu}m. The presence of catalysts after the deposition process was proved in the deposit but catalysts were not found in the residuum.

  12. Quantifying Individual Potential Contributions of the Hybrid Sulfur Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Quantifying Individual Potential Contributions of the Hybrid Sulfur Electrolyzer John A. Staser for the hybrid sulfur electrolyzer is controlled mainly by water transport in the cell. Water is required electrolyzer performance and operation. Experimental The experimental setup was the same as that described

  13. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect (OSTI)

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  14. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  15. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  16. Effects of grit roughness and pitch oscillations on the S814 airfoil

    SciTech Connect (OSTI)

    Janiszewska, J.M.; Ramsay, R.R.; Hoffmann, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    Horizontal-axis wind turbine rotors experience unsteady aerodynamics when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the design of new rotor airfoils. The rotors also experience performance degradation due to surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and/or the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can also be used to validate analytical computer codes. An S814 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3 X 5 subsonic wind tunnel (3 X 5) under steady flow with both stationary model conditions and pitch oscillations. To study the extent of performance loss due to surface roughness, a leading edge grit roughness pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25 and 1.5 million, while the angle of attack ranged from -20{degrees} to +40{degrees}. While the model underwent pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.5 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions {+-}5.5{degrees} and {+-}10{degrees}, were used; at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions means the model was in pitch oscillation.

  17. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect (OSTI)

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  18. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  19. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  20. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  1. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect (OSTI)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  2. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    SciTech Connect (OSTI)

    Gregory, G.L.; Davis, D.D.; Beltz, N.; Bandy, A.R.; Ferek, R.J.; Thornton, D.C. [NASA, Langely Research Center, Hampton, VA (United States)]|[Georgia Institute of Technology, Atlanta, GA (United States)]|[J.W. Goethe Univ., Frankfurt (Germany)]|[Drexel Univ., Philadelphia, PA (United States)]|[Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of `potential` uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  3. EFFECT OF ELECTROLYZER CONFIGURATION AND PERFORMANCE ON HYBRID SULFUR PROCESS NET THERMAL EFFICIENCY

    SciTech Connect (OSTI)

    Gorensek, M

    2007-03-16

    Hybrid Sulfur cycle is gaining popularity as a possible means for massive production of hydrogen from nuclear energy. Several different ways of carrying out the SO{sub 2}-depolarized electrolysis step are being pursued by a number of researchers. These alternatives are evaluated with complete flowsheet simulations and on a common design basis using Aspen Plus{trademark}. Sensitivity analyses are performed to assess the performance potential of each configuration, and the flowsheets are optimized for energy recovery. Net thermal efficiencies are calculated for the best set of operating conditions for each flowsheet and the results compared. This will help focus attention on the most promising electrolysis alternatives. The sensitivity analyses should also help identify those features that offer the greatest potential for improvement.

  4. Near-continuous measurement of hydrogen sulfide and carbonyl sulfide by an automatic gas chromatograph

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1991-01-01

    The article describes an automatic gas chromatograph with a flame photometric detector (GC-FPD) that samples and analyzes hydrogen sulfide (H2S) and carbonyl sulfide (COS) at 30-sec intervals. Temperature programming was used to elute trace amounts of carbon disulfide (CS2) present in each injection from a Supelpak-S column in a single peak at the end of 15 min runs. The system was used to study the high-temperature fuel-rich sulfur capture reactions of H2S and COS with injected calcium oxide (CaO) sorbent, necessitating the near continuous measurement of these gaseous sulfur species. The H2S concentration ranged from 300 to 3000 ppm, and the COS from 30 to 300 ppm. The system was also used to monitor sulfur dioxide (SO2) levels under fuel-lean conditions: results compared very closely with SO2 measurements made simultaneously with continuous ultraviolet (UV) SO2 instrumentation.

  5. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  6. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  7. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  8. Sandia Energy - Technical Reference for Hydrogen Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Reference for Hydrogen Compatibility of Materials Home Transportation Energy Hydrogen Materials & Components Compatibility Technical Reference for Hydrogen Compatibility...

  9. Hydrogen Production: Electrolysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Hydrogen Production: Electrolysis Hydrogen Production: Electrolysis Electrolysis is a promising option for hydrogen production from renewable resources. Electrolysis...

  10. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  11. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  13. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  14. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  15. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  16. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  17. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  18. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  19. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  20. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generator currently used to provide power for refrigerated containers on land and on transport barges. Hydrogenics Corp. is designing and manufacturing a containerized...

  1. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  2. Novel Hydrogen Carriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carriers Novel Hydrogen Carriers Hydrogen carriers store hydrogen in some other chemical state rather than as free hydrogen molecules. Additional research and analyses are...

  3. Gaseous Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen Delivery Gaseous Hydrogen Delivery Gaseous hydrogen is most commonly delivered either by trucks or through pipelines. Because gaseous hydrogen is typically...

  4. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  5. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  6. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U-based technology. (a) Based on equal quantities of coal used to produce hydrogen and electricity 4 #12;Why Hydrogen From Coal? Huge U.S. coal reserves Hydrogen can be produced cleanly from coal Coal can provide

  7. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  8. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  9. Finance Pitch

    Broader source: Energy.gov [DOE]

    This document summarizes information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  10. Rate of reaction of hydrogen sulfide-carbonyl sulfide mixtures with fully calcined dolomite

    SciTech Connect (OSTI)

    Kamath, V.S.; Petrie, T.W.

    1981-01-01

    Kinetic data are obtained by a gravimetric technique for rates of reaction of calcium oxide in fully calcined dolomite with hydrogen sulfide and hydrogen sulfide-carbonyl sulfide mixtures. The data are presented as values for a factor k defined by d(CAO) = -k (CAO) dt. At 600, 700, and 800 degrees C with (H/sub 2/S) from 0.5% to 5.0% by volume and (H/sub 2/S)/(COS) = 20 for mixtures, expressions for k show apparent rate constants and the dependence on sulfurous gas concentration. For example, at 700 degrees C, k = 1.43 x 10/sup -4/ (h2s) 1.06/S and k = 1.70 x 10/sup -4/ (H/sub 2/S + COS) 1.00/s. Since the date show first-order dependence on calcium oxide, k's for H/sub 2/S alone as the sulfurous gas and h2s-cos mixtures can be obtained for the same sample, free from scatter due to variations from sample to sample. Addition of values for k from runs with H/sub 2/S as the only sulfurous gas and runs with COS as the only sulfurous gas are compared to measurements with actual mixtures. K's for the mixtures are approximately 30% higher than the sum of the appropriate separate values.

