Sample records for hydrogen methanol supplemental

  1. (Non) formation of methanol by direct hydrogenation of formate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Non) formation of methanol by direct hydrogenation of formate on copper catalysts. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts. Abstract: We...

  2. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01T23:59:59.000Z

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  3. Theoretical study of syngas hydrogenation to methanol on the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface. Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001)...

  4. Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion

    E-Print Network [OSTI]

    Fayer, Michael D.

    Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning resolved pump-probe experiments have been conducted on the deuterated hydroxyl stretch of methanol-d in a solution containing 0.8% methanol-d/23% methanol-h in carbon tetrachloride. Methanol-d molecules that both

  5. Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch, 2002 Vibrational relaxation and hydrogen bond dynamics in methanol-d dissolved in CCl4 have been-d molecules both accepting and donating hydrogen bonds at 2500 cm-1 . Following vibrational relaxation

  6. Advanced hydrogen/methanol utilization technology demonstration. Phase II: Hydrogen cold start of a methanol vehicle

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This is the Phase 11 Final Report on NREL Subcontract No. XR-2-11175-1 {open_quotes}Advanced Hydrogen/Methane Utilization Demonstration{close_quotes} between the National Renewable Energy Laboratory (NREL), Alternative Fuels Utilization Program, Golden, Colorado and Hydrogen Consultants, Inc. (HCI), Littleton, Colorado. Mr. Chris Colucci was NREL`s Technical Monitor. Colorado State University`s (CSU) Engines and Energy Conversion Laboratory was HCI`s subcontractor. Some of the vehicle test work was carried out at the National Center for Vehicle Emissions Control and Safety (NCVECS) at CSU. The collaboration of the Colorado School of Mines is also gratefully acknowledged. Hydrogen is unique among alternative fuels in its ability to burn over a wide range of mixtures in air with no carbon-related combustion products. Hydrogen also has the ability to burn on a catalyst, starting from room temperature. Hydrogen can be made from a variety of renewable energy resources and is expected to become a widely used energy carrier in the sustainable energy system of the future. One way to make a start toward widespread use of hydrogen in the energy system is to use it sparingly with other alternative fuels. The Phase I work showed that strong affects could be achieved with dilute concentrations of hydrogen in methane (11). Reductions in emissions greater than the proportion of hydrogen in the fuel provide a form of leverage to stimulate the early introduction of hydrogen. Per energy unit or per dollar of hydrogen, a greater benefit is derived than simply displacing fossil-fueled vehicles with pure hydrogen vehicles.

  7. Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells of a direct methanol fuel cell DMFC was observed to undergo an overshoot before it stabilized during. Available electronically August 16, 2005. Direct methanol fuel cells DMFCs are considered as a hopeful

  8. Discovery of molecular hydrogen line emission associated with methanol maser emission

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    Discovery of molecular hydrogen line emission associated with methanol maser emission J.-K. Lee March 9 A B S T R AC T We report the discovery of H2 line emission associated with 6.67-GHz methanol emission was found associated with an ultracompact H II region IRAS 14567­5846 and isolated methanol maser

  9. Molecular Hydrogen from Methanol Maser Sources { Out ow from the Earliest Stage of Star Formation?

    E-Print Network [OSTI]

    Burton, Michael

    Molecular Hydrogen from Methanol Maser Sources { Out ow from the Earliest Stage of Star Formation in its natal molecular cloud. The strong methanol maser transition 5 1 { 6 0 A + at 6.7 GHz has also been that methanol maser emission usually occurs in massive star forming regions but away from the UCHII regions

  10. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model Catalyst: A Combined DFT and Kinetic Study. Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model Catalyst: A...

  11. Photoelectrochemical hydrogen production from water/ methanol decomposition using Ag/TiO2 nanocomposite

    E-Print Network [OSTI]

    coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resourcesPhotoelectrochemical hydrogen production from water/ methanol decomposition using Ag/TiO2

  12. Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation

    SciTech Connect (OSTI)

    Grabow, Lars C.; Mavrikakis, Manos

    2011-03-04T23:59:59.000Z

    We present a comprehensive mean-field microkinetic model for the methanol synthesis and water-gas-shift (WGS) reactions that includes novel reaction intermediates, such as formic acid (HCOOH) and hydroxymethoxy (CH?O?) and allows for the formation of formic acid (HCOOH), formaldehyde (CH?O), and methyl formate (HCOOCH?) as byproducts. All input model parameters were initially derived from periodic, self-consistent, GGA-PW91 density functional theory calculations on the Cu(111) surface and subsequently fitted to published experimentalmethanol synthesis rate data, which were collected under realistic conditions on a commercial Cu/ZnO/Al?O? catalyst. We find that the WGS reaction follows the carboxyl (COOH)-mediated path and that both CO and CO? hydrogenation pathways are active for methanol synthesis. Under typical industrial methanol synthesis conditions, CO? hydrogenation is responsible for ?2/3 of the methanol produced. The intermediates of the CO? pathway for methanol synthesis include HCOO*, HCOOH*, CH?O?*, CH?O*, and CH?O*. The formation of formate (HCOO*) from CO?* and H* on Cu(111) does not involve an intermediate carbonate (CO?*) species, and hydrogenation of HCOO* leads to HCOOH* instead of dioxymethylene (H?CO?*). The effect of CO is not only promotional; CO* is also hydrogenated in significant amounts to HCO*, CH?O *, CH?O*, and CH?OH*. We considered two possibilities for CO promotion: (a) removal of OH* via COOH* to form CO? and hydrogen (WGS), and (b) CO-assisted hydrogenation of various surface intermediates, with HCO* being the H-donor. Only the former mechanism contributes to methanol formation, but its effect is small compared with that of direct CO hydrogenation to methanol. Overall, methanol synthesis rates are limited by methoxy (CH?O*) formation at low CO?/(CO+CO?) ratios and by CH?O* hydrogenation in CO?-rich feeds. CH?O* hydrogenation is the common slow step for both the CO and the CO? methanol synthesis routes; the relative contribution of each route is determined by their respective slow steps HCO*+H*?CH?O*+* and HCOOH*+H*?CH?O?*+* as well as by feed composition and reaction conditions. An analysis of the fitted parameters for a commercial Cu/ZnO/Al?O? catalyst suggests that a more open Cu surface, for example, Cu(110), Cu(100), and Cu(211) partially covered by oxygen, may provide a better model for the active site of methanol synthesis, but our studies cannot exclude a synergistic effect with the ZnO support.

  13. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Kwak, Ja Hun; Peden, Charles HF; Campbell, C. T.

    2010-10-14T23:59:59.000Z

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at the low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O2 or N2O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of water is also observed during this titration as the copper surface is re-reduced. These results indicate that co-adsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl.

  14. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-04-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

  15. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-04-01T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  16. Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts

    E-Print Network [OSTI]

    Gulari, Erdogan

    Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts-based catalysts in the production of hydrogen from methanol through catalytic decomposition rights reserved. Keywords: Methanol decomposition; Pt/alumina; Ceria; Hydrogen; PEM fuel cell 1

  17. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-09-30T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  18. A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces

    SciTech Connect (OSTI)

    Liu P.; Yang, Y.; White, M.G.

    2012-01-12T23:59:59.000Z

    Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) < Cu(111) < Pd/Cu(111) < Rh/Cu(111) < Pt/Cu(111) < Ni/Cu(111). On Au/Cu(111) and Cu(111), the formate pathway dominates the methanol production. Doping Au does not help the methanol synthesis on Cu(111). Pd, Rh, Pt, and Ni are able to promote the methanol production on Cu(111), where the conversion via the RWGS + CO-Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

  19. Systems analysis of hydrogen supplementation in natural gas pipelines

    SciTech Connect (OSTI)

    Hermelee, A.; Beller, M.; D'Acierno, J.

    1981-11-01T23:59:59.000Z

    The potential for hydrogen supplementation in natural gas pipelines is analyzed for a specific site from both mid-term (1985) and long-term perspectives. The concept of supplementing natural gas with the addition of hydrogen in the existing gas pipeline system serves to provide a transport and storage medium for hydrogen while eliminating the high investment costs associated with constructing separate hydrogen pipelines. This paper examines incentives and barriers to the implementation of this concept. The analysis is performed with the assumption that current developmental programs will achieve a process for cost-effectively separating pure hydrogen from natural gas/hydrogen mixtures to produce a separable and versatile chemical and fuel commodity. The energy systems formulation used to evaluate the role of hydrogen in the energy infrastructure is the Reference Energy System (RES). The RES is a network diagram that provides an analytic framework for incorporating all resources, technologies, and uses of energy in a uniform manner. A major aspect of the study is to perform a market analysis of traditional uses of resources in the various consuming sectors and the potential for hydrogen substitution in these sectors. The market analysis will focus on areas of industry where hydrogen is used as a feedstock rather than for its fuel-use opportunities to replace oil and natural gas. The sectors of industry where hydrogen is currently used and where its use can be expanded or substituted for other resources include petroleum refining, chemicals, iron and steel, and other minor uses.

  20. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-04-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  1. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-06-30T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

  2. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-06-30T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  3. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-01-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  4. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-04-01T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

  5. Method for making methanol

    DOE Patents [OSTI]

    Mednick, R. Lawrence (Roslyn Heights, NY); Blum, David B. (Wayne, NJ)

    1986-01-01T23:59:59.000Z

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  6. Method for making methanol

    DOE Patents [OSTI]

    Mednick, R. Lawrence (Roslyn Heights, NY); Blum, David B. (Wayne, NJ)

    1987-01-01T23:59:59.000Z

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  7. Fundamental Studies of Methanol Synthesis from CO2 Hydrogenation on Cu(111), Cu Clusters, and Cu/ZnO(000?)

    SciTech Connect (OSTI)

    Liu, P.; Yang, Y.; Evans, J.; Rodriguez, J.A.; White, M.G.

    2010-06-21T23:59:59.000Z

    A combination of experimental and theoretical methods were employed to investigate the synthesis of methanolvia CO{sub 2}hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on Cu(111) and Cunanoparticle surfaces. High pressure reactivity studies show that Cunanoparticles supported on a ZnO(000{bar 1}) single crystal exhibit a higher catalytic activity than the Cu(111) planar surface. Complementary density functional theory (DFT) calculations of methanol synthesis were also performed for a Cu(111) surface and unsupported Cu{sub 29} nanoparticles, and the results support a higher activity for Cu nanoparticles. The DFT calculations show that methanol synthesis on Cu surfaces proceeds through a formate intermediate and the overall reaction rate is limited by both formate and dioxomethylene hydrogenation. Moreover, the superior activity of the nanoparticle is associated with its fluxionality and the presence of low-coordinated Cu sites, which stabilize the key intermediates, e.g. formate and dioxomethylene, and lower the barrier for the rate-limiting hydrogenation process. The reverse water-gas-shift (RWGS) reaction (CO{sub 2} + H{sub 2} {yields} CO + H{sub 2}O) was experimentally observed to compete with methanol synthesis and was also considered in our DFT calculations. In agreement with experiment, the rate of the RWGS reaction on Cu nanoparticles is estimated to be 2 orders of magnitude faster than methanol synthesis at T = 573 K. The experiments and calculations also indicate that CO produced by the fast RWGS reaction does not undergo subsequent hydrogenation to methanol, but instead simply accumulates as a product. Methanol production from CO hydrogenation via the RWGS pathway is hindered by the first hydrogenation of CO to formyl, which is not stable and prefers to dissociate into CO and H atoms on Cu. Our calculated results suggest that the methanol yield over Cu-based catalysts could be improved by adding dopants or promoters which are able to stabilize formyl species or facilitate the hydrogenation of formate and dioxomethylene. the RWGS pathway is hindered by the first hydrogenation of CO to formyl, which is not stable and prefers to dissociate into CO and H atoms on Cu. Our calculated results suggest that the methanol yield over Cu-based catalysts could be improved by adding dopants or promoters which are able to stabilize formyl species or facilitate the hydrogenation of formate and dioxomethylene.

  8. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-09-30T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  9. Theoretical characterization of the hydrogen-bond interaction of diacetamide with water and methanol

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    and methanol Minh Tho Nguyen, Natalie Leroux and The re` se Zeegers-Huyskens* Department of Chemistry formed from interaction of diacetamide with water and methanol. In both water and methanol complexes/6-31G** level being [44 kJ mol~1 for the water complex and [48 kJ mol~1 for the methanol complex

  10. Electron-stimulated reactions in layered CO/H2O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven; Kimmel, Gregory A.

    2014-05-28T23:59:59.000Z

    Low-energy (100 eV) electron-stimulated reactions in layered H2O/CO/H2O ices are investigated. For CO trapped within approximately 50 ML of the vacuum interface in the amorphous solid water (ASW) films, both oxidation and reduction reactions are observed. However for CO buried more deeply in the film, only the reduction of CO to methanol is observed. Experiments with layered films of H2O and D2O show that the hydrogen atoms participating in the reduction of the buried CO originate in region from ~10 – 40 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ~60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol that accounts for the observations.

  11. Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer

    SciTech Connect (OSTI)

    Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A., E-mail: rmata@gwdg.de [Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstr. 6, 37077 Göttingen (Germany)

    2014-09-14T23:59:59.000Z

    The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about ?121 cm{sup ?1} upon dimerization, somewhat more than in the anharmonic experiment (?111 cm{sup ?1})

  12. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O

    SciTech Connect (OSTI)

    Zhao, Yafan; Yang, Yong; Mims, Charles A.; Peden, Charles HF; Li, Jun; Mei, Donghai

    2011-05-31T23:59:59.000Z

    Methanol synthesis from CO2 hydrogenation on supported Cu catalysts is of considerable importance in the chemical and energy industries. Although extensive experimental and theoretical efforts have been carried out in the past decades, the most fundamental questions such as the reaction mechanisms and the key reaction intermediates are still in debate. In the present work, a comprehensive reaction network for CO2 hydrogenation to methanol on Cu(111) was studied using periodic density functional theory (DFT) calculations. All of the elementary reaction steps in the reaction network were identified in an unbiased way with the dimer method. Our calculation results show that methanol synthesis from direct hydrogenation of formate on Cu(111) is not feasible due to the high activation barriers for some of the elementary steps. Instead, we find that CO2 hydrogenation to hydrocarboxyl (trans-COOH) is kinetically more favorable than formate in the presence of H2O via a unique proton transfer mechanism. The trans-COOH is then converted into hydroxymethylidyne (COH) via dihydroxycarbene (COHOH) intermediates, followed by three consecutive hydrogenation steps to form hydroxymethylene (HCOH), hydroxymethyl (H2COH), and methanol. This is consistent with recent experimental observations [1], which indicate that direct hydrogenation of formate will not produce methanol under dry hydrogen conditions. Thus, both experiment and computational modeling clearly demonstrate the important role of trace amounts of water in methanol synthesis from CO2 hydrogenation on Cu catalysts. The proposed methanol synthesis route on Cu(111) not only provides new insights into methanol synthesis chemistry, but also demonstrates again that spectroscopically observed surface species are often not critical reaction intermediates but rather spectator species. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface

    SciTech Connect (OSTI)

    Zhao, Ya-Fan; Rousseau, Roger J.; Li, Jun; Mei, Donghai

    2012-08-02T23:59:59.000Z

    Methanol synthesis from syngas (CO/CO2/H2) hydrogenation on the perfect Zn–terminated polar ZnO(0001) surface have been investigated using periodic density functional theory calculations. Our results show that direct CO2 hydrogenation to methanol on the perfect ZnO(0001) surface is unlikely because in the presence of surface atomic H and O the highly stable formate (HCOO) and carbonate (CO3) readily produced from CO2 with low barriers 0.11 and 0.09 eV will eventually accumulate and block the active sites of the ZnO(0001) surface. In contrast, methanol synthesis from CO hydrogenation is thermodynamically and kinetically feasible on the perfect ZnO(0001) surface. CO can be consecutively hydrogenated into formyl (HCO), formaldehyde (H2CO), methoxy (H3CO) intermediates, leading to the final formation of methanol (H3COH). The reaction route via hydroxymethyl (H2COH) intermediate, a previously proposed species on the defected O–terminated ZnO( ) surface, is kinetically inhibited on the perfect ZnO(0001) surface. The rate-determining step in the consecutive CO hydrogenation route is the hydrogenation of H3CO to H3COH. We also note that this last hydrogenation step is pronouncedly facilitated in the presence of water by lowering the activation barrier from 1.02 to 0.55 eV. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, and performed at EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). Computational resources were provided at EMSL and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. J. Li and Y.-F. Zhao were also financially supported by the National Natural Science Foundation of China (Nos. 20933003 and 91026003) and the National Basic Research Program of China (No. 2011CB932400). Y.-F. Zhao acknowledges the fellowship from PNNL.

  14. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  15. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  16. Electron-stimulated reactions in layered CO/H{sub 2}O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Kimmel, Greg A., E-mail: gregory.kimmel@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, MSIN K8-88, P.O. Box 999, Richland, Washington 99352 (United States); Monckton, Rhiannon J.; Koehler, Sven P. K. [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); UK Dalton Cumbrian Facility, The University of Manchester, Moor Row, Whitehaven CA24 3HA (United Kingdom)

    2014-05-28T23:59:59.000Z

    Low-energy (100 eV) electron-stimulated reactions in layered H{sub 2}O/CO/H{sub 2}O ices are investigated. For CO layers buried in amorphous solid water (ASW) films at depths of 50 monolayers (ML) or less from the vacuum interface, both oxidation and reduction reactions are observed. However, for CO buried more deeply in ASW films, only the reduction of CO to methanol is observed. Experiments with layered films of H{sub 2}O and D{sub 2}O show that the hydrogen atoms participating in the reduction of the buried CO originate in the region that is 10–50 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ?60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol to account for the observations.

  17. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01T23:59:59.000Z

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  18. Thermally integrated staged methanol reformer and method

    DOE Patents [OSTI]

    Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

    2001-01-01T23:59:59.000Z

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  19. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    1999-01-01T23:59:59.000Z

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  20. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01T23:59:59.000Z

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  1. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24T23:59:59.000Z

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  2. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17T23:59:59.000Z

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  3. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  4. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model Catalyst: A Combined DFT and Kinetic Study

    SciTech Connect (OSTI)

    Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng

    2014-08-01T23:59:59.000Z

    Methanol synthesis from CO2 hydrogenation on Pd4/In2O3 has been investigated using density functional theory (DFT) and microkinetic modeling. In this study, three possible routes in the reaction network of CO2 + H2 ? CH3OH + H2O have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier kinetically blocks the HCOOH route. DFT results also suggest that H2COO* + H* ? H2CO* +OH* and cis-COOH* + H* ?CO* + H2O* are the rate limiting steps in the HCOO route and the RWGS route, respectively. Microkinetic modeling results demonstrate that the HCOO route is the dominant reaction route for methanol synthesis from CO2 hydrogenation. We found that the activation of H adatom on the small Pd cluster and the presence of H2O on the In2O3 substrate play important roles in promoting the methanol synthesis. The hydroxyl adsorbed at the interface of Pd4/In2O3 induces the transformation of the supported Pd4 cluster from a butterfly structure into a tetrahedron structure. This important structure change not only indicates the dynamical nature of the supported nanoparticle catalyst structure during the reaction but also shifts the final hydrogenation step from H2COH to CH3O.

  5. Reactivity of Hydrogen and Methanol on (001) Surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3

    SciTech Connect (OSTI)

    Ling, Sanliang; Mei, Donghai; Gutowski, Maciej S.

    2011-05-16T23:59:59.000Z

    Bulk tungsten trioxide (WO3) and rhenium trioxide (ReO3) share very similar structures but display different electronic properties. WO3 is a wide bandgap semiconductor while ReO3 is an electronic conductor. With the advanced molecular beam epitaxy techniques, it is possible to make heterostructures comprised of layers of WO3 and ReO3. These heterostructures might display reactivity different than pure WO3 and ReO3. The interactions of two probe molecules (hydrogen and methanol) with the (001) surfaces of WO3, ReO3, and two heterostructures ReO3/WO3 and WO3/ReO3 were investigated at the density functional theory level. Atomic hydrogen prefers to adsorb at the terminal O1C sites forming a surface hydroxyl on four surfaces. Dissociative adsorption of a hydrogen molecule at the O1C site leads to formation of a water molecule adsorbed at the surface M5C site. This is thermodynamically the most stable state. A thermodynamically less stable dissociative state involves two surface hydroxyl groups O1CH and O2CH. The interaction of molecular hydrogen and methanol with pure ReO3 is stronger than with pure WO3 and the strength of the interaction substantially changes on the WO3/ReO3 and ReO3/WO3 heterostructures. The reaction barriers for decomposition and recombination reactions are sensitive to the nature of heterostructure. The calculated adsorption energy of methanol on WO3(001) of -65.6 kJ/mol is consistent with the previous experimental estimation of -67 kJ/mol. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  6. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study

    SciTech Connect (OSTI)

    Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng

    2013-06-03T23:59:59.000Z

    Methanol synthesis from CO2 hydrogenation on the defective In2O3(110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from Ov1 to Ov6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the Ov1 defective site is the most thermodynamically favorable while the D4 surface with the Ov4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied and the D4 surface was found to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the Ov4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting in H2CO and hydroxyl. The HCOO hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. We gratefully acknowledge the supports from the National Natural Science Foundation of China (#20990223) and from US Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. PNNL is a multiprogram national laboratory operated for DOE by Battelle.

  7. Vibrational relaxation of the free terminal hydroxyl stretch in methanol oligomers: Indirect pathway to hydrogen bond breaking

    E-Print Network [OSTI]

    Fayer, Michael D.

