Sample records for hydrogen mmcfd sulfur

  1. Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla. Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla....

  2. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

    1993-01-01T23:59:59.000Z

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  3. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18T23:59:59.000Z

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  4. Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes

    E-Print Network [OSTI]

    Harkness, J.; Doctor, R. D.

    A new hydrogen sulfide waste-treatment process that uses microwave plasma-chemical technology is currently under development in the Soviet Union and in the United States. Whereas the present waste treatment process only recovers sulfur at best...

  5. Heat Transfer Characteristics of Sulfur and Sulfur Diluted with Hydrogen Sulfide Flowing Through Circular Tubes

    E-Print Network [OSTI]

    Stone, Porter Walwyn

    1960-01-01T23:59:59.000Z

    concentrations of hydrogen sulfide, using water as a basis of comparison. For identical tube sizes and the same fluid velocity, both pure and dilute sulfur were found to have a film conductance ~- I less than ten percent that of water over most... the v x d curves for each concentration of diluent. Sulfur is diluted with H2S, added as persulfide Sulfur is diluted with H S, added as liquid 34 35 10. A Ratio of film conductance of pure sulfur to that of water versus temperature. The flow...

  6. The Hybrid Sulfur Cycle for Nuclear Hydrogen Production

    SciTech Connect (OSTI)

    Summers, William A.; Gorensek, Maximilian B.; Buckner, Melvin R.

    2005-09-08T23:59:59.000Z

    Two Sulfur-based cycles--the Sulfur-Iodine (SI) and the Hybrid Sulfur (HyS)--have emerged as the leading thermochemical water-splitting processes for producing hydrogen utilizing the heat from advanced nuclear reactors. Numerous international efforts have been underway for several years to develop the SI Cycle, but development of the HyS Cycle has lagged. The purpose of this paper is to discuss the background, current status, recent development results, and the future potential for this thermochemical process. Savannah River National Laboratory (SRNL) has been supported by the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology since 2004 to evaluate and to conduct research and development for the HyS Cycle. Process design studies and flowsheet optimization have shown that an overall plant efficiency (based on nuclear heat converted to hydrogen product, higher heating value basis) of over 50% is possible with this cycle. Economic studies indicate that a nuclear hydrogen plant based on this process can be economically competitive, assuming that the key component, the sulfur dioxide-depolarized electrolyzer, can be successfully developed. SRNL has recently demonstrated the use of a proton-exchange-membrane electrochemical cell to perform this function, thus holding promise for economical and efficient hydrogen production.

  7. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    SciTech Connect (OSTI)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01T23:59:59.000Z

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  8. Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer, large-scale production of hydrogen. A key step in the process is the oxidation of sulfur dioxide determines the product sulfuric acid concentration, iii affects SO2 crossover rate, and iv serves to hydrate

  9. REGULAR PAPER Photoproduction of hydrogen by sulfur-deprived C. reinhardtii

    E-Print Network [OSTI]

    Meier, Iris

    dramatic was the effect of sulfur deprivation on the H2-production process, which depends both on the presREGULAR PAPER Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired+Business Media B.V. 2007 Abstract Photoproduction of H2 was examined in a series of sulfur-deprived Chlamydomonas

  10. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08T23:59:59.000Z

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  11. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    SciTech Connect (OSTI)

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01T23:59:59.000Z

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  12. Effective hydrogen generation and resource circulation based on sulfur cycle system

    SciTech Connect (OSTI)

    Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki [Graduate School of Environmental Studies, Tohoku University 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)

    2013-12-10T23:59:59.000Z

    For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, “system integration” to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this “system integration”, the sulfur cycle system for the new energy generation can be constructed.

  13. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22T23:59:59.000Z

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  14. The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen

    E-Print Network [OSTI]

    Miu, Kevin (Kevin K.)

    2006-01-01T23:59:59.000Z

    The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming - the most prevalent method of hydrogen ...

  15. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01T23:59:59.000Z

    ABSTRACT The object of the work reported In this dissertation was to determine the solubility of sulfur in gaseous methane carbon dioxide, and hydrogen sulfide and in mixtures of these gases, at various pressures and temperatures* Sulfur solubility... of methane and propane (which has a critical pressure of approximately the same value of hydrogen sulfide) is 1500 psia. To have liquid in this system at 1500 psia, however, would require a maximum temperature of 20?F which is well below the minimum...

  16. Nuclear Hydrogen Initiative, Results of the Phase II Testing of Sulfur-Iodine Integrated Lab Scale Experiments

    SciTech Connect (OSTI)

    Benjamin Russ; G. Naranjo; R. Moore; W. Sweet; M. Hele; N. Pons

    2009-10-30T23:59:59.000Z

    International collaborative effort to construct a laboratory-scale Sulfur-Iodine process capable of producing 100-200 L/hr of hydrogen.

  17. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Gorensek, M.; Edwards, T.

    2009-06-11T23:59:59.000Z

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  18. Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection: Process Performance Package

    SciTech Connect (OSTI)

    Benjamin Russ

    2009-06-01T23:59:59.000Z

    This document describes the details of implementing a Sulfur-Iodine (S-I) hydrogen production plant to deploy with the Next General Nuclear Power Plant (NGNP). Technical requirements and specifications are included, and a conceptual plant design is presented. The following areas of interest are outlined in particular as a baseline for the various technology comparisons: (1) Performance Criteria - (a) Quantity of hydrogen produced, (b) Purity of hydrogen produced, (c) Flexibility to serve various applications, (d) Waste management; (2) Economic Considerations - (a) Cost of hydrogen, (b) Development costs; and (3) Risk - (a) Technical maturity of the S-I process, (b) Development risk, (c) Scale up options.

  19. Configuring the thermochemical hydrogen sulfuric acid process step for the Tandem Mirror Reactor

    SciTech Connect (OSTI)

    Galloway, T.R.

    1981-05-01T23:59:59.000Z

    This paper identifies the sulfuric acid step as the critical part of the thermochemical cycle in dictating the thermal demands and temperature requirements of the heat source. The General Atomic Sulfur-Iodine Cycle is coupled to a Tandem Mirror. The sulfuric acid decomposition process step is focused on specifically since this step can use the high efficiency electrical power of the direct converter together with the other thermal-produced electricity to Joule-heat a non-catalytic SO/sub 3/ decomposer to approximately 1250/sup 0/K. This approach uses concepts originally suggested by Dick Werner and Oscar Krikorian. The blanket temperature can be lowered to about 900/sup 0/K, greatly alleviating materials problems, the level of technology required, safety problems, and costs. A moderate degree of heat has been integrated to keep the cycle efficiency around 48%, but the number of heat exchangers has been limited in order to keep hydrogen production costs within reasonable bounds.

  20. Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection

    SciTech Connect (OSTI)

    Benjamin Russ

    2009-05-01T23:59:59.000Z

    This report summarizes the sulfur-iodine (SI) thermochemical water splitting process for the purpose of supporting the process for evaluating and recommending a hydrogen production technology to deploy with the Next Generation Nuclear Plant (NGNP). This package provides the baseline process description as well as a comparison with the process as it was implemented in the Integrated Lab Scale (ILS) experiment conducted at General Atomics from 2006-2009.

  1. "ALON ISRAEL OIL COMPANY LTD",820,14,"ALON BAKERSFIELD OPERATING...

    U.S. Energy Information Administration (EIA) Indexed Site

    OPERATING INC","West Coast","California","BAKERSFIELD",5,"HYDROGEN (MMCFD)","Production Capacity, Current Year (barrels per steam day except sulfur and hydrogen)",23 "ALON...

  2. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06T23:59:59.000Z

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  3. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2007-09-30T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

  4. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K.C. Kwon

    2009-09-30T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

  5. Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse

    SciTech Connect (OSTI)

    Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

    1997-08-01T23:59:59.000Z

    Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

  6. Method of recovering sulfur from the hydrogen sulfide contained in coke oven gases

    SciTech Connect (OSTI)

    Laufhutte, D.

    1985-04-30T23:59:59.000Z

    Ammonia and hydrogen sulfide are washed out of the coke oven gas and stripped from the wash liquor in the form of gases and fumes or vapors. The ammonia is decomposed in a nickel catalyzer and a small part of the decomposition gases is supplied directly to a combustion furnace, while the larger part of the combustion gases is first cooled and freed from condensate, and only then supplied to the combustion furnace. In the combustion furnace, the proportion of H/sub 2/S/SO/sub 2/ needed for the Claus process is adjusted by a partial combustion of the decomposition gases. The gases from the combustion furnace are then processed in the Claus plant to sulfur.

  7. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30T23:59:59.000Z

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  8. Hydrogen sulfide decomposition into hydrogen and sulfur by quinone cycles. First annual report, June 1989-May 1990

    SciTech Connect (OSTI)

    Plummer, M.A.

    1990-06-01T23:59:59.000Z

    The research is evaluating the fundamental mechanisms for recovery of sulfur and H{sub 2} from H{sub 2}S, using mild condition cycles based on oxidation of H{sub 2}S by quinones. During this first year, the research focused on the reaction of H{sub 2}S with tertiary butyl anthraquinone to form tertiary butyl anthrahydroquinone. The progress achieved included extending the quinone conversion from 60-80% to complete conversion, significantly increasing the rate of conversion by varying the solvent, and developing a proposed mechanism for this part of the process.

  9. Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    (SOFCs) running on jet fuel reformates for its uninhabited aerial vehicle (UAV) and low emission, military missions can be enhanced and made more effective. Reports indicate that an SOFC operating with jet of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiency

  10. Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor

    E-Print Network [OSTI]

    Tobin, Roger G.

    monitoring, solid-oxide fuel cells, and coal gasification, require operation at much higher temperatures than the magnitude of the sensor's response to alternating hydrogen and oxygen pulses by about 70%, as compared-based devices and the understanding of their operation.10­12 The sensing mechanism involves several steps. 1

  11. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    SciTech Connect (OSTI)

    Gorensek, M.

    2011-07-06T23:59:59.000Z

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  12. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect (OSTI)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31T23:59:59.000Z

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  13. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30T23:59:59.000Z

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  14. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    SciTech Connect (OSTI)

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

    2014-02-24T23:59:59.000Z

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm{sup 2} active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

  15. Safety considerations for the use of sulfur in sulfur-modified pavement materials

    E-Print Network [OSTI]

    Jacobs, Carolyn Yuriko

    1980-01-01T23:59:59.000Z

    when equipped with accessories for remote multipoint (choice of sequential or simultaneous systems) sampling systems, 3) General Monitors Hydrogen Sulfide Monitors Model Z150, a single channel system, and Model 2200, either 2 or 4 channel systems... situations are gaseous emissions of hydrogen sulfide (H2S) and sulfur dioxide (S02), as well as airborne particulate sulfur. These hazards can usually be gauged in terms of temperature, time duration of temperature, and dispersion factors. Hydrogen...

  16. Method to prevent sulfur accumulation in membrane electrode assembly

    DOE Patents [OSTI]

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29T23:59:59.000Z

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  17. Analytical approaches to photobiological hydrogen production in unicellular green algae

    E-Print Network [OSTI]

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01T23:59:59.000Z

    Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chla- mydomonas cells.

  18. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20T23:59:59.000Z

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  19. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16T23:59:59.000Z

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  20. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01T23:59:59.000Z

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  1. Development of the Hybrid Sulfur Thermochemical Cycle

    SciTech Connect (OSTI)

    Summers, William A.; Steimke, John L

    2005-09-23T23:59:59.000Z

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  2. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01T23:59:59.000Z

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  3. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  4. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07T23:59:59.000Z

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  5. DSRP, direct sulfur production

    SciTech Connect (OSTI)

    McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B. [Research Triangle Institute, Research Triangle Park, NC (United States); Chen, D.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1993-06-01T23:59:59.000Z

    The objective of this work is to demonstrate on a bench-scale the Direct Sulfur Recovery Process (DSRP) for up to 99 percent or higher recovery of sulfur (as elemental sulfur) from regeneration off-gases and coal-gas produced in integrated gasification combined cycle (IGCC) power generating systems. Fundamental kinetic and thermodynamic studies will also be conducted to enable development of a model to predict DSRP performance in large-scale reactors and to shed light on the mechanism of DSRP reactions. The ultimate goal of the project is to advance the DSRP technology to the point where industry is willing to support its further development.

  6. Sulfur Dioxide Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

  7. Activation of Sulfur-and Nitrogen-Containing Heterocycles by a Dinuclear Iridium Complex

    E-Print Network [OSTI]

    Jones, William D.

    in Scheme 1, which show the sulfur and nitrogen atoms being removed as H2S and NH3. Because of new structurally characterized. Introduction The removal of heteroatom impurities is an essential component pressures of hydrogen (150-2250 psi) over a hot heterogeneous catalyst (320-440 °C) to remove sulfur

  8. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  9. Oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  10. Argonne Electrochemical Technology Program Sulfur removal from reformate

    E-Print Network [OSTI]

    Argonne Electrochemical Technology Program Sulfur removal from reformate Xiaoping Wang, Theodore Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne Electrochemical Technology

  11. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    1996-01-01T23:59:59.000Z

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  12. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

    1984-01-01T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  13. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  14. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  15. New method of regenerating spent vacuum-carbonate sulfur removal liquor

    SciTech Connect (OSTI)

    Popov, A.A.; Dovgopol, A.P.; Goncharova, Z.S.; Belitskii, A.N,.; Gorokhov, N.N.; Grigorash, A.S.; Yaroshenko, A.K.

    1980-01-01T23:59:59.000Z

    A three-stage method is proposed for processing the ballast salts in the wash liquor from vacuum-carbonate removal of sulfur from coke-oven gas. The method is based on successive treatment of the liquor with sulfur dioxide, hydrogen sulfide and 95% sulfuric acid in the presence of hydrogen sulfide. The products of the process are thiosulfate, sulfate and elemental sulfur, at yields of 99.8%, 99.5% and 99.7% respectively. These investigations of a waste-free vacuum-carbonate method of removing hydrogen sulfide from coke-oven gas convincingly show that it is possible in principle to efficiently utilize the spent liquors both as a feedstock and as an absorbent and to obtain commercial products as a result.

  16. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    SciTech Connect (OSTI)

    Steeper, T.

    2010-09-15T23:59:59.000Z

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

  17. Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The mechanisms by which various fuel component hydrocarbons related to both heavy petroleum and coal-derived liquids are converted to hydrogen without forming carbon were investigated. Reactive differences between paraffins and aromatics in autothermal reforming (ATR) were shown to be responsible for the observed fuel-specific carbon formation characteristics. The types of carbon formed in the reformer were identified by SEM and XRD analyses of catalyst samples and carbon deposits. From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation. The effects of propylene addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics, synergistic effects on conversion characteristics were identified. Indications that the sulfur content of the fuel may be the limiting factor for efficient ATR operation were found. The conversion and degradation effects of the sulfur additive (thiophene) were examined.

  18. Uptake and Surface Reaction of Methanol by Sulfuric Acid Solutions Investigated by Vibrational Sum Frequency Generation and Raman Spectroscopies

    E-Print Network [OSTI]

    Uptake and Surface Reaction of Methanol by Sulfuric Acid Solutions Investigated by Vibrational SumVised Manuscript ReceiVed: June 4, 2008 The uptake of methanol at the air-liquid interface of 0-96.5 wt % sulfuric methanol and H2SO4 to form methyl hydrogen sulfate. The surface is saturated with the methyl species after

  19. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27T23:59:59.000Z

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  20. Continuous sulfur removal process

    DOE Patents [OSTI]

    Jalan, V.; Ryu, J.

    1994-04-26T23:59:59.000Z

    A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

  1. Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Lei Yang; Meilin Liu

    2008-12-31T23:59:59.000Z

    One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

  2. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08T23:59:59.000Z

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  3. Hybrid Sulfur Thermochemical Process Development Annual Report

    SciTech Connect (OSTI)

    Summers, William A.; Buckner, Melvin R.