  11. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect (OSTI)

    Schwartz, Viviane [ORNL; Baskova, Svetlana [ORNL; Armstrong, Timothy R. [ORNL

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  12. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Sulfur Batteries Guangyuan Zheng, Qianfan Zhang, Judy J. Cha, Yuan Yang, Weiyang Li, Zhi Wei Seh, and Yi lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent progress in addressing the various problems of sulfur cathodes, lithium sulfur batteries still exhibit

  13. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2004-06-01

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  14. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  15. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  16. Hawaii hydrogen power park Hawaii Hydrogen Power Park

    E-Print Network [OSTI]

    energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V fueled vehicle hydrogen dispensing system. Demonstrate hydrogen as an energy carrier. Investigate. Inform State policy & decision makers. Create environment to mitigate financial risk for investors

  17. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    Robert S. Weber

    1999-05-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of a commercial process design, and development of a utility-scale demonstration plan.

  18. H[sub 2]S-removal and sulfur-recovery processes using metal salts

    SciTech Connect (OSTI)

    Lynn, S.; Cairns, E.J.

    1992-01-01

    Scrubbing a sour gas stream with a solution of copper sulfate allows the clean-up temperature to be increased from ambient to the adiabatic saturation temperature of the gas. The copper ion in solution reacts with the H[sub 2]S to produce insoluble CuS. The choice of copper sulfate was set by the very low solubility of CuS and the very rapid kinetics of the Cus formation. Since the copper sulfate solutions used are acidic, CO[sub 2] will not be co-absorbed. In a subsequent step the solid CuS is oxidized by a solution of ferric sulfate. The copper sulfate is regenerated, and elemental sulfur is formed together with ferrous sulfate. The ferrous sulfate is reoxidized to ferric sulfate using air. Since the copper sulfate and ferric solutions are regenerated, the overall reaction in this process is the oxidation of hydrogen sulfide with oxygen to form sulfur. The use of copper sulfate has the further advantage that the presence of sulfuric acid, even as concentrated as 1 molar, does not inhibit the sorption of H[sub 2]S. Furthermore, the absorption reaction remains quite favorable thermodynamically over the temperature range of interest. Because the reaction goes to completion, only a single theoretical stage is required for complete H[sub 2]S removal and cocurrent gas/liquid contacting may be employed. The formation of solids precludes the use of a packed column for the contacting device. However, a venturi scrubber would be expected to perform satisfactorily. The kinetics of the oxidation of metal sulfides, in particular zinc and copper sulfide, is reported in the literature to be slow at near-ambient temperatures. The proposed process conditions for the oxidation step are different from those reported in the literature, most notably the higher temperature. The kinetics of the reaction must be studied at high temperatures and corresponding pressures. An important goal is to obtain sulfur of high purity, which is a salable product.

  19. H{sub 2}S-removal and sulfur-recovery processes using metal salts

    SciTech Connect (OSTI)

    Lynn, S.; Cairns, E.J.

    1992-11-01

    Scrubbing a sour gas stream with a solution of copper sulfate allows the clean-up temperature to be increased from ambient to the adiabatic saturation temperature of the gas. The copper ion in solution reacts with the H{sub 2}S to produce insoluble CuS. The choice of copper sulfate was set by the very low solubility of CuS and the very rapid kinetics of the Cus formation. Since the copper sulfate solutions used are acidic, CO{sub 2} will not be co-absorbed. In a subsequent step the solid CuS is oxidized by a solution of ferric sulfate. The copper sulfate is regenerated, and elemental sulfur is formed together with ferrous sulfate. The ferrous sulfate is reoxidized to ferric sulfate using air. Since the copper sulfate and ferric solutions are regenerated, the overall reaction in this process is the oxidation of hydrogen sulfide with oxygen to form sulfur. The use of copper sulfate has the further advantage that the presence of sulfuric acid, even as concentrated as 1 molar, does not inhibit the sorption of H{sub 2}S. Furthermore, the absorption reaction remains quite favorable thermodynamically over the temperature range of interest. Because the reaction goes to completion, only a single theoretical stage is required for complete H{sub 2}S removal and cocurrent gas/liquid contacting may be employed. The formation of solids precludes the use of a packed column for the contacting device. However, a venturi scrubber would be expected to perform satisfactorily. The kinetics of the oxidation of metal sulfides, in particular zinc and copper sulfide, is reported in the literature to be slow at near-ambient temperatures. The proposed process conditions for the oxidation step are different from those reported in the literature, most notably the higher temperature. The kinetics of the reaction must be studied at high temperatures and corresponding pressures. An important goal is to obtain sulfur of high purity, which is a salable product.

  20. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

    2002-04-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

  2. Plasma-chemical treatment of hydrogen sulfide in natural gas processing. Final report, May 1991--December 1992

    SciTech Connect (OSTI)

    Harkness, J.B.L.; Doctor, R.D. [Argonne National Lab., IL (United States)

    1993-05-01

    A new process for the treatment of hydrogen sulfide waste that uses microwave plasma-chemical technology has been under development in Russia and the United States. Whereas the present waste-treatment technology, at best, only recovers sulfur, this novel process recovers both hydrogen and sulfur by dissociating hydrogen sulfide in a plasma by means of a microwave or radio-frequency reactor. A research project has been undertaken to determine the suitability of the plasma process in natural gas processing applications. The experiments tested acid-gas compositions with 30--65% carbon dioxide, 0--7% water, and 0--0.2% of a standard mixture of pipeline gas. The balance gas in all cases was hydrogen sulfide. The reactor pressure for the experiments was 50 torr, and the microwave power was 1.0 kW. Conversions of hydrogen sulfide ranged from 80 to 100%, while 35--50% of the carbon dioxide was converted to carbon monoxide. This conversion of carbon dioxide resulted in a loss of hydrogen production and an energy loss from a hydrogen sulfide waste-treatment perspective. Tests of a direct natural gas treatment concept showed that hydrocarbon losses were unacceptably high; consequently, the concept would not be economically viable.

  3. Abatement of Air Pollution: Control of Sulfur Compound Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    set limits on the sulfur content of allowable fuels (1.0% by weight, dry basis) for combustion, as well as for the heat input of any fuel burning equipment (250,000 Btuhour)....

  4. Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction

    E-Print Network [OSTI]

    Sim, Min Sub

    2012-01-01

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used ...