    Vibrational relaxation of methanol-d MeOD in carbon tetrachloride has been investigated via ultrafast infrared such as carbon tetrachloride (CCl4) or alkanes. Unlike water, which is only sparingly soluble in nonpolar

  8. Air Breathing Direct Methanol Fuel Cell

    DOE Patents [OSTI]

    Ren; Xiaoming (Los Alamos, NM)

    2003-07-22T23:59:59.000Z

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  9. Produce syngas for methanol

    SciTech Connect (OSTI)

    Farina, G.L. (Foster Wheeler International Corp., Milan (IT))

    1992-03-01T23:59:59.000Z

    Combined reforming, in which an oxygen reforming reactor is added downstream from a conventional tubular reactor to produce syngas for methanol, achieves a substantial reduction in energy consumption with the least impact on the environment. This paper reports that the advantages of this process scheme are as follows: 8% to 10% reduction in the consumption of natural gas per ton of methanol, The size of the primary reformer is reduced, Reduction of syngas compression requirement due to increased syngas pressure, Reduced steam consumption, Production of syngas with the stoichiometric composition required by methanol synthesis. Synthesis gases for the production of methanol and synfuels are basically mixtures of hydrogen and carbon oxides. They have been produced from natural gas by steam reforming, autothermal reforming and noncatalytic partial oxidation.

  10. Hydrogen Supply: Cost Estimate for Hydrogen Pathways?Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    Central Methanol Methanol Forecourt Gasoline Gasoline Forecourt H 2 from ethylene or refinery Residuepitch Central The by-product source of hydrogen defined by IHIG in the...

  11. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    SciTech Connect (OSTI)

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19T23:59:59.000Z

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  12. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on...

  13. Liquid phase methanol reactor staging process for the production of methanol

    DOE Patents [OSTI]

    Bonnell, Leo W. (Macungie, PA); Perka, Alan T. (Macungie, PA); Roberts, George W. (Emmaus, PA)

    1988-01-01T23:59:59.000Z

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  14. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

    1984-01-01T23:59:59.000Z

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  15. Preferential oxidation of methanol and carbon monoxide for gas cleanup during methanol fuel processing

    SciTech Connect (OSTI)

    Birdsell, S.A.; Vanderborgh, N.E.; Inbody, M.A. [Los Alamos National Lab., NM (United States)

    1993-07-01T23:59:59.000Z

    Methanol fuel processing generates hydrogen for low-temperature, PEM fuel cell systems now being considered for transportation and other applications. Although liquid methanol fuel is convenient for this application, existing fuel processing techniques generate contaminants that degrade fuel cell performance. Through mathematical models and laboratory experiments chemical processing is described that removes CO and other contaminants from the anode feed stream.

  16. Methanol production method and system

    DOE Patents [OSTI]

    Chen, Michael J. (Darien, IL); Rathke, Jerome W. (Bolingbrook, IL)

    1984-01-01T23:59:59.000Z

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  17. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1991-02-12T23:59:59.000Z

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  18. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1990-01-01T23:59:59.000Z

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  19. Hydrogen as a Supplemental Fuel in Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen and Fuelas a

  20. Enhanced methanol utilization in direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2001-10-02T23:59:59.000Z

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  1. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    E-Print Network [OSTI]

    Berning, Torsten

    Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use

  2. Evaluation of reformed methanol as an automotive engine fuel

    E-Print Network [OSTI]

    McCall, David M

    1983-01-01T23:59:59.000Z

    coal, oil shale, tar sands, and renewable resources [12], of which there are abundant supplies. Also, methanol could be distributed through the present fuel distribution network with some minor modifications. Hydrogen has also be investi- gated...

  3. A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol

    E-Print Network [OSTI]

    Mukasyan, Alexander

    A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from pre- pared via three combustion synthesis routes including volume combustion, impregnated substrate combustion, and so-called second wave impregnation combustion methods. These catalysts were characterized via

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    R. H. Williams, Solar hydrogen: moving beyond fossil fuels.J. S. Cannon, Harnessing Hydrogen: The Key to Sustainablefuel cell power systems hydrogen vs. methanol: a comparative

  5. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    vol. ) in Methanol Furnace , 2 , . . . . . . . . , . , .Velocity Profiles in Methanol Furnace Temperature Profiles:to Pure Methanol . . . . . . . . . . . . , . . . . C02

  6. Uptake and Surface Reaction of Methanol by Sulfuric Acid Solutions Investigated by Vibrational Sum Frequency Generation and Raman Spectroscopies

    E-Print Network [OSTI]

    Uptake and Surface Reaction of Methanol by Sulfuric Acid Solutions Investigated by Vibrational SumVised Manuscript ReceiVed: June 4, 2008 The uptake of methanol at the air-liquid interface of 0-96.5 wt % sulfuric methanol and H2SO4 to form methyl hydrogen sulfate. The surface is saturated with the methyl species after

  7. Methanol and hydrogen from biomass for transportation

    E-Print Network [OSTI]

    . In the light of increasing air pollution in megacitites like Mexico City and São Paulo [UNEP/WHO, 1992 for biomass to be used for road transportation, with zero or near-zero local air pollution and very low levels

  8. MTBE/methanol supply

    SciTech Connect (OSTI)

    Simmons, R.E.

    1986-05-01T23:59:59.000Z

    U.S. methanol production has become economically competitive with imports due to de-escalation of natural gas price from $3.07 mm Btu in January 1985 to $2.07 mm Btu by December 1985. This has reversed the earlier supply outlook when it appeared that additional methanol plants would shutdown due to low cost imports. Current gas cost in conjunction with projections for continued excess supply prompted DuPont to restart their 250 mm gpy plant at Beaumont, Texas. Other former producers are contemplating restarting idle units.

  9. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Gurau, Bogdan

    2013-05-31T23:59:59.000Z

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  10. 4, 125164, 2007 Methanol exchange

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 125­164, 2007 Methanol exchange between grassland and the atmosphere A. Brunner et al. Title Discussions Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methanol (albrecht.neftel@art.admin.ch) 125 #12;BGD 4, 125­164, 2007 Methanol exchange between grassland

  11. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect (OSTI)

    Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

    2009-07-01T23:59:59.000Z

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  12. Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System approach

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System East, Denmark Introduction This work presents a control strategy for a reformed methanol fuel cell system, which uses a reformer to produce hydrogen for a HTPEM fuel cell. Such systems can advantageously

  13. Control of a methanol reformer system using an Adaptive NeuroFuzzy Inference System approach

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    Control of a methanol reformer system using an Adaptive NeuroFuzzy Inference System approach, Denmark Introduction This work presents a stoichiometry control strategy for a reformed methanol fuel cell system, which uses a reformer to produce hydrogen for an HTPEM fuel cell. One such system is the Serenus

  14. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

  15. H-D Substitution in Interstellar Solid Methanol: A Key Route for D Enrichment

    E-Print Network [OSTI]

    Akihiro Nagaoka; Naoki Watanabe; Akira Kouchi

    2005-03-28T23:59:59.000Z

    Deuterium enrichment of interstellar methanol is reproduced experimentally for the first time via grain-surface H-D substitution in solid methanol at an atomic D/H ratio of 0.1. Although previous gas-grain models successfully reproduce the deuterium enrichments observed in interstellar methanol molecules (D/H of up to 0.4, compared to the cosmic ratio of $\\sim 10^{-5})$, the models exclusively focus on deuterium fractionation resulting from the successive addition of atomic hydrogen/deuterium on CO. The mechanism proposed here represents a key route for deuterium enrichment that reproduces the high observed abundances of deuterated methanol, including multiple deuterations.

  16. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G.K.

    2013-12-31T23:59:59.000Z

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields. ? Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application. ? Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm). ? CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching. ? CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer. ? Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts. ? Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

  17. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    E-Print Network [OSTI]

    Kostko, Oleg

    2008-01-01T23:59:59.000Z

    Table 1 Appearance energies for pure and protonated methanoland methanol-water clusters evaluated from photoionizationVUV) photoionization of small methanol and methanol-water

  18. METHANOL AS A TRACER OF FUNDAMENTAL CONSTANTS

    SciTech Connect (OSTI)

    Levshakov, S. A. [A. F. Ioffe Physical-Technical Institute, Saint Petersburg 194021 (Russian Federation); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation); Reimers, D., E-mail: lev@astro.ioffe.rssi.ru, E-mail: mgk@mf1309.spb.edu, E-mail: st2e101@hs.uni-hamburg.de [Hamburger Sternwarte, Universitaet Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2011-09-01T23:59:59.000Z

    The methanol molecule CH{sub 3}OH has a complex microwave spectrum with a large number of very strong lines. This spectrum includes purely rotational transitions as well as transitions with contributions of the internal degree of freedom associated with the hindered rotation of the OH group. The latter takes place due to the tunneling of hydrogen through the potential barriers between three equivalent potential minima. Such transitions are highly sensitive to changes in the electron-to-proton mass ratio, {mu} = m{sub e}/m{sub p}, and have different responses to {mu}-variations. The highest sensitivity is found for the mixed rotation-tunneling transitions at low frequencies. Observing methanol lines provides more stringent limits on the hypothetical variation of {mu} than ammonia observation with the same velocity resolution. We show that the best-quality radio astronomical data on methanol maser lines constrain the variability of {mu} in the Milky Way at the level of |{Delta}{mu}/{mu}| < 28 x 10{sup -9} (1{sigma}) which is in line with the previously obtained ammonia result, |{Delta}{mu}/{mu}| < 29 x 10{sup -9} (1{sigma}). This estimate can be further improved if the rest frequencies of the CH{sub 3}OH microwave lines will be measured more accurately.

  19. Methanol-reinforced kraft pulping

    SciTech Connect (OSTI)

    Norman, E.; Olm, L.; Teder, A. (STFI, Stockholm (Sweden))

    1993-03-01T23:59:59.000Z

    The addition of methanol to a high-sulfidity kraft cook on Scandinavian softwood chips was studied under different process conditions. Delignification and the degradation of carbohydrates were accelerated, but the effect on delignification was greater. Thus, methanol addition improved selectivity. The positive effect of methanol could also be observed for modified kraft cooks having a leveled out alkali concentration and lower concentration of sodium ions and dissolved lignin at the end of the cook. Methanol addition had no discernible effect on pulp strength or on pulp bleachability.

  20. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  1. MTBE, methanol prices rise

    SciTech Connect (OSTI)

    Morris, G.D.L.; Cornitius, T.

    1995-12-20T23:59:59.000Z

    After several months of drifting lower in line with declining autumn gasoline prices, tabs for methyl tert-butyl ether (MTBE) have turned around. There has been no big demand surge, but consumers and traders are beginning to build up inventories in advance of a series of midwinter shutdowns and turnarounds by producers. Spot prices, which dropped as low as 75 cts/gal, have rebounded to 90 cts/gal fob. Eager for a positive glimmer, methanol producers posted a 3-cts/gal increase in contract prices this month. It marks the first upward idea since February. In that time contract prices have dropped 75% from $1.55/gal to 39 cts/gal. A hard winter has hit early in much of the US sending natural gas prices up sharply. At the same time, formaldehyde and acetic acid markets remain firm, and with MTBE rebounding, methanol producers feel entitled to a piece of the action. {open_quotes}I don`t buy into this claim that MTBE demand is up and I don`t think producers can justify even a 3-cts/gal increase,{close_quotes} says one. {open_quotes}There is nothing in the economy to warrant a run-up. Housing starts are weaker, and demand is down at least 80,000 bbl/day with the MTBE shutdown.{close_quotes}

  2. Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2/H2/H2O Mixtures: the Source of C in Methanol and the Role of Water

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Mei, Donghai; Peden, Charles HF; Campbell, Charles T.

    2013-02-01T23:59:59.000Z

    The low temperature (403 – 453K) conversions of CO:hydrogen and CO2:hydrogen mixtures (6 bar total pressure) to methanol over copper catalysts are both assisted by the presence of small amounts of water (mole fraction ~0.04%-0.5%). For CO2:hydrogen reaction mixtures, the water product from both methanol synthesis and reverse water gas shift serves to initiate both reactions in an autocatalytic manner. In the case of CO:D2 mixtures, very little methanol is produced until small amounts of water are added. The effect of water on methanol production is more immediate than in CO2:D2, yet the steady state rates are similar. Tracer experiments in 13CO:12CO2:hydrogen (with or without added water), show that the dominant source of C in the methanol product gradually shifts from CO2 to CO as the temperature is lowered. Cu-bound formate, the major IR visible surface species under CO2:hydrogen, is not visible in CO:moist hydrogen. Though formate is visible in the tracer experiments, the symmetric stretch is absent. These results, in conjunction with recent DFT calculations on Cu(111), point to carboxyl as a common intermediate for both methanol synthesis and reverse water gas shift, with formate playing a spectator co-adsorbate role.

  3. amine methanol, ether . Amine amine CO2

    E-Print Network [OSTI]

    Hong, Deog Ki

    IP [2012] 7 C O 2 (CO2) . CO2 amine methanol, ether . Amine amine CO2 CO2 .Amine CO2 (functional group) amine amine+ +promoter .Amine CO2 CO2 . . , methanol ether methanol, ether promoter CO2 CO2 H2S, COS CO2 . Methanol rectisol process, di-methylene ether polypropylene glycol selexol (-30oC) . CO2

  4. Low temperature catalyst system for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20T23:59:59.000Z

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  5. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  6. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    Predictions B. Methanol/Coal Slurry as the Fuel TemperatureMETHANOL METHANOL / COAL SLURRY j i Ali. @ i o N I. . , .PURE N METHANOL METHANOL I COAL SLURRY u o Obb~~ ~~~~~~~~~~~

  7. A flow field enabling operating direct methanol fuel cells with highly concentrated methanol

    E-Print Network [OSTI]

    Zhao, Tianshou

    A flow field enabling operating direct methanol fuel cells with highly concentrated methanol Q. Xu Available online 8 October 2010 Keywords: Fuel cells Direct methanol fuel cells Concentrated methanol Flow field a b s t r a c t In this work, an anode flow field that allows a direct methanol fuel cell (DMFC

  8. Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell C. Xu,a Y. L. He transport of methanol at the anode of a direct methanol fuel cell DMFC and show that the overall mass current density of an in-house-fabricated DMFC with different flow fields for various methanol

  9. Electron-Stimulated Reactions and O-2 Production in Methanol-Covered Amorphous Solid Water Films

    SciTech Connect (OSTI)

    Akin, Minta C.; Petrik, Nikolay G.; Kimmel, Gregory A.

    2009-03-14T23:59:59.000Z

    The low-energy, electron-stimulated desorption (ESD) of molecular products from amorphous solid water (ASW) films capped with methanol is investigated versus methanol coverage (0 - 4 x 1015 cm-2) at 50 K using 100 eV incident electrons. The major ESD products from a monolayer of methanol on ASW are quite similar to the ESD products from bulk methanol film: H2, CH4, H2O, C2H6, CO, CH2O, and CH3OH. For 40 ML ASW films, the molecular oxygen, hydrogen, and water ESD yields from the ASW are suppressed with increasing methanol coverage, while the CH3OH ESD yield increases proportionally to the methanol coverage. The suppression of the water ESD products by methanol is consistent with the non-thermal reactions occurring preferentially at or near the ASW/vacuum interface and not in the interior of the film. The water and molecular hydrogen ESD yields from the water layer decrease exponentially with the methanol cap coverage with 1/e constants of ~ 0.6 x 1015 cm-2 and 1.6 x 1015 cm-2, respectively. In contrast, the O2 ESD from the water layer is very efficiently quenched by small amounts of methanol (1/e ~ 6.5 x 1013 cm-2). The rapid suppression of O2 production by small amounts of methanol is due to reactions between CH3OH and the precursors for the O2 - mainly OH radicals. A kinetic model for the O2 ESD which semi-quantitatively accounts for the observations is presented.

  10. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    Spectral Intensity With 5% Coal (x ::: 86.9 cm) CalculatedPredictions B. Methanol/Coal Slurry as the Fuel TemperatureMethanol as the Fuel B. Methanol/Coal Slurry as the Fuel C.

  11. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    E-Print Network [OSTI]

    Ahmed, Musahid

    2008-01-01T23:59:59.000Z

    cyclic trimer containing two methanol molecules and a waterTable 1 Appearance energies for pure and protonated methanoland methanol-water clusters evaluated from photoionization

  12. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desorption Kinetics of Methanol, Ethanol, and Water from Graphene. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene. Abstract: The desorption kinetics of methanol,...

  13. Methanol detection in M82

    E-Print Network [OSTI]

    S. Martín; J. Martín-Pintado; R. Mauersberger

    2006-03-07T23:59:59.000Z

    We present a multilevel study of the emission of methanol, detected for the first time in this galaxy, and discuss the origin of its emission. The high observed methanol abundance of a few 10^-9 can only be explained if injection of methanol from dust grains is taken into account. While the overall [CH3OH]/[NH3] ratio is much larger than observed towards other starbursts, the dense high excitation component shows a similar value to that found in NGC 253 and Maffei 2. Our observations suggest the molecular material in M 82 to be formed by dense warm cores, shielded from the UV radiation and similar to the molecular clouds in other starbursts, surrounded by a less dense photodissociated halo. The dense warm cores are likely the location of recent and future star formation within M 82.

  14. Distances to Galactic methanol masers

    E-Print Network [OSTI]

    K. L. J. Rygl; A. Brunthaler; K. M. Menten; M. J. Reid; H. J. van Langevelde

    2008-12-09T23:59:59.000Z

    We present the first EVN parallax measurements of 6.7 GHz methanol masers in star forming regions of the Galaxy. The 6.7 GHz methanol maser transition is a very valuable astrometric tool, for its large stability and confined velocity spread, which makes it ideal to measure proper motions and parallaxes. Eight well-studied massive star forming regions have been observed during five EVN sessions of 24 hours duration each and we present here preliminary results for five of them. We achieve accuracies of up to 51 $\\mu$as, which still have the potential to be proved by more ideal observational circumstances.

  15. Low Crossover of Methanol and Water Through Thin Membranes in Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Low Crossover of Methanol and Water Through Thin Membranes in Direct Methanol Fuel Cells Fuqiang State University, University Park, Pennsylvania 16802, USA Low crossover of both methanol and water through a polymer membrane in a direct methanol fuel cell DMFC is essential for using high concentration

  16. A sandwich structured membrane for direct methanol fuel cells operating with neat methanol

    E-Print Network [OSTI]

    Zhao, Tianshou

    A sandwich structured membrane for direct methanol fuel cells operating with neat methanol Q.X. Wu i g h t s " A sandwich structured membrane for DMFCs operating with neat methanol is proposed. " The membrane offers better water management for DMFCs operating with neat methanol. " The sandwich structured

  17. Time-resolved photoelectron imaging of large anionic methanol clusters: ,,Methanol...n

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Time-resolved photoelectron imaging of large anionic methanol clusters: ,,Methanol...n - ,,nÈ145; published online 27 June 2007 The dynamics of an excess electron in size-selected methanol clusters electron6­11 and its cluster counterparts,12­18 water n - . The solvated electron in liquid methanol has

  18. Methanol Masers and Star Formation

    E-Print Network [OSTI]

    A. M. Sobolev; A. B. Ostrovskii; M. S. Kirsanova; O. V. Shelemei; M. A. Voronkov; A. V. Malyshev

    2006-01-12T23:59:59.000Z

    Methanol masers which are traditionally divided into two classes provide possibility to study important parts of the star forming regions: Class~II masers trace vicinities of the massive YSOs while class~I masers are likely to trace more distant parts of the outflows where newer stars can form. There are many methanol transitions which produce observed masers. This allows to use pumping analysis for estimation of the physical parameters in the maser formation regions and its environment, for the study of their evolution. Extensive surveys in different masing transitions allow to conclude on the values of the temperatures, densities, dust properties, etc. in the bulk of masing regions. Variability of the brightest masers is monitored during several years. In some cases it is probably caused by the changes of the dust temperature which follow variations in the brightness of the central YSO reflecting the character of the accretion process. A unified catalogue of the class II methanol masers consisting of more than 500 objects is compiled. Analysis of the data shows that: physical conditions within the usual maser source vary considerably; maser brightness is determined by parameters of some distinguished part of the object - maser formation region; class II methanol masers are formed not within the outflows but in the regions affected by their propagation. It is shown that the "near" solutions for the kinematic distances to the sources can be used for statistical analysis. The luminosity function of the 6.7 GHz methanol masers is constructed. It is shown that improvement of the sensitivity of surveys can increase number of detected maser sources considerably.

  19. 6, 39453963, 2006 Methanol inside aged

    E-Print Network [OSTI]

    ACPD 6, 3945­3963, 2006 Methanol inside aged tropical biomass burning plumes G. Dufour et al. Title Chemistry and Physics Discussions First space-borne measurements of methanol inside aged tropical biomass. Dufour (gaelle.dufour@lmd.polytechnique.fr) 3945 #12;ACPD 6, 3945­3963, 2006 Methanol inside aged

  20. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  1. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  2. Resonant ion-dip infrared spectroscopy of benzene(methanol)m clusters R. Nathaniel Pribble, Fredrick C. Hagemeister, and Timothy S. Zwiera)

    E-Print Network [OSTI]

    Zwier, Timothy S.

    Resonant ion-dip infrared spectroscopy of benzene­(methanol)m clusters with m 1­6 R. Nathaniel bonding between benzene and methanol. The m 2 spectrum features two strong transitions at 3506 and 3605 cm in the absence of benzene, is redshifted by 76 cm 1 due to a strengthened hydrogen bond. In benzene­ CH3OH 3

  3. Direct methanol fuel cell and system

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    2004-10-26T23:59:59.000Z

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  4. Emissions from two methanol-powered buses

    SciTech Connect (OSTI)

    Ullman, T.L.; Hare, C.T.; Baines, T.M.

    1986-01-01T23:59:59.000Z

    Emissions from the two methanol-powered buses used in the California Methanol Bus Demonstration have been characterized. The M.A.N. SU 240 bus is powered by M.A.N.'s D2566 FMUH methanol engine, and utilizes catalytic exhaust aftertreatment. The GMC RTS II 04 bus is powered by a first-generation DDAD 6V-92TA methanol engine without exhaust aftertreatment. Emissions of HC, CO, NO/subX/, unburned methanol, aldehydes, total particulates, and the soluble fraction of particulate were determined for both buses over steady-state and transient chassis dynamometer test cycles. Emission levels from the M.A.N. bus were considerably lower than those from the GMC bus, with the exception of NO/subX/. Comparison of emission levels from methanol-and diesel-powered buses indicates that substantial reductions in emissions are possible with careful implementation of methanol fueling.