    2005-07-21T23:59:59.000Z

    The Hybrid Sulfur (HyS) Thermochemical Process is a means of producing hydrogen via water-splitting through a combination of chemical reactions and electrochemistry. Energy is supplied to the system as high temperature heat (approximately 900 C) and electricity. Advanced nuclear reactors (Generation IV) or central solar receivers can be the source of the primary energy. Large-scale hydrogen production based on this process could be a major contributor to meeting the needs of a hydrogen economy. This project's objectives include optimization of the HyS process design, analysis of technical issues and concerns, creation of a development plan, and laboratory-scale proof-of-concept testing. The key component of the HyS Process is the SO2-depolarized electrolyzer (SDE). Studies were performed that showed that an electrolyzer operating in the range of 500-600 mV per cell can lead to an overall HyS cycle efficiency in excess of 50%, which is superior to all other currently proposed thermochemical cycles. Economic analysis indicated hydrogen production costs of approximately $1.60 per kilogram for a mature nuclear hydrogen production plant. However, in order to meet commercialization goals, the electrolyzer should be capable of operating at high current density, have a long operating lifetime , and have an acceptable capital cost. The use of proton-exchange-membrane (PEM) technology, which leverages work for the development of PEM fuel cells, was selected as the most promising route to meeting these goals. The major accomplishments of this project were the design and construction of a suitable electrolyzer test facility and the proof-of-concept testing of a PEM-based SDE.

  4. Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass

    E-Print Network [OSTI]

    California at Riverside, University of

    Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic Dilute sulfuric acid Sulfur dioxide Biofuels Switchgrass a b s t r a c t Dacotah switchgrass was pretreated with sulfuric acid concentrations of 0.5, 1.0, and 2.0 wt.% at 140, 160, and 180 °C and with 1

  5. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    SciTech Connect (OSTI)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17T23:59:59.000Z

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  6. Sulfur-Free Selective Pulping

    E-Print Network [OSTI]

    Dimmel, D. R.; Bozell, J. J.

    A joint research effort is being conducted on ways to produce cost-effective pulping catalysts from lignin. This project addresses improving selectivities and reducing the levels of sulfur chemicals used in pulping. Improved selectivity means...

  7. Selective catalytic reduction of sulfur dioxide to elemental sulfur

    SciTech Connect (OSTI)

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-01-01T23:59:59.000Z

    Elemental sulfur recovery from SO[sub 2]-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO[sub 2] with coke) and Claus plants(reaction of SO[sub 2] with H[sub 2]S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO[sub 2] to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO[sub 2] reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO[sub 2] reduction planned over various CeO[sub 2]-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought Claus-alternative'' for coal-fired power plant applications.

  8. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01T23:59:59.000Z

    in our current approach. The liquefaction of hydrogen allows also for its use in transport applications for example BMW developed a car that utilises liquid hydrogen instead of compressed gas hydrogen making the use of cryogenic hydrogen even more... efficient. 11     Figure 13. Decentralised production of hydrogen pathways for Energy and Hydrogen Cryomagnetic solutions for a hospital environment. The shaded region in the figure represents the decentralised production of hydrogen using renewable...

  9. analyzing organic sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; 2) as expected, classifiers using Gaussian kernels outperformed...

  10. Geothermal hydrogen sulfide removal

    SciTech Connect (OSTI)

    Urban, P.

    1981-04-01T23:59:59.000Z

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  11. Method of making sulfur-resistant composite metal membranes

    DOE Patents [OSTI]

    Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

    2012-01-24T23:59:59.000Z

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  12. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31T23:59:59.000Z

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  13. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision

    SciTech Connect (OSTI)

    Savage, R.L.; Lazarov, L.K.; Prudich, M.E.; Lange, C.A.; Kumar, N.

    1994-03-10T23:59:59.000Z

    The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies. The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.

  14. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    DOE Patents [OSTI]

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15T23:59:59.000Z

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  15. Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light

    E-Print Network [OSTI]

    Denver, University of

    ) or directly through adsorbed nitrogen and hydrogen atoms (11, 12). Ammonia emissions from tunnel studies have mea- surements than all other data combined. Sulfur compounds in gasoline combust in the engine to help facilitate the stringent 2007 diesel engine emission requirements. These reductions

  16. On the Origin of Sulfur

    E-Print Network [OSTI]

    Nils Ryde; David L. Lambert

    2005-10-05T23:59:59.000Z

    We present our work on the halo evolution of sulfur, based on observations of the S I lines around 9220 A for ten stars for which the S abundance was obtained previously from much weaker S I lines at 8694 A. We cannot confirm the rise and the high [S/Fe] abundances for low [Fe/H], as claimed in the literature from analysis of the 8694 A lines. The reasons for claims of an increase in [S/Fe] with decreasing [Fe/H] are probably twofold: uncertainties in the measurements of the weak 8694 A lines, and systematic errors in metallicity determinations from Fe I lines. The near-infrared sulfur triplet at 9212.9, 9228.1, and 9237.5 A are preferred for an abundance analysis of sulfur for metal-poor stars. Our work was presented in full by Ryde & Lambert (2004).

  17. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  18. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  19. Molecular Structures of Polymer/Sulfur Composites for Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

  20. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the

    E-Print Network [OSTI]

    of Archean sulfur reservoirs and to trace pathways in the Archean sulfur cycle. Our data are explained S/33 S/32 S) for sulfide sulfur in shale and carbonate lithofacies from the Hamersley Basin, Western of the lower Mount McRae Shale (V2.5 Ga). Likewise, sulfide sulfur analyses of the Jeerinah Formation (V2.7 Ga

  1. Sulfur hexafluoride as a surrogate

    SciTech Connect (OSTI)

    Taylor, P.H.; Chadbourne, J.F.

    1987-06-01T23:59:59.000Z

    A viable chemical surrogate for monitoring the effectiveness of hazardous waste incinerators must include high thermal stability and low toxicity among its characteristics. The relationship between sulfur hexafluoride (SF6) and hazardous constituent thermal stability for a mixture of chlorinated hydrocarbons indicates that SF6 has the potential to satisfy the basic requirements of a chemical surrogate for hazardous waste incineration.

  2. Recovering sulfur from gas streams

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    Linde AG (Hoellriegeiskreuth, Germany) has developed ClinSulf-SDP process, a two-reactor system that offers better than 99.5% sulfur recovery at low capital and operating costs. In a traditional Claus plant, sulfur-recovery rates of 99.3% can be achieved by combining a two- or three-stage Claus plant with a separate tail-gas cleanup unit (TGCU). Common TGCU methods include H{sub 2}S scrubbing, subdewpoint condensation and direct oxidation. Such combined units are not only costly and complicated to build and maintain, but many of today`s operators require higher sulfur-recovery rates--on the order of 99.3%--99.8%. The Clin-Sulf-SDP combines several catalytic stages of a Claus plant with a subdewpoint, tailgas-treatment system, and the process uses only two reactors. At the heart of the process are two identical, internally cooled reactors. Two four-way valves periodically reverse the sequence of the matching reactors, allowing them to alternate between sulfur-adsorption and catalyst-regeneration modes.

  3. Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    and must be resup- plied. For example, researchers at the Savannah River National Laboratory SRNL have

  4. Process for the hydroformylation of sulfur-containing thermally cracked petroleum residue and novel products thereof

    SciTech Connect (OSTI)

    Oswald, A.A.; Bhatia, R.N.; Mozeleski, E.J.; Glivicky, A.P.; Brueggeman, B.G.; Hooten, J.R.; Smith, C.M.; Hsu, C.S.

    1991-07-09T23:59:59.000Z

    This patent describes a hydroformylation-hydrogenation process comprising reacting an olefinic cracked petroleum distillate feed, produced from petroleum residue by high temperature thermal cracking, and containing C{sub 5} to C{sub 35}-1-n-alkyl olefins as the major type of olefin components, and organic sulfur compounds in concentrations exceeding 0.1% sulfur. It comprises at first with carbon monoxide and hydrogen at temperatures between about 50 and 250{degrees} C and pressures in the range of 50 to 6000 psi; in the presence of a Group VIII transition metal carbonyl complex catalyst in effective amounts to produce aldehydes of a semilinear character having an average of less than one alkyl branch per molecule and 20% by weight or more linear isomers, then with molecular hydrogen at temperatures between 100 and 250{degrees} C and pressures between 200 psi and 5000 psi (13.6 and 340 atm) in the presence of a hydrogenation catalyst in effective amounts the catalyst being sulfur resistant cobalt, molybdenum, nickel, or tungsten or a sulfide thereof to produce the corresponding alcohols of a semilinear character having an average of less than one alkyl branch per molecule and 20% by weight or more linear isomers, then with molecular hydrogen at temperatures between 100 and 250{degrees} C and pressures between 200 psi and 5000 psi (13.6 and 340 atm) in the presence of a hydrogenation catalyst in effective amounts the catalyst being sulfur resistant cobalt, molybdenum, nickel, or tungsten or a sulfide thereof to produce the corresponding alcohols of a semilinear character having an average of less than one alkyl branch per molecule.

  5. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-15T23:59:59.000Z

    In developing the new Ohio University procedure the thermodynamic limitations of the reactions for removal of both pyritic and organic sulfur from coal at 400--600{degrees}C were studied using copper as a very strong H{sub 2}S-acceptor. Copper serves as a catalyst for ethanol dehydrogenation to form nascent hydrogen. Copper also serves as a scavenger to form copper sulfide from the hydrogen sulfide evolved during the reaction. Copper sulfide in turn serves as a catalyst for organic sulfur hydrodesulfurization reactions. If the coal to be desulfurized contains pyrite (FeS{sub 2}) or FeS, the copper scavenger effect reduces any back reaction of hydrogen sulfide with the iron and increases the removal of sulfur from the carbonaceous material. The desired effect of using copper can be achieved by using copper or copper containing alloys as materials of construction or as liners for a regenerable reactor. During the time period that Ohio Coal Development Office supported this work, small scale (560 grams) laboratory experiments with coals containing about 3.5% sulfur have achieved up to 90% desulfurization at temperatures of 500{degrees}C when using a copper reactor. Results from the autoclave experiments have identified the nature of the chemical reactions taking place. Because the process removes both pyritic and organic sulfur in coal, the successful scale up of the process would have important economic significance to the coal industry. Even though this and other chemical processes may be relatively expensive and far from being commercial, the reason for further development is that this process may hold the promise of achieving much greater sulfur reduction and of producing a cleaner coal than other methods. This would be especially important for small or older power plants and industrial boilers.

  6. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  7. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01T23:59:59.000Z

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  8. An electrochemical Claus process for sulfur recovery

    SciTech Connect (OSTI)

    Pujare, N.U.; Tsai, K.J.; Sammuells, A.F. (Eltron Research, Inc., Aurora, IL (US))

    1989-12-01T23:59:59.000Z

    Electrochemical oxidation of H{sub 2}S to give sulfur and water was achieved at 900{degrees}C using fuel cells possessing the general configuration where anode electrocatalysts experimentally investigated for promoting the subject oxidation reaction included WS{sub 2} and the thiospinels CuNi{sub 2}S{sub 4}, CuCo{sub 2}S{sub 4}, CuFe{sub 2}S{sub 4}, and NiFe{sub 2}S{sub 4}. The predominant oxidizable electroactive species present in the fuel cell anode compartment was suggested to be hydrogen originating from the initial thermal dissociation of H{sub 2}S (H{sub 2}S {r reversible} H{sub 2} + 1/2 S{sub 2}) at fuel cell operating temperatures. Rapid anode kinetics were found for the anodic reaction with the empirical trend for exchange currents (i{sub o}) per geometric area being found to be NiFe{sub 2}S{sub 4}{gt}WS{sub 2}{gt}CuCo{sub 2}S{sub 4}{gt}CuFe{sub 2}S{sub 4}{approx equal}NiCo{sub 2}S{sub 4}{gt}CuNi{sub 2}S{sub 4}.

  9. Design and operation of the coke-oven gas sulfur removal facility at Geneva Steel

    SciTech Connect (OSTI)

    Havili, M.U.; Fraser-Smyth, L.L.; Wood, B.W. [Geneva Steel, Provo, UT (United States)

    1996-02-01T23:59:59.000Z

    The coke-oven gas sulfur removal facility at Geneva Steel utilizes a combination of two technologies which had never been used together. These two technologies had proven effective separately and now in combination. However, it brought unique operational considerations which has never been considered previously. The front end of the facility is a Sulfiban process. This monoethanolamine (MEA) process effectively absorbs hydrogen sulfide and other acid gases from coke-oven gas. The final step in sulfur removal uses a Lo-Cat II. The Lo-Cat process absorbs and subsequently oxidizes H{sub 2}S to elemental sulfur. These two processes have been effective in reducing sulfur dioxide emissions from coke-oven gas by 95%. Since the end of the start-up and optimization phase, emission rate has stayed below the 104.5 lb/hr limit of equivalent SO{sub 2} (based on a 24-hr average). In Jan. 1995, the emission rate from the sulfur removal facility averaged 86.7 lb/hr with less than 20 lb/hr from the Econobator exhaust. The challenges yet to be met are decreasing the operating expenses of the sulfur removal facility, notably chemical costs, and minimizing the impact of the heating system on unit reliability.

  10. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.

    2010-03-24T23:59:59.000Z

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis). The effect of operation at higher anolyte concentrations on the flowsheet, and on the net thermal efficiency for a nuclear-heated HyS process, is examined and quantified.

  11. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  12. Hydrogen production by the decomposition of water

    DOE Patents [OSTI]

    Hollabaugh, Charles M. (Los Alamos, NM); Bowman, Melvin G. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

  13. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J. (Wheat Ridge, CO)

    1993-01-01T23:59:59.000Z

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  14. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  15. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  16. Hydrogen Analysis

    Broader source: Energy.gov (indexed) [DOE]

    A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter...

  17. Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Alexei Khalizov, and Renyi Zhang*

    E-Print Network [OSTI]

    Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors, water, and ammonia. A central feature of the complexes is the presence of two hydrogen bonds. Organic acid-sulfuric acid complexes show one strong and one medium-strength hydrogen bond whereas

  18. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01T23:59:59.000Z

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  19. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

    1981-01-01T23:59:59.000Z

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30T23:59:59.000Z

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  1. Natural Gas Processing Plant- Sulfur (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

  2. Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget

    E-Print Network [OSTI]

    Alexander, Becky

    processes, volca- noes) or produced within the atmosphere by oxidation of re- duced sulfur speciesTransition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur importance of sulfate production by Fe(III)- and Mn(II)-catalyzed oxidation of S(IV) by O2. We scale

  3. Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake

    E-Print Network [OSTI]

    Borguet, Eric

    promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

  4. Massive atmospheric sulfur loading of the AD 1600 Huaynaputina eruption and implications for petrologic sulfur estimates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for petrologic sulfur estimates Fidel Costa1 and Bruno Scaillet Institut des Sciences de la Terre d'Orle´ans, UMR petrological, analytical, and thermodyna- mical data to constrain the sulfur yield of the AD 1600 Huaynaputina loading of the AD 1600 Huaynaputina eruption and implications for petrologic sulfur estimates, Geophys

  5. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  6. Shell middle distillate hydrogenation process

    SciTech Connect (OSTI)

    Lucien, J.P. [Companie Rhenane de Raffinage Reichstett, Reichstett Vendenheim (France); Berg, J.P. van den; Hooijdonk, H.M.J.H. van; Thielemans, G.L.B. [Shell Internationale Petroleum Mij., The Hague (Netherlands); Germaine, G. [Shell Recherche SA, Grand-Couronne (France); Gjers, M. [Shell Raffinaderi AB, Gothenburg (Sweden)

    1994-12-31T23:59:59.000Z

    The strive towards cleaner environment has lead to low sulfur specifications for middle distillate fuels. In addition compositional specifications are presently debated. Thus, to meet future emissions standards regarding, specifically, particulates emissions, the motor industry calls for improved automotive gasoil quality. Although automotive gasoil quality affects emissions from diesel engines it is considered less influential than engine design and maintenance. Sulfur, density and cetane number are the fuel properties having the greatest influence on diesel engine emissions although also aromatics and endpoint specifications have been defined in environmentally adopted government initiatives. This paper reviews the options which are available to tackle these new requirements. The high severity single stage concept (using conventional mixed sulfides catalysts) will be discussed in its potential to meet more severe product requirements as well as in terms of its limitations, especially at the point of aromatics saturation and cetaine upgrading. Furthermore, it is shown that the option of severe hydrotreating followed by hydrogenation with conventional noble metal catalysts is preferred if deep aromatics saturation is aimed at. However, this conventional two stage concept has limitations with respect to heaviness and sulfur and nitrogen content of feedstocks. The new Shell Middle Distillate Hydrogenation (SMDH) technology, applying a (semi) two stage approach based on the Shell developed hydrogenation catalyst is presented. The SMDH process will be discussed in its potential to break the limitations of the conventional options. The new catalyst is crucial in this process and allows a highly integrated mode of operation. A number of applications of this novel process will be discussed.