  5. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  6. Peer Review of the Hydrogen Program Hydrogen Briefing

    E-Print Network [OSTI]

    automotive fuel cells for electric generation. Provide testimony for hydrogen legislation Program Activity #12;Congressional Language Conference Committee: Hydrogen. --The Committee recommendation is $31

  7. Why Hydrogen? Hydrogen from Diverse Domestic Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program President's Hydrogen Fuel Initiative Hydrogen Posture Plan: An Integrated Research, Development and...

  8. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    2000-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  9. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    2002-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  10. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  11. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  12. HYBRID SULFUR ELECTROLYZER DEVELOPMENT, NHI WORK PACKAGE N-SR07TC0301, FY07 FIRST QUARTER REPORT

    SciTech Connect (OSTI)

    Summers, W

    2006-12-20

    The proof of concept of SO2 electrolysis for the hybrid sulfur (HyS) process is the second priority research target of the DOE Nuclear Hydrogen Initiative's thermochemical program for FY07. The proof of concept of the liquid-phase option must be demonstrated at the single cell level for an extended run times (>100 hours). The rate of development of HyS will depend on the identification of a promising membrane or an alternative means for controlling sulfur formation. Once successful long-duration operation has been demonstrated, SRNL will develop a multi-cell stack that can be connected to the H2SO4 decomposer being developed by SNL for the S-I ILS for a Hybrid Sulfur Integrated Laboratory-Scale Experiment during FY 2008. During the first quarter of FY07, SRNL continued the component development and membrane development activities with the goal of identifying and characterizing improved electrodes, electrocatalysts, membranes and MEA configurations which could then be tested at larger scale in the SDE test facility. A modified glass cell was fabricated to allow measurements of sulfur dioxide (SO2) transport across membrane samples at elevated temperatures (up to 70 C). This testing also includes evaluating SO2 transport in different sulfuric acid concentrations (30-70 wt%). A new potentiostat/frequency analyzer was installed for determining ionic conductivity of membranes. This instrument enhances our capabilities to characterize membrane, electrocatalyst and MEA properties and performance. Continuing work from FY06, evaluations were preformed on various commercial and experimental membranes and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated polyetherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity.

  13. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas 

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01

    With the production from mature oil fields declining, the increasing demand of oil urges towards more effective recovery of the available resources. Currently, the CO2 Floods are the second most applied EOR processes in ...

  14. Novel metal oxide nanocomposites for oxygen storage, sulfur dioxide adsorption and hydrogen sulfide absorption

    E-Print Network [OSTI]

    Sweeney, Jason T. (Jason Thomas), 1971-

    2003-01-01

    Increasingly stringent regulations on automotive emissions have resulted in the need for improved pollution control technology. To reduce mobile emissions, researchers have investigated alternatives such as lean-bum engines ...

  15. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01

    It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

  16. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  17. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01

    type can be applied to hydrogen storage materials. Keywords:can be applied to hydrogen storage materials. Manuscript O-of the formalism to hydrogen storage materials. A partial

  18. The South Karelia Air Pollution Study. The effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms

    SciTech Connect (OSTI)

    Jaakkola, J.J.; Vilkka, V.; Marttila, O.; Jaeppinen, P.H.; Haahtela, T. )

    1990-12-01

    The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasal and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.

  19. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Chou, C.L.; Hackley, K.C.; Donnals, G.L.; Cao, J.; Ruch, R.R. [Illinois State Geological Survey, Champaign, IL (United States); Pan, W.P.; Shao, D. [Western Kentucky Univ., Bowling Green, KY (United States)

    1992-08-01

    The goal of this project is to study the evolution of gaseous sulfur and chlorine species during temperature-controlled pyrolysis and combustion and their effect on boiler corrosion. We have been developing two techniques for determining the gas evolution profiles of sulfur and chlorine during coal pyrolysis and combustion. First, using a pyrolysis-combustion system in combination with a quadrupole gas analyzer, the evolution of sulfur dioxide (SO{sub 2}) in combustion gas during temperature-programmed coal pyrolysis-combustion was monitored. When the atmosphere of the combustion chamber was changed to a reducing condition, gaseous COS and H{sub 2}S were also detected in the combustion gas. Detection of hydrogen chloride by QGA has been improved by using a larger-diameter (75 {mu}m) capillary tubing. The HC1 evolution profile during the pyrolysis of coal IBC-109 was determined by QGA and by a chloride ion selective electrode for quantitative purposes. Second, the technique of thermogravimetry (TG) in conjunction with Fourier transform infrared (FTIR) spectroscopy was used to characterize gaseous species during coal pyrolysis. Gas evolution profiles of sulfur (SO{sub 2} and COS), chlorine (HC1), and nitrogen (NH{sub 3} and HCN) species were determined for coal IBC-109. Similar release profiles of HCI and NH{sub 3} supported an interpretation that chlorine gnd nitrogen are closely associated in coal. COS may be formed by reaction of CO with H{sub 2}S in the gas phase. A mass balance study of chlorine evolution from coal IBC-109 in a TG-FTIR experiment was completed; the chloride dissolved in solutions was determined by an ion chromatographic technique.

  20. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  1. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect (OSTI)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  2. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  3. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  4. TPCP: Pitch canker PITCH CANKER

    E-Print Network [OSTI]

    and nurseries, and the selection of disease tolerant genotypes. http://www.up.ac.za/academic/fabi/tpcp/pamphlets (right). If you need any further information, please contact us. Back to INDEX of pamphlets... http://www.up.ac.za/academic/fabi/tpcp/pamphlets

  5. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItĆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  6. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  7. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01

    potential for huge energy and environmental improvements.Cannon, eds, The Hydrogen Energy Transition, Elsevier Press,about environmental and energy threats. The hydrogen debate

  8. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in...

  9. The SEMATECH Berkeley MET: demonstration of 15-nm half-pitch in chemically amplified EUV resist and sensitivity of EUV resists at 6.x-nm

    E-Print Network [OSTI]

    Anderson, Christopher

    2013-01-01

    INTRODUCTION Phase shift mask (PSM) imaging enables pitchis suppressed. Pseudo PSM imaging enables pitch splittinga schematic of the pseudo PSM process. W = 9 '1-I C Q} 3

  10. Catalyst Activity and Post-operation Analyses of Pt/TiO2 (Rutile) Catalysts Used in the Sulfuric Acid Decomposition Reaction

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C. Burch; Patrick J. Pinhero; Helen H. Farrell

    2007-06-01

    Production of hydrogen by splitting of water at lower temperatures than by direct thermal decomposition can be achieved by a series of particular chemical reactions that establish a thermochemical cycle [1]. Among the high number of thermochemical water-splitting cycles proposed in the literature [2], the sulfur-based group is of considerable interest. All the sulfur-based cycles employ the catalytic decomposition of sulfuric acid into SO2 and O2. The produced O2 corresponds to the O2 generated from water in the overall cycle. Research performed at the Idaho National Laboratory [3] has found that even one of the most stables catalysts, Pt supported on low surface area titania, deactivates with time on stream (TOS). To develop an understanding of the factors that cause catalyst deactivation, samples of 1% Pt supported on titania (rutile) catalyst were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different TOSs between 0 and 548 h and a number of chemical and spectroscopic analyses applied to the spent samples.