  5. Author's personal copy Photoelectrochemical hydrogen production from water/

    E-Print Network [OSTI]

    Wood, Thomas K.

    coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resourcesAuthor's personal copy Photoelectrochemical hydrogen production from water/ methanol decomposition

  6. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  7. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O'Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

    1986-01-01T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  8. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  9. Methods of conditioning direct methanol fuel cells

    DOE Patents [OSTI]

    Rice, Cynthia (Newington, CT); Ren, Xiaoming (Menands, NY); Gottesfeld, Shimshon (Niskayuna, NY)

    2005-11-08T23:59:59.000Z

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  10. Methanol in the L1551 Circumbinary Torus

    E-Print Network [OSTI]

    Glenn J. White; C. W. M. Fridlund; P. Bergman; A. Beardsmore; Rene Liseau; R. R. Phillips

    2006-09-25T23:59:59.000Z

    We report observations of gaseous methanol in an edge-on torus surrounding the young stellar object L1551 IRS5. The peaks in the torus are separated by ~ 10,000 AU from L1551 IRS5, and contain ~ 0.03 earth masses of cold methanol. We infer that the methanol abundance increases in the outer part of the torus, probably as a result of methanol evaporation from dust grain surfaces heated by the shock luminosity associated with the shocks associated with the jets of an externally located x-ray source. Any methanol released in such a cold environment will rapidly freeze again, spreading methanol throughout the circumbinary torus to nascent dust grains, planitesimals, and primitive bodies. These observations probe the initial chemical conditions of matter infalling onto the disk.

  11. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  12. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  13. Alternative Fuels Data Center: Methanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuels and VehiclesMethanol to someone by

  14. Recovery of methanol in an MTBE process

    SciTech Connect (OSTI)

    Whisenhunt, D.E.; Byers, G.L.; Hattiangadi, U.S.

    1988-05-31T23:59:59.000Z

    In a process for the manufacture of methyltertiarybutylether (MTBE) in which methanol and a mixture of C/sub 4/ hydrocarbons containing isobutylene are contacted in a reaction zone containing an ion-exchange resin catalyst under suitable conditions to effect the reaction of methanol and isobutylene to produce a reaction product containing MTBE, unreacted methanol, unreacted isobutylene and other C/sub 4/ hydrocarbons, the reaction product is introduced to a fractionation zone wherein it is separated into a bottoms product comprising essentially MTBE and an overhead product containing unreacted methanol, unreacted isobutylene, and other C/sub 4/ hydrocarbons, and the overhead product is introduced to an absorption zone wherein the methanol is absorbed; the improvement is described which comprises utilizing silica gel as adsorbent and regenerating the silica gel adsorbent in a closed loop by contacting the silica gel absorbent with a desorption gas stream at an elevated temperature for a sufficient period of time to remove absorbed methanol, cooling the effluent from the adsorption zone to condense desorbed methanol removing desorbed methanol from the system and recycling the desorption gas to the adsorption zone.

  15. Methanol from biomass via steam gasification

    SciTech Connect (OSTI)

    Coffman, J.A. [Wright-Malta Corp., Ballston Spa, NY (United States)

    1995-12-31T23:59:59.000Z

    R&D at Wright-Malta on gasification of biomass, and use of this gas in methanol synthesis, has now reached the stage where a demonstration plant is feasible. The gasifier has evolved into a long, slender, slightly declined, graded temperature stationary kiln, with a box beam rotor and twin piston feed. The methanol reactor is envisioned as a smaller, more declined, graded temperature, water-filled kiln, with a multi-pipe rotor. Input to the demo plant will be 100 tons/day of green (45% water) wood chips; output will be 11,000 gal/day of methanol and 7500 lbs/hr of steam. The over-all biomass to methanol system is tightly integrated in its mechanical design to take full advantage of the reactivity of biomass under a slow, steady, steamy pressurized cook, and the biomass pyrolysis and methanol synthesis exotherms. This is expected to yield good energy efficiency, environmental attractiveness, and economical operation.

  16. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

    1995-01-01T23:59:59.000Z

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  17. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, M.; Grohse, E.W.

    1995-06-27T23:59:59.000Z

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  18. A Theoretical Study of Methanol Oxidation Catalyzed by Isolated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methanol Oxidation Catalyzed by Isolated Vanadia Clusters Supported on the (101) Surface of Anatase. A Theoretical Study of Methanol Oxidation Catalyzed by Isolated Vanadia...

  19. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell...

  20. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects...

  1. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anode Catalysts for Direct Methanol Fuel Cells. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells. Abstract: Using the binding energy of OH* and CO* on close-packed...

  2. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02T23:59:59.000Z

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanol and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Capacity additions ease tight methanol supply

    SciTech Connect (OSTI)

    Greek, B.F. (C and EN, Houston, TX (US))

    1988-10-03T23:59:59.000Z

    Two menthanol plants now in operation - one in the U.S., the other in Chile - will boost global supplies of methanol more than 375 million gal annually. This large capacity addition and smaller expansions in other parts of the world will exceed demand growth during 1988 and 1989, easing the squeeze on supplies. As the result of increased supplies, methanol prices could slip slightly in the fourth quarter. They are more likely to decline next year, however. The two plants, which started up in August, are owned and operated by Tenneco Oil Co. Processing and Marketing and by Cape Horn Methanol (CHM). The Tenneco plant, located in Pasadena, Tex., was restarted after a shutdown in 1982 when prices for methanol were low. It now is running at full capacity of 125 million gal per year. The plant uses the low-pressure process technology of Lurgi, reportedly requiring for feedstock and energy between 100,000 and 125,000 cu ft of methane per gallon. Global trade in methanol smooths out the supply and demand inconsistencies. Surging methanol demand in the U.S. and in Western Europe has been met by imports from areas where methanol production is most economical - that is, where natural gas is readily available and has no other application as high in value. Canada, Chile, and Trinidad are examples of those areas.

  4. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect (OSTI)

    Nadas, Janos I [ORNL; Vukovic, Sinisa [ORNL; Hay, Benjamin [ORNL

    2012-01-01T23:59:59.000Z

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  5. Role of Water in Methanol Photochemistry on Rutile TiO2(110)

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2012-08-07T23:59:59.000Z

    Photochemistry of the molecularly and dissociatively adsorbed forms of methanol on the vacuum-annealed rutile TiO2(110) surface was explored using temperature programmed desorption (TPD), both with and without coadsorbed water. Methoxy, and not methanol, was confirmed as the photochemically active form of adsorbed methanol on this surface. UV irradiation of methoxy-covered TiO2(110) lead to depletion of the methoxy coverage and formation of formaldehyde and a surface OH group. Coadsorbed water did not promote either molecular methanol photochemistry or thermal decomposition of methanol to methoxy. However, terminal OH groups (OHt), prepared by coadsorption of water and oxygen atoms, thermally converted molecularly adsorbed methanol to methoxy at 120 K, thus enabling photoactivity. While chemisorbed water molecules had no influence on methoxy photochemistry, water molecules hydrogen-bonded in the second layer to bridging oxygen (Obr) sites inhibited the methoxy photodecomposition to formaldehyde. From this we conclude that Obr sites accept protons from the hole-mediated conversion of methoxy to formaldehyde. These results provide new fundamental understanding of the hole-scavenging role of methanol in photochemical processes on TiO2-based materials and how water influences this photochemistry. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle under contract DEAC05-76RL01830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  6. Hydrogen passivation of Se and Te in AlSb M. D. McCluskey and E. E. Haller

    E-Print Network [OSTI]

    McCluskey, Matthew

    Hydrogen passivation of Se and Te in AlSb M. D. McCluskey and E. E. Haller Lawrence Berkeley observed local vibrational modes LVM's arising from DX-hydrogen complex in AlSb. Hydrogen was diffused into bulk AlSb:Se and AlSb:Te by annealing in sealed quartz ampoules with either hydrogen gas or methanol CH

  7. Total to withdraw from Qatar methanol - MTBE?

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

  8. Methanol engine conversion feasibility study: Phase 1

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    This report documents the selection of the surface-assisted ignition technique to convert two-stroke Diesel-cycle engines to methanol fuel. This study was the first phase of the Florida Department of Transportation methanol bus engine development project. It determined both the feasibility and technical approach for converting Diesel-cycle engines to methanol fuel. State-of-the-art conversion options, associated fuel formulations, and anticipated performance were identified. Economic considerations and technical limitations were examined. The surface-assisted conversion was determined to be feasible and was recommended for hardware development.

  9. The nature and formation of coke in the reaction of methanol to hydrocarbons over chabazite

    E-Print Network [OSTI]

    McLaughlin, Kenneth Woot

    1983-01-01T23:59:59.000Z

    involves the nature of the step whereby methanol and dimethyl ether (DME), both lacking B -hydrogens, undergo dehydration to form olefins. Chang and Silvestri argued against the formation of a primary methyl carbonium ion as an intermediate based... went on to propose the formation of the primary olefins from dimethyl ether via a trimethyl oxonium ion which is illustrated in Figure 5. The Stevens type rearrangement involving the methyl shift produces the first C-0 bond and has been suggested...

  10. Methanol Maser Polarization in W3(OH)

    E-Print Network [OSTI]

    W. H. T. Vlemmings; L. Harvey-Smith; R. J. Cohen

    2006-06-13T23:59:59.000Z

    We present the first 6.7 GHz methanol maser linear polarization map of the extended filamentary maser structure around the compact HII region W3(OH). The methanol masers show linear polarization up to 8 per cent and the polarization angles indicate a magnetic field direction along the North-South maser structure. The polarization angles are consistent with those measured for the OH masers, taking into account external Faraday rotation toward W3(OH), and confirm that the OH and methanol masers are found in similar physical conditions. Additionally we discuss the Zeeman splitting of the 6.7 GHz methanol transition and present an upper limit of ~22 mG for the magnetic field strength in the maser region. The upper limit is fully consistent with the field strengths derived from OH maser Zeeman splitting.

  11. Synthesis of MTBE during CO hydrogenation: Reaction sites required

    SciTech Connect (OSTI)

    Kazi, A.M.; Goodwin, J.G. Jr.; Marcelin, G.; Oukaci, R. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering

    1995-03-01T23:59:59.000Z

    Synthesis of methyl tert-butyl ether (MTBE) during carbon monoxide (CO) hydrogenation has been studied with the following reaction schemes: (1) the addition of isobutylene during CO hydrogenation over metal catalysts active for methanol synthesis (Pd/SiO{sub 2} and Li-Pd/SiO{sub 2}) and (2) the addition of isobutylene during CO hydrogenation over a dual bed configuration consisting of Li-Pd/SiO{sub 2} and a zeolite (H-ZSM-5 or HY). The addition of isobutylene during methanol synthesis over the supported Pd catalysts indicated that MTBE cannot be formed on metal sites from a reaction of isobutylene with methanol precursors. However, addition of isobutylene to the syngas feed over a dual bed consisting of a methanol synthesis catalyst and an acid zeolite downstream of the methanol synthesis catalyst showed that MTBE can be synthesized during CO hydrogenation provided acid sites are available. In order to get higher conversions of methanol to MTBE, optimization of the acid catalyst and/or reaction conditions would be required to minimize formation of byproduct hydrocarbons.

  12. Mit Methanol iridiumkatalysiert C-C-Bindungen knpfen

    E-Print Network [OSTI]

    Meyer, Karsten

    Mit Methanol iridiumkatalysiert C-C-Bindungen knüpfen i Die Reaktivität von Methanol (1) beruht meist auf dem nucleophilen Sauerstoffatom. Obwohl Methanol industriell im Monsanto-Prozess carbo, dass Methanol iridiumkatalysiert leicht an Allene (2) addiert. Damit entstehen 2,2-disub- stituierte

  13. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect (OSTI)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12T23:59:59.000Z

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  14. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect (OSTI)

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24T23:59:59.000Z

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  15. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOE Patents [OSTI]

    Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2006-09-05T23:59:59.000Z

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  16. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOE Patents [OSTI]

    Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2006-03-21T23:59:59.000Z

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  17. Methanol plant ship: Appendix. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1988-07-30T23:59:59.000Z

    The document is an appendix to the final report on a proposed methanol plant ship off of the coast of Trinidad. The document incorporates the results of the redetermination of capital required to implement the project. It also presents a revised cost analysis, with better accuracy, for the project. The projected operating revenues and revised expenses are also given. As a continuation of the information presented in the final report, the methanol market and proposed products are discussed in the report.

  18. Methanol synthesis in a trickle bed reactor

    E-Print Network [OSTI]

    Tjandra, Sinoto

    1992-01-01T23:59:59.000Z

    chemicals, which can not be synthesized directly and in high selectivity from synthesis gas (King and Grate, 1985). Methanol synthesis was first shown to be feasible by Mittash and Schneider (1913). In the 1920s, BASF introduced the first industrial... that illustrated a significant achievement in catalyst specificity because methanol is thermodynamically the least favorable product of all other products which can be synthesized from synthesis gas. The first industrial process developed by BASF in 1920s used a...

  19. Technology and economics of gas utilization: Methanol

    SciTech Connect (OSTI)

    Seddon, D.

    1994-12-31T23:59:59.000Z

    The paper reviews the current and emerging technology for the conversion of natural gas into methanol and assesses its impact on the production economics. Technologies of potential use for offshore developments of large gas reserves or associated gas are discussed. New technologies for the production of methanol synthesis-gas, such as autothermal reforming and GHR technology, are described and the economic advantages over conventional steam reforming are quantified. New methanol synthesis technology, such as slurry phase reactors, are outlined but appear to offer little advantage over conventional technology for offshore gas utilization. The purification of methanol for fuel and chemical grade product is outlined and the cost of transport presented. The data presented gives an overview of the production costs for production of methanol from large gas reserves (> 1Tcf, 25--35PJ/a) and smaller scale reserves (10--20MMscfd, 4--10PJ/a). The variation of the production cost of methanol with gas price indicates that the gas price is the principal economic consideration. However, adoption of new technology will improve production economics by an amount equivalent to an incremental gas cost of about $0.5/GJ. For gas reserves of low development cost, the adoption of new technology is not a prerequisite to economic viability.

  20. Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation September 2003 Hydrogen bond population dynamics are extricated with exceptional detail using ultrafast ( 50 of methanol­OD oligomers in CCl4 . Hydrogen bond breaking makes it possible to acquire data for times much

  1. Pd and Pd-Cu Alloy Deposited Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol

    E-Print Network [OSTI]

    Zhao, Tianshou

    Pd and Pd-Cu Alloy Deposited Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells J. Prabhuram, T. S. Zhao,*,z Z. X. Liang, H. Yang, and C. W. Wong Department Kong, China To reduce methanol crossover in direct methanol fuel cells DMFCs , Nafion 115 membrane

  2. I. INTRODUCTION A lot of studies show that hydrogen has a high

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to the plasma steam-reforming of various alcohols: methanol, ethanol and phenol. The plasma reactor vegetable or ethanol) H2 yields and energetic cost in function of hydrogen sources are presented. The non alcohols diluted in water have been studied in this paper: methanol, ethanol and phenol. The mole fractions

  3. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01T23:59:59.000Z

    in our current approach. The liquefaction of hydrogen allows also for its use in transport applications for example BMW developed a car that utilises liquid hydrogen instead of compressed gas hydrogen making the use of cryogenic hydrogen even more... efficient. 11     Figure 13. Decentralised production of hydrogen pathways for Energy and Hydrogen Cryomagnetic solutions for a hospital environment. The shaded region in the figure represents the decentralised production of hydrogen using renewable...

  4. Electronic Effect in Methanol Dehydrogenation on Pt Surfaces: Potential Control during Methanol Electrooxidation

    E-Print Network [OSTI]

    Park, Byungwoo

    advanced insight into the design of an optimal catalyst as the anode for direct methanol fuel cells. SECTION: Energy Conversion and Storage; Energy and Charge Transport Fuel cells are promising alternative energy conversion. Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs

  5. Supplemental Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrial TechnologiesSupplemental Information All

  6. Membrane-less hydrogen bromine flow battery William A. Braff1

    E-Print Network [OSTI]

    Bazant, Martin Z.

    refined and optimized over several decades. More recently, a laminar flow fuel cell based on borohydride batteries [23, 27], as well as methanol [25], formic acid [24], and hydrogen fuel cells [29]. However, none

  7. Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol

    E-Print Network [OSTI]

    Zhao, Tianshou

    of passive direct methanol fuel cells operating with neat methanol Q.X. Wu, T.S. Zhao , W.W. Yang Department Direct methanol fuel cell Passive operation Neat methanol operation a b s t r a c t The passive operation of a direct methanol fuel cell with neat methanol requires the water that is pro- duced at the cathode

  8. Falling MTBE demand bursts the methanol bubble

    SciTech Connect (OSTI)

    Wiesmann, G.; Cornitius, T.

    1995-03-01T23:59:59.000Z

    Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

  9. Methanol from biomass via steam gasification

    SciTech Connect (OSTI)

    Coffman, J.A. [Wright-Malta Corp., Ballston Spa, NY (United States)

    1995-12-31T23:59:59.000Z

    R & D at Wright-Malta on gasification of biomass, and use of this gas in methanol synthesis, has now reached the stage where a demonstration plant is feasible. The gasifier has evolved into a long, slender, slightly declined, graded temperature series of stationary kiln sections, with box beam rotors and twin piston feed. The methanol reactor is envisioned as a smaller, more declined, graded temperature, water-filled stationary kiln, with a multi-pipe rotor. Input to the demo plant will be 100 tons/day of green (45% water) wood chips; output is projected at 11,000 gal/day of methanol and 7500 lbs/hr of steam. The over-all biomass to methanol system is tightly integrated in its mechanical design to take full advantage of the reactivity of biomass under a slow, steady, steamy pressurized cook, and the biomass pyrolysis and methanol synthesis exotherms. This is expected to yield good energy efficiency, environmental attractiveness, and economical operation.

  10. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  11. Comparison of Methanol Exposure Routes Reported to Texas Poison Control Centers

    E-Print Network [OSTI]

    Givens, Melissa; Kalbfleisch, Kristine; Bryson, Scott

    2008-01-01T23:59:59.000Z

    guidelines on the treatment of methanol poisoning, J ToxicolHantson PE, Acute methanol intoxication: physiopathology,The toxicity of inhaled methanol vapors, Crit Rev Toxicol.

  12. Methanol sensor operated in a passive mode

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  13. Praxair extending hydrogen pipeline in Southeast Texas

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

  14. 37 GHz METHANOL MASERS : HORSEMEN OF THE APOCALYPSE FOR THE CLASS II METHANOL MASER PHASE?

    SciTech Connect (OSTI)

    Ellingsen, S. P.; Breen, S. L. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Sobolev, A. M. [Astronomical Observatory, Ural Federal University, Lenin avenue 51, 620000 Ekaterinburg (Russian Federation); Voronkov, M. A.; Caswell, J. L. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Lo, N., E-mail: Simon.Ellingsen@utas.edu.au [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Casilla 36-D (Chile)

    2011-12-01T23:59:59.000Z

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  15. Methanex considers methanol, MTBE in Qatar

    SciTech Connect (OSTI)

    NONE

    1995-12-13T23:59:59.000Z

    CW has learned that Methanex Corp. is considering entering one of two methanol and methyl tert-butyl ether (MTBE) projects in Qatar. Executive v.p. Michael Wilson says that part of the company`s New Zealand plant could be moved to a site in Qatar, which would lower capital costs for the possible project by $75 million-$100 million. Both Qatar General Petroleum Corp. and Qatar Fuel Additives are developing methanol and MTBE projects at Umm Said, Qatar. Methanex says its goal is to ensure low-cost feedstocks.

  16. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  17. Electron-Stimulated Reactions and O-2 Production in Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and O-2 Production in Methanol-Covered Amorphous Solid Water Films. Electron-Stimulated Reactions and O-2 Production in Methanol-Covered Amorphous Solid Water Films. Abstract: The...

  18. Experimental Investigation on the Interaction of Water and Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation on the Interaction of Water and Methanol with Anatase-TiO2(101). Experimental Investigation on the Interaction of Water and Methanol with Anatase-TiO2(101). Abstract:...

  19. Site Competition During Coadsorption of Acetone with Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110). Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)....

  20. Isotope effects in methanol synthesis and the reactivity of copper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope effects in methanol synthesis and the reactivity of copper formates on a CuSiO2 catalyst. Isotope effects in methanol synthesis and the reactivity of copper formates on a...

  1. Level Alignment of a Prototypical Photocatalytic System: Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO2(110). Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO2(110). Abstract:...

  2. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts From CO2 to Methanol via Novel Nanocatalysts Print Wednesday, 03 December 2014 00:00 Researchers have found novel nanocatalysts that...

  3. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect (OSTI)

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15T23:59:59.000Z

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  4. Methanol emission from low mass protostars

    E-Print Network [OSTI]

    S. Maret; C. Ceccarelli; A. G. G. M. Tielens; E. Caux; B. Lefloch; A. Faure; A. Castets; D. R. Flower

    2005-07-15T23:59:59.000Z

    We present observations of methanol lines in a sample of Class 0 low mass protostars. Using a 1-D radiative transfer model, we derive the abundances in the envelopes. In two sources of the sample, the observations can only be reproduced by the model if the methanol abundance is enhanced by about two order of magnitude in the inner hot region of the envelope. Two other sources show similar jumps, although at a lower confidence level. The observations for the other three sources are well reproduced with a constant abundance, but the presence of a jump cannot be ruled out. The observed methanol abundances in the warm gas around low mass protostars are orders of magnitude higher than gas phase chemistry models predict. Hence, in agreement with other evidences, this suggest that the high methanol abundance reflects recent evaporation of ices due to the heating by the newly formed star. The observed abundance ratios of CH3 OH, H2 CO, and CO are in good agreement with grain surface chemistry models. However, the absolute abundances are more difficult to reproduce and may point towards the presence of multiple ice components in these regions.