  7. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26T23:59:59.000Z

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  8. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  9. atmospheric sulfur deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    desert dust Paytan, Adina 8 Effects of sulfuric acid and nitrogen deposition on mineral nutrition of Picea abies (L.) Karst. Physics Websites Summary: Effects of sulfuric...

  10. Manipulating the Surface Reactions in Lithium Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

  11. Method for Determining Performance of Sulfur Oxide Adsorbents...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Determining Performance of Sulfur Oxide Adsorbents for Diesel Emission Control Using Online Measurement of SO2 and Method for Determining Performance of Sulfur Oxide...

  12. Comparative Study on the Sulfur Tolerance and Carbon Resistance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Comparative Study on the Sulfur Tolerance and Carbon Resistance of...

  13. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01T23:59:59.000Z

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  14. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Program A Prospectus for Biological H 2 Production The Hydrogen Economy The hydrogen economy pertains to a world fundamentally different from the one we now know. Hydrogen...

  15. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31T23:59:59.000Z

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  16. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12T23:59:59.000Z

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  17. Investigation of a sulfur reduction technique for mild gasification char

    SciTech Connect (OSTI)

    Knight, R.A.

    1991-01-01T23:59:59.000Z

    The object of this program is to investigate the desulfurization of mild gasification char using hydrogen/methane mixtures in a laboratory-scale experimental study. In the first year of the two- year program, char is being treated with mixtures of H{sub 2} and CH{sub 4} at temperatures of 1100{degrees}C to 1550{degrees}F and pressures of 50 to 100 psig. The effects of temperature, pressure, residence time, gas velocity, and gas composition on sulfur removal and carbon gasification are being determined. The batch experiments are being performed in a nominal 2-inch-ID stainless-steel, batch, fluidized-bed reactor. The char to be desulfurized was produced by the IGT mild gasification process research unit (PRU) in a recently completed DOE/METC-sponsored technology development program. The parent coal was Illinois No. 6 from a preparation plant, and the char from the selected test contains 4.58 wt% sulfur. In the first quarter, we have obtained and prepared a char for the desulfurization tests. Ultimate and proximate analyses were performed on this char, and its pore size distribution and surface area were determined. Also this quarter, the fluidized-bed reactor system was constructed and equipped with high pressure mass flow controllers and a high pressure sintered metal filter to remove fines from the effluent gas stream.

  18. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24T23:59:59.000Z

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  19. Definition of Non-Conventional Sulfur Utilization in Western Kazakhstan for Sulfur Concrete (Phase 1)

    SciTech Connect (OSTI)

    Kalb, Paul

    2007-05-31T23:59:59.000Z

    Battelle received a contract from Agip-KCO, on behalf a consortium of international oil and gas companies with exploration rights in the North Caspian Sea, Kazakhstan. The objective of the work was to identify and help develop new techniques for sulfur concrete products from waste, by-product sulfur that will be generated in large quantitites as drilling operations begin in the near future. BNL has significant expertise in the development and use of sulfur concrete products and has direct experience collaborating with the Russian and Kazakh partners that participated. Feasibility testing was successfully conducted for a new process to produce cost-effective sulfur polymer cement that has broad commerical applications.

  20. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOE Patents [OSTI]

    Mahajan, Devinder

    2004-12-28T23:59:59.000Z

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  1. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  2. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, Tetsuo (Ames, IA); Squires, Thomas G. (Gilbert, IA); Venier, Clifford G. (Ames, IA)

    1985-02-05T23:59:59.000Z

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  3. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11T23:59:59.000Z

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  4. World copper smelter sulfur balance-1988

    SciTech Connect (OSTI)

    Towle, S.W. (Bureau of Mines, Denver, CO (United States))

    1993-01-01T23:59:59.000Z

    In 1989, the US Bureau of Mines initiated a contract to gather engineering, operating, and environmental cost data for 1988 for 30 major foreign primary copper smelters in market economy countries. Data were collected for 29 of the designated smelters together with information on applicable environmental regulations. Materials balance data obtained were used with available data for the eight US smelters to determine the approximate extent of copper smelter sulfur emission control in 1988. A broad characterization of the status of sulfur emission control regulation was made. The 37 US and foreign smelters represented roughly 73.2% of world and 89.3% of market economy primary copper production in 1988. The 29 non-US smelters attained 55.3% control of their input sulfur in 1988. Combined with the 90.4% control of US smelters, an aggregate 63.4% sulfur control existed. Roughly 1,951,100 mt of sulfur was emitted from the 37 market economy smelters in 1988. Identifiable SO[sub 2] control regulations covered 72.4% of the 29 foreign smelters, representing 65.5% of smelting capacity. Including US smelters, 78.4% of the major market economy smelters were regulated, representing 73.1% of smelting capacity. Significant changes since 1988 that may increase sulfur emission control are noted.

  5. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-01-28T23:59:59.000Z

    During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

  7. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-04-30T23:59:59.000Z

    During this quarter long term and high pressure hydrogen separation experiments were performed on Eltron's composite layered membranes. Membranes were tested at 400 C and a 300 psig feed stream with 40% hydrogen for up to 400 continuous hours. In addition membranes were tested up to 1000 psig as demonstration of the ability for this technology to meet DOE goals. Progress was made in the development of new hydrogen separation cermets containing high permeability metals. A sulfur tolerant catalyst deposition technique was optimized and engineering work on mechanical and process & control reports was continued.

  8. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect (OSTI)

    Gorensek, M; William Summers, W

    2008-05-30T23:59:59.000Z

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  9. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  10. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Walter, Eric [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pan, Huilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zuo, Pengjian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Chen, Honghao [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liaw, Bor Y. [School of Ocean and Earth Science and Technology, Hawaii Natural Energy Institute, (United States); Yu, Xiqian [Brookhaven National Laboratory, Upton, NY (United States); Yang, Xiao-Qing [Brookhaven National Laboratory, Upton, NY (United States); Zhang, Ji-Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Jun [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-12-09T23:59:59.000Z

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  11. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09T23:59:59.000Z

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  12. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; et al

    2014-12-09T23:59:59.000Z

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore »cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less

  13. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Vehicle...

  14. The Modular Helium Reactor for Hydrogen Production

    SciTech Connect (OSTI)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-10-01T23:59:59.000Z

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR.

  15. Biological Systems for Hydrogen Photoproduction (Presentation)

    SciTech Connect (OSTI)

    Ghirardi, M. L.

    2012-05-01T23:59:59.000Z

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  16. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

  17. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  18. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  19. Hydrogen Delivery Analysis Models

    Broader source: Energy.gov (indexed) [DOE]

    insert our Research Targets to see the impact List of Delivery Components Compressed Hydrogen Gas Truck (Tube trailer) Compressed Hydrogen Gas Truck Terminal Liquid Hydrogen Truck...

  20. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect (OSTI)

    Grant, K E

    2008-02-07T23:59:59.000Z

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

  1. Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael Mitchell, Dilip Natarajan, Larry J. Markoski, and

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Letters Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion, and electrolyte flow rate on fuel cell performance to obtain a maximum power density of 191 mW/cm2. This flowing

  2. Update on sulfur compound distribution in NGL: Plant test data GPA Section A committee, plant design

    SciTech Connect (OSTI)

    Harryman, J.M. [Shell Oil Co., Houston, TX (United States); Smith, B. [Texaco E and P Inc., Tulsa, OK (United States)

    1996-12-31T23:59:59.000Z

    The mystery of why sulfur compounds could never be balanced from analyses of the product streams of NGL fractionation towers was solved by analyzing the data collected during testing completed by GPA Technical Section A in November and December of 1993 at Texaco`s Eunice, New Mexico fractionation plant. Decomposition of dimethyl disulfide (DMDS) to form methyl mercaptan within the towers is the cause of the sulfur balance discrepancies explained in the paper. The results of testing were reported to the 1994 convention, but at the time, a few weeks after completion of testing, the chemistry was not understood, i.e., what is the source of the hydrogen required to complete the formation of methyl mercaptan. This paper is an update of the previous paper and it includes the DMDS decomposition chemistry. It is essentially the body of a report completed in early 1995, excluding the Appendix of data. The 66-page Appendix may be obtained from the GPA, Tulsa.

  3. Development and introduction of methods for extracting hydrogen sulfide and hydrogen cyanide from coke-oven gas

    SciTech Connect (OSTI)

    Litvinenko, M.S.; Zaichenko, V.M.

    1980-01-01T23:59:59.000Z

    The progress between 1933 and the present in desulfurizing coal gas from coke ovens and making use of the by-products to produce sulfuric acid, thioyanates, etc. is described. The vacuum carbonate process and the monoethanolamine method are apparently now preferred, but some plants are still using modified arsenic-soda processes. More recently additional by-products have been thiocyanates (for producing acrylonitrile fiber) and hydrogen xanthanates. The production of other organic sulfur and cyanide compounds has been investigated for use as herbicides, corrosion inhibitors, etc. (LTN)

  4. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22T23:59:59.000Z

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  5. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  6. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  7. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  8. Development of High Energy Density Lithium-Sulfur Cells

    Broader source: Energy.gov (indexed) [DOE]

    for increased sulfur loading Cathode Anode Investigatingoptimizing Li and Si composite anodes Exploring polymer electrolytes Electrolyte Determining new...

  9. Balance of Plant Requirements for a Nuclear Hydrogen Plant

    SciTech Connect (OSTI)

    Bradley Ward

    2006-04-01T23:59:59.000Z

    This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

  10. Posting type Advisory update Subject Inconstant bias in XRF sulfur

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Advisory update Subject Inconstant bias in XRF sulfur Module/Species A/ S Sites entire attention to observable discontinuities in XRF sulfur data. Shifts in the sulfur/sulfate ratio during 2003-4 were shown to coincide with recalibrations of the XRF system and to correlate with other XRF biases

  11. Gasoline from natural gas by sulfur processing. Final technical report, June 1993--July 1996

    SciTech Connect (OSTI)

    Erekson, E.J.

    1996-07-01T23:59:59.000Z

    The overall objective of this research project was to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each use catalysts and sulfur-containing intermediates: (1) to convert natural gas to CS{sub 2} and (2) to convert CS{sub 2} to gasoline-range liquids. Experimental data generated in this project were for use in evaluating the commercial potential of the process.

  12. On the galactic chemical evolution of sulfur

    E-Print Network [OSTI]

    N. Ryde; D. L. Lambert

    2003-12-02T23:59:59.000Z

    Sulfur abundances have been determined for ten stars to resolve a debate in the literature on the Galactic chemical evolution of sulfur in the halo phase of the Milky Way. Our analysis is based on observations of the S I lines at 9212.9, 9228.1, and 9237.5 A for stars for which the S abundance was obtained previously from much weaker S I lines at 8694.0 and 8694.6 A. In contrast to the previous results showing [S/Fe] to rise steadily with decreasing [Fe/H], our results show that [S/Fe] is approximately constant for metal-poor stars ([Fe/H] < -1) at [S/Fe] = +0.3. Thus, sulfur behaves in a similar way to the other alpha elements, with an approximately constant [S/Fe] for metallicities lower than [Fe/H] = -1. We suggest that the reason for the earlier claims of a rise of [S/Fe] is partly due to the use of the weak S I 8694.0 and 8694.6 A lines and partly uncertainties in the determination of the metallicity when using Fe I lines. The S I 9212.9, 9228.1, and 9237.5 A lines are preferred for an abundance analysis of sulfur for metal-poor stars.

  13. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Chang, John C. S. (Cary, NC)

    1991-01-01T23:59:59.000Z

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  14. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-01-01T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  15. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack (Atlanta, GA); Sather, Norman F. (Naperville, IL); Huang, Hann S. (Darian, IL)

    1984-10-30T23:59:59.000Z

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  16. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of...

  17. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

  18. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  19. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  20. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  1. Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  2. Sulfur capture in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Baars, D.M.; Hunter, C.A.; Keitelman, E.N.

    1981-06-01T23:59:59.000Z

    Sulfur capture in an atmospheric fluidized-bed combustor (AFBC) both with and without recycle of fines elutriated from the bed was studied. Two empirical correlations, one by Babcock and Wilcox and the other by Westinghouse, correlate sulfur capture as a function of the calcium-to-sulfur mole ratio and gas residence time. Both correlations fit the experimental no-recycle results quite well. Of the limestones tested with no recycle, Vulcan Materials exhibits the best sulfur-capture performance. Data collected with Reed limestone indicates that recycle improves sulfur-capture compared with once-through performance. However, there is a decreasing effect on sulfur capture as the recycle rate is increased to large values. At 90% sulfur capture, the fractional reduction of fresh limestone feed attributable to recycle is 24 to 35% over a gas-residence time range of 0.7 to 0.4 s.

  3. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect (OSTI)

    Harruff, L.G.; Bushkuhl, S.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  4. Hydrogen Delivery Mark Paster

    E-Print Network [OSTI]

    Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

  5. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-07-29T23:59:59.000Z

    During this quarter catalyst stability studies were performed on Eltron's composite layered membranes. In addition, permeation experiments were performed to determine the effect of crystallographic orientation on membrane performance. Sintering conditions were optimized for preparation of new cermets containing high permeability metals. Theoretical calculations were performed to determine potential sulfur tolerant catalysts. Finally, work was continued on mechanical and process & control documentation for a hydrogen separation unit.

  6. Costs to reduce sulfur dioxide emissions

    SciTech Connect (OSTI)

    None

    1982-03-01T23:59:59.000Z

    Central to the resolution of the acid rain issue are debates about the costs and benefits of controlling man-made emissions of chemicals that may cause acid rain. In this briefing, the position of those who are calling for immediate action and implicating coal-fired powerplants as the cause of the problem is examined. The costs of controlling sulfur dioxide emissions using alternative control methods available today are presented. No attempt is made to calculate the benefits of reducing these emissions since insufficient information is available to provide even a rough estimate. Information is presented in two steps. First, costs are presented as obtained through straightforward calculations based upon simplifying but realistic assumptions. Next, the costs of sulfur dioxide control obtained through several large-scale analyses are presented, and these results are compared with those obtained through the first method.

  7. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOE Patents [OSTI]

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24T23:59:59.000Z

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  8. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOE Patents [OSTI]

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24T23:59:59.000Z

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  9. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01T23:59:59.000Z

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  10. Process for oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Lyke, Stephen E. (Middleton, WI)

    1992-01-01T23:59:59.000Z

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  11. EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D.; Elvington, M.; Colon-Mercado, H.