  11. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOE Patents [OSTI]

    Roberts, George W. (Emmaus, PA); Tao, John C. (Perkiomenville, PA)

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  12. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  13. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  14. Comparison and Analysis of Twist Pitch Length Test Methods for ITER Nb3Sn and NbTi Strands

    E-Print Network [OSTI]

    Fang Liu; Feng Long; Chao Chen; Bo Liu; Yu Wu; Huajun Liu

    2013-05-08

    A twisted multifilamentary structure is needed for Nb3Sn and NbTi strands to be used in the International Thermonuclear Experimental Reactor (ITER) magnets. As important parameters for the superconducting strands design and production, the twist pitch length and direction of strands must meet the requirements according to ITER Procurement Arrangement (PA) and this must be verified. The technical requirements are 15mm+/-2mm for twist pitch length and right hand twist for direction. The strand twist pitch and the twist direction can be measured on straight sections of strand, which is recognized by the repetition of filament bundles or by the angle of the filaments. Several test methods and results are described and compared in this paper. The accuracy, uncertainty and feasibility of different methods are analyzed and recommended measurement methods are proposed for ITER strands verification.

  15. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  16. HYDROGEN FLUORIDE Hydrogen Fluoride (HF) is an extremely

    E-Print Network [OSTI]

    Lance, Veronica P.

    HYDROGEN FLUORIDE Hydrogen Fluoride (HF) is an extremely corrosive clear and colorless liquid BE PROVIDED TO INDIVIDUALS WITH EXPOSURE TO HYDROGEN FLOURIDE www.ehs.columbia.edu/HFPolicy.html HF USE. Because hydrogen fluoride can penetrate natural rubber gloves you must use only neoprene or nitrile gloves

  17. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  18. News and Views International hydrogen association for hydrogen energy

    E-Print Network [OSTI]

    Mench, Matthew M.

    News and Views International hydrogen association for hydrogen energy design competition applied State University IAHE Chapter Student Members, USA c Electrochemical Energy Storage and Conversion Association for Hydrogen Energy supplied a team of 12 members to enter the 1st IAHE Hydrogen Design

  19. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  20. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  1. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  2. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  3. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  4. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  5. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  6. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  7. Hydrogen Production & Delivery

    Broader source: Energy.gov (indexed) [DOE]

    Current Conversion Price of H 2 kg delivered furanone Cost of Hydrogen From Bio-oil Conversion (Relative to 2012 Target of 3.80kg H 2 ) Ongoing Focus: * Acetic acid in...

  8. Development of High Energy Density Lithium-Sulfur Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  10. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  11. Savannah River Hydrogen Storage Technology

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  12. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  13. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  14. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  15. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  16. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  17. Reactions of Methylene Hydrogen

    E-Print Network [OSTI]

    Griffin, E. L.

    1912-05-15

    for Digital Scholarship. http://kuscholarworks.ku.edu Submitted to the School of Engineering of the University of Kansas in partial fulfillment of the requirements for the Degree of Bachelor of Science REACTIONS OP METEELEH1 HYDROGEN With. Special He...KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Reactions of Methylene Hydrogen 1912 by E. L. Griffin This work was digitized by the Scholarly Communications program staff in the KU Libraries’ Center...

  18. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  19. Sulfurization of carbon surface for vapor phase mercury removal I: Effect of temperature and sulfurization protocol

    E-Print Network [OSTI]

    Borguet, Eric

    a fixed bed reactor system to determine the effects of sorbent properties, temperature (200­800 °C; Impregnation; Temperature programmed desorption; Surface properties 1. Introduction Hydrogen sulfide, such as the Integrated Gasification Combined Cycle (IGCC) process [4], and the coal gas cleaning process [5], removal

  20. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  1. Process for removal of sulfur compounds from fuel gases

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA); Stegen, Gary E. (Richland, WA)

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  2. Weigh options for meeting future gasoline sulfur specifications

    SciTech Connect (OSTI)

    Johnson, T.E.

    1997-03-01

    The most frequently mentioned methods for reducing pool gasoline sulfur to the 50-ppm range are FCC feed hydrotreating and desulfurization of heavy cat naptha (HCN). Of these, cat feed hydrotreating (CFH) is preferred because of the compelling economics of improved FCC gasoline yield. Also, the additional C{sub 3}/C{sub 4} olefin yield opens up the possibility of additional production of sulfur-free alkylate and oxygenate. In addition to the obvious yield benefits, the ability to upgrade lower quality, higher sulfur stocks for inclusion in the FCC charge slate, while lowering flue gas SO{sub x} emissions, is also advantageous to the refiner. However, depending o the level of FCC feed sulfur and the severity of hydrotreating used, it may not be possible to meet 50-ppm sulfur in the gasoline pool. Two possible solutions to this problem are to use: (1) a very severe cat feed hydrotreating operation (i.e., 98%-plus desulfurization), (2) partial conversion hydrocracking.

  3. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

  4. Gas phase reaction of sulfur trioxide with water vapor

    SciTech Connect (OSTI)

    Kolb, C.E.; Molina, M.J.; Jayne, J.T.; Meads, R.F.; Worsnop, D.R.

    1994-12-31

    Sulfur trioxide (SO3) has long been known to react with water to produce sulfuric acid (H2S04). It has been commonly assumed that the gas phase reaction in the Earth`s atmosphere between SO3 and water vapor to produce sulfuric acid vapor is an important step in the production of sulfuric acid aerosol particles. The kinetics of the gas phase reaction of SO3 with water vapor have previously been studied by Castleman and co-workers, Wang et al and Reiner and Arnold. Each of these studies was carried out in a flow reactor, with the first two studies performed at low pressure (1-10 Torr) and the latter from approx. 30 to 260 Torr. Each of these studies measured SO3 decays over a range of H2O vapor levels, obtaining data consistent with interpreting the reaction of gaseous SO3 and H2O as a bimolecular process. It is not clear why previous experimental studies failed to observe a nonlinear dependence of SO3 consumption on water vapor concentration. It is probable that sufficient water dimer exists in much of the Earth`s atmosphere to allow dimer reactions to participate in sulfuric acid vapor formation.