  5. Methanol production from Eucalyptus wood chips. Final report

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01T23:59:59.000Z

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  6. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    of NO and N02 in a Turbulent Propane/Air Di fusion Flame,"Fuel Methanol Ethanol Ethane Propane i so Octane n - Cetanestage of the secondary Propane, at A spark air line contains

  7. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Minoura, Tsuyoshi [Mitui Engineering and Shipbuilding Co., Ltd., Tokyo (Japan)

    1995-05-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  8. Dissociative recombination of protonated methanol W. D. Geppert,*a

    E-Print Network [OSTI]

    Millar, Tom

    Dissociative recombination of protonated methanol W. D. Geppert,*a M. Hamberg,a R. D. Thomas,a F. O located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH3OH2 + and CD3OD2 + , respectively

  9. Fuel Cells Bulletin February 2005 Effect of methanol

    E-Print Network [OSTI]

    Zhao, Tianshou

    FEATURE Fuel Cells Bulletin February 2005 12 Effect of methanol concentration on passive DMFC performance The direct methanol fuel cell (DMFC) has attracted extensive interest from scientists energy density of methanol (6100 W h/kg at 25°C) is much higher than that of gaseous fuels.[1­6] Recently

  10. Competition between vitrification and crystallization of methanol at high pressure

    E-Print Network [OSTI]

    Vos, Willem L.

    Competition between vitrification and crystallization of methanol at high pressure Marco J. P methanol at high pressure up to 33 GPa at room temperature with x-ray diffraction, optical polarization and vitrification is observed when methanol is superpressed beyond the freezing pressure of 3.5 GPa: between 5

  11. Homogeneous Catalysis Selective Oxidation of Methane to Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Homogeneous Catalysis Selective Oxidation of Methane to Methanol Catalyzed, with CÀH Activation (generated by dissolution[6] of Au2O3) react with methane at 1808C to selectively generate methanol (as a mixture of the ester and methanol) in high yield (Table 1, entries 1 and 2). As expected, the irreversible

  12. Bimetallic Cluster Provides a Higher Activity Electrocatalyst for Methanol Oxidation*

    E-Print Network [OSTI]

    Weidner, John W.

    Bimetallic Cluster Provides a Higher Activity Electrocatalyst for Methanol Oxidation* Brenda L:Ru nanoparticles on carbon (PtRu/C) for use as an electrocatalyst for methanol oxidation. This bimetallic carbonyl support particles. Cyclic voltammo- grams of methanol oxidation from the two catalysts showed

  13. Methanol maser survey using the EVN Anna Bartkiewicz

    E-Print Network [OSTI]

    van Langevelde, Huib Jan

    Methanol maser survey using the EVN Anna Bartkiewicz Centre for Astronomy, Nicolaus Copernicus-mail: langevelde@jive.nl We present the results of a five year campaign observing 6.7 GHz methanol masers towards a new type of masers. We discuss the origin of elliptically shaped methanol masers in massive star

  14. First satellite observations of lower tropospheric ammonia and methanol

    E-Print Network [OSTI]

    First satellite observations of lower tropospheric ammonia and methanol Reinhard Beer,1 Mark W) and methanol (CH3OH), well above the normal background levels. This is the first time that these molecules have. Citation: Beer, R., et al. (2008), First satellite observations of lower tropospheric ammonia and methanol

  15. Adsorption of intact methanol on Ru,,0001... Pawel Gazdzicki,1

    E-Print Network [OSTI]

    Adsorption of intact methanol on Ru,,0001... Pawel Gazdzicki,1 Per Uvdal,2 and Peter Jakob1,a 1 the adsorption of methanol on the clean Ru 0001 surface at T 80 K. Thereby, clear evidence for intact adsorption upon adsorption of methanol on Ru 0001 , even at low temperatures, as well as partial recombinative

  16. Effects of Methanol on the Retinal Function of Juvenile Rats

    E-Print Network [OSTI]

    Casanova, Christian

    Effects of Methanol on the Retinal Function of Juvenile Rats C. Plaziac1 , P. Lachapelle2 , C Received 18 April 2002; accepted 22 July 2002 Abstract We have investigated the effect of methanol exposure recorded prior to and up to 72 h after the administration of methanol. Data were compared to a control

  17. Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS in the presence of a 2.9 × 1014 W/cm2 800 nm laser field for methanol monocation on the ground state potential

  18. Structure of crystalline methanol at high pressure David R. Allan

    E-Print Network [OSTI]

    Vos, Willem L.

    Structure of crystalline methanol at high pressure David R. Allan Department of Physics structure, including all atomic positions, of methanol at high pressure and room temperature pressure of methanol is 3.5 GPa. In practice however, it is very easy to superpress the liquid phase

  19. Surface Studies of Aqueous Methanol Solutions by Vibrational Broad Bandwidth Sum Frequency Generation Spectroscopy

    E-Print Network [OSTI]

    Surface Studies of Aqueous Methanol Solutions by Vibrational Broad Bandwidth Sum Frequency methanol (CH3OH) and aqueous methanol solutions were investigated using broad bandwidth sum frequency of methanol molecules at the air-liquid interfaces of neat methanol and aqueous methanol solutions. However

  20. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  1. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  2. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect (OSTI)

    Carlstrom, Charles, M., Jr.

    2009-07-07T23:59:59.000Z

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

  3. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  4. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  5. Hydrogen Analysis

    Broader source: Energy.gov (indexed) [DOE]

    A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter...

  6. Photodissociation of organic molecules in star-forming regions, III. Methanol

    E-Print Network [OSTI]

    S. Pilling; R. Neves; A. C. F. Santos; H. M. Boechat-Roberty

    2006-12-15T23:59:59.000Z

    The presence of methyl alcohol or methanol (CH$_3$OH) in several astrophysical environments has been characterized by its high abundance that depends on both the production rate and the destruction rate. In the present work, the photoionization and photodissociation processes of methanol have been experimentally studied, employing soft X-ray photons (100-310 eV) from a toroidal grating monochromator (TGM) beamline of the Brazilian Synchrotron Light Laboratory (LNLS). Mass spectra were obtained using the photoelectron photoion coincidence (PEPICO) method. Kinetic energy distribution and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Absolute photoionization and photodissociation cross sections were also determined. We have found, among the channels leading to ionization, about 11-16% of CH$_3$OH survive the soft X-rays photons. This behavior, together with an efficient formation pathways, may be associated with the high column density observed in star-forming regions. The three main photodissociation pathways are represented by COH$^+$ (or HCO$^+$) ion release (with ejection of H$_2$ + H), the dissociation via C-O bond rupture (with strong charge retention preferentially on the methyl fragment) and the ejection of a single energetic (2-4 eV) proton. Since methanol is very abundant in star forming regions, the produced protons could be an alternative route to molecular hydrogenation or a trigger for secondary dissociation processes or even to promote extra heating of the environment.

  7. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  8. Simultaneous MS-IR Studies of Surface Formate Reactivity Under Methanol Synthesis Conditions on Cu/SiO2

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Peden, Charles HF; Campbell, C. T.

    2009-06-09T23:59:59.000Z

    The coverages and surface lifetimes of copper-bound formates on Cu/SiO2 catalysts, and the steady-state rates of reverse water-gas shift and methanol synthesis have been measured simultaneously by mass (MS) and infrared (IR) spectroscopies under a variety of elevated pressure conditions at temperatures between 140 and 160°C. DCOO lifetimes under steady state catalytic conditions in CO2:D2 atmospheres were measured by 12C – 13C isotope transients (SSITKA). The values range from 220s at 160°C to 660s at 140°C. The catalytic rates of both reverse water gas shift (RWGS) and methanol synthesis are ~100-fold slower than this formate removal rate back to CO2+1/2 H2, and thus they do not significantly influence the formate lifetime or coverage at steady state. The formate coverage is instead determined by formate’s rapid production / decomposition equilibrium with gas phase CO2+H2. The results are consistent with formate being an intermediate in methanol synthesis, but with the rate-controlling step being after formate production (for example, its further hydrogenation to methoxy). A 2-3 fold shorter life time (faster decomposition rate) was observed for formate under reactions conditions when both D2 and CO2 are present than in pure Ar or D2+Ar alone, attributed to effects of coadsorbates (produced in D2 and CO2) on adsorbed formate reaction pathways. The carbon which appears in the methanol product spends a longer time on the surface than the formate species, 1.8 times as long at 140°C. The additional delay on the surface is attributed in part to readsorption of methanol on the catalyst, thus obscuring the mechanistic link between formate and methanol.

  9. Activation of catalysts for synthesizing methanol from synthesis gas

    DOE Patents [OSTI]

    Blum, David B. (108 Tall Oaks Dr., Wayne, NJ 07470); Gelbein, Abraham P. (45 Headley Rd., Morristown, NJ 07960)

    1985-01-01T23:59:59.000Z

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  10. Improved Direct Methanol Fuel Cell Stack

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM); Ramsey, John C. (Los Alamos, NM)

    2005-03-08T23:59:59.000Z

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  11. Multiple Time-Scale Behaviour and Network Dynamics in Liquid Methanol

    E-Print Network [OSTI]

    Ruchi Sharma; Charusita Chakravarty

    2008-11-11T23:59:59.000Z

    Canonical ensemble molecular dynamics simulations of liquid methanol, modeled using a rigid-body, pair-additive potential, are used to compute static distributions and temporal correlations of tagged molecule potential energies as a means of characterising the liquid state dynamics. The static distribution of tagged molecule potential energies shows a clear multimodal structure with three distinct peaks, similar to those observed previously in water and liquid silica. The multimodality is shown to originate from electrostatic effects, but not from local, hydrogen-bond interactions. An interesting outcome of this study is the remarkable similarity in the tagged potential energy power spectra of methanol, water and silica, despite the differences in the underlying interactions and the dimensionality of the network. All three liquids show a distinct multiple time scale (MTS) regime with a 1/f dependence with a clear positive correlation between the scaling exponent alpha and the diffusivity. The low-frequency limit of the MTS regime is determined by the frequency of crossover to white noise behaviour which occurs at approximately 0.1 cm{-1} in the case of methanol under standard temperature and pressure conditions. The power spectral regime above 200 cm{-1} in all three systems is dominated by resonances due to localised vibrations, such as librations. The correlation between $\\alpha$ and the diffusivity in all three liquids appears to be related to the strength of the coupling between the localised motions and the larger length/time-scale network reorganizations. Thus the time scales associated with network reorganization dynamics appear to be qualitatively similar in these systems, despite the fact that water and silica both display diffusional anomalies but methanol does not.

  12. advanced direct methanol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Direct Methanol Materials Science Websites Summary: increases the overall cost of the cell, reducing the fuel conversion efficiency. An alternative to H2): Application to...

  13. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts Print Researchers have found novel nanocatalysts that lower the barrier to converting carbon dioxide (CO2)-an abundant greenhouse...

  14. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    "Fuel Cells for Portable Power." Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Webinar Slides More Documents & Publications Novel Materials...

  15. Methanol Observation of IRAS 19312+1950: A Possible New Type of Class I Methanol Masers

    E-Print Network [OSTI]

    Nakashima, Jun-ichi; Salii, Svetlana V; Zhang, Yong; Yung, Bosco H K; Deguchi, Shuji

    2015-01-01T23:59:59.000Z

    We report the result of a systematic methanol observation toward IRAS 19312+1950. The properties of the SiO, H2O and OH masers of this object are consistent with those of mass-losing evolved stars, but some other properties are difficult to explain in the standard scheme of stellar evolution in its late stage. Interestingly, a tentative detection of radio methanol lines was suggested toward this object by a previous observation. To date, there are no confirmed detections of methanol emission towards evolved stars, so investigation of this possible detection is important to better understand the circumstellar physical/chemical environment of IRAS 19312+1950. In this study, we systematically observed multiple methanol lines of IRAS 19312+1950 in the lambda=3mm, 7mm, and 13mm bands, and detected 6 lines including 4 thermal lines and 2 class I maser lines. We derived basic physical parameters including kinetic temperature and relative abundances by fitting a radiative transfer model. According to the derived exci...

  16. Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01T23:59:59.000Z

    The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

  17. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  18. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Program A Prospectus for Biological H 2 Production The Hydrogen Economy The hydrogen economy pertains to a world fundamentally different from the one we now know. Hydrogen...

  19. Hydrogen Education Curriculum Path at Michigan Technological University

    SciTech Connect (OSTI)

    Keith, Jason; Crowl, Daniel; Caspary, David; Naber, Jeff; Allen, Jeff; Mukerjee, Abhijit; Meng, Desheng; Lukowski, John; Solomon, Barry; Meldrum, Jay

    2012-01-03T23:59:59.000Z

    The objective of this project was four-fold. First, we developed new courses in alternative energy and hydrogen laboratory and update existing courses in fuel cells. Secondly, we developed hydrogen technology degree programs. Thirdly, we developed hydrogen technology related course material for core courses in chemical engineering, mechanical engineering, and electrical engineering. Finally, we developed fuel cell subject material to supplement the Felder & Rousseau and the Geankoplis chemical engineering undergraduate textbooks.

  20. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect (OSTI)

    Veziroglu, T.N.

    1996-12-31T23:59:59.000Z

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  1. Communication China's growing methanol economy and its implications for energy

    E-Print Network [OSTI]

    Jackson, Robert B.

    but scarce oil and natural gas. Adapting to such limitations, it has developed a chemical industry, with the rest coming from natural gas (Peng, 2011). Methanol is commonly used to produce formaldehyde, methylCommunication China's growing methanol economy and its implications for energy and the environment

  2. The Arecibo Methanol Maser Galactic Plane Survey--I: Data

    E-Print Network [OSTI]

    Jagadheep D. Pandian; Paul F. Goldsmith; Avinash A. Deshpande

    2007-02-06T23:59:59.000Z

    We present the results of an unbiased survey for 6.7 GHz methanol masers in the Galactic plane carried out using the 305 m Arecibo radio telescope. A total of 18.2 square degrees was surveyed with uniform sampling at 35.2 deg methanol masers are clustered, reflecting the formation of massive stars in clusters.

  3. Synthesis of Methanol and Dimethyl Ether from Syngas over Pd...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methanol and Dimethyl Ether from Syngas over PdZnOAl2O3 Catalysts. Synthesis of Methanol and Dimethyl Ether from Syngas over PdZnOAl2O3 Catalysts. Abstract: A PdZnOAl2O3...

  4. Importance of Diffusion in Methanol Photochemistry on TiO2(110...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Importance of Diffusion in Methanol Photochemistry on TiO2(110). Importance of Diffusion in Methanol Photochemistry on TiO2(110). Abstract: The photoactivity of methanol on the...

  5. Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Methanol Synthesis over Cu from COCO2H2H2O Mixtures: the Source of C in Methanol and the Role of Water Mechanistic Studies of Methanol Synthesis over Cu from COCO2H2H2O...

  6. Understanding the effect of modifying elements in supported vanadia bilayered catalysts for methanol oxidation to formaldehyde

    E-Print Network [OSTI]

    Vining, William Collins

    2011-01-01T23:59:59.000Z

    Si Figure 1.1. Schematic of methanol oxidation over isolatedSiO 2 catalysts for methanol oxidation, 163-171, Copyright (rate constant at 550 K for methanol oxidation plotted versus

  7. Volume$3, number 3 CHEMICAL. PHYSICS LETTERS 1 Februrf 1978 INTERACTION OF METHANOL WITH RUTHENIUM

    E-Print Network [OSTI]

    Goodman, Wayne

    Volume$3, number 3 CHEMICAL. PHYSICS LETTERS 1 Februrf 1978 INTERACTION OF METHANOL WITH RUTHENIUM of methanol with a clean methods. Methanol dissociates upon adsorption at 300 K and yields Ha(g) and chemisorbed CO as the domiwt

  8. EFFECTS OF METAL-SUPPORT INTERACTIONS ON THE SYNTHESIS OF METHANOL OVER PALLADIUM

    E-Print Network [OSTI]

    Ryndin, Yu A.

    2013-01-01T23:59:59.000Z

    on the Synthesis of Methanol over Palladium by Yu. A.ABSTRACT The synthesis of methanol and other products fromThe specific activity for methanol synthesis decreased in

  9. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  10. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01T23:59:59.000Z

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  11. Mobil plans methanol plant in Nigeria

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-08-12T23:59:59.000Z

    Mobil Chemical (Houston) is in discussions with Nigerian National Petroleum Corp. (NNPC; Lagos) on a joint venture methanol plant at Port Harcourt, Nigeria. The U.S. firm has invited process owners to submit proposals for a 1-million m.t./year unit and hopes to select the technology by the end of this year. Three proposals have been submitted: Lurgi, offering its own low-pressure process; John Brown/Davy, with the ICI process; and M.W. Kellogg, proposing its own technology. Shareholding in the joint venture is yet to be decided, but it is likely to be a 50/50 tie-up. Marketing of Mobil's share or of the entire tonnage would be handled by Mobil Petrochemical International (Brussels). The plant could be onstream in late 1996.

  12. Role of Water in Methanol Photochemistry on Rutile TiO2(110)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methanol photochemistry or thermal decomposition of methanol to methoxy. However, terminal OH groups (OHt), prepared by coadsorption of water and oxygen atoms, thermally...

  13. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOE Patents [OSTI]

    Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

    1993-01-01T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31T23:59:59.000Z

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  15. The production of methanol by the Brookhaven National Laboratory process

    SciTech Connect (OSTI)

    Miller, D.B.; Williams, J.J.; Johnson, A.R.

    1990-11-01T23:59:59.000Z

    The purpose of this study was to develop a capital cost estimate and methanol production costs for a new methanol process under development at the Brookhaven National Laboratory (BNL). The cost of fuel delivered to the US Gulf Coast is compared with fuel produced by a conventional methanol process and a liquefied natural gas (LNG) process. The new methanol process is made possible by the development of a new liquid phase catalyst. The new liquid catalyst system can convert synthesis gas almost completely to methanol in a SINGLE pass through the methanol synthesis reactor. This catalyst system reduces synthesis reaction temperatures from about 260{degree}C to about 100{degree}C, permitting isothermal synthesis conditions, in contrast to the temperature gradients in currently available pelleted, solid catalysts. Natural gas feedstock can be processed at pressures under 250 psia. Since nitrogen in the synthesis gas can be tolerated, the autothermal reforming step (combination of partial oxidation and steam reforming over a nickel catalyst) uses preheated air rather than oxygen. However, even with nitrogen present, the volume of gas fed to the reactor can still be smaller than the volume of gas that must be circulated in a conventional reactor, which operates with low conversions and requires high recycle volumes. The characteristics of the BNL system permits a major improvement in methanol plant design and economics. 11 figs., 15 tabs.

  16. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  17. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31T23:59:59.000Z

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  18. ICI and Penspen in Nigerian and Qatari methanol deals

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-03-11T23:59:59.000Z

    The U.K. consulting and engineering company Penspen Ltd. (London) has signed a second joint venture agreement in Qatar and has selected the ICI (London) methanol process. The technology will also be used in a world-scale methanol plant in Nigeria that Penspen is helping to set up. Under the first agreement, signed on January 1 with Qatar General Petroleum Corp. (QGPC), a 50/50 venture is being formed to build a $370-million, 2,000-m.t./day methanol plant at Umm Said. ICI will provide its low-pressure technology and help market 75% of the output. Completion is due late 1994.

  19. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  20. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    gases (LPG) and compressed natural gas (CNG) have persistedbenefits from compressed natural gas, ethanol, methanol,

  1. Simultaneous photon absorption as a probe of molecular interaction and hydrogen-bond correlation in liquids

    E-Print Network [OSTI]

    Sander Woutersen

    2007-03-06T23:59:59.000Z

    We have investigated the simultaneous absorption of near-infrared photons by pairs of neighboring molecules in liquid methanol. Simultaneous absorption by two OH-stretching modes is found to occur at an energy higher than the sum of the two absorbing modes. This frequency shift arises from interaction between the modes, and its value has been used to determine the average coupling between neighboring methanol molecules. We find a rms coupling strength of 46+/-1 cm-1, much larger than can be explained from transition-dipole coupling, suggesting that hydrogen-bond mediated interactions between neighboring molecules play an important role in liquid methanol. The most important aspect of simultaneous vibrational absorption is that it allows for a quantitative investigation of hydrogen-bond cooperativity. We derive the extent to which the hydrogen-bond strengths of neighboring molecules are correlated by comparing the line shape of the absorption band caused by simultaneous absorption with that of the fundamental transition. Surprisingly, neighboring hydrogen bonds in methanol are found to be strongly correlated, and from the data we obtain a hydrogen-bond correlation coefficient of 0.69+/-0.12.

  2. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect (OSTI)

    Krikorian, O.H. (ed.)

    1982-02-09T23:59:59.000Z

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  3. Coadsorption of methanol and isobutene on HY zeolite

    SciTech Connect (OSTI)

    Kogelbauer, A.; Goodwin, J.G. Jr. [Univ. of Pittsburgh, PA (United States); Lercher, J.A. [Univ. of Twente, Enschede (Netherlands)

    1995-05-25T23:59:59.000Z

    In order to develop a better understanding of methyl tert-butyl ether (MTBE) synthesis on zeolites, the coadsorption of methanol and isobutene on HY zeolite was investigated using IR spectroscopy. Initial adsorption of isobutene alone at 35{degree}C led to rapid oligomerization yielding strongly bound oligomers. The subsequent coadsorption of methanol did not induce any changes in the zeolite-adsorbate complexes. TPD following the coadsorption showed that the Bronsted acid sites could be restored by temperature treatment above approximately 300{degree}C. When methanol was adsorbed first and isobutene was subsequently coadsorbed, MTBE was formed even at 35{degree}C on the catalyst surface. MTBE desorbed easily at a temperature of 70{degree}C, restoring a major fraction of the Bronsted acid sites. Methanol was concluded to decrease the probability of oligomerization by effectively competing for the acid sites. 34 refs., 6 figs.