    2009-11-11T23:59:59.000Z

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  12. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  13. HYDROGEN IN GERMANIUM

    E-Print Network [OSTI]

    Haller, E.E.

    2011-01-01T23:59:59.000Z

    •^f-1? c^4--^ LBL-7996 HYDROGEN IN GERMANIUM E. E. HallerW-7405-ENG-48 LBL-7996 HYDROGEN IN GERMANIUM* E. E. Haller48. LBL-7996 Abstract Hydrogen is shown to form molecular

  14. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is...

  15. Sandia Hydrogen Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Combustion Research Sandia Hydrogen Combustion Research Sebastian A. Kaiser (PI) Sandia National Laboratories Christopher M. White University of New Hampshire Sponsor: DoE...

  16. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  17. Hydrogen Permeation Barrier Coatings

    SciTech Connect (OSTI)

    Henager, Charles H.

    2008-01-01T23:59:59.000Z

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  18. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  19. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

  20. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for clean energy technology manufacturers. March 28, 2014 Sales Tax Exemption for Hydrogen Generation Facilities In North Dakota, the sale of hydrogen used to power an internal...

  1. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

  2. Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993

    SciTech Connect (OSTI)

    Cook, W.J.; Neyman, M.; Brown, W. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P. [Bovar, Inc., Calgary, Alberta (Canada)

    1993-08-01T23:59:59.000Z

    The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

  3. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Pipelines * Nuclear Energy * Office of Science Extending Collaborations * Other Federal Agencies - DOT, EPA, Others * International Collaborations Hydrogen from Diverse...

  4. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05T23:59:59.000Z

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  5. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01T23:59:59.000Z

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  6. A study of the reactions of arsinic and arsonic acids with hydrogen sulfide and hydrogen selenide

    E-Print Network [OSTI]

    Applegate, Cynthia Annette

    1986-01-01T23:59:59.000Z

    -diarsa-2, 3, 5-triselenacyclopentane 35 Bond angles in 1, 4&ipheny1-1, 4-diarsa-2, 3, 5-triselenacyclopentane 79 80 INTRODUCTION Many arsenic sulfides occur naturally in the form of minerals due to the natural affinity of arsenic and sulfur for one... another [I]. Arsemc trisulfide, As, S, an orange or yellow powder, is found in nature as the mineral orpiment. Arsenic trisulfide can be prepared by passing a stream of hydrogen sulfide through an acidic solution of arsenic trioxide. Arsenic disulfide...

  7. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    with sulfuric and nitric acids formed from at- mospheric oxidations of sulfur dioxide SO2 and nitrogen oxides mobile sources comes from the combustion of sulfur compounds in fuel. The U.S. is in the process of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  8. alum rock sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -resolution carbon and sulfur isotope profiles from Early to Middle Ordovician carbonate rocks from the Argentine Investigation of isotopic compositions recorded in...

  9. aromatic sulfur heterocycles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alkylating agent Skin MMP inhibitor MMP Matrix metalloproteinase Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering Androulakis,...

  10. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Broader source: Energy.gov (indexed) [DOE]

    of long cycle-life in half cells and expand the synthesis of sulfurcarbon composite materials of various sulfur loadings 2. Compare the performance for different...

  11. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Amended Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction Processes...

  12. Fundamental Studies of Lithium-Sulfur Cell Chemistry

    Broader source: Energy.gov (indexed) [DOE]

    Studies of Lithium-Sulfur Cell Chemistry PI: Nitash Balsara LBNL June 17, 2014 Project ID ESS224 This presentation does not contain any proprietary, confidential, or otherwise...

  13. LARGE-SCALE MEASUREMENT OF AIRBORNE PARTICULATE SULFUR

    E-Print Network [OSTI]

    Loo, B.W.

    2010-01-01T23:59:59.000Z

    dispersive x-ray fluorescence (XRF) analysis. Concentrationsvalida- tion studies of XRF measurements have establishedelemental sulfur measurement by XRF can be closely related

  14. anaerobic green sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Carbon Flow of Heliobacteria Is Related More to Clostridia than to the Green Sulfur Bacteria, Chemistry, and Energy, Environment, and Chemical...

  15. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-11-01T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and 400 square cells/inch{sup 2}, {gamma}-Al{sub 2}O{sub 3}-wash-coated monolithic catalyst, and various reactors such as a micro packed-bed reactor, a micro bubble reactor, and a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam.

  16. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, Nand K. (Bethel Park, PA); Ruether, John A. (McMurray, PA); Smith, Dennis N. (Herminie, PA)

    1988-01-01T23:59:59.000Z

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  17. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07T23:59:59.000Z

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  18. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOE Patents [OSTI]

    Mamantov, Gleb (Knoxville, TN)

    1985-04-02T23:59:59.000Z

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  19. Chemistry of Sulfur Oxides on Transition Metals. II. Thermodynamics of Sulfur Oxides on Platinum(111)

    E-Print Network [OSTI]

    Lin, Xi

    J/mol from temperature-programmed desorption (TPD) experiments.4 Having some energetic data or, moreover, having substantial data on the thermodynamics of adsorption and interconversion of sulfur oxide species obtained several new vibrational features by pretreating the Pt(111) surface with the gas-phase oxygen

  20. Sulfurization of carbon surface for vapor phase mercury removal I: Effect of temperature and sulfurization protocol

    E-Print Network [OSTI]

    Borguet, Eric

    with the decomposition of surface functionalities, which creates active sites for sulfur bonding. The presence of H2S2S adsorption, and that surface chemistry played a significant role in the uptake of H2S. Mikhalovsky and Zaitsev [9] showed that H2S adsorption from an inert atmosphere on activated carbons resulted

  1. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect (OSTI)

    Robert C. Brown; Maohong Fan

    2001-12-01T23:59:59.000Z

    We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

  2. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  3. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  4. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  5. Correlation for the total sulfur content in char after devolatilization

    SciTech Connect (OSTI)

    Vasilije Manovic; Borislav Grubor [University of Belgrade, Belgrade (Serbia & Montenegro)

    2006-02-01T23:59:59.000Z

    The overall process of coal combustion takes place in two successive steps: devolatilization and char combustion. The fate of sulfur during the devolatilization of coal of different rank was investigated. The significance of the investigation is in fact that a major part of sulfur release occurs during devolatilization of coal, (i.e., emission of sulfur oxides during combustion of coal largely depends on sulfur release during devolatilization). The experimental investigations were conducted to obtain the data about the quantitative relation between sulfur content in the coal and sulfur content in the char. Standard procedures were used for obtaining the chars in a laboratory oven and determining the sulfur forms in the coal and char samples. The experiments were done with ground coal samples ({lt}0.2 mm), at the temperatures in the range of 500-1000{sup o}C. We showed that the amount of sulfur remaining in the char decreases, but not significantly in the temperature range 600-900{sup o}C. On the basis of the theoretical consideration of behavior of sulfur forms during devolatilization, certain simplifying assumptions, and obtained experimental data, we propose two correlations to associate the content of sulfur in the coal and in the char. The correlations are based on the results of the proximate analysis and sulfur forms in coal. Good agreement was found when the proposed correlations were compared with the experimental results obtained for investigated coals. Moreover, the correlations were verified by results found in the literature for numerous Polish, Albanian, and Turkish coals. Significant correlations (P {lt}0.05) between observed and calculated data with correlation coefficient, R {gt}0.9, were noticed in the case of all coals. 25 refs., 3 figs., 2 tabs.

  6. Final Report for project titled "New fluoroionomer electrolytes with high conductivity and low SO2 crossover for use in electrolyzers being developed for hydrogen production from nuclear power plants"

    SciTech Connect (OSTI)

    Dennis W. Smith; Stephen Creager

    2012-09-13T23:59:59.000Z

    Thermochemical water splitting cycles, using the heat of nuclear power plants, offer an alternate highly efficient route for the production of hydrogen. Among the many possible thermochemical cycles for the hydrogen production, the sulfur-based cycles lead the competition in overall energy efficiency. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce hydrogen. The Savannah River National Laboratory (SRNL) selected the fuel cell MEA design concept for the SDE in the HyS process since the MEA concept provides a much smaller cell footprint than conventional parallel plate technology. The electrolyzer oxidizes sulfur dioxide to form sulfuric acid at the anode and reduces protons to form hydrogen at the cathode. The overall electrochemical cell reaction consists of the production of H{sub 2}SO{sub 4} and H{sub 2}. There is a significant need to provide the membrane materials that exhibit reduced sulfur dioxide transport characteristics without sacrificing other important properties such as high ionic conductivity and excellent chemical stability in highly concentrated sulfuric acid solutions saturated with sulfur dioxide. As an alternative membrane, sulfonated Perfluorocyclobutyl aromatic ether polymer (sPFCB) were expected to posses low SO2 permeability due to their stiff backbones as well as high proton conductivity, improved mechanical properties. The major accomplishments of this project were the synthesis, characterizations, and optimizations of suitable electrolyzers for good SDE performance and higher chemical stability against sulfuric acid. SDE performance results of developed sPFCB polyelectrolytes have shown that these membranes exhibit good chemical stability against H{sub 2}SO{sub 4}.

  7. Removal of hydrogen sulfide from waste treatment plant biogas using the apollo scrubber

    SciTech Connect (OSTI)

    Smith, J.W.; Burrowes, P.A.; Gupta, A.; Walton, P.S.; Meffe, S.

    1996-12-31T23:59:59.000Z

    The removal of hydrogen sulfide and other sulphur compounds from anaerobic digester gas streams prior to their use as fuel for boilers, stationary engines, and cogeneration units minimizes corrosion problems and reduces sulfur emission loadings. A research program at the Department of Chemical Engineering and Applied Chemistry, University of Toronto in the 1980`s demonstrated the use of a modified flotation cell for the absorption of hydrogen sulfide from a gas stream and its catalytic oxidation to sulfur. The essence of the technology was a proprietary gas liquid contactor which provided very high mass transfer rates at the interface. A bench scale contactor developed at the university achieved hydrogen sulfide removal efficiencies of over 99.9% at atmospheric pressure. A demonstration unit for digester gas scrubbing applications was designed, fabricated, and then installed and evaluated at the Metropolitan Toronto Works Department - Main Treatment Plant (MTP).

  8. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    E-Print Network [OSTI]

    Robock, Alan

    aerosols can potentially result in an increase in acid deposition. [4] Acid rain has been studiedSulfuric acid deposition from stratospheric geoengineering with sulfate aerosols Ben Kravitz,1 Alan limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2

  9. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    E-Print Network [OSTI]

    Hultman, Nathan E.

    PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results S.J. Smith E;PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results PNNL Research Report Joint Global Change Research Institute 8400 Baltimore Avenue College Park, Maryland 20740 #12;PNNL-14537

  10. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01T23:59:59.000Z

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  11. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

    2010-01-12T23:59:59.000Z

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  12. SUSCEPTIBILIT MAGNTIQUE DE QUELQUES SULFURES ET OXYDES DE PLUTONIUM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    261. SUSCEPTIBILITÉ MAGNÉTIQUE DE QUELQUES SULFURES ET OXYDES DE PLUTONIUM Par GEORGES RAPHAEL et CHARLES DE NOVION, S.E.C.P.E.R., Section d'Études des Céramiques ŕ base de Plutonium, Centre d susceptibilite magnétique des sulfures de plutonium : PuS, Pu3S4, PU2S3CXI PuS2. Ces composes non conduc- teurs

  13. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  14. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  15. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  16. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  17. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

  18. Sulfur X-Ray Absorption And Vibrational Spectroscopic Study of Sulfur Dioxide, Sulfite, And Sulfonate Solutions And of the Substituted Sulfonate Ions X(3)CSO(3-)(X = H, Cl, F)

    SciTech Connect (OSTI)

    Risberg, E.Damian; Eriksson, L.; Mink, J.; Pettersson, L.G.M.; Skripkin, M.Yu.; Sandstrom, M.

    2009-06-02T23:59:59.000Z

    Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra have been recorded and the S(1s) electron excitations evaluated by means of density functional theory-transition potential (DFT-TP) calculations to provide insight into the coordination, bonding, and electronic structure. The XANES spectra for the various species in sulfur dioxide and aqueous sodium sulfite solutions show considerable differences at different pH values in the environmentally important sulfite(IV) system. In strongly acidic (pH < {approx}1) aqueous sulfite solution the XANES spectra confirm that the hydrated sulfur dioxide molecule, SO{sub 2}(aq), dominates. The theoretical spectra are consistent with an OSO angle of {approx}119{sup o} in gas phase and acetonitrile solution, while in aqueous solution hydrogen bonding reduces the angle to {approx}116{sup o}. The hydration affects the XANES spectra also for the sulfite ion, SO{sub 3}{sup 2-}. At intermediate pH (4) the two coordination isomers, the sulfonate (HSO{sub 3{sup -}}) and hydrogen sulfite (SO{sub 3}H{sup -}) ions with the hydrogen atom coordinated to sulfur and oxygen, respectively, could be distinguished with the ratio HSO{sub 3{sup -}}:SO{sub 3}H{sup -} about 0.28:0.72 at 298 K. The relative amount of HSO{sub 3{sup -}} increased with increasing temperature in the investigated range from 275 to 343 K. XANES spectra of sulfonate, methanesulfonate, trichloromethanesulfonate, and trifluoromethanesulfonate compounds, all with closely similar S-O bond distances in tetrahedral configuration around the sulfur atom, were interpreted by DFT-TP computations. The energy of their main electronic transition from the sulfur K-shell is about 2478 eV. The additional absorption features are similar when a hydrogen atom or an electron-donating methyl group is bonded to the -SO{sub 3} group. Significant changes occur for the electronegative trichloromethyl (Cl{sub 3}C-) and trifluoromethyl (F{sub 3}C-) groups, which strongly affect the distribution especially of the {pi} electrons around the sulfur atom. The S-D bond distance 1.38(2) {angstrom} was obtained for the deuterated sulfonate (DSO{sub 3{sup -}}) ion by Rietveld analysis of neutron powder diffraction data of CsDSO{sub 3}. Raman and infrared absorption spectra of the CsHSO{sub 3}, CsDSO{sub 3}, H{sub 3}CSO{sub 3}Na, and Cl{sub 3}CSO{sub 3}Na{center_dot}H{sub 2}O compounds and Raman spectra of the sulfite solutions have been interpreted by normal coordinate calculations. The C-S stretching force constant for the trichloromethanesulfonate ion obtains an anomalously low value due to steric repulsion between the Cl{sub 3}C- and -SO{sub 3} groups. The S-O stretching force constants were correlated with corresponding S-O bond distances for several oxosulfur species.

  19. Method for removing hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Ritter, H.

    1982-08-03T23:59:59.000Z

    An improved sulfur-ammonia process is disclosed for removing hydrogen sulfide from coke oven gases. In the improved process, a concentrator formerly used for standby operation is used at all normal times as an ammonia scrubber to improve the efficiency of gas separation during normal operation and is used as a concentrator for its intended standby functions during the alternative operations. In its normal function, the concentrator/scrubber functions as a scrubber to strip ammonia gas from recirculating liquid streams and to permit introduction of an ammonia-rich gas into a hydrogen sulfide scrubber to increase the separation efficiency of that unit. In the standby operation, the same concentrator/scrubber serves as a concentrator to concentrate hydrogen sulfide in a ''strong liquor'' stream for separate recovery as a strong liquor.