  5. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  6. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  7. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect (OSTI)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  8. High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerances

    SciTech Connect (OSTI)

    K. Coulter

    2010-12-31

    The project team consisting of Southwest Research Institute{reg_sign} (SwRI{reg_sign}), Georgia Institute of Technology (GT), the Colorado School of Mines (CSM), TDA Research, and IdaTech LLC was focused on developing a robust, poison-tolerant, hydrogen selective free standing membrane to produce clean hydrogen. The project completed on schedule and on budget with SwRI, GT, CSM, TDA and IdaTech all operating independently and concurrently. GT has developed a robust platform for performing extensive DFT calculations for H in bulk palladium (Pd), binary alloys, and ternary alloys of Pd. Binary alloys investigated included Pd96M4 where M = Li, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. They have also performed a series of calculations on Pd{sub 70}Cu{sub 26}Ag{sub 4}, Pd{sub 70}Cu{sub 26}Au{sub 4}, Pd{sub 70}Cu{sub 26}Ni{sub 4}, Pd{sub 70}Cu{sub 26}Pt{sub 4}, and Pd{sub 70}Cu{sub 26}Y{sub 4}. SwRI deposited and released over 160 foils of binary and ternary Pd alloys. There was considerable work on characterizing and improving the durability of the deposited foils using new alloy compositions, post annealing and ion bombardment. The 10 and 25 {micro}m thick films were sent to CSM, TDA and IdaTech for characterization and permeation testing. CSM conducted over 60 pure gas permeation tests with SwRI binary and ternary alloy membranes. To date the PdAu and PdAuPt membranes have exhibited the best performance at temperatures in the range of 423-773 C and their performance correlates well with the predictions from GT. TDA completed testing under the Department of Energy (DOE) WGS conditions on over 16 membranes. Of particular interest are the PdAuPt alloys that exhibited only a 20% drop in flux when sulfur was added to the gas mixture and the flux was completely recovered when the sulfur flow was stopped. IdaTech tested binary and ternary membranes on a simulated flue gas stream and experienced significant difficulty in mounting and testing the sputter deposited membranes. IdaTech was able to successfully test PdAu and PdAuPt membranes and saw similar sulfur tolerance to what TDA found. The Program met all the deliverables on schedule and on budget. Over ten presentations at national and international conferences were made, four papers were published (two in progress) in technical journals, and three students (2 at GT and 1 at CSM) completed their doctorates using results generated during the course of the program. The three major findings of program were; (1) the DFT modeling was verified as a predictive tool for the permeability of Pd based ternary alloys, (2) while magnetron sputtering is useful in precisely fabricating binary and ternary alloys, the mechanical durability of membranes fabricated using this technique are inferior compared to cold rolled membranes and this preparation method is currently not ready for industrial environments, (3) based on both modeling and experimental verification in pure gas and mixed gas environments PdAu and PdAuPt alloys were found to have the combination of the highest permeability and tolerance to sulfur.

  9. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha (Aurora, IL); Meyer, Howard S. (Hoffman Estates, IL); Lynn, Scott (Pleasant Hill, CA); Leppin, Dennis (Chicago, IL); Wangerow, James R. (Medinah, IL)

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  10. Test of a fine pitch SOI pixel detector with laser beam

    E-Print Network [OSTI]

    Yi Liu; Yunpeng Lu; Xudong Ju; Qun Ouyang

    2015-04-15

    A silicon pixel detector with fine pitch size of 19x19 um, developed base on SOI (silicon on insulator) technology, was tested under the illumination of infrared laser pulses. As an alternative way to particle beam tests, the laser pulses were tuned to very short duration and small transverse profile to simulate the tracks of MIPs (minimum ionization particles) in silicon. Hit cluster sizes were measured with focused laser pulses propagating through the SOI detector perpendicular to its surface and most of the induced charge was found to be collected inside the seed pixel. For the first time, the signal amplitude as a function of the applied bias voltage was measured for this SOI detector, deepening understanding of its depletion characteristics.

  11. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect (OSTI)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-04-15

    Highlights: ? We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ? The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ? Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ? Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup ?1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  12. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01

    S breakthrough time and sulfur capture capacity increased asspace velocity on H 2 S on sulfur capture capacity for H 2 Sbased on the optimal sulfur capture capacity under CE-CERT

  13. Preliminary Investigation of Sulfur Loading in Hanford LAW Glass

    SciTech Connect (OSTI)

    Vienna, John D.; Hrma, Pavel R.; Buchmiller, William C.; Ricklefs, Joel S.

    2004-04-01

    A preliminary estimate was developed for loading limits for high-sulfur low-activity waste (LAW) feeds that will be vitrified into borosilicate glass at the Hanford Site in the waste-cleanup effort. Previous studies reported in the literature were consulted to provide a basis for the estimate. The examination of previous studies led to questions about sulfur loading in Hanford LAW glass, and scoping tests were performed to help answer these questions. These results of these tests indicated that a formulation approach developed by Vienna and colleagues shows promise for maximizing LAW loading in glass. However, there is a clear need for follow-on work. The potential for significantly lowering the amount of LAW glass produced at Hanford (after the initial phase of processing) because of higher sulfur tolerances may outweigh the cost and effort required to perform the necessary testing.

  14. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  15. Direct sulfur recovery during sorbent regeneration. Final report

    SciTech Connect (OSTI)

    Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1993-08-01

    The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

  16. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-10-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

  17. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  18. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  19. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  20. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  1. Hydrogen-Selective Membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  2. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  3. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  4. Structural insight into the assembly of iron-sulfur clusters and their function in radical generation

    E-Print Network [OSTI]

    Vey, Jessica L. (Jessica Lynn)

    2008-01-01

    This thesis addresses two emerging areas in the study of iron-sulfur cluster biochemistry: bioassembly of iron-sulfur clusters, and their involvement in initiation of radical chemistry. The structure of a cysteine desulfurase ...

  5. KINETICS AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDE ON CARBON IN AQUEOUS SUSPENSIONS

    E-Print Network [OSTI]

    Brodzinsky, R.

    2012-01-01

    AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDEmechanism for the catalytic oxidation of in an aqueous sus1ECHANISf 1 1 FOR TilE CATALYTIC OXIDATION OF SULFUR DIOXIDE

  6. A design strategy applied to sulfur resistant lean NOxĚł automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  7. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  8. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    SciTech Connect (OSTI)

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placed within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.