  4. Methanol plant ship: implementation study. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1988-07-30T23:59:59.000Z

    The study compiled the economic, commercial and financing requirements of a floating plant ship with a production capacity of 3,000 tons of methanol a day. The raw material for the methanol production would be supplied from a natural gas reserve off the coast of Trinidad. The report has a separate section for each aspect of the plant ship project, such as methanol storage; logistics of transporting methanol to the United States; the required sub-sea installation to bring natural gas to the plant ship; and plant ship design and equipment. It gives a detailed description of a proposed organizational structure and its tax consequences. The project's financial requirements and economic impact are examined. The environmental consequences and other operator issues are analyzed. Tables and figures accompany the report.

  5. Is Methanol the Transportation Fuel of the Future?

    E-Print Network [OSTI]

    Sperling, Daniel; DeLuchi, Mark A.

    1989-01-01T23:59:59.000Z

    in the U.S. were coal, oil shale, and biomass. Natural gas (produced from coal and oil shale, methanol produced frommethanol was rated below oil shale and other coal-liquid

  6. Characterization of Microexplosion Phenomena of Methanol-Glycerol Mixtures 

    E-Print Network [OSTI]

    Fan, Ge-Yi

    2014-07-17T23:59:59.000Z

    emissions even when combusting glycerol-based mixtures. In this research, microexplosion phenomena of methanol-in-glycerol mixtures have been studied using a high speed camera and an acoustic sensor system. A Fast Fourier Transform (FFT) algorithm has been...

  7. THE METHANOL MASER EMISSION IN W51 C.J. PHILLIPS1

    E-Print Network [OSTI]

    van Langevelde, Huib Jan

    THE METHANOL MASER EMISSION IN W51 C.J. PHILLIPS1 and H.J. VAN LANGEVELDE2 1 CSIRO; E-mail: chris.7-GHz methanol maser emission towards W51. In the W51 Main region, the bulk of the methanol is offset from an UCHII region. This probably indicates the methanol emission arises at the interface

  8. Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on MCM-48

    E-Print Network [OSTI]

    Bell, Alexis T.

    Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported-1462 ReceiVed: August 16, 2006; In Final Form: October 10, 2006 The mechanism of methanol oxidation. Methanol reacts reversibly, at a ratio of approximately 1 methanol per V, with one V-O-Si to produce both V

  9. Ultrafast Carrier Dynamics in Exfoliated and Functionalized Calcium Niobate Nanosheets in Water and Methanol

    E-Print Network [OSTI]

    Osterloh, Frank

    and Methanol Elizabeth C. Carroll, Owen C. Compton, Dorte Madsen, Frank E. Osterloh, and Delmar S. Larsen-order kinetics on a sub-nanosecond time scale that depended on the nanosheet size. Methanol was used and methanol solutions. Methanol is known as an efficient sacrificial electron donor for layered metal oxide

  10. Author's personal copy Modeling of a passive DMFC operating with neat methanol

    E-Print Network [OSTI]

    Zhao, Tianshou

    Author's personal copy Modeling of a passive DMFC operating with neat methanol W.W. Yang, T.S. Zhao 2011 Keywords: Fuel cells Direct methanol fuel cells Neat methanol Mass transport Model a b s t r a c t A mathematical model is developed to simulate the fundamental transport phenomena in a passive direct methanol

  11. 6.7 GHZ METHANOL MASERS: PROPERTIES, ASSOCIATIONS AND TRACERS OF GALACTIC

    E-Print Network [OSTI]

    Richardson Jr., James E.

    6.7 GHZ METHANOL MASERS: PROPERTIES, ASSOCIATIONS AND TRACERS OF GALACTIC STRUCTURE A Dissertation Jagadheep Dhanasekara Pandian ALL RIGHTS RESERVED #12;6.7 GHZ METHANOL MASERS: PROPERTIES, ASSOCIATIONS transition of methanol is the strongest of methanol masers, and is the second strongest maser transition ever

  12. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  13. Supporting Information Supplemental Table 1.

    E-Print Network [OSTI]

    after proteinase XIV digestion and Methanol Choloroform Water (MCW) extraction. Soluble Se recovery Se by SAX-HPLC-ICPMS in Brassica seed and seed meals harvested from fields in the WSJV. Whole GroundGlutathione Data are mean percentages of total soluble Se ± standard deviation (SD) in methanol/water aqueous phase

  14. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

  15. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  16. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  17. Hydrogen Delivery Analysis Models

    Broader source: Energy.gov (indexed) [DOE]

    insert our Research Targets to see the impact List of Delivery Components Compressed Hydrogen Gas Truck (Tube trailer) Compressed Hydrogen Gas Truck Terminal Liquid Hydrogen Truck...

  18. Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells Jeremy Kua and William A. Goddard III* Contribution from functional theory (B3LYP)], we calculated the 13 most likely intermediate species for methanol oxidation

  19. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01T23:59:59.000Z

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  20. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  1. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01T23:59:59.000Z

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  2. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  3. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  4. Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes

    E-Print Network [OSTI]

    Faraji, Sedigheh

    2010-06-08T23:59:59.000Z

    in the production of both fuel-cell quality hydrogen and ultra-clean liquid fuels (Fischer-Tropsch Synthesis), which are easier to transport and store than natural gas [6, 7]. The Fischer-Tropsch process has received significant attention in the quest to produce...:1 ratio of H2:CO which is beneficial to Fischer–Tropsch process and methanol synthesis [4]. Also, this reaction is exothermic which can reduce the overall hydrogen production plant cost [5]. CH4 + ½ O2 ? CO + 2 H2...

  5. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Rossmeisl, Jan; Ferrin, Peter A.; Tritsaris, Georgios A.; Nilekar, Anand U.; Koh, Shirlaine; Bae, Sang Eun; Brankovic, Stanko R.; Strasser, Peter; Mavrikakis, Manos

    2012-06-13T23:59:59.000Z

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation. Using these two reactivity descriptors, a surface PtCu3 alloy is proposed to have the best catalytic properties of the Pt–Cu model catalysts tested, similar to those of a Pt–Ru bulk alloy. To validate the model, experiments on a Pt(111) surface modified with different amounts of Cu adatoms are performed. Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts.

  6. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26T23:59:59.000Z

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  7. Clustering Dynamics in Water/Methanol Mixtures: A Nuclear Magnetic Resonance Study at 205 K < T < 295 K

    E-Print Network [OSTI]

    Stanley, H. Eugene

    Clustering Dynamics in Water/Methanol Mixtures: A Nuclear Magnetic Resonance Study at 205 K functional groups in water/methanol mixtures at different methanol molar fractions (XMeOH ) 0, 0.04, 0.1, 0 in the mixtures, at all the methanol molar fractions, are faster than those of pure water and methanol because

  8. Perovskite anode electrocatalysis for direct methanol fuel cells

    SciTech Connect (OSTI)

    White, J.H.; Sammells, A.F. (Eltron Research, Inc., Boulder, CO (United States))

    1993-08-01T23:59:59.000Z

    This investigation explores direct methanol fuel cells incorporating perovskite anode electrocatalysts. Preliminary electrochemical performance was addressed following incorporation of electrocatalysts into polymer electrolyte (Nafion 417) fuel cells. Perovskite electrocatalysts demonstrating activity towards direct methanol oxidation during cyclic voltammetry measurements included, respectively, SrRu[sub 0.5]Pt[sub 0.5]O[sub 3], SrRu[sub 0.5]Pd[sub 0.5]O[sub 3], SrPdO[sub 3], SmCoO[sub 3], SrRuO[sub 3], La[sub 0.8]Ce[sub 0.2]CoC[sub 3],SrCo[sub 0.5]Ti[sub 0.5]O[sub 3], and La[sub 0.8]Sr[sub 0.2]CoO[sub 3] where SrRu[sub 0.5]Pt[sub 0.5]P[sub 3] gave methanol oxidation currents up to 28 mA/cm[sup 2] at 0.45 V vs. SCE. Correlations were found between electrocatalyst solid-state and thermodynamic parameters corresponding to, respectively, molecular electronic polarizability, the optical dielectric constant, the perovskite spin-only magnetic moment, the number of d-electrons in perovskite A and B lattice sites, and the average metal-oxygen binding energy for the perovskite lattice, and corresponding fuel cell performance. This may have future merit for the prediction of new electrocatalyst family members for promoting direct methanol oxidation. Methanol diffusion from anode to cathode compartments appears to be a major obstacle to the development of polymer electrolyte methanol fuel cells.

  9. Single-cell protein from methanol with Enterobacter aerogenes

    SciTech Connect (OSTI)

    Gnan, S.O.; Abodreheba, A.O.

    1987-02-20T23:59:59.000Z

    An identified Enterobacter aerogenes utilizing methanol as a sole carbon source was studied for the optimization of biomass production and the reduction of its nucleic acid content. Results indicated that the highest yield and conversion were obtained at 0.5% methanol. The addition of seawater as a source of trace elements has an adverse effect. However, the addition of urea as source of nitrogen enhanced the growth of E. aerogenes. Heat shock at 60 degrees C for one minute followed by incubation at 50 degrees C for 2 hours caused 72.6% reduction in the nucleic acid. 12 references.

  10. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of...

  11. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

  12. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  13. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  14. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  15. Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  16. An Investigation of Different Methods of Fabricating Membrane Electrode Assemblies for Methanol Fuel Cells

    E-Print Network [OSTI]

    Hall, Kwame (Kwame J.)

    2009-01-01T23:59:59.000Z

    Methanol fuel cells are electrochemical conversion devices that produce electricity from methanol fuel. The current process of fabricating membrane electrode assemblies (MEAs) is tedious and if it is not sufficiently ...

  17. Imaging Adsorbate O-H Bond Cleavage: Methanol on TiO2(110). ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O-H Bond Cleavage: Methanol on TiO2(110). Abstract: We investigated methanol adsorption and dissociation on bridge-bonded oxygen vacancies of TiO2(110) (1×1) surface...

  18. A Comparative Study of the Adsorption of Water and Methanol in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Adsorption of Water and Methanol in Zeolite BEA: A Molecular Simulation Study. A Comparative Study of the Adsorption of Water and Methanol in Zeolite BEA: A Molecular...

  19. Supplementary Information for Methanol as a sensitive probe for spatial and temporal variations of the

    E-Print Network [OSTI]

    Supplementary Information for Methanol as a sensitive probe for spatial and temporal variations.757 0.68(5) Table I. Methanol (12 CH16 3 OH) maser transitions and accurate rest frequencies taken from

  20. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam...

  1. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect (OSTI)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)

    1996-12-31T23:59:59.000Z

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  2. Direct Methanol Fuel Cell Experimental and Model Validation Study

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Direct Methanol Fuel Cell Experimental and Model Validation Study M. Mench, J. Scott, S. Thynell boundary Fuel cell performance Current density distribution measurements Conclusions #12;3 Method, flow rate, species inlet and fuel cell temperature, and humidity. Transparent polycarbonate windows

  3. Discovery of two new methanol masers in NGC 7538

    E-Print Network [OSTI]

    M. Pestalozzi; V. Minier; F. Motte; J. Conway

    2006-01-20T23:59:59.000Z

    Context: NGC7538 is known to host a 6.7 and 12.2GHz methanol maser cospatial with a Ultra Compact (UC) HII region, IRS1. Aims: We report on the serendipitous discovery of two additional 6.7GHz methanol masers in the same region, not associated with IRS1. Methods: Interferometry maser positions are compared with recent single-dish and interferometry continuum observations. Results: The positions of the masers agree to high accuracy with the 1.2mm continuum peak emission in NGC7538 IRS9 and NGC7538 S. This clear association is also confirmed by the positional agreement of the masers with existing high resolution continuum observations at cm and/or mm wavelengths. Conclusions: Making use of the established strong relation between methanol masers and high-mass star formation, we claim that we have accurately positioned the high-mass protostars within the regions where they are detected. The variety of objects hosting a 6.7GHz methanol maser in NGC7538 shows that this emission probably traces different evolutionary stages within the protostellar phase.

  4. Methanol market slowly tightens as Brazil starts soaking up material

    SciTech Connect (OSTI)

    Young, I.

    1992-11-25T23:59:59.000Z

    Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union.

  5. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process...

  6. Hydrogen Delivery Mark Paster

    E-Print Network [OSTI]

    Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

  7. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)

    SciTech Connect (OSTI)

    Dinh, H.; Gennett, T.

    2010-06-11T23:59:59.000Z

    This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

  8. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  9. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    nosulfur. fA methanol/fuel-cell vehicle wouldhaveno tailpipeanalysis of fuel cell vehicles using methanol and hy- drogenused fuel-cell vehicles and (d) biomass-derived methanol

  10. Complete Quantitative online Analysis of Methanol Electrooxidation Prod-ucts via Electron Impact and Electrospray Ionization Mass Spectrometry

    E-Print Network [OSTI]

    Pfeifer, Holger

    1 Complete Quantitative online Analysis of Methanol Electrooxidation Prod- ucts via Electron Impact for application in energy re- lated electrocatalysis is demonstrated using continuous methanol oxidation over

  11. X-ray Absorption Spectroscopy of Liquid Methanol Microjets: Bulk Electronic Structure and Hydrogen Bonding Network

    E-Print Network [OSTI]

    Cohen, Ronald C.

    of ice,15,16 or at the liquid-gas interface.3 As expected, water in its various phases is a natural, Sweden, AdVanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720

  12. A New Reference Correlation for the Viscosity of Methanol Hong Wei Xiang,a...

    E-Print Network [OSTI]

    Magee, Joseph W.

    A New Reference Correlation for the Viscosity of Methanol Hong Wei Xiang,a... Arno Laesecke for the viscosity of methanol is presented that is valid over the entire fluid region, including vapor, liquid coefficient is developed from experimental data and applied to methanol. The high-density contribution

  13. Structure of liquid and glassy methanol confined in cylindrical pores Denis Morineau1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Structure of liquid and glassy methanol confined in cylindrical pores Denis Morineau1,2 , Régis scattering analysis of the density and the static structure factor of confined methanol at various and D=35 Å. A change of the thermal expansivity of confined methanol at low temperature is the signature

  14. Tropospheric methanol observations from space: retrieval1 evaluation and constraints on the seasonality of biogenic2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 Tropospheric methanol observations from space: retrieval1 evaluation and constraints Information1 2 3 #12; 3 1 FigureS1.Comparison of TES, IASI and airborne methanol measurements using GEOS-Chem as2 an intercomparison platform. Methanol abundance as modeled by GEOS-Chem (base-case3 simulation

  15. Journal of Power Sources 167 (2007) 265271 Simultaneous oxygen-reduction and methanol-oxidation reactions

    E-Print Network [OSTI]

    Zhao, Tianshou

    2007-01-01T23:59:59.000Z

    Journal of Power Sources 167 (2007) 265­271 Simultaneous oxygen-reduction and methanol-reduction reaction (ORR) and methanol- oxidation reaction (MOR) at the cathode of a DMFC. Good agreements between a significant poisoning effect on the ORR by the presence of methanol at the cathode. The results also indicated

  16. Department of Energy and Mineral Engineering Spring 2012 BP Methanol Separation

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy and Mineral Engineering Spring 2012 BP ­ Methanol Separation issues in the well heads. To counteract this problem, methanol is injected into the produced water stream at the well site. Methanol, however, is toxic to humans, animals, and plants, and must be removed before

  17. Global budget of methanol: Constraints from atmospheric observations Daniel J. Jacob,1

    E-Print Network [OSTI]

    Li, Qinbin

    Global budget of methanol: Constraints from atmospheric observations Daniel J. Jacob,1 Brendan D of atmospheric methanol to examine the consistency between observed atmospheric concentrations and current of methanol in the model is 7 days; gas-phase oxidation by OH accounts for 63% of the global sink, dry

  18. Performance modeling and cell design for high concentration methanol fuel cells

    E-Print Network [OSTI]

    Chapter 50 Performance modeling and cell design for high concentration methanol fuel cells C. E The direct methanol fuel cell (DMFC) has become a lead- ing contender to replace the lithium-ion (Li density of liquid methanol (CH3OH) fuel is 4800 Wh l-1 , whereas the theoretical energy density of Li

  19. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory-phase transition metal oxide cations can convert methane to methanol. Methane activation by MO+ is discussed such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

  20. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    E-Print Network [OSTI]

    Kær, Søren Knudsen

    Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate Samuel September 2014 Available online xxx Keywords: High temperature PEM Fuel cell Methanol Impedance spectroscopy a b s t r a c t This paper analyzes the effects of methanol and water vapor on the performance

  1. PPPL-3457 PPPL-3457 Broadening and Shifting of the Methanol 119 m Gain Line

    E-Print Network [OSTI]

    PPPL-3457 PPPL-3457 UC-70 Broadening and Shifting of the Methanol 119 µm Gain Line of Linear and Shifting of the Methanol 119 mm Gain Line of Linear and Circular Polarization by Collision with Chiral handedness of a circularly polarized probe. The broadening of the 119 mm line of the methanol molecule

  2. Three-Dimensional Simulations of Liquid Feed Direct Methanol Wenpeng Liu*,a

    E-Print Network [OSTI]

    Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells Wenpeng Liu*,a and Chao that performance and design of a liquid feed direct methanol fuel cell DMFC is controlled not only by electrochemical kinetics and methanol crossover but also by water transport and by their complex interactions

  3. Quantifying global terrestrial methanol emissions using1 observations from the TES satellite sensor2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 Quantifying global terrestrial methanol emissions using1 observations from the TES Figure S1. December-January-Febuary (DJF, top) and June-July-August (JJA, bottom) biogenic3 methanol 1 Figure S4. Regions employed for quantifying terrestrial methanol fluxes (red) and for2

  4. The effect of methanol concentration on the performance of a passive DMFC

    E-Print Network [OSTI]

    Zhao, Tianshou

    The effect of methanol concentration on the performance of a passive DMFC J.G. Liu, T.S. Zhao *, R-breathing liquid feed direct methanol fuel cell (DMFC), with no external pumps or other auxiliary devices, was designed, fabricated and tested with different methanol concentrations. It was found that the cell

  5. Methanol adsorbates on the DMFC cathode and their effect on the cell performance

    E-Print Network [OSTI]

    Zhao, Tianshou

    Methanol adsorbates on the DMFC cathode and their effect on the cell performance J. Prabhuram, T in the performance of a direct methanol fuel cell (DMFC) occurred after the cell had been operated at a higher temperature with higher methanol concentrations as compared with the polarization data collected under

  6. Methanol, acetaldehyde, and acetone in the surface waters of the Atlantic Ocean

    E-Print Network [OSTI]

    Arnold, Steve

    Methanol, acetaldehyde, and acetone in the surface waters of the Atlantic Ocean Rachael Beale,1; revised 12 June 2013; accepted 16 July 2013; published 16 October 2013. [1] Oceanic methanol, acetaldehyde to Chile (49 N to 39 S) in 2009. Methanol (48­361 nM) and acetone (2­24 nM) varied over the track

  7. Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles

    E-Print Network [OSTI]

    Kik, Pieter

    Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt nanoparticles (NPs) prepared by micelle encapsulation and supported on -Al2O3 during the oxidation of methanol the pretreatment. KEYWORDS: platinum, methanol oxidation, operando, XAFS, EXAFS, XANES, alumina, nanoparticle, size

  8. PoS(IXEVNSymposium)036 Mapping the Milky Way structure with methanol and

    E-Print Network [OSTI]

    Brunthaler, Andreas

    PoS(IXEVNSymposium)036 Mapping the Milky Way structure with methanol and water masers Luca VLBA and VERA results in measuring trigonometric parallaxes of methanol and water maser sourcesS(IXEVNSymposium)036 Mapping the Milky Way structure with methanol and water masers Luca Moscadelli 1. Introduction

  9. Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by FeO

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by Fe.1063/1.1448489 I. INTRODUCTION The direct oxidation of methane to an easily transport- able liquid such as methanol process and as the simplest model for alkane oxidation.1,2 Although no direct, efficient methane­methanol

  10. Development of high-power electrodes for a liquid-feed direct methanol fuel cell

    E-Print Network [OSTI]

    Development of high-power electrodes for a liquid-feed direct methanol fuel cell C. Lim, C.Y. Wang for a liquid-feed direct methanol fuel cell (DMFC) were fabricated by using a novel method of modi®ed Na.V. All rights reserved. Keywords: Direct methanol fuel cells; Membrane-electrode assembly (MEA); Polymer

  11. Mechanism of O2 Activation and Methanol Production by (Di(2-pyridyl)methanesulfonate)PtII

    E-Print Network [OSTI]

    Goddard III, William A.

    Mechanism of O2 Activation and Methanol Production by (Di(2- pyridyl)methanesulfonate)PtII Me observed for the SN2 functionalization to form methanol by two isomeric (dpms)PtIV Me(OH)2 complexes, one conversion of methane to methanol at low temper- ature is crucial for transportation of shale gas produced

  12. Molecular Dynamics of Methylamine, Methanol, and Methyl Fluoride Cations in Intense 7 Micron Laser Fields

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Dynamics of Methylamine, Methanol, and Methyl Fluoride Cations in Intense 7 Micron Laser of methylamine (CH3NH2 + ), methanol (CH3OH+ ), and methyl fluoride (CH3F+ ) cations by short, intense laser 7 m laser pulses. This work is motivated by recent studies of methanol cations by Yamanouchi and co

  13. Partial oxidation of methanol over highly dispersed vanadia supported on silica SBA-15

    E-Print Network [OSTI]

    Bell, Alexis T.