  20. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  1. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  2. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

  3. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  4. Hydrogen Bus Technology Validation Program

    E-Print Network [OSTI]

    Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

    2005-01-01T23:59:59.000Z

    and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

  5. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01T23:59:59.000Z

    the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

  6. Oxygen addition to sulfur of metal thiolates

    E-Print Network [OSTI]

    Soma, Takako

    1996-01-01T23:59:59.000Z

    , and characterized. Molecular oxygen or hydrogen peroxide reacted with (N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane-nickel(II), (BME-DACO)2Ni3 +2, to produce a trimetallic, (N,N'-bismercaptoethyl-1,5-diazacyclooctane-nickel(II))-nickelate, (BME-DACO)2Ni3 2...

  7. Molecular Structures of Polymer/Sulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life

    SciTech Connect (OSTI)

    Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H.; Saraf, Laxmikant V.; Nie, Zimin; Exarhos, Gregory J.; Liu, Jun

    2013-04-26T23:59:59.000Z

    Vulcanizedpolyaniline/sulfur (SPANI/S) nanostructures were investigated for Li-S battery applications, but the detailed molecular structures of such composites have not been fully illustrated. In this paper, we synthesize SPANI/S composites with different S content in a nanorod configuration. FTIR, Raman, XPS, XRD, SEM and elemental analysis methods are used to characterize the molecular structure of the materials. We provide clear evidence that a portion of S was grafted on PANI during heating and connected the PANI chains with disulfide bonds to form a crosslinked network and the rest of S was encapsulated within it.. Polysulfides and elementary sulfur nanoparticles are physically trapped inside the polymer network and are not chemically bound to the polymer. The performance of the composites is further improved by reducing the particle size. Even after 500 cycles a capacity retention rate of 68.8% is observed in the SPANI/S composite with 55% S content.

  8. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    SciTech Connect (OSTI)

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01T23:59:59.000Z

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  9. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  10. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect (OSTI)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01T23:59:59.000Z

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  11. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  12. 2008 GRC Iron Sulfur Enzymes-Conference to be held June 8-13, 2008

    SciTech Connect (OSTI)

    Stephen Cramer, Nancy Ryan Gray

    2009-01-01T23:59:59.000Z

    Iron-sulfur proteins are among the most common and ancient enzymes and electron-transfer agents in nature. They play key roles in photosynthesis, respiration, and the metabolism of small molecules such as H2, CO, and N2. The Iron Sulfur Enzyme Gordon Research Conference evolved from an earlier GRC on Nitrogen Fixation that began in 1994. The scope of the current meeting has broadened to include all enzymes or metalloproteins in which Fe-S bonds play a key role. This year's meeting will focus on the biosynthesis of Fe-S clusters, as well as the structure and mechanism of key Fe-S enzymes such as hydrogenase, nitrogenase and its homologues, radical SAM enzymes, and aconitase-related enzymes. Recent progress on the role of Fe-S enzymes in health, disease, DNA/RNA-processing, and alternative bio-energy systems will also be highlighted. This conference will assemble a broad, diverse, and international group of biologists and chemists who are investigating fundamental issues related to Fe-S enzymes, on atomic, molecular, organism, and environmental scales. The topics to be addressed will include: Biosynthesis & Genomics of Fe-S Enzymes; Fundamental Fe-S Chemistry; Hydrogen and Fe-S Enzymes; Nitrogenase & Homologous Fe-S Enzymes; Fe-S Enzymes in Health & Disease; Radical SAM and Aconitase-Related Fe-S Enzymes; Fe-S Enzymes and Synthetic Analogues in BioEnergy; and Fe-S Enzymes in Geochemistry and the Origin of Life.

  13. EFFECT OF ELECTROLYZER CONFIGURATION AND PERFORMANCE ON HYBRID SULFUR PROCESS NET THERMAL EFFICIENCY

    SciTech Connect (OSTI)

    Gorensek, M

    2007-03-16T23:59:59.000Z

    Hybrid Sulfur cycle is gaining popularity as a possible means for massive production of hydrogen from nuclear energy. Several different ways of carrying out the SO{sub 2}-depolarized electrolysis step are being pursued by a number of researchers. These alternatives are evaluated with complete flowsheet simulations and on a common design basis using Aspen Plus{trademark}. Sensitivity analyses are performed to assess the performance potential of each configuration, and the flowsheets are optimized for energy recovery. Net thermal efficiencies are calculated for the best set of operating conditions for each flowsheet and the results compared. This will help focus attention on the most promising electrolysis alternatives. The sensitivity analyses should also help identify those features that offer the greatest potential for improvement.

  14. Effects of reactive element additions and sulfur removal on the oxidation behavior of FECRAL alloys

    SciTech Connect (OSTI)

    Stasik, M.C.; Pettit, F.S.; Meier, G.H. (Univ. of Pittsburgh, PA (United States). Dept. of Materials Science and Engineering); Ashary, A. (Praxair, Indianapolis, IN (United States)); Smialek, J.L. (NASA Lewis Research Center, Cleveland, OH (United States))

    1994-12-15T23:59:59.000Z

    The results of this study have shown that desulfurization of FeCrAl alloys by hydrogen annealing can result in improvements in cyclic oxidation comparable to that achieved by doping with reactive elements. Moreover, specimens of substantial thicknesses can be effectively desulfurized because of the high diffusivity of sulfur in bcc iron alloys. The results have also shown that there is less stress generation during the cyclic oxidation of Y-doped FeCrAl compared to Ti-doped or desulfurized FeCrAl. This indicates that the growth mechanism, as well as the strength of the oxide/alloy interface, influences the ultimate oxidation morphology and stress state which will certainly affect the length of time the alumina remains protective.

  15. Gaseous Hydrogen Delivery Breakout

    E-Print Network [OSTI]

    Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

  16. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31T23:59:59.000Z

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  17. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17T23:59:59.000Z

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  18. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-04-30T23:59:59.000Z

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

  19. Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  20. ccsd-00000318(version1):29Apr2003 Calculation of muon transfer from muonic hydrogen to atomic oxygen

    E-Print Network [OSTI]

    Boyer, Edmond

    ), the problem corresponds to an ultra-cold collision. The close-coupling time-independent quantum equations explanation. Werthm¨uller et al [4] suggest the existence of a resonance at low energies. It is worth to stress that such an increase has not been observed in the case of muonic hydrogen colliding with sulfur

  1. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  2. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  3. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

    1981-01-01T23:59:59.000Z

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  4. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01T23:59:59.000Z

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  5. Impact of hydrogen partial pressure on coal liquefaction. Final technical report

    SciTech Connect (OSTI)

    Kang, D.; Hoover, D.S.; Schweighardt, F.K.

    1984-06-01T23:59:59.000Z

    This program was conducted to determine the effects of hydrogen partial pressure on the SRC-I direct coal liquefaction process and SRC-I Demonstration Plant design. A native solvent was produced in quantity and slurried with Kentucky number 9 Mulford coal in a series of coal liquefaction runs under varying hydrogen gas rates, temperatures, residence times, and hydrogen partial pressures. The results showed that hydrogen partial pressure significantly affected product distribution; the magnitude of the effect was comparable to changes in temperature and residence time. Also, the impact of hydrogen partial pressure was enhanced by increases in both temperature and residence time. Operating at low hydrogen partial pressure did not show any apparent advantage; it reduced coal conversion, reduced oil yield, and had a detrimental effect on the yield distribution of other products. An increase in hydrogen partial pressure had the following effects: increased coal conversion; increased conversion of asphaltenes and preasphaltenes to lighter products; significantly increased the oil yield; increased light gas yields; decreased sulfur content in the SRC; increased hydrogen content of the recycle solvent; and increased hydrogen consumption. This study strongly suggests that further studies should be conducted to optimize the effects of hydrogen partial pressure on the process, both within and, preferably, beyond the constraints of the current basic SRC-I design, considering the major impact of this variable on the process. 10 references, 37 figures, 10 tables.

  6. Hydrogen Delivery Liquefaction and Compression

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

  7. Hydrogenation of aromatics in synthetic crude distillates catalyzed by platinum supported in molecular sieves

    SciTech Connect (OSTI)

    Kimbara, N.; Charland, J.P. [CANMET, Ottawa, Ontario (Canada)] [CANMET, Ottawa, Ontario (Canada); Wilson, M.F. [CANMET, Devon, Alberta (Canada)] [CANMET, Devon, Alberta (Canada)

    1996-11-01T23:59:59.000Z

    Catalytic hydrogenation of synthetic crude distillates from Canadian oil sands was carried out over platinum metal supported in pillared interlayered clay (PILC) and Y-zeolite. The molecular sieve supports were employed to modify the properties of dispersed platinum particles and improve their resistance to poisoning by sulfur. The objective was to reduce the distillate aromatic content to meet diesel emission control standards and cetane number requirements. Catalysts were prepared in a series of steps, and metal precursor was loaded using ion-exchange procedures. Characterization was done using X-ray diffraction, hydrogen chemisorption, and proton-induced X-ray emission elemental analysis. Catalytic hydrogenation reactions were carried out by processing distillate feedstocks both high (>100 ppm) and low (<10 ppm) in sulfur using a continuous-flow automated microreactor system. Experimental runs were performed to determine the reaction kinetics and Arrhenius parameters as a means of evaluating and comparing catalyst performance. Significant differences in catalyst activity were found. The Pt/Y-zeolite-alumina catalyst showed a much superior hydrogenation performance under conditions of high sulfur content. The extent of cracking and ring opening was also evaluated and was shown to be minimal under the operating conditions employed.

  8. Anti-Hydrogen Jonny Martinez

    E-Print Network [OSTI]

    Budker, Dmitry

    Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

  9. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24T23:59:59.000Z

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  10. Low Temperature Sorbents for removal of Sulfur Compounds from fluid feed Streams

    SciTech Connect (OSTI)

    Siriwardane, Ranjan

    1999-09-30T23:59:59.000Z

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  11. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2004-06-01T23:59:59.000Z

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  12. Method for producing hydrogen

    SciTech Connect (OSTI)

    Preston, J.L.

    1980-02-26T23:59:59.000Z

    In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

  13. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01T23:59:59.000Z

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  14. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13T23:59:59.000Z

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  15. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    Robert S. Weber

    1999-05-01T23:59:59.000Z

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of a commercial process design, and development of a utility-scale demonstration plan.

  16. Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling

    E-Print Network [OSTI]

    ), and several episodes in London (1). All fuels used by humans such as coal, oil, natural gas, peat, wood of absorbing sulfur dioxide either in water or in aqueous slurries

  17. Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set limits on the sulfur content of allowable fuels (1.0% by weight, dry basis) for combustion, as well as for the heat input of any fuel burning equipment (250,000 Btu/hour)....

  18. Sulfurized olefin lubricant additives and compositions containing same

    SciTech Connect (OSTI)

    Braid, M.

    1980-03-25T23:59:59.000Z

    Lubricant additives having substantially improved extreme pressure characteristics are provided by modifying certain sulfurized olefins by reacting said olefins with a cyclic polydisulfide under controlled reaction conditions and at a temperature of at least about 130/sup 0/ C.

  19. aqueous organic sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kaufman, Alan Jay 352 Using ISC & GIS to predict sulfur deposition from coal-fired power plants Texas A&M University - TxSpace Summary: positioning system was also used...

  20. adenylation sulfur transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chatterjee, A. 264 SO2 impacts on forage and soil sulfur concentrations near coal-fired power plants Texas A&M University - TxSpace Summary: The goal of this research was to...

  1. Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction

    E-Print Network [OSTI]

    Sim, Min Sub

    2012-01-01T23:59:59.000Z

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used ...

  2. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  3. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Chou, C.L.; Hackley, K.C.; Donnals, G.L.; Cao, J.; Ruch, R.R. [Illinois State Geological Survey, Champaign, IL (United States); Pan, W.P.; Shao, D. [Western Kentucky Univ., Bowling Green, KY (United States)

    1992-08-01T23:59:59.000Z

    The goal of this project is to study the evolution of gaseous sulfur and chlorine species during temperature-controlled pyrolysis and combustion and their effect on boiler corrosion. We have been developing two techniques for determining the gas evolution profiles of sulfur and chlorine during coal pyrolysis and combustion. First, using a pyrolysis-combustion system in combination with a quadrupole gas analyzer, the evolution of sulfur dioxide (SO{sub 2}) in combustion gas during temperature-programmed coal pyrolysis-combustion was monitored. When the atmosphere of the combustion chamber was changed to a reducing condition, gaseous COS and H{sub 2}S were also detected in the combustion gas. Detection of hydrogen chloride by QGA has been improved by using a larger-diameter (75 {mu}m) capillary tubing. The HC1 evolution profile during the pyrolysis of coal IBC-109 was determined by QGA and by a chloride ion selective electrode for quantitative purposes. Second, the technique of thermogravimetry (TG) in conjunction with Fourier transform infrared (FTIR) spectroscopy was used to characterize gaseous species during coal pyrolysis. Gas evolution profiles of sulfur (SO{sub 2} and COS), chlorine (HC1), and nitrogen (NH{sub 3} and HCN) species were determined for coal IBC-109. Similar release profiles of HCI and NH{sub 3} supported an interpretation that chlorine gnd nitrogen are closely associated in coal. COS may be formed by reaction of CO with H{sub 2}S in the gas phase. A mass balance study of chlorine evolution from coal IBC-109 in a TG-FTIR experiment was completed; the chloride dissolved in solutions was determined by an ion chromatographic technique.

  4. The South Karelia Air Pollution Study. The effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms

    SciTech Connect (OSTI)

    Jaakkola, J.J.; Vilkka, V.; Marttila, O.; Jaeppinen, P.H.; Haahtela, T. (South Karelia Allergy and Environment Institute, Espoo (Finland))

    1990-12-01T23:59:59.000Z

    The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasal and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.

  5. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

  6. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    SciTech Connect (OSTI)

    Towler, G.P.; Lynn, S.

    1993-05-01T23:59:59.000Z

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  7. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  8. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  9. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  10. Interfacing the tandem mirror reactor to the sulfur-iodine process for hydrogen production

    SciTech Connect (OSTI)

    Galloway, T.R.

    1980-06-02T23:59:59.000Z

    The blanket is linked to the H/sub 2/SO/sub 4/ vaporization units and SO/sub 3/ decomposition reactor with either sodium or helium. The engineering and safety problems associated with these choices are discussed. This H/sub 2/SO/sub 4/ step uses about 90% of the TMR heat and is best close-coupled to the nuclear island. The rest of the process we propose to be driven by steam and does not require close-coupling. The sodium loop coupling seems to be preferable at this time. We can operate with a blanket around 1200 K and the SO/sub 3/ decomposer around 1050 K. This configuration offers double-barrier protection between Li-Na and the SO/sub 3/ process gases. Heat pipes offer an attractive alternate to provide an additional barrier, added modularity for increased reliability, and tritium concentration and isolation operations with very little thermal penalty.

  11. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31T23:59:59.000Z

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  13. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOE Patents [OSTI]

    Roberts, George W. (Emmaus, PA); Tao, John C. (Perkiomenville, PA)

    1985-01-01T23:59:59.000Z

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  14. High Pressure Hydrogen Materials Compatibility of Piezoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

  15. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  16. Production of hydrogen in non oxygen-evolving systems: co-produced hydrogen as a bonus in the photodegradation of organic pollutants and hydrogen sulfide

    SciTech Connect (OSTI)

    Sartoretti, C. Jorand; Ulmann, M.; Augustynski, J. (Electrochemistry Laboratory, Department of Chemistry, University of Geneva (CH)); Linkous, C.A. (Florida Solar Energy Center, University of Central Florida (US))

    2000-01-01T23:59:59.000Z

    This report was prepared as part of the documentation of Annex 10 (Photoproduction of Hydrogen) of the IEA Hydrogen Agreement. Subtask A of this Annex concerned photo-electrochemical hydrogen production, with an emphasis on direct water splitting. However, studies of non oxygen-evolving systems were also included in view of their interesting potential for combined hydrogen production and waste degradation. Annex 10 was operative from 1 March 1995 until 1 October 1998. One of the collaborative projects involved scientists from the Universities of Geneva and Bern, and the Federal Institute of Technology in Laussane, Switzerland. A device consisting of a photoelectrochemical cell (PEC) with a WO{sub 3} photoanode connected in series with a so-called Grazel cell (a dye sensitized liquid junction photovoltaic cell) was developed and studied in this project. Part of these studies concerned the combination of hydrogen production with degradation of organic pollutants, as described in Chapter 3 of this report. For completeness, a review of the state of the art of organic waste treatment is included in Chapter 2. Most of the work at the University of Geneva, under the supervision of Prof. J. Augustynski, was focused on the development and testing of efficient WO{sub 3} photoanodes for the photoelectrochemical degradation of organic waste solutions. Two types of WO{sub 3} anodes were developed: non transparent bulk photoanodes and non-particle-based transparent film photoanodes. Both types were tested for degradation and proved to be very efficient in dilute solutions. For instance, a solar-to-chemical energy conversion efficiency of 9% was obtained by operating the device in a 0.01M solution of methanol (as compared to about 4% obtained for direct water splitting with the same device). These organic compounds are oxidized to CO{sub 2} by the photocurrent produced by the photoanode. The advantages of this procedure over conventional electrolytic degradation are that much (an order of magnitude) less energy is required and that sunlight can be used directly. In the case of photoproduction of hydrogen, as compared to water splitting, feeding the anodic compartment of the PEC with an organic pollutant, instead of the usual supporting electrolyte, will bring about a substantial increase of the photocurrent at a given illumination. Thus, the replacement of the photo-oxidation of water by the photodegradation of organic waste will be accompanied by a gain in solar-to-chemical conversion efficiency and hence by a decrease in the cost of the photoproduced hydrogen. Taking into account the benefits and possible revenues obtainable by the waste degradation, this would seem to be a promising approach to the photoproduction of hydrogen. Hydrogen sulfide (H{sub 2}S) is another waste effluent requiring extensive treatment, especially in petroleum refineries. The so-called Claus process is normally used to convert the H{sub 2}S to elemental sulfur. A sulfur recovery process developed at the Florida Solar Energy Center is described briefly in Chapter 4 by Dr. C. Linkous as a typical example of the photoproduction of hydrogen in a non oxygen-evolving system. The encouraging results obtained in these investigations of photoelectrochemical hydrogen production combined with organic waste degradation, have prompted a decision to continue the work under the new IEA Hydrogen Agreement Annex 14, Photoelectrolytic Hydrogen Production.

  17. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  18. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22T23:59:59.000Z

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  19. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  20. Hydrogen Delivery - Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

  1. Department of Energy - Hydrogen

    Broader source: Energy.gov (indexed) [DOE]

    Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

  2. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  3. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15T23:59:59.000Z

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  4. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16T23:59:59.000Z

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  5. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  6. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  7. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    CO 2 emissions & energy consumption International Partnership for the Hydrogen Economy Norway An IPHE Vision: "... consumers will have the practical option of purchasing a...

  8. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  9. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08T23:59:59.000Z

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  10. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect (OSTI)

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25T23:59:59.000Z

    The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

  11. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  12. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  13. Hydrogen Energy Technology Geoff Dutton

    E-Print Network [OSTI]

    Watson, Andrew

    Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems OverallHydrogen Energy Technology Geoff Dutton April 2002 Tyndall Centre for Climate Change Research Tyndall°Centre for Climate Change Research Working Paper 17 #12;Hydrogen Energy Technology Dr Geoff Dutton

  14. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29T23:59:59.000Z

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  15. Sulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Qiang Wang,*,

    E-Print Network [OSTI]

    Guo, John Zhanhu

    a maximum value of 15 ppm sulfur content in diesel fuel, and this ultra-low-sulfur fuel is expectedSulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Catalyst Qiang Wang,*, Jiahua of sulfur has not been investigated. In this article, the sulfur poisoning of the NOx storage

  16. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

    2002-04-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

  17. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12T23:59:59.000Z

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  18. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  19. Catalyst and process development for hydrogen preparation from future fuel-cell feedstocks. Final report, October 1, 1978-June 30, 1981

    SciTech Connect (OSTI)

    Hwang, H.S.; Feins, I.R.; Yarrington, R.M.

    1981-09-01T23:59:59.000Z

    The objective of this contract was to develop and demonstrate processes for the production of gaseous fuel cell feeds from high sulfur distillate fuels. The processes considered and studied in this program were high temperature steam reforming with hydrogen recycle, catalytic partial oxidation, and autothermal reforming. Even with hydrogen recycle, high temerature steam reforming of No. 2 oil proved to be dfficult due to carbon formation in the preheat section. Several steam reforming catalysts were evaluated during this phase of the program. (WHK)

  20. Development of High Energy Density Lithium-Sulfur Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect (OSTI)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30T23:59:59.000Z

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  2. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23T23:59:59.000Z

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  3. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    SciTech Connect (OSTI)

    Sims, A.V.

    1983-06-01T23:59:59.000Z

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  4. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01T23:59:59.000Z

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

  5. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect (OSTI)

    Benkovitz, C.M.

    1995-07-01T23:59:59.000Z

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  6. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha (Aurora, IL); Meyer, Howard S. (Hoffman Estates, IL); Lynn, Scott (Pleasant Hill, CA); Leppin, Dennis (Chicago, IL); Wangerow, James R. (Medinah, IL)

    2012-08-14T23:59:59.000Z

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  7. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  8. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03T23:59:59.000Z

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  9. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  10. Hydrogen Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of...

  11. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

  12. Hydrogen Delivery- Current Technology

    Broader source: Energy.gov [DOE]

    Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

  13. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  14. August 2006 Hydrogen Program

    E-Print Network [OSTI]

    after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

  15. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  16. High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerances

    SciTech Connect (OSTI)

    K. Coulter

    2010-12-31T23:59:59.000Z

    The project team consisting of Southwest Research Institute{reg_sign} (SwRI{reg_sign}), Georgia Institute of Technology (GT), the Colorado School of Mines (CSM), TDA Research, and IdaTech LLC was focused on developing a robust, poison-tolerant, hydrogen selective free standing membrane to produce clean hydrogen. The project completed on schedule and on budget with SwRI, GT, CSM, TDA and IdaTech all operating independently and concurrently. GT has developed a robust platform for performing extensive DFT calculations for H in bulk palladium (Pd), binary alloys, and ternary alloys of Pd. Binary alloys investigated included Pd96M4 where M = Li, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. They have also performed a series of calculations on Pd{sub 70}Cu{sub 26}Ag{sub 4}, Pd{sub 70}Cu{sub 26}Au{sub 4}, Pd{sub 70}Cu{sub 26}Ni{sub 4}, Pd{sub 70}Cu{sub 26}Pt{sub 4}, and Pd{sub 70}Cu{sub 26}Y{sub 4}. SwRI deposited and released over 160 foils of binary and ternary Pd alloys. There was considerable work on characterizing and improving the durability of the deposited foils using new alloy compositions, post annealing and ion bombardment. The 10 and 25 {micro}m thick films were sent to CSM, TDA and IdaTech for characterization and permeation testing. CSM conducted over 60 pure gas permeation tests with SwRI binary and ternary alloy membranes. To date the PdAu and PdAuPt membranes have exhibited the best performance at temperatures in the range of 423-773 C and their performance correlates well with the predictions from GT. TDA completed testing under the Department of Energy (DOE) WGS conditions on over 16 membranes. Of particular interest are the PdAuPt alloys that exhibited only a 20% drop in flux when sulfur was added to the gas mixture and the flux was completely recovered when the sulfur flow was stopped. IdaTech tested binary and ternary membranes on a simulated flue gas stream and experienced significant difficulty in mounting and testing the sputter deposited membranes. IdaTech was able to successfully test PdAu and PdAuPt membranes and saw similar sulfur tolerance to what TDA found. The Program met all the deliverables on schedule and on budget. Over ten presentations at national and international conferences were made, four papers were published (two in progress) in technical journals, and three students (2 at GT and 1 at CSM) completed their doctorates using results generated during the course of the program. The three major findings of program were; (1) the DFT modeling was verified as a predictive tool for the permeability of Pd based ternary alloys, (2) while magnetron sputtering is useful in precisely fabricating binary and ternary alloys, the mechanical durability of membranes fabricated using this technique are inferior compared to cold rolled membranes and this preparation method is currently not ready for industrial environments, (3) based on both modeling and experimental verification in pure gas and mixed gas environments PdAu and PdAuPt alloys were found to have the combination of the highest permeability and tolerance to sulfur.

  17. Preliminary Investigation of Sulfur Loading in Hanford LAW Glass

    SciTech Connect (OSTI)

    Vienna, John D.; Hrma, Pavel R.; Buchmiller, William C.; Ricklefs, Joel S.

    2004-04-01T23:59:59.000Z

    A preliminary estimate was developed for loading limits for high-sulfur low-activity waste (LAW) feeds that will be vitrified into borosilicate glass at the Hanford Site in the waste-cleanup effort. Previous studies reported in the literature were consulted to provide a basis for the estimate. The examination of previous studies led to questions about sulfur loading in Hanford LAW glass, and scoping tests were performed to help answer these questions. These results of these tests indicated that a formulation approach developed by Vienna and colleagues shows promise for maximizing LAW loading in glass. However, there is a clear need for follow-on work. The potential for significantly lowering the amount of LAW glass produced at Hanford (after the initial phase of processing) because of higher sulfur tolerances may outweigh the cost and effort required to perform the necessary testing.

  18. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  19. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  20. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly technical progress report No. 2, October--December 1992

    SciTech Connect (OSTI)

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-12-31T23:59:59.000Z

    Elemental sulfur recovery from SO{sub 2}-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO{sub 2} with coke) and Claus plants(reaction of SO{sub 2} with H{sub 2}S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO{sub 2} to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO{sub 2} reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO{sub 2} reduction planned over various CeO{sub 2}-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought ``Claus-alternative`` for coal-fired power plant applications.

  1. Sulfur gas geochemical detection of hydrothermal systems. Final report

    SciTech Connect (OSTI)

    Rouse, G.E.

    1984-01-01T23:59:59.000Z

    The purpose of this investigation was to determine whether a system of exploration using sulfur gases was capable of detecting convecting hydrothermal systems. Three surveying techniques were used at the Roosevelt Hot Springs KGRA in Utah. These were (a) a sniffing technique, capable of instantaneous determinations of sulfur gas concentration, (b) an accumulator technique, capable of integrating the sulfur gas emanations over a 30 day interval, and (c) a method of analyzing the soils for vaporous sulfur compounds. Because of limitations in the sniffer technique, only a limited amount of surveying was done with this method. The accumulator and soil sampling techniques were conducted on a 1000 foot grid at Roosevelt Hot Springs, and each sample site was visited three times during the spring of 1980. Thus, three soil samples and two accumulator samples were collected at each site. The results are shown as averages of three soil and two accumulator determinations of sulfur gas concentrations at each site. Soil surveys and accumulator surveys were conducted at two additional KGRA's which were chosen based on the state of knowledge of these hydrothermal systems and upon their differences from Roosevelt Hot Springs in an effort to show that the exploration methods would be effective in detecting geothermal reservoirs in general. The results at Roosevelt Hot Springs, Utah show that each of the three surveying methods was capable of detecting sulfur gas anomalies which can be interpreted to be related to the source at depth, based on resistivity mapping of that source, and also correlatable with major structural features of the area which are thought to be controlling the geometry of the geothermal reservoir. The results of the surveys at Roosevelt did not indicate that either the soil sampling technique or the accumulator technique was superior to the other.

  2. Direct sulfur recovery during sorbent regeneration. Final report

    SciTech Connect (OSTI)

    Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1993-08-01T23:59:59.000Z

    The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

  3. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItĆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  4. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect (OSTI)

    Zhang, Hongyu [Beijing Building Materials Academy of Science Research/State Key Laboratory of Solid Waste Reuse for Building Material, Beijing 100041 (China); College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Schuchardt, Frank [Johann Heinrich von Thuenen-Institute, Institute of Agricultural Technology and Biosystems Engineering, Bundesallee 50, 38116 Braunschweig (Germany); Li, Guoxue, E-mail: ligx@cau.edu.cn [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Yang, Jinbing; Yang, Qingyuan [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China)

    2013-04-15T23:59:59.000Z

    Highlights: ? We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ? The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ? Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ? Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup ?1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  5. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  6. Sandia National Laboratories: Hydrogen Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Safety Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  7. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology pathways are impacted by their analyses. These technical teams include Fuel Cells, Fuel Pathway Integration, Hydrogen Delivery, Hydrogen Production, Materials,...

  8. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  9. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  10. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12T23:59:59.000Z

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  11. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    -constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel

  12. The Quantitation of Sulfur Mustard By-Products, Sulfur-Containing Herbicides, and Organophosphonates in Soil and Concrete

    SciTech Connect (OSTI)

    Tomkins, B.A., Sega, G.A. [Oak Ridge National Lab., TN (United States)], Macnaughton, S.J. [Microbial Insights, Inc., Rockford, TN (United States)

    1997-12-31T23:59:59.000Z

    Over the past fifty years, the facilities at Rocky Mountain Arsenal have been used for the manufacturing, bottling, and shipping sulfur- containing herbicides, sulfur mustard, and Sarin. There is a need for analytical methods capable of determining these constituents quickly to determine exactly how specific waste structural materials should be handled, treated, and landfilled.These species are extracted rapidly from heated samples of soil or crushed concrete using acetonitrile at elevated pressure, then analyzed using a gas chromatograph equipped with a flame photometric detector. Thiodiglycol, the major hydrolysis product of sulfur mustard, must be converted to a silylated derivative prior to quantitation. Detection limits, calculated using two statistically-unbiased protocols, ranged between 2-13 micrograms analyte/g soil or concrete.

  13. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01T23:59:59.000Z

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  14. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

    2012-03-06T23:59:59.000Z

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  15. A design strategy applied to sulfur resistant lean NOxĚł automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01T23:59:59.000Z

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  16. Revisit Carbon/Sulfur Composite for Li-S Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revisit CarbonSulfur Composite for Li-S Batteries. Revisit CarbonSulfur Composite for Li-S Batteries. Abstract: To correlate the carbon properties e.g. surface area and porous...

  17. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation es105liang2011o.pdf More Documents & Publications CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Additives...

  18. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30T23:59:59.000Z

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  19. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  20. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  1. Chromium modified nickel-iron aluminide useful in sulfur bearing environments

    DOE Patents [OSTI]

    Cathcart, John V. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

    1989-06-13T23:59:59.000Z

    An improved nickel-iron aluminide containing chromium and molybdenum additions to improve resistance to sulfur attack.

  2. NREL's Hydrogen Program

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

  3. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T. (Livermore, CA)

    1981-01-01T23:59:59.000Z

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  4. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  5. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    analysis of hydrogen infrastructure development strategiesalso presented. Keywords: Hydrogen Infrastructure, Renewableof a Tasmanian hydrogen infrastructure is performed

  6. Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase

    E-Print Network [OSTI]

    Borguet, Eric

    surface in a fixed-bed reactor. By changing the temperature and duration of the sulfur impregnation mercury adsorption experiments were carried out in a fixed-bed reactor. Sulfur was impregnated mainly a fixed-bed adsorber at room temperature decreased with an increase in sulfur content. Such behavior

  7. Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    to the cathode.4 However, increased water transport also results in more dilute sulfuric acid, which affectsTransport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur and SO2 crossover in the hybrid sulfur cycle electrolyzer were quantified for a poly phenylene -based

  8. Dissociation of Import of the Rieske Iron-Sulfur Protein into Saccharomyces cerevisiae Mitochondria from Proteolytic

    E-Print Network [OSTI]

    Trumpower, Bernard L.

    processing peptidase was investigated using high concentrations of metal chelators and iron-sulfur protein- sulfur protein into the mitochondrial matrix is inde- pendent of proteolytic processing first removes a 22-amino acid peptide from the prese- quence of the precursor iron-sulfur protein (p

  9. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08T23:59:59.000Z

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  10. Paper 2008-01-0434 Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on

    E-Print Network [OSTI]

    Fatemi, Ali

    to fatigue strength, the high sulfur material had up to 25% lower fatigue strength than the ultra low sulfur, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented

  11. Global Anthropogenic Sulfur Emissions for 1985 and 1990 Carmen M. Benkovitz

    E-Print Network [OSTI]

    the refining process, most of the sulfur i n the crude o i l may be recovered; what i s not #12;recovered remains mainly in the residual sulfur-containing materials (e.g., roast oil fraction. ing of ores), and the use of sulfur compounds to produce other industrial goods (e.g., cellulose production) generate large

  12. Revisit Carbon/Sulfur Composite for Li-S Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Wagner, Michael J.; Hays, Kevin; Li, Xiaohong S.; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-07-23T23:59:59.000Z

    To correlate the carbon properties e.g. surface area and porous structure, with the electrochemical behaviors of carbon/sulfur (C/S) composite cathodes for lithium-sulfur (Li-S) batteries, four different carbon frameworks including Ketjen Black (KB, high surface area and porous), Graphene (high surface area and nonporous), Acetylene Black (AB, low surface area and nonporous) and Hollow Carbon Nano Sphere (HCNS, low surface area and porous) are employed to immobilize sulfur (80 wt.%). It has been revealed that high surface area of carbon improves the utilization rate of active sulfur and decreases the real current density during the electrochemical reactions. Accordingly, increased reversible capacities and reduced polarization are observed for high surface area carbon hosts such as KB/S and graphene/S composites. The porous structure of KB or HCNS matrix promotes the long-term cycling stability of C/S composites but only at relatively low rate (0.2 C). Once the current density increases, the pore effect completely disappears and all Li-S batteries show similar trend of capacity degradation regardless of the different carbon hosts used in the cathodes. The reason has been assigned to the formation of reduced amount of irreversible Li2S on the cathode as well as shortened time for polysulfides to transport towards lithium anode at elevated current densities. This work provides valuable information for predictive selection on carbon materials to construct C/S composite for practical applications from the electrochemical point of view.

  13. Sodium and sulfur release and recapture during black liquor burning

    SciTech Connect (OSTI)

    Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

    1995-08-01T23:59:59.000Z

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  15. Sulfur controls edge closer in acid-rain debate

    SciTech Connect (OSTI)

    Not Available

    1984-10-04T23:59:59.000Z

    The role of airborne sulfur emissions from midwestern and southern coal-fired power plants in exacerbating the acid rain problem is discussed. This problem is discussed from the standpoint of legislation, compliance costs, scrubber performance and cost, and chemistry of acid rains.

  16. Auction design and the market for sulfur dioxide emissions

    E-Print Network [OSTI]

    Joskow, Paul L.

    1996-01-01T23:59:59.000Z

    Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO2). Recent papers have argued that flaws in the design of the auctions that are part of this market have ...

  17. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06T23:59:59.000Z

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  18. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  19. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  20. Webinar: Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

  1. Hydrogen Production & Delivery Sara Dillich

    E-Print Network [OSTI]

    ). 15% solar-to-chemical energy efficiency by microalgae Biomass Gasification Hydrogen Production Cost

  2. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31T23:59:59.000Z

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a twenty-five-cycle test. The sorbent was exposed for 58 consecutive days to temperatures between 600°C and 800°C and gas atmospheres from highly reducing to highly oxidizing without measurable loss of sulfur capacity or reactivity. In the process analysis phase of this study, a two-stage desulfurization process using cerium sorbent with SO2 regeneration followed by zinc sorbent with dilute O2 regeneration was compared to a single-stage process using zinc sorbent and O2 regeneration with SO2 in the regeneration product gas converted to elemental sulfur using the direct sulfur recovery process (DSRP). Material and energy balances were calculated using the process simulation package PRO/II. Major process equipment was sized and a preliminary economic analysis completed. Sorbent replacement rate, which is determined by the multicycle sorbent durability, was found to be the most significant factor in both processes. For large replacement rates corresponding to average sorbent lifetimes of 250 cycles or less, the single-stage zinc sorbent process with DSRP was estimated to be less costly. However, the cost of the two-stage cerium sorbent process was more sensitive to sorbent replacement rate, and, as the required replacement rate decreased, the economics of the two-stage process improved. For small sorbent replacement rates corresponding to average sorbent lifetimes of 1000 cycles or more, the two-stage cerium process was estimated to be less costly. In the relatively wide middle range of sorbent replacement rates, the relative economics of the two processes depends on other factors such as the unit cost of sorbents, oxygen, nitrogen, and the relative capital costs.

  3. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  4. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  5. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    biomass, landfill gas, bio-oil or biodiesel. CHP systems that use natural gas, wood pellets, hydrogen, propane or heating oil are also eligible.* March 28, 2014 Net Metering The...

  6. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  7. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01T23:59:59.000Z

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  8. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  9. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2000-01-01T23:59:59.000Z

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  10. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  11. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States); Huffman, G.; Huggins, F.E. [Kentucky Univ., Lexington, KY (United States)

    1992-09-01T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal preoxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation.

  12. Examining hydrogen transitions.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-03-01T23:59:59.000Z

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  13. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles

    E-Print Network [OSTI]

    Long, Bernard

    - ing rare isotopes for Earth materials was the discovery of anomalous 17 O abundance in a wide variety, USA b Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland and extraterrestrial materials. Ă? 2006 Elsevier Inc. All rights reserved. 1. Introduction Sulfur (32 S, 33 S, 34 S

  14. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24T23:59:59.000Z

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  15. Investigation of a sulfur reduction technique for mild gasification char. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Knight, R.A.

    1991-12-31T23:59:59.000Z

    The object of this program is to investigate the desulfurization of mild gasification char using hydrogen/methane mixtures in a laboratory-scale experimental study. In the first year of the two- year program, char is being treated with mixtures of H{sub 2} and CH{sub 4} at temperatures of 1100{degrees}C to 1550{degrees}F and pressures of 50 to 100 psig. The effects of temperature, pressure, residence time, gas velocity, and gas composition on sulfur removal and carbon gasification are being determined. The batch experiments are being performed in a nominal 2-inch-ID stainless-steel, batch, fluidized-bed reactor. The char to be desulfurized was produced by the IGT mild gasification process research unit (PRU) in a recently completed DOE/METC-sponsored technology development program. The parent coal was Illinois No. 6 from a preparation plant, and the char from the selected test contains 4.58 wt% sulfur. In the first quarter, we have obtained and prepared a char for the desulfurization tests. Ultimate and proximate analyses were performed on this char, and its pore size distribution and surface area were determined. Also this quarter, the fluidized-bed reactor system was constructed and equipped with high pressure mass flow controllers and a high pressure sintered metal filter to remove fines from the effluent gas stream.

  16. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    : Facilitate the creation and adoption of model building codes and equipment standards for hydrogen systems of hydrogen building codes for NFPA's hearing cycle. Facilitate in the adoption of the ICC codes in three key for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen

  17. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20T23:59:59.000Z

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  18. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01T23:59:59.000Z

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  19. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  20. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-10-30T23:59:59.000Z

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

  1. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11T23:59:59.000Z

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  2. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14T23:59:59.000Z

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  3. Solar thermal hydrogen production process: Final report, January 1978-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

  4. Study of net soot formation in hydrocarbon reforming for hydrogen fuel cells. Final report

    SciTech Connect (OSTI)

    Edelman, R. B.; Farmer, R. C.; Wang, T. S.

    1982-08-01T23:59:59.000Z

    The hydrogen fuel cell is expected to be a valuable addition to the electric utility industry; however, the current fuel supply availability requires that conventional heavier hydrocarbon fuels also be considered as primary fuels. Typical heavier fuels would be No. 2 fuel oil with its accompanying sulfur impurities, compared with the currently used light hydrocarbon gases. The potential future use of alternate fuels which are rich in aromatics would exacerbate the problems associated with hydrogen production. Among the more severe of these problems, is the greater tendency of heavier hydrocarbons to form soot. The development of a quasi-global kinetics model to represent the homogeneous and heterogeneous reactions which control the autothermal hydrogen reforming process and the accompanying soot formation and gasification was the objective of this study.

  5. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10T23:59:59.000Z

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  6. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19T23:59:59.000Z

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  7. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29T23:59:59.000Z

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  8. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies.10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  9. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  10. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    High-pressure hydrogen compressor Compressed hydrogenapplies to hydrogen storage vessels and compressors. 2.4.4.vehicles. 3. Compressor: compresses hydrogen gas to achieve

  11. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    High-pressure hydrogen compressor Compressed hydrogento hydrogen storage vessels and compressors. Feedstock Costvehicles 3. Compressor: compresses hydrogen gas to achieve

  12. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological Hydrogen...

  13. Hydrogen Production & Delivery | Department of Energy

    Energy Savers [EERE]

    Hydrogen Production & Delivery Hydrogen Production & Delivery "2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2...

  14. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: 1) the lack ofon the Costs of Hydrogen Infrastructure for Transportstudy. Studies of Hydrogen Infrastructure in China There

  15. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: (1) the lack of1.3.3. Studies of hydrogen infrastructure in China Thereon the costs of hydrogen Infrastructure for transport

  16. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  17. Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant

    SciTech Connect (OSTI)

    Piyush Sabharwal

    2009-07-01T23:59:59.000Z

    Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

  18. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18T23:59:59.000Z

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  19. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01T23:59:59.000Z

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  20. The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

    E-Print Network [OSTI]

    The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

  1. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    Unknown

    1999-04-01T23:59:59.000Z

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  2. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate

    E-Print Network [OSTI]

    Hubbard, Susan

    Scale Uranium Bioremediation J E N N I F E R L . D R U H A N , * , M A R K E . C O N R A D , K E N N E September 5, 2008. Accepted September 8, 2008. Aqueous uranium (U(VI)) concentrations in a contaminated(II), sulfate, sulfide, acetate, U(VI), and 34S of sulfate and sulfide to explore the utility of sulfur isotopes

  3. Intensities of electronic transitions in sulfur dioxide vapor

    E-Print Network [OSTI]

    McCray, James Arthur

    1955-01-01T23:59:59.000Z

    . Relation between Oscillator Strength and Probability Coefficient of Absorption . . . . . . . . . . . . . . . . 20 V. The Ultraviolet Spectrum of Sulfur Dioxide Gas . . . . . . 22 ) VI. Experimental Procedure and Computations . . . . . . . . . 23 U A... where )(e is defined as the dielectric constant of the medium. This equation holds for radiation which has a frequency sufficiently dif- ferent from that of the resonant frequencies of'the molecules of the medium, The polarizability o( of a molecule...

  4. Posting type Informational Subject Changed reporting of XRF sulfur

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Informational Subject Changed reporting of XRF sulfur Module/Species A/ S Sites entire network Period Starting 1/1/05 Submitter W.H. White, white@crocker.ucdavis.edu Supporting information XRF and 2005 seen in Figure 1. 0.9 1 1.1 1.2 1.3 1.4 12/1/04 1/1/05 2/1/05 3S/SO4 = ADJUSTMENT REPORTED XRF

  5. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  6. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  7. Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*

    E-Print Network [OSTI]

    aspects of hydrogen utilization. production distribution utilization How do we achieve safe, efficient Forecourt storage (refueling stations) requirements being developed (IHIG) Distribution storage (delivery 75 100 125 hydrogen m ethane ethane propane butane pentane hexane heptane octane (gasoline) cetane

  8. Reactions of Methylene Hydrogen

    E-Print Network [OSTI]

    Griffin, E. L.

    1912-05-15T23:59:59.000Z

    was orystallized out as a yellow solid from aloohol and then from ethyl aostate. Melting point 170°C Analysis: Calculated for C17H14O2U s - 10.10$ Found I = 10.00$ SUMMARY 0 It was found that the methods given in the literature for the preparation... following* 1. Metallic sodium replaces either one, or both of the hydrogens, the latter being given off as a free gas. 2. Sodium hydroxide replaces the hydrogen by the metal, with a splitting off of water. 3. Sodium ethylate reacts, giving the metal 3...

  9. How to Obtain Reproducible Results for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-01-01T23:59:59.000Z

    The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

  10. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28T23:59:59.000Z

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  11. Sibley station low-sulfur coal conversion program

    SciTech Connect (OSTI)

    Rupinskas, R.L. [Sargent & Lundy LLC, Chicago, IL (United States); Rembold, D.F. [Missouri Public Service, Kansas City, MO (United States)

    1995-03-01T23:59:59.000Z

    After embarking on an upgrade project in 1986 that was designed to allow efficient and reliable operation of its coal-fired Sibley station through 2010, Missouri Public Service (MPS) faced the uncertainty of impending acid-rain legislation. To protect its investment in the Sibley Rebuild Program, the utility evaluated compliance options based on the emerging legislation and concluded that switching to low-sulfur coal offered the least-cost compliance approach. Compared to installing a scrubber, switching to a low-sulfur coal was also more straightforward, although not without challenges and complications. This paper reviews the Sibley low-sulfur coal conversion program. At Sibley, fuel switching was chosen only after numerous internal and external studies; it withstood late challenges from natural gas and allowance trading. Switching demanded additional equipment to blend Power River Basin coals and other coals, and demanded additional and upgraded protective equipment in the areas of fire protection, dust collection, and explosion prevention. In the year since the coal conversion project was completed the facility has operated reliably, the economic benefits of the lower cost Powder River Basin coals have been realized, and the station has also met the requirements of both phases of the acid rain legislation. Fuel switching at Sibley required a team approach and careful analysis. The coal conversion project also required attention and dedication by team members in order to minimize fuel costs while maintaining optimum plant efficiency and availability.

  12. Hawaii hydrogen power park Hawaii Hydrogen Power Park

    E-Print Network [OSTI]

    energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V Vent AC Power Reformer Low Pressure H2 Storage Propane Hydrogen Optional Reformer System Optional Wind. Low pressure hydrogen storage utilizing propane tanks. High pressure storage using lightweight

  13. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Zhang, Xuran [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Li, Chao [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; McKinnon, Meaghan E. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Sadok, Rachel G. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Qu, Deyu [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Yu, Xiqian [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  14. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore »the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  15. Abundances of sulfur, chlorine, and trace elements in Illinois Basin coals, USA

    SciTech Connect (OSTI)

    Chou, C.L. [Illinois State Geological Survey, Champaign, IL (United States)

    1997-12-31T23:59:59.000Z

    Abundances of sulfur, chlorine and 52 trace elements in 220 channel and drill-core samples of high volatile bituminous coals (Pennsylvanian age) from the Illinois Basin, USA, are evaluated for the purpose of better understanding geologic processes affecting trace element variation in the coal seams. Mean elemental abundances in Illinois Basin coals are listed in a table. Most Illinois Basin coals are high-sulfur (> 3% total sulfur). Peat was influenced by seawater during early diagenesis. However, low-medium sulfur coal (<3% total sulfur) occurs in restricted areas along the Walshville Channel, which is a contemporaneous river in the peat swamp. A comparison of trace element abundances between high-sulfur and low-medium sulfur coals showed that only seven elements (boron, sulfur, iron, molybdenum, mercury, thallium, and uranium) are clearly more abundant in high-sulfur coal than in low-medium sulfur coal. Apparently, boron, sulfur, molybdenum, and uranium in high-sulfur coals were derived from seawater that inundated the peat swamp and terminated peat accumulation. Iron, mercury, and thallium had a terrestrial source and were incorporated in pyrite during diagenesis. Their enrichment in high-sulfur coal is related to pyrite formation in a reducing environment. The chlorine content in Illinois Basin coals, including channel and drill core samples, varies from 0.01% to 0.8% (on a dry basis). Coal samples from surface mines (< 50 meter depth) are usually low in chlorine content (<0.1%). Samples from underground mines (> 50 meter depth) have a chlorine content ranging between 0.1% to 0.5%. Variation of chlorine content in each of the two coal seams shows that chlorine content increases with depth because the chloride in coal is in equilibrium with the chloride in the groundwater, which is also depth dependent. A low chlorine content in shallow regions of a coal seam is a result of leaching by fresh groundwater.