  9. Comments on liquid hydrogen absorbers for MICE

    E-Print Network [OSTI]

    Green, Michael A.

    2003-01-01

    SCMAG-798 Comments on Liquid Hydrogen Absorbers for MICEshown in Figure 1. Three liquid hydrogen absorbers are shownthe RF Cavities, the Liquid Hydrogen Absorbers, the Central

  10. Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage - Storage of hydrogen (or its chemical precursors) within the distribution system Fuel Cells - Conversion of hydrogen to electrical power; use of hydrogen to power...

  11. National Hydrogen Energy Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Energy Roadmap National Hydrogen Energy Roadmap This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen...

  12. Hydrogen Bond Shaping of Membrane Protein Structure

    E-Print Network [OSTI]

    Cao, Zheng

    2013-01-01

    2 1.3. HYDROGEN BOND STRENGTHAND EQUILIBRIUM HYDROGEN / DEUTERIUM FRACTIONATION4 1.4. MEASUING HYDROGEN BOND STRENGTH IN A MEMBRANE PROTEIN

  13. Hydrogen Storage Research and Development Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Research and Development Activities Hydrogen Storage Research and Development Activities DOE's hydrogen storage research and development (R&D) activities are aimed...

  14. Liquid Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquid Hydrogen Delivery Liquid Hydrogen Delivery Hydrogen is most commonly transported and delivered as a liquid when high-volume transport is needed in the absence of pipelines....

  15. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  16. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

  17. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01

    high-pressure stationary hydrogen storage tanks. The storage10] reviewed the hydrogen storage and the delivery cost forwhich applies to hydrogen storage vessels and compressors.

  18. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01

    N I [10] reviewed the hydrogen storage and the delivery costwhich applies to hydrogen storage vessels and compressors.high-pressure gaseous hydrogen storage contain- ers, and a

  19. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01

    10] reviewed the hydrogen storage and the delivery cost forwhich applies to hydrogen storage vessels and compressors.high-pressure gaseous hydrogen storage containers, and a

  20. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  1. Renewable Hydrogen From Wind in California

    E-Print Network [OSTI]

    Bartholomy, Obadiah

    2005-01-01

    Suitability for Hydrogen Production in the Sacramento Area” Renewable Energy  for Hydrogen Production in Californiamodel of renewable hydrogen production in California, which

  2. Hydrogen production from microbial strains

    SciTech Connect (OSTI)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  3. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    SciTech Connect (OSTI)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  4. Hydrogen: Fueling the Future

    SciTech Connect (OSTI)

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

  5. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  6. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  7. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  8. The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

    E-Print Network [OSTI]

    The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

  9. Solar thermal hydrogen production process: Final report, January 1978-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

  10. A. Paytan and E.T. Gray Chapter 9 Sulfur Isotope Stratigraphy

    E-Print Network [OSTI]

    Paytan, Adina

    A. Paytan and E.T. Gray Chapter 9 Sulfur Isotope Stratigraphy Abstract: The sulfur isotopic.4. Measurement and Materials for Sulfur Isotope Stratigraphy 171 9.4.1. Isotope Analyses 171 9.4.2. Materials. The features in the record can also be used to correlate between stratigraphic sections and sequences

  11. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India*

    E-Print Network [OSTI]

    The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India* A.L. Ganesan of methane, nitrous oxide and sulfur hexafluoride in Northeast India A. L. Ganesan1, A. Chatterjee2, R. G-frequency atmospheric measurements of methane (CH4), nitrous oxide (N2O) and sulfur hexafluo- ride (SF6) from Darjeeling

  12. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    sulfur diesel fuel is less expensive due to reduced taxes and as such may be prone to illegal use in on-road November 2005; published online 18 January 2006 A remote sensor for measuring on-road vehicles passing of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  13. Paper 2008-01-0434 Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on

    E-Print Network [OSTI]

    Fatemi, Ali

    to fatigue strength, the high sulfur material had up to 25% lower fatigue strength than the ultra low sulfur, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented

  14. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    DOE Patents [OSTI]

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  15. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  16. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2004-11-02

    The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.

  17. Catalyst added to Claus furnace reduces sulfur losses

    SciTech Connect (OSTI)

    Luinstra, E.A.; d'Haene, P.E. (Shell Canada Ltd., Toronto, ON (Canada). Oakville Research Centre)

    1989-07-01

    Several substances effectively catalyze the reduction of carbon disulfide in Claus gas streams at Claus reaction furnace conditions (about 1,000{sup 0}C). Some conversion of carbonyl sulfide also occurs. Carbon disulfide and carbonyl sulfide as well-known problem compounds that reduce sulfur recovery efficiency in many sulfur recovery plants. Installation of a suitable catalytic material in the reaction furnace promises significant improvement of Claus plant efficiency, and prolonged life of the catalytic converters. Almost every Claus sulfur recovery plant makes some carbon disulfide (CS/sub 2/) and carbonyl sulfide (COS) in the reaction furnace, and in many of these plants, these compounds constitute a significant problem. CS/sub 2/ and COS often comprise more than 50% of sulfur losses in the tail gas. This article reexamines the issue of CS/sub 2/ and COS in the Claus plant. The relative importance of these two troublesome components is explored with data accumulated from Shell Canada Claus plants. The authors discuss which factors tend to produce these components. Then a method for reducing CS/sub 2/ and COS virtually at the source will be introduced.

  18. Auction design and the market for sulfur dioxide emissions

    E-Print Network [OSTI]

    Joskow, Paul L.

    1996-01-01

    Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO2). Recent papers have argued that flaws in the design of the auctions that are part of this market have ...

  19. Hydroprocessing key issue in low-sulfur' era

    SciTech Connect (OSTI)

    Not Available

    1993-07-26

    Refiners gave heavy attention to hydroprocessing operations at the most recent National Petroleum Refiners Association annual question and answer session on refining and petrochemical technology. Among the topics covered were diesel color, blending to meet diesel sulfur specs, and ammonia injection in hydrocracking units. The panelists also related their experiences with increasing vacuum gas oil conversion in hydrocracking operations. These discussions are reproduced here.

  20. Sulfur controls edge closer in acid-rain debate

    SciTech Connect (OSTI)

    Not Available

    1984-10-04

    The role of airborne sulfur emissions from midwestern and southern coal-fired power plants in exacerbating the acid rain problem is discussed. This problem is discussed from the standpoint of legislation, compliance costs, scrubber performance and cost, and chemistry of acid rains.