    Partial oxidation of methanol over highly dispersed vanadia supported on silica SBA-15 C. Hessa 2005; accepted 6 August 2005 The partial oxidation of methanol to formaldehyde (FA) was studied over vanadia partly agglomerates into vanadia crystallites during methanol oxidation. KEY WORDS: supported

  14. Passive film-induced stress and mechanical properties of a-Ti in methanol solution

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Passive film-induced stress and mechanical properties of a-Ti in methanol solution Zhi Qin and film mechanical properties on a-Ti in methanol solution with varying water content was investigated. Film-induced stress in the methanol solution was measured by the flow stress differential method

  15. PoS(IXEVNSymposium)039 EVN observations of the methanol masers in Cep A

    E-Print Network [OSTI]

    van Langevelde, Huib Jan

    PoS(IXEVNSymposium)039 EVN observations of the methanol masers in Cep A Karl Torstensson Leiden observations of the 6.7 GHz methanol maser in the high mass star-forming re- gion Cepheus A. The maser emission field of the methanol masers shows an infall sig- nature rather than a rotation signature. We present

  16. Dramatic Reduction of Water Crossover in Direct Methanol Fuel Cells by Cathode Humidification

    E-Print Network [OSTI]

    concentration methanol fuel cells, the water transport coefficient through the membrane must be reducedDramatic Reduction of Water Crossover in Direct Methanol Fuel Cells by Cathode Humidification much higher than 60°C and in active air-flowing direct methanol fuel cell systems with high power

  17. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  18. HYDROGEN IN GERMANIUM

    E-Print Network [OSTI]

    Haller, E.E.

    2011-01-01T23:59:59.000Z

    •^f-1? c^4--^ LBL-7996 HYDROGEN IN GERMANIUM E. E. HallerW-7405-ENG-48 LBL-7996 HYDROGEN IN GERMANIUM* E. E. Haller48. LBL-7996 Abstract Hydrogen is shown to form molecular

  19. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is...

  20. Sandia Hydrogen Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Combustion Research Sandia Hydrogen Combustion Research Sebastian A. Kaiser (PI) Sandia National Laboratories Christopher M. White University of New Hampshire Sponsor: DoE...

  1. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  2. Hydrogen Permeation Barrier Coatings

    SciTech Connect (OSTI)

    Henager, Charles H.

    2008-01-01T23:59:59.000Z

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  3. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  4. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

  5. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for clean energy technology manufacturers. March 28, 2014 Sales Tax Exemption for Hydrogen Generation Facilities In North Dakota, the sale of hydrogen used to power an internal...

  6. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

  7. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Pipelines * Nuclear Energy * Office of Science Extending Collaborations * Other Federal Agencies - DOT, EPA, Others * International Collaborations Hydrogen from Diverse...

  8. Methanol production from eucalyptus wood chips. Attachment V. The Florida eucalyptus energy farm: environmental impacts

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01T23:59:59.000Z

    The overall environmental impact of the eucalyptus to methanol energy system in Florida is assessed. The environmental impacts associated with the following steps of the process are considered: (1) the greenhouse and laboratory; (2) the eucalyptus plantation; (3) transporting the mature logs; (4) the hammermill; and (5) the methanol synthesis plant. Next, the environmental effects of methanol as an undiluted motor fuel, methanol as a gasoline blend, and gasoline as motor fuels are compared. Finally, the environmental effects of the eucalypt gasification/methanol synthesis system are compared to the coal liquefaction and conversion system.

  9. Internet Supplement for Vector Calculus

    E-Print Network [OSTI]

    Jerry Marsden

    2003-10-07T23:59:59.000Z

    Apr 3, 2010 ... Page i. Internet Supplement for Vector Calculus. Fifth Edition. Version: October, 2003. Jerrold E. Marsden. California Institute of Technology.

  10. Emissions characterization of two methanol-fueled transit buses. Final report, April-September 1985

    SciTech Connect (OSTI)

    Ullman, T.L.; Hare, C.T.

    1986-02-01T23:59:59.000Z

    Exhaust emissions from the two methanol-powered buses used in the California Methanol Bus Demonstration have been characterized. The M.A.N. SU 240 bus is powered by M.A.N.'s D2566 FMUH methanol engine, and utilizes catalytic exhaust aftertreatment. The GMC RTS II 04 bus is powered by a first-generation DDAD 6V-92TA methanol engine without exhaust aftertreatment. Emissions of HC, CO, NO, unburned methanol, aldehydes, total particulates, and soluble fraction of particulate were determined for both buses over steady-state and transient chassis dynamometer test cycles. Emission levels from the M.A.N. bus were considerably lower than those from the GMC bus, with the exception of NO. Comparison of emission levels from methanol- and diesel-powered buses indicates that substantial reduction in emissions (especially particulate and NO) are possible with careful implementation of methanol fueling.

  11. Mechanistic study of methanol synthesis from CO? and H? on a modified model Mo?S? cluster

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Cheng [Yangzhou Univ., Yangzhou, Jiangsu (China); Liu, Ping [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-06T23:59:59.000Z

    We report the methanol synthesis from CO? and H? on metal (M = K, Ti, Co, Rh, Ni, and Cu)-modified model Mo?S? catalyst using density functional theory (DFT). The results show that the catalytic behavior of a Mo?S? cluster is changed significantly due to the modifiers, via the electron transfer from M to Mo?S? and therefore the reduction of the Mo cation (ligand effect) and the direct participation of M in the reaction (ensemble effect) to promote some elementary steps. With the most positively charged modifier, the ligand effect in the case of K-Mo?S? is the most obvious among the systems studied; however it cannot compete with the ensemble effect, which plays a dominate role in determining activity via the electrostatic attraction in particular to stabilize the CHxOy species adsorbed at the Mo sites of Mo?S?. In comparison, the ligand effect is weaker and the ensemble effect is more important when the other modifiers are used. In addition, the modifiers also vary the optimal reaction pathway for methanol synthesis on Mo?S?, ranging from the reverse water-gas shift (RWGS) + CO hydrogenation as that of Mo?S? to the formate pathway. Finally, K is able to accelerate the methanol synthesis on Mo?S? the most; while the promotion by Rh is relatively small. Using the modifiers like Ti, Co, Ni, and Cu, the activity of Mo?S? is decreased instead. The relative stability between *HCOO and *HOCO is identified as a descriptor to capture the variation in mechanism and scales well with the estimated activity. Our study not only provides better understanding of the reaction mechanism and actives on the modified Mo?S?, but also predicts some possible candidates, which can be used a promoter to facilitate the CH?OH synthesis on Mo sulfides.

  12. Mechanistic study of methanol synthesis from CO? and H? on a modified model Mo?S? cluster

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Cheng; Liu, Ping

    2015-02-06T23:59:59.000Z

    We report the methanol synthesis from CO? and H? on metal (M = K, Ti, Co, Rh, Ni, and Cu)-modified model Mo?S? catalyst using density functional theory (DFT). The results show that the catalytic behavior of a Mo?S? cluster is changed significantly due to the modifiers, via the electron transfer from M to Mo?S? and therefore the reduction of the Mo cation (ligand effect) and the direct participation of M in the reaction (ensemble effect) to promote some elementary steps. With the most positively charged modifier, the ligand effect in the case of K-Mo?S? is the most obvious among themore »systems studied; however it cannot compete with the ensemble effect, which plays a dominate role in determining activity via the electrostatic attraction in particular to stabilize the CHxOy species adsorbed at the Mo sites of Mo?S?. In comparison, the ligand effect is weaker and the ensemble effect is more important when the other modifiers are used. In addition, the modifiers also vary the optimal reaction pathway for methanol synthesis on Mo?S?, ranging from the reverse water-gas shift (RWGS) + CO hydrogenation as that of Mo?S? to the formate pathway. Finally, K is able to accelerate the methanol synthesis on Mo?S? the most; while the promotion by Rh is relatively small. Using the modifiers like Ti, Co, Ni, and Cu, the activity of Mo?S? is decreased instead. The relative stability between *HCOO and *HOCO is identified as a descriptor to capture the variation in mechanism and scales well with the estimated activity. Our study not only provides better understanding of the reaction mechanism and actives on the modified Mo?S?, but also predicts some possible candidates, which can be used a promoter to facilitate the CH?OH synthesis on Mo sulfides.« less

  13. High specific power, direct methanol fuel cell stack

    DOE Patents [OSTI]

    Ramsey, John C. (Los Alamos, NM); Wilson, Mahlon S. (Los Alamos, NM)

    2007-05-08T23:59:59.000Z

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  14. Methanol Along the Path from Envelope to Protoplanetary Disc

    E-Print Network [OSTI]

    Drozdovskaya, Maria N; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine F

    2014-01-01T23:59:59.000Z

    Interstellar methanol is considered to be a parent species of larger, more complex organic molecules. A physicochemical simulation of infalling parcels of matter is performed for a low-mass star-forming system to trace the chemical evolution from cloud to disc. An axisymmetric 2D semi-analytic model generates the time-dependent density and velocity distributions, and full continuum radiative transfer is performed to calculate the dust temperature and the UV radiation field at each position as a function of time. A comprehensive gas-grain chemical network is employed to compute the chemical abundances along infall trajectories. Two physical scenarios are studied, one in which the dominant disc growth mechanism is viscous spreading, and another in which continuous infall of matter prevails. The results show that the infall path influences the abundance of methanol entering each type of disc, ranging from complete loss of methanol to an enhancement by a factor of > 1 relative to the prestellar phase. Critical ch...

  15. Vapor-liquid equilibria for methanol + tetraethylene glycol dimethyl ether

    SciTech Connect (OSTI)

    Esteve, X.; Chaudhari, S.K.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Electrical and Mechanical Engineering

    1995-11-01T23:59:59.000Z

    Vapor-liquid equilibrium (P-T-x) for the methanol + tetraethylene glycol dimethyl ether binary system were obtained by the static method in the range of temperatures from 293.15 to 423.15 K at 10 K intervals. The modified vapor pressure apparatus used is described. The Kuczynsky method was used to calculate the liquid and vapor composition and the activity coefficients of methanol from the initial composition of the sample and the measured pressure and temperature. The results were correlated by the NRTL and UNIQUAC temperature dependent activity coefficient models. This system shows nearly ideal behavior at 323.15 K, but positive deviations from ideality at lower temperatures and negative deviations at higher temperatures are observed. The activity coefficients become more negative with the increase in temperature and mole fraction of methanol. The excess molar enthalpy using the Gibss-Helmholtz equation and the NRTL and UNIQUAC parameters were calculated at 303.15 K and compared with experimental data. This binary system shows promise as a working pair for high-temperature heat pump applications.

  16. Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol Q.X. Wu a , S.Y. Shen a , Y.L. He b , T.S. Zhao a cells Direct methanol fuel cells Neat methanol Water concentration a b s t r a c t This paper reports

  17. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  18. A Theoretical Study of Methanol Oxidation Catalyzed by Isolated Vanadia Clusters Supported on the (101) Surface of Anatase

    SciTech Connect (OSTI)

    Shapovalov, Vladimir; Fievez, Tim; Bell, Alexis T.

    2012-08-13T23:59:59.000Z

    A theoretical model has been developed for describing isolated vanadate species dispersed on the (101) surface of anatase that takes into account the equilibration of the supported species with gas-phase oxygen. The lowest energy of the combined solid and gas phases identifies the VOx species with the optimal structure and composition. This model of VOx species supported on the surface of anatase is then used to analyze the reaction path for methanol oxidation to formaldehyde. The chemisorption of methanol is found to proceed preferentially by addition across a V-O-Ti bond to form V-OCH3 and Ti-OH species. The rate-limiting step for the formation of formaldehyde takes place via the transfer of a hydrogen atom from V-OCH3 bound to an oxygen atom bridging two Ti atoms, i.e., a Ti-O-Ti group located adjacent to the supported vanadate species. This step is found to have the lowest apparent activation energy of all pathways explored for the formation of formaldehyde.

  19. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    SciTech Connect (OSTI)

    Natesakhawat, Sittichai; Ohodnicki, Paul R., Jr.; Howard, Bret H.; Lekse, Jonathan W.; Baltrus, John P.; Matranga, Christopher

    2013-12-01T23:59:59.000Z

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO{sub 2} hydrogenation. The addition of Ga{sub 2}O{sub 3} and Y{sub 2}O{sub 3} promoters is shown to increase the Cu surface area and CO{sub 2}/H{sub 2} adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO{sub 2} adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N{sub 2}O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  20. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  1. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  2. Final Conservation Billing Credit Policy Supplement Background...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 17, 2014 Page 1 Final Conservation Billing Credit Policy Supplement Background and Need: This Conservation Billing Credit Policy Supplement describes how Bonneville Power...

  3. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    SciTech Connect (OSTI)

    Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin; Simpson, James; Statnick, Robert; Tong, Andrew; Fan, Liang-Shih

    2014-12-31T23:59:59.000Z

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  4. Unbiased water and methanol maser surveys of NGC 1333

    SciTech Connect (OSTI)

    Lyo, A-Ran; Kim, Jongsoo; Byun, Do-Young; Lee, Ho-Gyu, E-mail: arl@kasi.re.kr [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2014-11-01T23:59:59.000Z

    We present the results of unbiased 22 GHz H{sub 2}O water and 44 GHz class I CH{sub 3}OH methanol maser surveys in the central 7' × 10' area of NGC 1333 and two additional mapping observations of a 22 GHz water maser in a ?3' × 3' area of the IRAS4A region. In the 22 GHz water maser survey of NGC 1333 with a sensitivity of ? ? 0.3 Jy, we confirmed the detection of masers toward H{sub 2}O(B) in the region of HH 7-11 and IRAS4B. We also detected new water masers located ?20'' away in the western direction of IRAS4B or ?25'' away in the southern direction of IRAS4A. We could not, however, find young stellar objects or molecular outflows associated with them. They showed two different velocity components of ?0 and ?16 km s{sup –1}, which are blue- and redshifted relative to the adopted systemic velocity of ?7 km s{sup –1} for NGC 1333. They also showed time variabilities in both intensity and velocity from multi-epoch observations and an anti-correlation between the intensities of the blue- and redshifted velocity components. We suggest that the unidentified power source of these masers might be found in the earliest evolutionary stage of star formation, before the onset of molecular outflows. Finding this kind of water maser is only possible through an unbiased blind survey. In the 44 GHz methanol maser survey with a sensitivity of ? ? 0.5 Jy, we confirmed masers toward IRAS4A2 and the eastern shock region of IRAS2A. Both sources are also detected in 95 and 132 GHz methanol maser lines. In addition, we had new detections of methanol masers at 95 and 132 GHz toward IRAS4B. In terms of the isotropic luminosity, we detected methanol maser sources brighter than ?5 × 10{sup 25} erg s{sup –1} from our unbiased survey.

  5. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  6. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  7. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  8. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  9. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

  10. The processing of alcohols, hydrocarbons and ethers to produce hydrogen for a PEMFC for transportation applications

    SciTech Connect (OSTI)

    Dams, R.A.J.; Hayter, P.R.; Moore, S.C. [Wellman CJB Limited, Portsmouth (United Kingdom)

    1997-12-31T23:59:59.000Z

    Wellman CJB Limited is involved in a number of projects to develop fuel processors to provide a hydrogen-rich fuel in Proton Exchange Membrane Fuel Cells (PEMFC) systems for transportation applications. This work started in 1990 which resulted in the demonstration of 10kW PEMFC system incorporating a methanol reformer and catalytic gas clean-up system. Current projects include: The development of a compact fast response methanol reformer and gas clean-up system for a motor vehicle; Reforming of infrastructure fuels including gasoline, diesel, reformulated fuel gas and LPG to produce a hydrogen rich gas for PEMFC; Investigating the potential of dimethylether (DME) as source of hydrogen rich gas for PEMFCs; The use of thin film palladium diffusers to produce a pure hydrogen stream from the hydrogen rich gas from a reformer; and Processing of naval logistic fuels to produce a hydrogen rich gas stream for PEMFC power system to replace diesel generators in surface ships. This paper outlines the background to these projects and reports their current status.

  11. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  12. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

  13. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  14. Hydrogen Bus Technology Validation Program

    E-Print Network [OSTI]

    Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

    2005-01-01T23:59:59.000Z

    and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

  15. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01T23:59:59.000Z

    the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

  16. Hydrogen and the materials of a sustainable energy future

    SciTech Connect (OSTI)

    Zalbowitz, M. [ed.

    1997-02-01T23:59:59.000Z

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  17. Winter 2007 Office of Dietary Supplements

    E-Print Network [OSTI]

    Bandettini, Peter A.

    .S. Department of Health and Human Services ODS Surveys Dietary Supplement Education in Academia ODS to Conduct Course on Dietary Inside this issue Supplement Education in Academia 1 ODS Offers Course on Supplements 1 News for Researchers 2 New ODS Staff 2 CARDS Database Expanded 2 Advances in Supplement Research 3

  18. Glycerol Supplementation in Dairy Cows and Calves

    E-Print Network [OSTI]

    Nordqvist #12;Glycerol Supplementation in Dairy Cows and Calves Abstract The production of biodiesel from

  19. QUALITY AND IMPACT Supplement 1 Evaluation of

    E-Print Network [OSTI]

    QUALITY AND IMPACT Supplement 1 KoN09 Evaluation of Quality and Impact at SLU KoN Management Team Roland von Bothmer Johan Schnürer Boel �ström Katarina Vrede Per Andersson Supplement #12;QUALITY AND IMPACT Supplement2 Evaluation of Quality and Impact at SLU (KoN 09), Supplement #12;QUALITY AND IMPACT

  20. Direct Methanol Fuel Cell Corporation DMFCC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump to:1999) |Methanol Fuel

  1. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  2. air-breathing direct methanol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Direct Methanol Materials Science Websites Summary: increases the overall cost of the cell, reducing the fuel conversion efficiency. An alternative to H2): Application to...

  3. Indirect conversion of coal to methanol and gasoline: product price vs product slate

    SciTech Connect (OSTI)

    Wham, R.M.; McCracken, D.J.; Forrester, R.C. III

    1980-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) conducts process analysis and engineering evaluation studies for the Department of Energy to provide, on a consistent basis, technical and economic assessments of processes and systems for coal conversion and utilization. Such assessments permit better understanding of the relative technical and economic potential of these processes. The objective of the work described here was to provide an assessment of the technical feasibility, economic competitiveness, and environmental acceptability of selected indirect coal liquefaction processes on a uniform, consistent, and impartial basis. Particular emphasis is placed on production of methanol as a principal product or methanol production for conversion to gasoline. Potential uses for the methanol are combustion in peaking-type turbines or blending with gasoline to yield motor fuel. Conversion of methanol to gasoline is accomplished through the use of the Mobil methanol-to-gasoline (MTG) process. Under the guidance of ORNL, Fluor Engineers and Constructors, Houston Division, prepared four conceptual process designs for indirect conversion of a Western subbituminous coal to either methanol or gasoline. The conceptual designs are based on the use of consistent technology for the core of the plant (gasification through methanol synthesis) with additional processing as necessary for production of different liquid products of interest. The bases for the conceptual designs are given. The case designations are: methanol production for turbine-grade fuel; methanol production for gasoline blending; gasoline production with coproduction of SNG; and gasoline production maximized.

  4. Liquid-liquid equilibrium of cyclohexane-n-hexane-methanol mixtures; Effect of water content

    SciTech Connect (OSTI)

    Alessi, P.; Fermeglia, M.; Kikic, I. (Istituto di Chimica Applicata e Industriale, University of Trieste, via Valerio 2, I-34127 Trieste (IT))

    1989-04-01T23:59:59.000Z

    Experimental liquid-liquid equilibrium data for the ternary system cyclohexane-n-hexane-methanol and for the binary systems n-hexane-methanol and cyclohexane-methanol are presented over a temperature range from 284 to 298{Kappa} at pressure of 0.1 MPa. Attention is given to the effect of the purity of methanol as far as the water content is concerned. The data are correlated by means of excess Gibbs energy models (NRTL and UNIQUAC), and the binary interaction parameters are reported.

  5. Catalytic decomposition of methanol at various temperatures and several liquid hourly space velocities

    E-Print Network [OSTI]

    Gupta, Yashpal Satyapal

    1975-01-01T23:59:59.000Z

    to quantitatively analyze the products of the reactions. Based on the results obtained, a scheme is presented by which methanol can be converted to a gaseous fuel consisting of dimethyl ether (50K), carbon monoxide ( 16 . 67K) and hyrdogen (33 . 33K) . Dedicated... is produced by catalytically dehydrating methanol over a y-alumina catalyst to produce dimethyl ether and dehydrogenating methanol to CO and H& over a methanol synthesis catalyst and then mixing these gases in the proportion of 50% dimethyl ether, 33. 33K...

  6. STATISTICAL PROPERTIES OF 12.2 GHz METHANOL MASERS ASSOCIATED WITH A COMPLETE SAMPLE OF 6.7 GHz METHANOL MASERS

    SciTech Connect (OSTI)

    Breen, S. L.; Caswell, J. L.; Green, J. A.; Voronkov, M. A. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia); Fuller, G. A.; Quinn, L. J.; Avison, A., E-mail: Shari.Breen@csiro.au [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2011-06-01T23:59:59.000Z

    We present definitive detection statistics for 12.2 GHz methanol masers toward a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20{sup 0}. In total, we detect 250 12.2 GHz methanol masers toward 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. Eighty percent of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity but also the volume of gas conducive to the different maser transitions that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate toward those 6.7 GHz methanol masers that are coincident with extended green objects.

  7. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  8. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  9. 2.1E Supplement

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01T23:59:59.000Z

    125 (HPDefE) is the heat pump defrost energy. SYSTEMS A i runit (Btu/hr) HPDefE heat pump defrost energy (Btu) A.32HEAT PUMP ENHANCEMENTS Expanded Supplemental-heat-source and Defrost

  10. Gaseous Hydrogen Delivery Breakout

    E-Print Network [OSTI]

    Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

  11. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31T23:59:59.000Z

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  12. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17T23:59:59.000Z

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  13. Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  14. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  15. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  16. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect (OSTI)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18T23:59:59.000Z

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  17. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01T23:59:59.000Z

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  18. Hydrogen Delivery Liquefaction and Compression

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

  19. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    SciTech Connect (OSTI)

    Saur, G.; Ainscough, C.

    2011-12-01T23:59:59.000Z

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

  20. Anti-Hydrogen Jonny Martinez

    E-Print Network [OSTI]

    Budker, Dmitry

    Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

  1. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24T23:59:59.000Z

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  2. EIS-0236-S1: Draft Supplemental Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Draft Supplemental Programmatic Environmental Impact Statement EIS-0236-S1: Draft Supplemental Programmatic Environmental Impact Statement This Supplemental DEIS evaluates the...

  3. Method for producing hydrogen

    SciTech Connect (OSTI)

    Preston, J.L.

    1980-02-26T23:59:59.000Z

    In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

  4. Control and experimental characterization of ap methanol reformer for a 350W HTPEM FC system

    E-Print Network [OSTI]

    Kolaei, Alireza Rezania

    Control and experimental characterization of ap methanol reformer for a 350W HTPEM FC system Søren@et.aau.dk 33 #12;From prototype to commercial product dk 4 www.serenergy.dk #12;Integrated methanol reformerC Reformer temperature 200-300oC System parameters Weight 13.7 kg Volume 27 L sja@et.aau.dk 5 #12

  5. Experimental Observations in the Morita Baylis-Hillman Reaction in Methanol

    E-Print Network [OSTI]

    Plata, Robert Erik

    2013-05-22T23:59:59.000Z

    -energy profile for a Morita Baylis-Hillman reaction in methanol. Although the majority of this dissertation will be about the Morita Baylis-Hillman reaction in methanol, it could not have been fully accomplished without having to study the Morita Baylis...

  6. APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu* , Chunguang Suo, email: lxw@hit.edu.cn) ABSTRACT In view of micro fuel cells, the silicon processes are employed for microfabrication of the micro direct methanol fuel cell (DMFC). Using the MEMS technology we have successfully made

  7. Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

    E-Print Network [OSTI]

    Al-Arfaj, Muhammad A.

    Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process system for TAME reactive distillation process using extraction column with water as a solvent. The design distillation column which was optimized to recover methanol and recycle water to the extraction column. Other

  8. The Reactivity Limit for Methanol Oxidation on Platinum/Ruthenium Catalysts

    E-Print Network [OSTI]

    The Reactivity Limit for Methanol Oxidation on Platinum/Ruthenium Catalysts A. Wieckowski 0.5 1.0 1.5 2.0 2.5 3.0 Pt/Ru Decorated (UIUC) PtRu Alloy (JM) E = 0.4 V Oxidation in 0.5 M Methanol

  9. Methanol masers : Reliable tracers of the early stages of high-mass star formation

    E-Print Network [OSTI]

    S. P. Ellingsen

    2005-10-07T23:59:59.000Z

    The GLIMPSE and MSX surveys have been used to examine the mid-infrared properties of a statistically complete sample of 6.7 GHz methanol masers. The GLIMPSE point sources associated with methanol masers are clearly distinguished from the majority, typically having extremely red mid-infrared colors, similar to those expected of low-mass class 0 young stellar objects. The intensity of the GLIMPSE sources associated with methanol masers is typically 4 magnitudes brighter at 8.0 micron than at 3.6 micron. Targeted searches towards GLIMPSE point sources with [3.6]-[4.5] > 1.3 and an 8.0 micron magnitude less than 10 will detect more than 80% of class II methanol masers. Many of the methanol masers are associated with sources within infrared dark clouds (IRDC) which are believed to mark regions where high-mass star formation is in its very early stages. The presence of class II methanol masers in a significant fraction of IRDC suggests that high-mass star formation is common in these regions. Different maser species are thought to trace different evolutionary phases of the high-mass star formation process. Comparison of the properties of the GLIMPSE sources associated with class II methanol masers and other maser species shows interesting trends, consistent with class I methanol masers tracing a generally earlier evolutionary phase and OH masers tracing a later evolutionary phase.

  10. A novel electrode architecture for passive direct methanol fuel cells R. Chen, T.S. Zhao *

    E-Print Network [OSTI]

    Zhao, Tianshou

    A novel electrode architecture for passive direct methanol fuel cells R. Chen, T.S. Zhao 6 November 2006 Abstract The supply of cathode reactants in a passive direct methanol fuel cell: Fuel cell; Passive DMFC; Metal foam; Mass transfer resistance; Cell performance; Oxygen transport 1

  11. Electrochimica Acta 52 (2006) 14091416 Optimization of cathode catalyst layer for direct methanol fuel cells

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    methanol fuel cells (DMFCs) features a large thickness and mass transport loss due to higher Pt loading electrolyte fuel cells, as a result of an optimum balance of proton transport and oxygen diffusion. Different rights reserved. Keywords: Direct methanol fuel cell; Cathode; Catalyst layer; Porosity distribution

  12. Experimental Observations in the Morita Baylis-Hillman Reaction in Methanol 

    E-Print Network [OSTI]

    Plata, Robert Erik

    2013-05-22T23:59:59.000Z

    -energy profile for a Morita Baylis-Hillman reaction in methanol. Although the majority of this dissertation will be about the Morita Baylis-Hillman reaction in methanol, it could not have been fully accomplished without having to study the Morita Baylis...

  13. Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol

    E-Print Network [OSTI]

    Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol Dean S mixtures of water with acetone, acetonitrile, and methanol over their entire range of compositions have and acetonitrile mixtures. Spatial distribution functions are reported for the acetone/water system. © 2000

  14. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  15. Methanol masers as tools to study high-mass star formation

    E-Print Network [OSTI]

    Michele Pestalozzi

    2007-04-23T23:59:59.000Z

    In this contribution I will attempt to show that the study of galactic 6.7 and 12.2GHz methanol masers themselves, as opposed to the use of methanol masers as signposts, can yield important conclusions contributing to the understanding of high-mass star formation. Due to their exclusive association with star formation, methanol masers are the best tools to do this, and their large number allows to probe the entire Galaxy. In particular I will focus on the determination of the luminosity function of methanol masers and on the determination of an unambiguous signature for a circumstellar masing disc seen edge-on. Finally I will try to point out some future fields of research in the study of methanol masers.

  16. Investigation of the flame speeds of propane/methanol gas mixtures

    SciTech Connect (OSTI)

    Foote, K.L.; Villareal, J.

    1985-05-02T23:59:59.000Z

    A series of tests was conducted in an acoustically tuned flame tube in order to determine the laminar burning velocities in air of various propane/methanol gas mixtures. The experimental method is explained in detail, along with the tabular results. A 90% propane, 10% methanol mixture is shown to have a maximum burning velocity of 40.8 cm/s. A 65% propane, 35% methanol mixture has a maximum velocity of 41.8 cm/s. These maximum flame speeds are shown to be about the same as that of pure propane by the same method. Gulder has found evidence that the presence of methanol in some hydrocarbon fuels may actually inhibit combustion, but we see no apparent modifications in the combustion of propane when mixed with methanol.

  17. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    E-Print Network [OSTI]

    Mosquera, Martín A

    2010-01-01T23:59:59.000Z

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

  18. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  19. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  20. Supporting information Figure S1: Pump-rePump-Probe kinetics of peridinin in methanol. Peridinin was excited at

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Supporting information Figure S1: Pump-rePump-Probe kinetics of peridinin in methanol. Peridinin spectra (black lines) measured after excitation of peridinin in methanol at 400 nm and dumping at 3 ps

  1. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

  2. Detection of 6.7 GHz methanol absorption towards hot corinos

    E-Print Network [OSTI]

    J. D. Pandian; S. Leurini; K. M. Menten; A. Belloche; P. F. Goldsmith

    2008-08-14T23:59:59.000Z

    Methanol masers at 6.7 GHz have been found exclusively towards high-mass star forming regions. Recently, some Class 0 protostars have been found to display conditions similar to what are found in hot cores that are associated with massive star formation. These hot corino sources have densities, gas temperatures, and methanol abundances that are adequate for exciting strong 6.7 GHz maser emission. This raises the question of whether 6.7 GHz methanol masers can be found in both hot corinos and massive star forming regions, and if not, whether thermal methanol emission can be detected. We searched for the 6.7 GHz methanol line towards five hot corino sources in the Perseus region using the Arecibo radio telescope. To constrain the excitation conditions of methanol, we observed thermal submillimeter lines of methanol in the NGC1333-IRAS 4 region with the APEX telescope. We did not detect 6.7 GHz emission in any of the sources, but found absorption against the cosmic microwave background in NGC1333-IRAS 4A and NGC1333-IRAS 4B. Using a large velocity gradient analysis, we modeled the excitation of methanol over a wide range of physical parameters, and verify that the 6.7 GHz line is indeed strongly anti-inverted for densities lower than 10^6 cm^-3. We used the submillimeter observations of methanol to verify the predictions of our model for IRAS 4A by comparison with other CH3OH transitions. Our results indicate that the methanol observations from the APEX and Arecibo telescopes are consistent with dense (n ~ 10^6 cm^-3), cold (T ~ 15-30 K) gas. The lack of maser emission in hot corinos and low-mass protostellar objects in general may be due to densities that are much higher than the quenching density in the region where the radiation field is conducive to maser pumping.

  3. Control and experimental characterization of a methanol reformer for a 350WControl and experimental characterization of a methanol reformer for a 350Wp high temperature polymer electrolyte membrane fuel cell systemhigh temperature polymer electrolyte memb

    E-Print Network [OSTI]

    Berning, Torsten

    Control and experimental characterization of a methanol reformer for a 350WControl and experimental characterization of a methanol reformer for a 350Wp high temperature polymer electrolyte membrane fuel cell, 9220 Aalborg East, Denmarkp gy gy g y pp g Introd ction Steam reforming of methanol for a HTPEM f el

  4. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  5. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  6. Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2011-11-03T23:59:59.000Z

    Molecular and dissociative methanol adsorption species were prepared on rutile TiO2(110) surfaces to study photocatalytic oxidation of methanol in ultrahigh vacuum (UHV) using temperature-programmed desorption (TPD). Adsorbed methoxy groups (CH3O-) were found to be the photoactive form of adsorbed methanol converted to adsorbed formaldehyde and a surface OH group by hole-mediated C-H bond cleavage. These results suggest that adsorbed methoxy is the effective hole scavenger in photochemical reactions involving methanol.

  7. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect (OSTI)

    Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

    2013-09-03T23:59:59.000Z

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

  8. Copper- and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide

    SciTech Connect (OSTI)

    Koeppel, R.A.; Stoecker, C.; Baiker, A. [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry] [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry

    1998-10-25T23:59:59.000Z

    Copper- and silver-zirconia aerogels containing 10 at% IB metal were prepared from tetra-n-butoxy zirconium(IV) and IB metal acetates using the solution sol-gel method and ensuring high-temperature (HT) and low-temperature (LT) supercritical drying, respectively. The influence of preparation parameters and calcination on the structural and catalytic properties of the aerogels for the synthesis of methanol from carbon dioxide and hydrogen was investigated. After calcination in air at 573 K, the catalysts had BET surface areas in the range of 100--143 m{sup 2}/g (Cu/ZrO{sub 2}) and 77--125 m{sup 2}/g (Ag/ZrO{sub 2}), respectively. Due to the reductive alcoholic atmosphere during high-temperature supercritical drying, metallic copper and silver existed in all raw HT-aerogels. The mean size of the copper crystallites wa/s 30 nm. The silver crystallite size for the HT-aerogel prepared with nitric acid was 10 nm, whereas for samples prepared with acetic acid it was 5--7 nm. Calcination in air at 573 K led to the formation of highly dispersed amorphous copper oxide and silver. Comparing the catalytic behavior of the calcined copper-zirconia aerogels with corresponding xerogels prepared by coprecipitation revealed highest activity for the LT-aerogel, whereas the HT-aerogels were least active. In contrast, similar catalytic behavior was observed for the differently dried silver-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia aerogels was markedly higher than that of the corresponding silver-zirconia aerogels, whereas methanol selectivity was similar.

  9. Forms Supplement page -1 Export Administration Regulations January 2001

    E-Print Network [OSTI]

    Bernstein, Daniel

    Forms Supplement page - 1 Export Administration Regulations January 2001 #12;Forms Supplement page - 2 Export Administration Regulations January 2001 #12;Forms Supplement page - 3 Export Administration Regulations January 2001 #12;Forms Supplement page - 4 Export Administration Regulations January 2001 #12

  10. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01T23:59:59.000Z

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  11. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  12. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO{sub 2} into methanol under visible light irradiation

    SciTech Connect (OSTI)

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin, E-mail: xinliscau@yahoo.com

    2013-07-15T23:59:59.000Z

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 ?mol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup ?1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II) imidazolate frameworks were first applied in the photo-reduction of CO{sub 2}. • The photocatalytic activities of the frameworks depend on their band gap and phase structures. • The photocatalytic activity of orthorhombic frameworks is 3 times that of monoclinic frameworks. • The degradation kinetics of MB over three photocatalysts followed the first-order rate equation. • The largest yield for reduction of CO{sub 2} into methanol on green framworks was 1712.7 ?mol/g over 5 h.

  13. 976 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 4, AUGUST 2006 Methanol Steam Reformer on a Silicon Wafer

    E-Print Network [OSTI]

    Malen, Jonathan A.

    976 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 4, AUGUST 2006 Methanol Steam Reformer of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabri- cated is achieved through on-chip resis- tive heaters, whereby methanol steam reforming reactions were studied over

  14. In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01.

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01. MATHEMATICAL MODELING OF LIQUID-FEED DIRECT METHANOL FUEL CELLS Z. H. Wang and C. Y. Wang Electrochemical methanol fuel cells (DMFC). Diffusion and convection of both gas and liquid phases are considered

  15. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Journal of Power Sources 164 (2007) 189­195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  16. The role of specific solvent modes in the non-radiative relaxation of an excess electron in methanol

    E-Print Network [OSTI]

    in methanol A.A. Mosyak, O.V. Prezhdo1 , P.J. Rossky* Department of Chemistry and Biochemistry, University electronic excited state of an excess electron in methanol. Compared to water, we find that the presence in methanol. The first solvation shell dominates the electronic coupling, most strongly through rotational

  17. Methanol as a Sensitive Probe for Spatial and Temporal Variations of the Proton-to-Electron Mass Ratio

    E-Print Network [OSTI]

    Methanol as a Sensitive Probe for Spatial and Temporal Variations of the Proton-to-Electron Mass, corresponding to the 51 ! 60Aþ and 20 ! 3À1E transitions in methanol (CH3OH), respectively, are among transitions in the ground state of methanol to a variation of the proton-to- electron mass ratio. We show

  18. Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol 2010 Available online 12 June 2010 Keywords: Fuel cell Direct methanol fuel cell Catalyst Active Site Pt-Au alloy a b s t r a c t A pure Pt cathode catalyst in direct methanol fuel cells is not only

  19. Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon and Heather C. Allen*

    E-Print Network [OSTI]

    Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon 43210 ReceiVed: May 27, 2004; In Final Form: August 19, 2004 The reaction between methanol and sulfuric peak in the 800 cm-1 region, not present in either the neat methanol or concentrated sulfuric acid

  20. arXiv:0812.0905v2[astro-ph]9Dec2008 Distances to Galactic methanol masers

    E-Print Network [OSTI]

    van Langevelde, Huib Jan

    arXiv:0812.0905v2[astro-ph]9Dec2008 Distances to Galactic methanol masers Kazi L. J. Rygl Max parallax measurements of 6.7 GHz methanol masers in star forming regions of the Galaxy. The 6.7 GHz methanol maser transition is a very valuable astrometric tool, for its large stability and confined

  1. arXiv:1102.0854v1[astro-ph.GA]4Feb2011 Studies of methanol maser rings

    E-Print Network [OSTI]

    De Buizer, James Michael

    arXiv:1102.0854v1[astro-ph.GA]4Feb2011 Studies of methanol maser rings Anna Bartkiewicz, Marian present the results of studies of a new class of 6.7 GHz methanol maser sources with a ring- like emission-like distribution of methanol maser spots. Using the Gemini telescopes we found mid-infrared (MIR) counterparts

  2. Digestion of milk protein and methanol-grown bacteria protein in the preruminant calf. II. Amino acid composition of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Digestion of milk protein and methanol-grown bacteria protein in the preruminant calf. II. Amino of milk and of methanol-grown bacteria in the terminal small intestine and the hindgut of the preruminant exclusively by skim-milk powder ; 50.5 p. 100 of the protein of the bacte- ria diet was supplied by methanol

  3. arXiv:0812.0905v1[astro-ph]4Dec2008 Distances to Galactic methanol masers

    E-Print Network [OSTI]

    Brunthaler, Andreas

    arXiv:0812.0905v1[astro-ph]4Dec2008 Distances to Galactic methanol masers Kazi L. J. Rygl£ Max parallax measurements of 6.7 GHz methanol masers in star forming regions of the Galaxy. The 6.7 GHz methanol maser transition is a very valuable astrometric tool, for its large stability and confined

  4. Mass transport phenomena in direct methanol fuel cells T.S. Zhao*, C. Xu, R. Chen, W.W. Yang

    E-Print Network [OSTI]

    Zhao, Tianshou

    Mass transport phenomena in direct methanol fuel cells T.S. Zhao*, C. Xu, R. Chen, W.W. Yang January 2009 Available online 20 February 2009 Keywords: Fuel cell Direct methanol fuel cell Mass cells ­ direct methanol fuel cells (DMFCs). We present a comprehensive review of the state

  5. Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on High Surface Area Anatase

    E-Print Network [OSTI]

    Bell, Alexis T.

    Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported for methanol oxidation on both TiO2 and V/TiO2 was investigated using temperature- programmed experiments/TiO2 sample consists predominantly of isolated VO4 units after calcination. Methanol was found

  6. Interaction of methanol and water on MgO,,100... studied by ultraviolet photoelectron and metastable impact electron spectroscopies

    E-Print Network [OSTI]

    Goodman, Wayne

    Interaction of methanol and water on MgO,,100... studied by ultraviolet photoelectron; accepted 27 October 1998 The coadsorption of methanol (CH3OH) and water (D2O) on the MgO 100 /Mo 100 photoelectron spectroscopy UPS HeI , and by thermal programmed desorption TPD . Methanol wets the MgO surface

  7. Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on High Surface Area Zirconia

    E-Print Network [OSTI]

    Bell, Alexis T.

    Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported, California 94720-1462 ReceiVed: NoVember 20, 2007; In Final Form: February 6, 2008 The oxidation of methanol that the vanadium is present as isolated VO4 units in a distorted tetrahedral geometry. Methanol was found to adsorb

  8. Prediction of the Size Distributions of Methanol-Ethanol Clusters Detected in VUV Laser/Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Goddard III, William A.

    Prediction of the Size Distributions of Methanol-Ethanol Clusters Detected in VUV Laser distributions and geometries of vapor clusters equilibrated with methanol-ethanol (Me-Et) liquid mixtures were distributions of vapor clusters equilibrated with liquids, ranging from neat alcohols1,2 to methanol-ethanol (Me

  9. Effects of Methanol on the Thermodynamics of Iron(III) [Tetrakis(pentafluorophenyl)]porphyrin Chloride Dissociation and the

    E-Print Network [OSTI]

    Bell, Alexis T.

    Effects of Methanol on the Thermodynamics of Iron(III) [Tetrakis in acetonitrile but is catalytically active if the solvent contains methanol. It was suggested that the precursor to the active species is (F20TPP)Fe(OCH3) in methanol-containing solvents. The present study was aimed

  10. Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal Programmed Desorption

    E-Print Network [OSTI]

    Goodman, Wayne

    Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal, 2000 The adsorption of methanol (CH3OH) and water (D2O) on the MgO(100)/Mo(100) surface at 100 K has covered MgO(100)/Mo(100) surface. On the other hand, the formation of a methanol multilayer desorption

  11. EIS-0030-S: Final Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration Proposed FY 1980 Program, Facility Location Supplement, Northwest Montana/North Idaho Support and Libby Integration, Supplemental

  12. Final SPD Supplemental EIS Master Reference List | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Counsel National Environmental Policy Act (NEPA) NEPA Reading Room Surplus Plutonium Disposition Supplemental Environmental Impact Statement Final SPD Supplemental EIS...

  13. California Energy Commission SUPPLEMENTAL STAFF REPORT

    E-Print Network [OSTI]

    testing and data collection, and establish reach codes for "green buildings." The Energy CommissionCalifornia Energy Commission SUPPLEMENTAL STAFF REPORT SUPPLEMENTAL INITIAL STUDY/PROPOSED NEGATIVE DECLARATION FOR THE 2013 BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL

  14. High Pressure Hydrogen Materials Compatibility of Piezoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

  15. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  16. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  17. ESPC Project Performance: 2011 Supplemental Data

    Broader source: Energy.gov [DOE]

    Excel spreadsheet provides supplemental data to the Reported Energy and Cost Savings from the DOE ESPC Program: FY 2011 document.

  18. ESPC Project Performance: 2012 Supplemental Data

    Broader source: Energy.gov [DOE]

    Excel spreadsheet provides supplemental data to the Reported Energy and Cost Savings from the DOE ESPC Program: FY 2012 document.

  19. ESPC Project Performance: 2014 Supplemental Data

    Broader source: Energy.gov [DOE]

    Excel spreadsheet provides supplemental data to the Reported Energy and Cost Savings from the DOE ESPC Program: FY 2014 document.

  20. ESPC Project Performance: 2010 Supplemental Data

    Broader source: Energy.gov [DOE]

    Excel spreadsheet provides supplemental data to the Reported Energy and Cost Savings from the DOE ESPC Program: FY 2010 document.

  1. DOE Publishes Supplemental Proposed Determination for Miscellaneous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Determination for Miscellaneous Residential Refrigeration Products DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products...

  2. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22T23:59:59.000Z

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  3. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  4. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02T23:59:59.000Z

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  5. Hydrogen Delivery - Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

  6. Department of Energy - Hydrogen

    Broader source: Energy.gov (indexed) [DOE]

    Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

  7. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  8. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15T23:59:59.000Z

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  9. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16T23:59:59.000Z

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  10. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  11. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  12. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    CO 2 emissions & energy consumption International Partnership for the Hydrogen Economy Norway An IPHE Vision: "... consumers will have the practical option of purchasing a...

  13. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  14. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08T23:59:59.000Z

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  15. Detection of a methanol megamaser in a major-merger galaxy

    E-Print Network [OSTI]

    Chen, Xi; Baan, Willem A; Qiao, Hai-Hua; Li, Juan; An, Tao; Breen, Shari L

    2015-01-01T23:59:59.000Z

    We have detected emission from both the 4_{-1}-3_{0} E (36.2~GHz) class I and 7_{-2}-8_{-1} E (37.7~GHz) class II methanol transitions towards the centre of the closest ultra-luminous infrared galaxy Arp 220. The emission in both the methanol transitions show narrow spectral features and have luminosities approximately 8 orders of magnitude stronger than that observed from typical class I methanol masers observed in Galactic star formation regions. The emission is also orders of magnitude stronger than the expected intensity of thermal emission from these transitions and based on these findings we suggest that the emission from the two transitions are masers. These observations provides the first detection of a methanol megamaser in the 36.2 and 37.7 GHz transitions and represents only the second detection of a methanol megamaser, following the recent report of an 84 GHz methanol megamaser in NGC1068. We find the methanol megamasers are significantly offset from the nuclear region and arise towards regions wh...

  16. Test method for the measurement of methanol emissions from stationary sources

    SciTech Connect (OSTI)

    Pate, B.A.; Peterson, M.R.; Rickman, E.E.; Jayanty, R.K.M.

    1994-05-01T23:59:59.000Z

    Methanol was designated under Title III of the Clean Air Act Amendments of 1990 as a pollutant to be regulated. A test method has been developed for the measurement of methanol emissions from stationary sources. The methanol sampling train (MST) consists of a glass-lined heated probe, two condensate knockout traps, and three sorbent cartridges packed with Anasorb 747. The Anasorb samples were desorbed with a 1:1 mixture of carbon disulfide and N,N-dimethylformamide. All samples were analyzed by gas chromatography with flame ionization detection. Following laboratory testing, field tests of the MST and the National Council of the Paper Industry for Air and Stream Improvement (NCASI) sampling method for methanol were conducted at two pulp and paper mills. In accordance with EPA Methol 301, two pairs of trains were run in parallel for six runs, collecting a total of 24 samples by each method. During each run, half of the trains were spiked with a known amount of methanol. The sampling location at the first test was an inlet vent to a softwood bleach plant scrubber where the methanol concentration was about 30 ppm. A second field test was conducted at the vent of a black liquor oxidation tank where the methanol concentration was about 350 ppm. Samples were shown to be stable for at least 2 weeks after collection.

  17. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  18. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  19. Hydrogen Energy Technology Geoff Dutton

    E-Print Network [OSTI]

    Watson, Andrew

    Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems OverallHydrogen Energy Technology Geoff Dutton April 2002 Tyndall Centre for Climate Change Research Tyndall°Centre for Climate Change Research Working Paper 17 #12;Hydrogen Energy Technology Dr Geoff Dutton

  20. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29T23:59:59.000Z

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  1. A 95 GHz CLASS I METHANOL MASER SURVEY TOWARD GLIMPSE EXTENDED GREEN OBJECTS (EGOs)

    SciTech Connect (OSTI)

    Chen Xi; Shen Zhiqiang; Gan Conggui [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita, E-mail: chenxi@shao.ac.cn [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia)

    2011-09-01T23:59:59.000Z

    We report the results of a systematic survey for 95 GHz class I methanol masers toward a new sample of 192 massive young stellar object candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey. The observations were made with the Australia Telescope National Facility (ATNF) Mopra 22 m radio telescope and resulted in the detection of 105 new 95 GHz class I methanol masers. For 92 of the sources our observations provide the first identification of a class I maser transition associated with these objects (i.e., they are new class I methanol maser sources). Our survey proves that there is indeed a high detection rate (55%) of class I methanol masers toward EGOs. Comparison of the GLIMPSE point sources associated with EGOs with and without class I methanol maser detections shows that they have similar mid-IR colors, with the majority meeting the color selection criteria -0.6 < [5.8]-[8.0] < 1.4 and 0.5 < [3.6]-[4.5] < 4.0. Investigations of the Infrared Array Camera and Multiband Imaging Photometer for Spitzer 24 {mu}m colors and the associated millimeter dust clump properties (mass and density) of the EGOs for the sub-samples based on the class of methanol masers they are associated with suggest that the stellar mass range associated with class I methanol masers extends to lower masses than for class II methanol masers, or alternatively class I methanol masers may be associated with more than one evolutionary phase during the formation of a high-mass star.

  2. THE ROLE OF METHANOL IN THE CRYSTALLIZATION OF TITAN'S PRIMORDIAL OCEAN

    SciTech Connect (OSTI)

    Deschamps, Frederic [Institute of Geophysics, Swiss Federal Institute of Technology Zurich, 8092 Zurich (Switzerland); Mousis, Olivier [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, 25030 Besancon Cedex (France); Sanchez-Valle, Carmen [Institute of Geochemistry and Petrology, Swiss Federal Institute of Technology Zurich, 8092 Zurich (Switzerland); Lunine, Jonathan I., E-mail: frederic.deschamps@erdw.ethz.c [Dipartimento di Fisica, Universita degli Studi di Roma 'Tor Vergata', Rome (Italy)

    2010-12-01T23:59:59.000Z

    A key parameter that controls the crystallization of primordial oceans in large icy moons is the presence of anti-freeze compounds, which may have maintained primordial oceans over the age of the solar system. Here we investigate the influence of methanol, a possible anti-freeze candidate, on the crystallization of Titan's primordial ocean. Using a thermodynamic model of the solar nebula and assuming a plausible composition of its initial gas phase, we first calculate the condensation sequence of ices in Saturn's feeding zone, and show that in Titan's building blocks methanol can have a mass fraction of {approx}4 wt% relative to water, i.e., methanol can be up to four times more abundant than ammonia. We then combine available data on the phase diagram of the water-methanol system and scaling laws derived from thermal convection to estimate the influence of methanol on the dynamics of the outer ice I shell and on the heat transfer through this layer. For a fraction of methanol consistent with the building blocks composition we determined, the vigor of convection in the ice I shell is strongly reduced. The effect of 5 wt% methanol is equivalent to that of 3 wt% ammonia. Thus, if methanol is present in the primordial ocean of Titan, the crystallization may stop, and a sub-surface ocean may be maintained between the ice I and high-pressure ice layers. A preliminary estimate indicates that the presence of 4 wt% methanol and 1 wt% ammonia may result in an ocean of thickness at least 90 km.

  3. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12T23:59:59.000Z

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  4. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  5. Neuron, Volume 78 Supplemental Information

    E-Print Network [OSTI]

    Gentner, Timothy

    Neuron, Volume 78 Supplemental Information Associative Learning Enhances Population Coding colored dot denotes the mean response for two neurons to each of four stimuli. Each colored ellipse) For a positive relationship, neuron pairs with positive signal correlation and large noise correlation have

  6. Alumina catalysts for reduction of NOx from methanol fueled diesel engine

    SciTech Connect (OSTI)

    Yamamoto, Toshiro; Noda, Akira; Sakamoto, Takashi; Sato, Yoshio [Ministry of Transport of Japan, Kumamoto (Japan)

    1996-09-01T23:59:59.000Z

    NOx selective reducing catalysts are expected to be used for lean-burn gasoline engines and diesel engines as an effective NOx reduction measure. The authors are interested in the combination of methanol, as a reducing agent, and alumina catalyst, and have considered the NOx reduction method using effectively much unburned methanol. In this report, in order to investigate the effect of NOx reduction by the alumina catalyst, the experiment was carried out by feeding the actual exhaust gas from the methanol engine into the alumina catalyst. As a result, it was confirmed that, without addition of any other reducing agents into the exhaust gas, the alumina catalyst has activity to reduce NOx.

  7. Catalytic conversion of methanol to low molecular weight olefins in a fluidized bed reactor

    E-Print Network [OSTI]

    Garza Tobias, Ricardo

    1983-01-01T23:59:59.000Z

    the production of methane, CO, and CO, . Also methanol conversion to coke was increased with temperature. The space velocity was a significant variable in determining the final product distribution and also in the rate of coke formation. The olefins... in the feed and catalyst age on propane yields, T~430'C (Methanol-DME conversion was greater than 95% on all experiments except 313 where it was 73%) The effect of dilution in the feed and catalyst age on the methane yields, T 430'C (Methanol...

  8. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16T23:59:59.000Z

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  9. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  10. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03T23:59:59.000Z

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  11. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  12. Hydrogen Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of...

  13. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

  14. Hydrogen Delivery- Current Technology

    Broader source: Energy.gov [DOE]

    Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

  15. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  16. August 2006 Hydrogen Program

    E-Print Network [OSTI]

    after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

  17. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  18. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  19. The environment of the strongest galactic methanol maser

    E-Print Network [OSTI]

    Sanna, A; Carrasco-Gonzalez, C; Reid, M J; Ellingsen, S P; Brunthaler, A; Moscadelli, L; Cesaroni, R; Krishnan, V

    2015-01-01T23:59:59.000Z

    The high-mass star-forming site G009.62-00.20E hosts the 6.7 GHz methanol maser source with the greatest flux density in the Galaxy which has been flaring periodically over the last ten years. We performed high-resolution astrometric measurements of the CH3OH, H2O, and OH maser emission and 7 mm continuum in the region. The radio continuum emission was resolved in two sources separated by 1300 AU. The CH3OH maser cloudlets are distributed along two north-south ridges of emission to the east and west of the strongest radio continuum component. This component likely pinpoints a massive young stellar object which heats up its dusty envelope, providing a constant IR pumping for the Class II CH3OH maser transitions. We suggest that the periodic maser activity may be accounted for by an independent, pulsating, IR radiation field provided by a bloated protostar in the vicinity of the brightest masers. We also report about the discovery of an elliptical distribution of CH3OH maser emission in the region of periodic v...

  20. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-09-12T23:59:59.000Z

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  1. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  2. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  3. Sandia National Laboratories: Hydrogen Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Safety Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  4. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology pathways are impacted by their analyses. These technical teams include Fuel Cells, Fuel Pathway Integration, Hydrogen Delivery, Hydrogen Production, Materials,...

  5. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  6. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  7. An Experimental Investigation of Microexplosion in Emulsified Vegetable-Methanol Blend

    E-Print Network [OSTI]

    Nam, Hyungseok

    2012-07-16T23:59:59.000Z

    of shock waves characteristic of explosions at larger scales. However, little is known about how emulsion composition and droplet size affect the micro-explosion process. Through this research, methanol-in-vegetable oil emulsion has been studied from...

  8. WATER AND METHANOL MASER ACTIVITIES IN THE NGC 2024 FIR 6 REGION

    SciTech Connect (OSTI)

    Choi, Minho; Kang, Miju; Byun, Do-Young [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2012-11-10T23:59:59.000Z

    The NGC 2024 FIR 6 region was observed in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz. The water maser spectra displayed several velocity components and month-scale time variabilities. Most of the velocity components may be associated with FIR 6n, while one component was associated with FIR 4. A typical lifetime of the water maser velocity components is about eight months. The components showed velocity fluctuations with a typical drift rate of about 0.01 km s{sup -1} day{sup -1}. The methanol class I masers were detected toward FIR 6. The methanol emission is confined within a narrow range around the systemic velocity of the FIR 6 cloud core. The methanol masers suggest the existence of shocks driven by either the expanding H II region of FIR 6c or the outflow of FIR 6n.

  9. Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design

    E-Print Network [OSTI]

    Al Wahabi, Saeed M. H.

    2005-02-17T23:59:59.000Z

    design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins....

  10. A KINETIC S'FUDY OF METHANOL SYNTHESIS IN A SLURRY REACTOR USING

    Office of Scientific and Technical Information (OSTI)

    Of Advisory Committee: Dr. A. Akgerrnan A kinetic model that describes the methanol production rate over a CuOZnOA120 3 catalyst (United Catalyst L-951) at typical industrial...

  11. First VLBI observations of methanol maser polarisation, in G339.88-1.2

    E-Print Network [OSTI]

    R. Dodson

    2008-04-14T23:59:59.000Z

    We investigate class II methanol masers and the environment in which they form with the Long Baseline Array (LBA). Using full polarisation VLBI, we're able to measure the magnetic field directions so as to distinguish between the two main models of the environment in which methanol masers form: disks or shocks. We present polarised images of the methanol maser source G339.88-1.2, made with the LBA at 6.7-GHz. With these first polarisation maps made with the LBA, which successfully reproduce observations with the ATCA confirming the new AIPS code, a new technique for Southern VLBI is opened. The magnetic field directions found are inconstant with methanol masers arising in disks for the majority of the emission.

  12. The molecular environment of massive star forming cores associated with Class II methanol maser emission

    E-Print Network [OSTI]

    S. N. Longmore; M. G. Burton; P. J. Barnes; T. Wong; C. R. Purcell; J. Ott

    2007-04-13T23:59:59.000Z

    Methanol maser emission has proven to be an excellent signpost of regions undergoing massive star formation (MSF). To investigate their role as an evolutionary tracer, we have recently completed a large observing program with the ATCA to derive the dynamical and physical properties of molecular/ionised gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission. We find that the molecular gas in many of these regions breaks up into multiple sub-clumps which we separate into groups based on their association with/without methanol maser and cm continuum emission. The temperature and dynamic state of the molecular gas is markedly different between the groups. Based on these differences, we attempt to assess the evolutionary state of the cores in the groups and thus investigate the role of class II methanol masers as a tracer of MSF.

  13. Design of high-ionic conductivity electrodes for direct methanol fuel cells

    E-Print Network [OSTI]

    Schrauth, Anthony J

    2011-01-01T23:59:59.000Z

    Carbon-supported porous electrodes are used in low-temperature fuel cells to provide maximum catalyst surface area, while taking up little volume and using minimum catalyst material. In Direct Methanol Fuel Cells (DMFCs), ...

  14. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  15. Electrochimica Acta 52 (2007) 52665271 Effect of methanol crossover on the cathode behavior of a DMFC

    E-Print Network [OSTI]

    Zhao, Tianshou

    2007-01-01T23:59:59.000Z

    of methanol crossover on the cathode behavior. Open circuit potentials, cyclic voltammetry profiles, polarization curves and electrochemical impedance spectroscopy (EIS), resulting from the oxygen reduction measurements indicated that both current and open circuit potential of the electrode exhibited significant

  16. An Experimental Investigation of Microexplosion in Emulsified Vegetable-Methanol Blend 

    E-Print Network [OSTI]

    Nam, Hyungseok

    2012-07-16T23:59:59.000Z

    of shock waves characteristic of explosions at larger scales. However, little is known about how emulsion composition and droplet size affect the micro-explosion process. Through this research, methanol-in-vegetable oil emulsion has been studied from...

  17. Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions

    E-Print Network [OSTI]

    Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

    2014-01-01T23:59:59.000Z

    The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

  18. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    -constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel

  19. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2006-03-30T23:59:59.000Z

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

  20. Methanol Dehydrogenation and Oxidation on Pt(111) in Alkaline Jacob S. Spendelow, Jason D. Goodpaster, Paul J. A. Kenis, and Andrzej Wieckowski*

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Methanol Dehydrogenation and Oxidation on Pt(111) in Alkaline Solutions Jacob S. Spendelow, Jason D, and oxidation of methanol on Pt(111) in alkaline solutions has been examined from a fundamental mechanistic.COhasbeenconfirmedasthemainpoisoningspecies,affectingtherateofmethanoldehydrogenation primarily through repulsive interactions with methanol dehydrogenation intermediates. At direct methanol

  1. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect (OSTI)

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16T23:59:59.000Z

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. A SEARCH FOR 95 GHz CLASS I METHANOL MASERS IN MOLECULAR OUTFLOWS

    SciTech Connect (OSTI)

    Gan, Cong-Gui; Chen, Xi; Shen, Zhi-Qiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan RD, Shanghai 200030 (China)] [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan RD, Shanghai 200030 (China); Xu, Ye; Ju, Bing-Gang, E-mail: cggan@shao.ac.cn [Key Laboratory of Radio Astronomy, Chinese Academy of Sciences (China)] [Key Laboratory of Radio Astronomy, Chinese Academy of Sciences (China)

    2013-01-20T23:59:59.000Z

    We have observed a sample of 288 molecular outflow sources including 123 high-mass and 165 low-mass sources in order to search for class I methanol masers at the 95 GHz transition and to investigate the relationship between outflow characteristics and class I methanol maser emission with the Purple Mountain Observatory 13.7 m radio telescope. Our survey detected 62 sources with 95 GHz methanol masers above a 3{sigma} detection limit, which includes 47 high-mass sources and 15 low-mass sources. Therefore, the detection rate is 38% for high-mass outflow sources and 9% for low-mass outflow sources, suggesting that class I methanol masers are relatively easily excited in high-mass sources. There are 37 newly detected 95 GHz methanol masers (including 27 high-mass and 10 low-mass sources), 19 of which are newly identified (i.e., first identification) class I methanol masers (including 13 high-mass and 6 low-mass sources). A statistical analysis of the distributions of maser detections with the outflow parameters reveals that the maser detection efficiency increases with the outflow properties (e.g., mass, momentum, kinetic energy, mechanical luminosity of outflows, etc.). Systematic investigations of the relationships between the intrinsic luminosity of methanol masers and the outflow properties (including mass, momentum, kinetic energy, bolometric luminosity, and mass-loss rate of the central stellar sources) indicate a positive correlation. This further supports the theory that class I methanol masers are collisionally pumped and associated with shocks when outflows interact with the surrounding ambient medium.

  3. Development of microprocessor control for a V-6 engine fueled by prevaporized methanol

    E-Print Network [OSTI]

    Schneider, Donald F.

    1985-01-01T23:59:59.000Z

    DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 19SS Major Subject: Chemical Engineering DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Approved as to style and content by: JP& r~ R. R. Davison...

  4. Conversion of synthesis gas and methanol to hydrocarbons using zeolite catalysts

    E-Print Network [OSTI]

    Matthews, Michael Anthony

    1984-01-01T23:59:59.000Z

    and dimethyl ether to hydrocarbons on ZSM-5. Kikuchu et al. (1984) report that the activity of ZSM-5 for methanol conversion decreased, but olefin selectivity increased, with decreasing alumina content. Relatively little information has been published... and oxygenates (methanol and dimethyl ether). Relatively little gaseous olefins were formed. The effect of the ZSM-5 support was to greatly reduce methane formation and to completely eliminate oxygenates. Table 1 Conversion of Synthesis Gas Over ZSM-5...

  5. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect (OSTI)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01T23:59:59.000Z

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  6. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01T23:59:59.000Z

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  7. How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?

    E-Print Network [OSTI]

    A. M. Sobolev; D. M. Cragg; S. P. Ellingsen; M. J. Gaylard; S. Goedhart; C. Henkel; M. S. Kirsanova; A. B. Ostrovskii; N. V. Pankratova; O. V. Shelemei; D. J. van der Walt; T. S. Vasyunina; M. A. Voronkov

    2007-06-21T23:59:59.000Z

    General characteristics of methanol (CH3OH) maser emission are summarized. It is shown that methanol maser sources are concentrated in the spiral arms. Most of the methanol maser sources from the Perseus arm are associated with embedded stellar clusters and a considerable portion is situated close to compact HII regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically identified HII regions which means that massive star formation in the Perseus Arm is to a great extent triggered by local phenomena. A multiline analysis of the methanol masers allows us to determine the physical parameters in the regions of maser formation. Maser modelling shows that class II methanol masers can be pumped by the radiation of the warm dust as well as by free-free emission of a hypercompact region hcHII with a turnover frequency exceeding 100 GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs. Modelling shows that periodic changes of maser fluxes can be reproduced by variations of the dust temperature by a few percent which may be caused by variations in the brightness of the central young stellar object reflecting the character of the accretion process. Sensitive observations have shown that the masers with low flux densities can still have considerable amplification factors. The analysis of class I maser surveys allows us to identify four distinct regimes that differ by the series of their brightest lines.

  8. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01T23:59:59.000Z

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  9. Particle Suspension Mechanisms - Supplemental Material

    SciTech Connect (OSTI)

    Dillon, M B

    2011-03-03T23:59:59.000Z

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  10. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  11. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  12. NREL's Hydrogen Program

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

  13. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T. (Livermore, CA)

    1981-01-01T23:59:59.000Z

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  14. Effect of Sodium on the Catalytic Properties of VOx/CeO2 Catalysts for Oxidative Dehydrogenation of Methanol

    SciTech Connect (OSTI)

    Li, Yan; Wei, Zhehao; Sun, Junming; Gao, Feng; Peden, Charles HF; Wang, Yong

    2013-03-21T23:59:59.000Z

    A series of VOx/CeO2 catalysts with various sodium loadings (Na/V ratio from 0 to 1) has been studied for oxidative dehydrogenation (ODH) of methanol. The effect of sodium on the surface structure, redox properties, and surface acidity/basicity of VOx/CeO2 was investigated using hydrogen temperature-programmed reduction (H2-TPR), Raman spectroscopy, and Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFT). The experimental results indicate that the effect of sodium on VOx/CeO2 is highly dependent on the Na/V ratio. At a low Na/V ratio (Na/V<0.25), sodium addition only slightly decreases the redox properties of VOx/CeO2 and has little effect on its activity and selectivity to formaldehyde, even though the Brönsted acidity is almost completely eliminated at a Na/V ratio of 0.25. At a high Na/V ratio (Na/V>0.25), sodium addition greatly alters the nature of the active sites by V-O-Ce bond cleavage and V-O-Na bond formation, leading to significantly reduced activity of the VOx/CeO2 catalysts. At Na/V>0.25, the selectivity to formaldehyde also decreases with increasing Na/V ratio due to: (1) the suppressed reducibility of VOx, and (2) increased basicity leading to increased CO2.

  15. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    analysis of hydrogen infrastructure development strategiesalso presented. Keywords: Hydrogen Infrastructure, Renewableof a Tasmanian hydrogen infrastructure is performed

  16. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  17. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  18. Webinar: Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

  19. Hydrogen Production & Delivery Sara Dillich

    E-Print Network [OSTI]

    ). 15% solar-to-chemical energy efficiency by microalgae Biomass Gasification Hydrogen Production Cost

  20. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.