  16. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15T23:59:59.000Z

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  17. Oxidation resistant organic hydrogen getters

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

    2008-09-09T23:59:59.000Z

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  18. Sandia National Laboratories: Hydrogen Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behavior Protected: Hydrogen and Fuel Cells Program On April 28, 2014, in There is no excerpt because this is a protected post. Hydrogen and Fuel Cells Program On November 9, 2010,...

  19. Hydrogen,Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    ;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

  20. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  1. Hydrogen Distribution and Delivery Infrastructure

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

  2. Hydrogen Delivery Options and Issues

    Broader source: Energy.gov (indexed) [DOE]

    stationary power site - GH2 Pipelines and Trucks, LH2 Trucks, Carriers <1.00kg of Hydrogen by 2017 Hydrogen Delivery H2 Delivery Current Status * Technology - GH2 Tube...

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  4. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  5. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01T23:59:59.000Z

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  6. Conditions under which cracks occur in modified 13% chromium steel in wet hydrogen sulfide environments

    SciTech Connect (OSTI)

    Hara, T.; Asahi, H.

    2000-05-01T23:59:59.000Z

    Occurrence of cracks in an API 13% Cr steel, modified 13% Cr steel, and duplex stainless steel were compared in various wet, mild hydrogen sulfide (H{sub 2}S) environments. The conditions under which cracks occurred in the modified 13% Cr steel in oil and gas production environments were made clear. No cracks occurred if pH > depassivation pH (pH{sub d}) and redox potential of sulfur (E{sub S(red/ax)}) < pitting potential (V{sub c}). Hydrogen embrittlement-type cracks occurred in pH > Ph{sub d} and E{sub S(red/ax)} > V{sub c}. The pH inside the pit decreased drastically and hydrogen embrittlement occurred. Cracks of the hydrogen embrittlement type occurred if pH < pH{sub d} and threshold hydrogen concentration under which cracks occur (H{sub th}) < hydrogen concentration in steel (H{sub 0}). No cracks occurred if pH < pH{sub d} and H{sub th} > H{sub 0}.

  7. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31T23:59:59.000Z

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  8. A Crossed Beam and ab Initio Investigation of the Reaction of Hydrogen Sulfide, H2S(X1A1), with Dicarbon Molecules, C2(X1g

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    alternative pathways, the elimination of atomic and molecular hydrogen from a thioketene (H2CCS) intermediate, to synthesize HCCS and CCS are also discussed. 1. Introduction Investigating the formation of sulfur bearing molecules.11 However. despite the potential key role of HCnS isomers to understand the organosulfur

  9. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  10. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  11. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  12. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  13. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    be powered by hydrogen, and pollution-free." "Join me in this important innovation to make our air for the foreseeable future. Even with the significant energy efficiency benefits that gasoline- electric hybrid - fossil fuels like natural gas and coal; renewable energy sources such as solar radiation, wind

  14. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12T23:59:59.000Z

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  15. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31T23:59:59.000Z

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  16. Hydrogen Piping Experience in Chevron

    E-Print Network [OSTI]

    Hydrogen Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 #12;Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few

  17. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    in combustion engines, or converted into hydrogen at fuelengines are now nearly zero-emitting. What do these lessons imply for hydrogen?Hydrogen will find it difficult to compete with the century-long investment in petroleum fuels and internal combustion engines.

  18. Proceedings NATIONAL HYDROGEN VISION MEETING

    E-Print Network [OSTI]

    's Plan directs us to explore the possibility of a hydrogen economy..." Spencer Abraham, Secretary be found at the end of this document.) The intent was to identify a common vision of a "hydrogen economy of the Group: Which factors are most likely to support/inhibit the development of a "hydrogen economy

  19. January 2005 HYDROGEN EMBRITTLEMENT OF

    E-Print Network [OSTI]

    1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline R&D Project Review Meeting Oak Ridge National Laboratory, Oak Ridge TN January 5-6, 2005 #12;2 January 2005 Hydrogen

  20. Composites Technology for Hydrogen Pipelines

    E-Print Network [OSTI]

    Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

  1. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Energy Savers [EERE]

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  2. Ultraviolet stimulation of hydrogen peroxide production using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer Ultraviolet stimulation of hydrogen peroxide...

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  5. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Photoelectrochemical (PEC) Hydrogen Production Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost...

  6. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH):...

  7. Hydrogen Production Infrastructure Options Analysis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Options Analysis Hydrogen Production Infrastructure Options Analysis Presentation on hydrogen production and infrastructure options presented at the DOE Transition...

  8. Autofermentative Biological Hydrogen Production by Cyanobacteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autofermentative Biological Hydrogen Production by Cyanobacteria Autofermentative Biological Hydrogen Production by Cyanobacteria Presentation by Charles Dismukes, Rutgers...

  9. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  10. Hydrogenases and Barriers for Biotechnological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies Presentation by John...

  11. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report Updated Cost Analysis of Photobiological Hydrogen...

  12. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  13. Hydrogen Infrastructure Market Readiness Workshop: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Preliminary Results Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop...

  14. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Energy Savers [EERE]

    Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

  15. The Sulfur-Iodine Cycle: Process Analysis and Design Using Comprehensive Phase Equilibrium Measurements and Modeling

    SciTech Connect (OSTI)

    Thies, Mark C.; O'Connell, J. P.; Gorensek, Maximilian B.

    2010-01-10T23:59:59.000Z

    Of the 100+ thermochemical hydrogen cycles that have been proposed, the Sulfur-Iodine (S-I) Cycle is a primary target of international interest for the centralized production of hydrogen from nuclear power. However, the cycle involves complex and highly nonideal phase behavior at extreme conditions that is only beginning to be understood and modeled for process simulation. The consequence is that current designs and efficiency projections have large uncertainties, as they are based on incomplete data that must be extrapolated from property models. This situation prevents reliable assessment of the potential viability of the system and, even more, a basis for efficient process design. The goal of this NERI award (05-006) was to generate phase-equilibrium data, property models, and comprehensive process simulations so that an accurate evaluation of the S-I Cycle could be made. Our focus was on Section III of the Cycle, where the hydrogen is produced by decomposition of hydroiodic acid (HI) in the presence of water and iodine (I2) in a reactive distillation (RD) column. The results of this project were to be transferred to the nuclear hydrogen community in the form of reliable flowsheet models for the S-I process. Many of the project objectives were achieved. At Clemson University, a unique, tantalum-based, phase-equilibrium apparatus incorporating a view cell was designed and constructed for measuring fluid-phase equilibria for mixtures of iodine, HI, and water (known as HIx) at temperatures to 350 °C and pressures to 100 bar. Such measurements were of particular interest for developing a working understanding of the expected operation of the RD column in Section III. The view cell allowed for the IR observation and discernment of vapor-liquid (VL), liquid-liquid, and liquid-liquid-vapor (LLVE) equilibria for HIx systems. For the I2-H2O system, liquid-liquid equilibrium (LLE) was discovered to exist at temperatures up to 310-315 °C, in contrast to the models and predictions of earlier workers. For the I2-HI-H2O ternary, LLE and LLVE were all observed for the first time at temperatures of 160 and 200 °C. Three LLE tie-lines were measured at 160 °C, and preliminary indications are that the underlying phase behavior could result in further improvements in the performance of the S-I Cycle. Unfortunately, these new results were obtained too late in the project to be incorporated into the modeling and simulation work described below. At the University of Virginia, a uniquely complete and reliable model was developed for the thermodynamic properties of HIx, covering the range of conditions expected for the separation of product hydrogen and recycled iodine in the RD column located in Section III. The model was validated with all available property spectroscopy data. The results provide major advances over prior understanding of the chemical speciation involved. The model was implemented in process simulation studies of the S-I Cycle, which showed improvement in energy efficiency to 42%, as well as significantly smaller capital requirements due to lower pressure operation and much smaller equipment sizes. The result is that the S-I Cycle may be much more economically feasible than was previously thought. If both the experimental and modeling work described above were to be continued to ultimate process optimization, both the American public and the global community would benefit from this alternative energy source that does not produce carbon emissions.

  16. Solid evacuated microspheres of hydrogen

    DOE Patents [OSTI]

    Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

    1982-01-01T23:59:59.000Z

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  17. Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas

    SciTech Connect (OSTI)

    James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

    2008-05-31T23:59:59.000Z

    This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

  18. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  19. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

    2001-04-30T23:59:59.000Z

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

  20. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-01-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

  1. Portable instrument and method for detecting reduced sulfur compounds in a gas

    DOE Patents [OSTI]

    Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

    1983-06-01T23:59:59.000Z

    A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

  2. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

  3. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

  4. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    of long cycle life in half cells and expand the synthesis of sulfurcarbon composite materials of various sulfur loading 2. Compare the performance for different...

  5. Sulfur barrier for use with in situ processes for treating formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Christensen, Del Scot (Friendswood, TX)

    2009-12-15T23:59:59.000Z

    Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.

  6. Polymer system for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

    2000-01-01T23:59:59.000Z

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  7. Hydrogen Economy: Opportunities and Challenges *

    E-Print Network [OSTI]

    A hydrogen economy, the long-term goal of many nations, can potentially provide energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, and the response of petroleum markets. This study uses the U.S. MARKAL model to simulate the impacts of hydrogen technologies on the U.S. energy system and identify potential impediments to a successful transition. Preliminary findings identify potential market barriers facing the hydrogen economy, as well as opportunities in new R&D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. The objective of this paper is to study the transition from a petroleum-based energy system to a hydrogen economy, and ascertain the consequent opportunities and

  8. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-03-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  9. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-02-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  10. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  11. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-07-03T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  12. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    J. Douglas Way; Paul M. Thoen

    2006-08-31T23:59:59.000Z

    This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the support cost that will dominate the cost of a large scale module. In a direct comparison of FCC phase PdCu and PdAu alloys on identical supports, we showed that a Pd{sub 85}Au{sub 15} (mass %) alloy membrane is not inhibited by CO, CO{sub 2}, or steam present in a water-gas shift feed mixture at 400 C, has better resistance to sulfur than a Pd{sub 94}Cu{sub 6} membrane, and has over twice the hydrogen permeance.

  13. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States)] [and others

    1992-12-31T23:59:59.000Z

    The purposes of this Testing and Materials (ASTM) forms of sulfur analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation. Problem that limits commercial application of the PCE process is the high chlorine content in the PCE-treated coals. Hence, to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal is an additional goal of this investigation. MWOPC`s results have been repeated on fresh IBC-104 coal. Oxidation of coals was found to affect subsequent PCE desulfurization. Elemental sulfur is more amenable to removal by PCE. Ohio 5/6 coal appears to produce elemental sulfur more readily than Illinois coal during oxidation. Data from X-Ray Diffraction spectroscopy indicate that sulfate in the oxidized Illinois IBC-104 coal is mainly in gypsum form, whereas, sulfate in oxidized Ohio 5/6 sample is mainly in szomolnokite form. These data suggest that the oxidation reaction for Ohio 5/6 coal might occur under catalytic conditions which readily convert pyrite to produce FeSO{sub 4} and elemental sulfur. The higher elemental sulfur content in that coal results in higher ASTM organic sulfur removal by PCE extraction. From mass balance calculation, 96% of the total sulfur and greater than 95% of total iron were accounted for during our PCE tests with both long-term ambient-oxidized IBC-104 coal and ambient-oxidized Ohio 516 coal.

  14. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  15. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01T23:59:59.000Z

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  16. Investigation of Sulfur Removal by Direct Limestone Injection

    E-Print Network [OSTI]

    Colaluca, M. A.; Maloney, D. J.

    Stream Cleanup Systems Contractors Review Meeting, DOE/METC 88/6094, Contract DE-AC21-86MC23262, 295-304. Chase, et al, 1985, JANAF Thermochemical Tables, J. Phys. Chern. Ref. Data, 14, Suppl. 1. Cole, J. A., Kramlich, J. C., Seeker, W. R...-IE-90-06-05 Proceedings from the 12th National Industrial Energy Technology Conference, Houston, TX, June 19-20, 1990 Newton, G. H., Chen, S. L., and Kramlich, J. D., 1989, Role of Porosity Less in Limiting Sulfur Dioxide Capture by Calcium...

  17. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30T23:59:59.000Z

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  18. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Other State Hydrogen and Fuel Cell Programs Regional Levelrelated to hydrogen and fuel cell tech- nologies. Otherapplications of hydrogen and fuel cell technologies. They

  19. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    concepts and knowledge in hydrogen energy systems and theirdevelop alternative hydrogen-energy scenarios. The scenariosof alternative hydrogen energy pathways to characterize an

  20. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

  1. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Partnership Finalizes Hydrogen Energy Roadmap,” World WideCommercialization Strategy for Hydrogen Energy Technologies,Economic Analysis of Hydrogen Energy Station Concepts: Are “

  2. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Cell Deployment and Hydrogen Infrastructure, Worldwide Web,of deploying hydrogen infrastructure. stream of hydrogenfeasibility of a hydrogen infrastructure is enhanced by

  3. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected...

  4. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

  5. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01T23:59:59.000Z

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  6. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect (OSTI)

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01T23:59:59.000Z

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

  7. A novel coal feeder for production of low sulfur fuel

    SciTech Connect (OSTI)

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-01-01T23:59:59.000Z

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  8. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis

    SciTech Connect (OSTI)

    Li Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chen Zhiwei [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Zhang Pingfeng; Pan Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Jiang Chengying [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); An Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Liu Shuangjiang [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Chang Wenrui [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)], E-mail: wrchang@sun5.ibp.ac.cn

    2008-05-09T23:59:59.000Z

    Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.

  9. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Distribution Workshop American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure...

  10. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Broader source: Energy.gov (indexed) [DOE]

    vehicles) in 2020. This record from the U.S. Department of Energy Hydrogen and Fuel Cells Program documents the methodology and assumptions used to calculate that...

  11. Hydrogen Supply: Cost Estimate for Hydrogen Pathways?Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    Central Methanol Methanol Forecourt Gasoline Gasoline Forecourt H 2 from ethylene or refinery Residuepitch Central The by-product source of hydrogen defined by IHIG in the...

  12. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN. Citation: Shokri A, Y Wang, GA...

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01T23:59:59.000Z

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  15. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    E-Print Network [OSTI]

    Harris, E.

    The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

  16. amide hydrogen exchange: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economics of Hydrogen Technologies Renewable Energy Websites Summary: Internal Combustion Engine Transportation Applications Hydrogen Fuel Cell Vehicles Hydrogen Internal Power...

  17. ammonium hydrogen carbonate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economics of Hydrogen Technologies Renewable Energy Websites Summary: Internal Combustion Engine Transportation Applications Hydrogen Fuel Cell Vehicles Hydrogen Internal Power...

  18. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – Optimizingdevelopment of a hydrogen infrastructure has been identifiedrecent studies of hydrogen infrastructure have assessed

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. Quantum Confinement in Hydrogen Bond

    E-Print Network [OSTI]

    Santos, Carlos da Silva dos; Ricotta, Regina Maria

    2015-01-01T23:59:59.000Z

    In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.