  1. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect (OSTI)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  3. Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant

    SciTech Connect (OSTI)

    Piyush Sabharwal

    2009-07-01

    Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

  4. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States); Huffman, G.; Huggins, F.E. [Kentucky Univ., Lexington, KY (United States)

    1992-09-01

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal preoxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation.

  5. Hydrogen Distribution and Delivery Infrastructure

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

  6. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  7. Oxidation resistant organic hydrogen getters

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  8. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  9. New sulfur adsorbents derived from layered double hydroxides: II. DRIFTS study of COS and H2S adsorption

    SciTech Connect (OSTI)

    Toops, Todd J [ORNL; Crocker, Mark [University of Kentucky

    2008-01-01

    H2S and COS adsorption were studied on two calcined layered double hydroxides (LDHs), Mg0.75Al0.25(OH)2(CO3)0.125 and Mg0.65Al0.35(OH)2(CO3)0.175, using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and a chemisorption apparatus. Both demonstrated the ability to irreversibly adsorb H2S, corresponding to uptakes of 1.54 and 1.76 mol/m2 respectively, but Mg0.75Al0.25 had a significantly larger capacity for COS, 1.62 mol/m2 compared to 0.80 mol/m2 for Mg0.65Al0.35. Analysis of the DRIFT spectra suggests the adsorption of H2S proceeds via the substitution of lattice oxygen with sulfur, resulting in the formation of H2O on the surface. COS adsorption is more complicated, although it appears that a similar substitution of lattice oxygen with sulfur occurs. This results in the formation of CO2 and subsequently bicarbonates and carbonates. The formation of hydrogen thiocarbonate is also involved, although this form is generally only observed in the later stages of adsorption and appears to form at the expense of bicarbonate. The Mg0.75Al0.25 LDH retained its ability to adsorb COS in the presence of propene.

  10. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    SciTech Connect (OSTI)

    Puerari, Ivânio; Elmegreen, Bruce G.; Block, David L.

    2014-12-01

    We examine 8 ?m IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,?) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.

  11. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    SciTech Connect (OSTI)

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  12. Extracting Hydrogen Electricity from

    E-Print Network [OSTI]

    . In the United States, energy security motivates the de- velopment of previously untapped sources of oil as well in vehicles. Hydrogen is considered a mobile source of energy, but it must have renewable starting materials as new energy sources. Even if oil and fos- sil fuel production does not reach an international crisis

  13. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  14. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  15. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  16. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  17. Study of the thermochemistry for oxygen production for a solar sulfur-ammonia

    E-Print Network [OSTI]

    Wang, Mimi Kai Wai

    2012-01-01

    Temperature Solar Hydrogen Production,” Chemical Reviews,Steinfeld, A. , “Solar Hydrogen Production via a Two-Stepon Nuclear Hydrogen Production and the Thermochemical Cu- Cl

  18. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Fifth quarterly technical progress report, December 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  19. Nancy Garland DOE Hydrogen Program

    E-Print Network [OSTI]

    Nancy Garland DOE Hydrogen Program Fuel Cell Operation at Sub- Freezing Temperatures DOE Program/Targets and Workshop Objectives Sub-Freezing Temperature Effects on Fuel Cells Workshop Phoenix AZ February 1-2, 2005 #12;Hydrogen Fuel Initiative The Hydrogen, Fuel Cells, and Infrastructure Technologies Program

  20. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  1. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  2. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  3. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  4. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report Updated Cost Analysis of Photobiological Hydrogen...

  5. Robust Polymer Composite Membranes for Hydrogen Separation |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Energy Savers [EERE]

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  8. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  9. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Photoelectrochemical (PEC) Hydrogen Production Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost...

  10. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  11. Autofermentative Biological Hydrogen Production by Cyanobacteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autofermentative Biological Hydrogen Production by Cyanobacteria Autofermentative Biological Hydrogen Production by Cyanobacteria Presentation by Charles Dismukes, Rutgers...

  12. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  13. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  14. A spinning mirror for fast angular scans of EBW emission for magnetic pitch profile measurements

    SciTech Connect (OSTI)

    Volpe, Francesco [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2010-10-15

    A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega-Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12 000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10 ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

  15. Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state

    E-Print Network [OSTI]

    Simone Dussi; Simone Belli; René van Roij; Marjolein Dijkstra

    2014-12-03

    Building a general theoretical framework to describe the microscopic origin of macroscopic chirality in (colloidal) liquid crystals is a long-standing challenge. Here, we combine classical density functional theory with Monte Carlo calculations of virial-type coefficients, to obtain the equilibrium cholesteric pitch as a function of thermodynamic state and microscopic details. Applying the theory to hard helices, we observe both right- and left-handed cholesteric phases that depend on a subtle combination of particle geometry and system density. In particular, we find that entropy alone can even lead to a (double) inversion in the cholesteric sense of twist upon changing the packing fraction. We show how the competition between single-particle properties (shape) and thermodynamics (local alignment) dictates the macroscopic chiral behavior. Moreover, by expanding our free-energy functional we are able to assess, quantitatively, Straley's theory of weak chirality, used in several earlier studies. Furthermore, by extending our theory to different lyotropic and thermotropic liquid-crystal models, we analyze the effect of an additional soft interaction on the chiral behavior of the helices. Finally, we provide some guidelines for the description of more complex chiral phases, like twist-bend nematics. Our results provide new insights on the role of entropy in the microscopic origin of this state of matter.

  16. Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification

    SciTech Connect (OSTI)

    Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

    2012-06-20

    Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

  17. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    SciTech Connect (OSTI)

    Pace, D. C. Fisher, R. K.; Van Zeeland, M. A.; Pipes, R.

    2014-11-15

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  18. Solid evacuated microspheres of hydrogen

    DOE Patents [OSTI]

    Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  19. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage

    SciTech Connect (OSTI)

    Contescu, Cristian I; van Benthem, Klaus; Li, Sa; Bonifacio, Cecile S; Pennycook, Stephen J; Jena, Puru; Gallego, Nidia C

    2011-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) were synthesized by meltspinning, carbonization and activation of an isotropic pitch carbon precursor premixed with an organometallic Pd compound. The hydrogen uptake at 25 oC and 20 bar on Pd- ACF exceeded the expected capacity based solely on Pd hydride formation and hydrogen physisorption on the microporous carbon support. Aberration-corrected scanning transmission electron microscopy (STEM) with sub- ngstrom spatial resolution provided unambiguous identification of isolated Pd atoms occurring in the carbon matrix that coexist with larger Pd particles. First principles calculations revealed that each single Pd atom can form Kubas-type complexes by binding up to three H2 molecules in the pressure range of adsorption measurements. Based on Pd atom concentration determined from STEM images, the contribution of various mechanisms to the excess hydrogen uptake measured experimentally was evaluated. With consideration of Kubas binding as a viable mechanism (along with hydride formation and physisorption to carbon support) the role of hydrogen spillover in this system may be smaller than previously thought.

  20. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  1. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  2. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  3. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

    2001-04-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

  4. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-01-30

    Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

  5. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    SciTech Connect (OSTI)

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of the separators. The project identified an experimental methodology for quantifying the impact of gas contaminants on PdCu alloy membrane performance as well as an atomistic modeling approach to screen metal alloys for their resistance to irreversible sulfur corrosion. Initial mathematical descriptions of the effect of species such as CO and H{sub 2}S were developed, but require further experimental work to refine. At the end of the project, an improvement to the experimental approach for acquiring the necessary data for the permeability model was demonstrated in preliminary tests on an enhanced PdCu separator. All of the key DOE 2010 technical targets were met or exceeded except for the hydrogen flux. The highest flux observed for the project, 125 ft{sup 3}ft{sup -2}h{sup -1}, was obtained on a single tube separator with the aforementioned enhanced PdCu separator with a hydrogen feed pressure of 185 psig at 500 C.

  6. Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas

    SciTech Connect (OSTI)

    James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

    2008-05-31

    This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

  7. Modeling sulfur dioxide capture in a pulverized coal combustor

    SciTech Connect (OSTI)

    Nair, R.B.; Yavuzkurt, S. [Pennsylvania State Univ., University Park, PA (United States)

    1997-04-01

    The formation and capture of sulfur dioxide in a pulverized coal combustor is investigated. A two-dimensional, steady, axisymmetric code, PCGC-2 (Pulverized Coal Gasification and Combustion-two Dimensional), originally developed at Brigham Young University, has been used to simulate combustion of the pulverized coal. This paper represents part of a project to investigate simultaneously enhancing sulfur capture and particulate agglomeration in combustor effluents. Results from the code have been compared to experimental data obtained from MTCI`s (Manufacturing Technology and Conversion International) test pulse combustor, which generates sound pressure levels of {approximately}180 dB. The overall goal behind the pulse combustor program at MTCI is to develop combustors for stationary gas turbines that use relatively inexpensive coal-based fuels. This study attempts to model the capture of sulfur dioxide when injected into a pulse combustor firing micronized coal. While this work does not presume to model the complex gas flow-field generated by the pulsating flow, the effects of the acoustic field are expressed by increased heat and mass transfer to the particles (coal/sorbent) in question. A comprehensive calcination-sintering-sulfation model for single particles was used to model the capture of sulfur dioxide by limestone sorbent. Processes controlling sulfation are external heat and mass transfer, pore diffusion, diffusion through the product layer of CaSO{sub 4}, sintering, and calcination. The model was incorporated into the PCGC-2 program. Comparisons of exit concentrations of SO{sub 2} showed a fairly good agreement (within {approximately}10 percent) with the experimental results from MTCI.

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  9. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  10. Glass surface deactivants for sulfur-containing gases

    SciTech Connect (OSTI)

    Farwell, S.O.; Gluck, S.J.

    1980-10-01

    In gas chromatographic technique for measuring reduced sulfur-containing gases in biogenic air fluxes, the major problem seemed to be the irreversible adsorption of the polar sulfur compounds on the glass surfaces of the cryogenic sampling traps. This article discusses the comparative degrees of Pyrex glass surface passivation for over 25 chemical deactivants and their related pretreatment procedures. Since H/sub 2/S was discovered to be the sulfur compound with a consistently lower recovery efficiency than COS, CH/sub 3/SH, CH/sub 3/SCH, CS/sub 2/ or CH/sub 3/SSCH/sub 3/, the percent recovery for H/sub 2/S was employed as the indicator of effectiveness for the various deactivation treatments. Tables are presented summarizing the mean H/sub 2/S recoveries for chlorosilane deactivants and for the mean H/sub 2/S recoveries for different pyrex surface pretreatments with an octadecyltrialkoxysilane deactivation. The general conclusion of this investigation is that the relative degree of passivation for glass surfaces by present deactivation techniques is dependent on the types of analyzed compounds and the nature of the glass surface.

  11. Sibley station low-sulfur coal conversion program

    SciTech Connect (OSTI)

    Rupinskas, R.L. [Sargent & Lundy LLC, Chicago, IL (United States); Rembold, D.F. [Missouri Public Service, Kansas City, MO (United States)

    1995-03-01

    After embarking on an upgrade project in 1986 that was designed to allow efficient and reliable operation of its coal-fired Sibley station through 2010, Missouri Public Service (MPS) faced the uncertainty of impending acid-rain legislation. To protect its investment in the Sibley Rebuild Program, the utility evaluated compliance options based on the emerging legislation and concluded that switching to low-sulfur coal offered the least-cost compliance approach. Compared to installing a scrubber, switching to a low-sulfur coal was also more straightforward, although not without challenges and complications. This paper reviews the Sibley low-sulfur coal conversion program. At Sibley, fuel switching was chosen only after numerous internal and external studies; it withstood late challenges from natural gas and allowance trading. Switching demanded additional equipment to blend Power River Basin coals and other coals, and demanded additional and upgraded protective equipment in the areas of fire protection, dust collection, and explosion prevention. In the year since the coal conversion project was completed the facility has operated reliably, the economic benefits of the lower cost Powder River Basin coals have been realized, and the station has also met the requirements of both phases of the acid rain legislation. Fuel switching at Sibley required a team approach and careful analysis. The coal conversion project also required attention and dedication by team members in order to minimize fuel costs while maintaining optimum plant efficiency and availability.

  12. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  13. How to Obtain Reproducible Results for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-01-01

    The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

  14. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL; Liang, Chengdu [ORNL

    2015-01-01

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  15. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  16. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01

    Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

  17. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01

    concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

  18. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01

    Partnership Finalizes Hydrogen Energy Roadmap,” World WideCommercialization Strategy for Hydrogen Energy Technologies,Economic Analysis of Hydrogen Energy Station Concepts: Are “

  19. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01

    a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? ”distributed power and hydrogen fuel efforts. We sug- gestefforts to promote hydrogen, fuel cells and advanced energy

  20. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01

    compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy