Sample records for hydrogen internal combustion

  1. Findings of Hydrogen Internal Combustion Engine Durability

    SciTech Connect (OSTI)

    Garrett Beauregard

    2010-12-31T23:59:59.000Z

    Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

  2. Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage

    E-Print Network [OSTI]

    Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage K. Sapru*, S, as a transition, the hydrogen internal combustion engine can lead the way to a hydrogen economy, allowing of these can ease India's dependence on foreign oil, and also eliminate the drastic power shortage, which

  3. Hydrogen Operated Internal Combustion Engines – A New Generation Fuel

    E-Print Network [OSTI]

    B. Rajendra Prasath; E. Leelakrishnan; N. Lokesh; H. Suriyan; E. Guru Prakash; K. Omur; Mustaq Ahmed

    Abstract- The present scenario of the automotive and agricultural sectors is fairly scared with the depletion of fossil fuel. The researchers are working towards to find out the best replacement for the fossil fuel; if not at least to offset the total fuel demand. In regards to emission, the fuel in the form of gaseous state is much than liquid fuel. By considering the various aspects of fuel, hydrogen is expected as a best option when consider as a gaseous state fuel. It is identified as a best alternate fuel for internal combustion engines as well as power generation application, which can be produced easily by means of various processes. The hydrogen in the form of gas can be used in the both spark ignition and compression ignition engines for propelling the vehicles. The selected fuel is much cleaner and fuel efficient than conventional fuel. The present study focusing the various aspects and usage of hydrogen fuel in S.I engine and C.I engine. Keywords- Hydrogen, Spark ignition engine, compression ignition engine, performance, Emission I.

  4. Module 3: Hydrogen Use in Internal Combustion Engines

    Broader source: Energy.gov [DOE]

    This course covers combustive properties, air/fuel ratio, types of pre-ignition problems, type of ignition systems, crankcase ventilation issues, thermal efficiency, emissions, power output, effect of mixing hydrogen

  5. Sandia Hydrogen Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Combustion Research Sandia Hydrogen Combustion Research Sebastian A. Kaiser (PI) Sandia National Laboratories Christopher M. White University of New Hampshire Sponsor: DoE...

  6. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

  7. PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW

    E-Print Network [OSTI]

    In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogen–air mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

  8. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Crittenden, W.

    1987-01-27T23:59:59.000Z

    This patent describes an improved rotary internal combustion engine comprising: (a) a combustion chamber which is generally circular in cross-section and which has a ring-like peripheral wall; (b) a driven shaft member journaled for rotation and disposed to pass eccentrically through the combustion chamber; (c) a compression chamber which is generally circular in cross-section positioned with a ring-like wall is adjacent to and spatially offset with the combustion chamber such that the driven shaft passes centrally therethrough; and (d) a circular combustion rotor fixed concentrically to the shaft member for rotation eccentrically within the combustion chamber. The combustion rotor is positioned such that the space between the periphery of the rotor and the periphery of the combustion chamber results in a crescent shape.

  9. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30T23:59:59.000Z

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  10. Hydrogen engine and combustion control process

    DOE Patents [OSTI]

    Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

    1997-01-01T23:59:59.000Z

    Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

  11. ADVANCED INTERNAL COMBUSTION ELECTRICAL GENERATOR Peter Van Blarigan

    E-Print Network [OSTI]

    Livermore, CA 94550 Abstract In this paper, research on hydrogen internal combustion engines is discussed with industrial partners. The electrical generator is based on developed internal combustion reciprocating engine. In light of these factors, the capabilities of internal combustion engines have been reviewed. In regards

  12. Internal combustion engine system

    SciTech Connect (OSTI)

    Nam, C.W.

    1987-01-27T23:59:59.000Z

    This patent describes an internal combustion engine system comprising: an engine body including a main combustion engine for transmitting the power generated by explosion pressure to a pumping piston and a power transmission apparatus for transmitting to a power crank shaft power that is increased by the ratio of the cross-sectional area of a combustion chamber piston to a power piston. The stroke distance of the combustion chamber piston is equal to that of the power piston; a swash plate-type stirling engine coupled to an exhaust gas outlet of the main combustion engine to be driven by exhaust heat therefrom; a one-stage screw-type compressor coupled by a driving shaft to the swash plate-type stirling engine, thereby generating a great amount of compressed air; a turbo-charger mounted adjacent to a gas outlet of the stirling engine to force a supply of fresh air into the combustion chamber of the main combustion engine; a booster being mounted between a compressed air source and the power transmission apparatus to amplify the air pressure derived from the compressed air source and then provide the amplified air pressure to the power transmission apparatus by operation of a cam in accordance with the rotation of the first crankshaft; compressed air sources being mounted between the compressor and the booster for storing a great amount of compressed air from the compressor; and an accumulator in communication with the power transmission apparatus through a fluid oil pipe, thereby maintaining constant control of the oil pressure in the power transmission apparatus.

  13. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen...

  14. H2 Internal Combustion Engine Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H 2 Internal Combustion Engine Research* H Internal Combustion Engine Research 2 Thomas Wallner Argonne National Laboratory 2008 DOE Merit Review Bethesda, Maryland February 25 th...

  15. Internal combustion engine

    SciTech Connect (OSTI)

    Evans, H.G.; Speer, S.

    1991-12-31T23:59:59.000Z

    This patent describes improvement in a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block, internal wall surfaces defining at least one cylinder within the engine block, the central longitudinal axis of each cylinder being within a common plane extending longitudinally of the engine block, the axially extending internal wall surface of each cylinder being closed at one end and having at least one air intake port therethrough, a piston axially and reciprocally movable within each cylinder over a permitted stroke distance, so as to alternately cover and expose each air intake port for a finite time period; an exhaust port at the closed end of the cylinder above the piston, and a mechanically operated valve for opening and closing such exhaust port located immediately adjacent such port, a substantially rigid connecting rod pivotably connected at one end of each piston, and a crankshaft, rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate connecting means between the piston and the connecting rod. The improvement comprises the diameter of the cylinder is greater than the permitted stroke distance of the piston within the cylinder, and the axis of the crankshaft is parallel to and laterally offset from the common plane by a distance sufficient to form an angle alpha between the connecting rod and the axis of the cylinder, when the piston is at top-dead center, of at least about 12 degrees, such that the time during which each air intake port is exposed is increased when the direction of crankshaft rotation is opposite to the direction of the crankshaft offset from the common plane.

  16. U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report

    SciTech Connect (OSTI)

    Not Available

    2008-04-01T23:59:59.000Z

    The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

  17. Internal combustion engine

    DOE Patents [OSTI]

    Baker, Quentin A. (P.O. Box 6477, San Antonio, TX 78209); Mecredy, Henry E. (1630-C W. 6th, Austin, TX 78703); O'Neal, Glenn B. (6503 Wagner Way, San Antonio, TX 78256)

    1991-01-01T23:59:59.000Z

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  18. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

  19. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    J. B. (1988) Internal Combustion Engine Fundamentals.novel microwave internal combustion engine ignition source,in the Internal Combustion Engine." SAE Technical Paper

  20. Sandia National Laboratories: Internal Combustion Engine Division...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Combustion Engine Division conference CRF Researchers Received "Best Paper" Award for Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal...

  1. amide hydrogen exchange: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economics of Hydrogen Technologies Renewable Energy Websites Summary: Internal Combustion Engine Transportation Applications Hydrogen Fuel Cell Vehicles Hydrogen Internal Power...

  2. ammonium hydrogen carbonate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economics of Hydrogen Technologies Renewable Energy Websites Summary: Internal Combustion Engine Transportation Applications Hydrogen Fuel Cell Vehicles Hydrogen Internal Power...

  3. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    Harris, William D

    2012-01-01T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  4. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    William D. Harris

    2012-01-11T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  5. Internal Combustion Engine Energy Retention (ICEER)

    Broader source: Energy.gov (indexed) [DOE]

    ICEER Internal Combustion Engine Energy Retention PI: Jeffrey Gonder Team: Eric Wood & Sean Lopp National Renewable Energy Laboratory June 18, 2014 Project ID: VSS126 This...

  6. Sandia National Laboratories: internal combustion engine fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    internal combustion engine fuel efficiency Measurements of Thermal Stratification in a Homogenous Charge Compression Ignition Engine On February 27, 2013, in CRF, Energy,...

  7. Plasmatron Fuel Reformer Development and Internal Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications* L. Bromberg MIT Plasma Science and Fusion Center Cambridge MA 02139 * Work supported by US...

  8. Injector tip for an internal combustion engine

    DOE Patents [OSTI]

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20T23:59:59.000Z

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  9. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    combustion engine transit bus demonstration and hydrogenHydrogen FCVs have some important differences from gasoline internal combustion engine (

  10. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Energy Savers [EERE]

    Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

  11. Vehicle Technologies Office Merit Review 2014: Internal Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    4: Internal Combustion Engine Energy Retention (ICEER) Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER) Presentation given by...

  12. Internal combustion engine and method for control

    DOE Patents [OSTI]

    Brennan, Daniel G

    2013-05-21T23:59:59.000Z

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  13. LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion...

    Energy Savers [EERE]

    LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research Presentation from the...

  14. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure

    E-Print Network [OSTI]

    Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

    2008-01-01T23:59:59.000Z

    combustion engine transit bus demonstration and hydrogenHydrogen FCVs have some important differences from gasoline internal combustion engine (

  15. BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973

    E-Print Network [OSTI]

    Goldwasser, Shafi

    BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air, The Internal Combustion Engine, International Textbook Company, 1961. (A basic text now out of print and somewhat dated.) 3. C.F. Taylor, The Internal Combustion Engine in Theory and Practice. Volumes I and II, M

  16. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    SciTech Connect (OSTI)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

    2007-05-01T23:59:59.000Z

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

  17. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions

  18. 2.61 Internal Combustion Engines, Spring 2004

    E-Print Network [OSTI]

    Heywood, John B.

    Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

  19. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21T23:59:59.000Z

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  20. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01T23:59:59.000Z

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  1. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T. (Denver, IA)

    2011-11-29T23:59:59.000Z

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  2. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell...

  3. Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion

    E-Print Network [OSTI]

    Bell, John B.

    alternatives to traditional petroleum and natural gas fuels. Burning under lean condi- tions reduces of conditions expected from gas turbine combustors. At these higher turbulence in- tensities, hydrogen flamesTurbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion A. J. Aspden1,2 , M. S. Day2

  4. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal Combustion Engine Research Towards 45% efficiency and Tier2-Bin5 emissions H2 Internal Combustion Engine Research Towards 45% efficiency and Tier2-Bin5 emissions 2009 DOE...

  5. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION

    E-Print Network [OSTI]

    Moses, Elisha

    2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2815­2820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

  6. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, G.M.; Dudar, A.M.

    1995-01-01T23:59:59.000Z

    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  7. advanced hydrogen transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    internal combustion engine generator setHEVs), hydrogen-powered internal combustion engine (ICE)hydrogennatural gas blends HEV hybrid electric vehicle ICE internal...

  8. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    SciTech Connect (OSTI)

    Andre Boehman; Daniel Haworth

    2008-09-30T23:59:59.000Z

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture composition and utilization through laboratory studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

  9. Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion

    E-Print Network [OSTI]

    Goddard III, William A.

    Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination determined the detailed sequence of reactions for hydrogen combustion with and without the BB. We validate

  10. Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson

    E-Print Network [OSTI]

    Minnesota, University of

    Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson Department of Mechanical a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate

  11. Theoretical studies on hydrogen ignition and droplet combustion

    E-Print Network [OSTI]

    Del Álamo, Gonzalo

    2006-01-01T23:59:59.000Z

    1.2 Droplet Combustion . . . . . . . . . . . . .Combustion . . . . . . . . . . . . . . . . . . . . . . . . . .Lewis, B. and von Elbe, G. Combustion, Flames and Explosions

  12. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K

    2008-04-02T23:59:59.000Z

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  13. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Broader source: Energy.gov (indexed) [DOE]

    restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications More Documents & Publications...

  14. Internal combustion engine using premixed combustion of stratified charges

    DOE Patents [OSTI]

    Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

    2003-12-30T23:59:59.000Z

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  15. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Energy Savers [EERE]

    6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo This presentation by DOE's Sunita...

  16. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    a fuel cell or hydrogen combustion engine “gen-set. ” ByCell H 2 = hydrogen ICE = internal-combustion engine kg =

  17. Carburetor priming system for internal combustion engines

    SciTech Connect (OSTI)

    Everts, R.G.

    1986-05-20T23:59:59.000Z

    A carburetor priming system is described for an internal combustion engine, the engine including: a fuel tank, a carburetor having an air inlet, a fuel-air mixing throat, and an air-fuel mixture outlet communicating with the combustion chambers of the engine, the priming system comprising, in combination: (a) a hollow housing having air inlet openings in the walls thereof, shaped and dimensioned to cover the air inlet of the carburetor; (b) an air-permeable wick retained in the housing; (c) priming fuel pump means, including (i) a depressable hollow resilient priming bulb, (ii) a priming fuel supply conduit extending between the fuel tank and the interior of the priming bulb, (iii) a priming fuel discharge conduit extending between the interior of the priming bulb and the wick, (iv) a normally closed first check valve in the priming fuel supply conduit which opens to permit fuel to flow into the priming bulb and which closes when the priming bulb is depressed, (v) a normally closed second check valve disposed in the priming fuel discharge conduit, the second check valve being mechanically actuated by external pressure on the priming bulb, to open when the priming bulb is depressed.

  18. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30T23:59:59.000Z

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  19. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOE Patents [OSTI]

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07T23:59:59.000Z

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  20. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, Gregory M. (Barnwell, SC); Dudar, Aed M. (Augusta, GA)

    1997-01-01T23:59:59.000Z

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  1. Variable compression ratio device for internal combustion engine

    DOE Patents [OSTI]

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23T23:59:59.000Z

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  2. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "2nd International Hydrogen Infrastructure Challenges Webinar," originally presented on March 10, 2015.

  3. International Hydrogen Infrastructure Challenges Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16,...

  4. The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2008-01-01T23:59:59.000Z

    FCVs and hydrogen internal combustion engine vehicles.hydrogen, plug-in drivetrains, and gasoline- fueled engine

  5. agency hydrogen powered: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  6. alternative hydrogen pathways: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  7. agency hydrogen implementing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  8. ammonium hydrogen fluoride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  9. adsorbed hydrogen technical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  10. anhydrous hydrogen fluoride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  11. aerobic hydrogen accumulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  12. apocynin decreases hydrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  13. Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi accident

    SciTech Connect (OSTI)

    Kuznetsov, M.; Yanez, J. [Karlsruhe Inst. of Technology, 76131 Karlsruhe (Germany); Grune, J.; Friedrich, A. [Pro-Science GmbH, 76275 Ettlingen (Germany); Jordan, T. [Karlsruhe Inst. of Technology, 76131 Karlsruhe (Germany)

    2012-07-01T23:59:59.000Z

    The hydrogen accumulation at the top of containment or reactor building may occur due to an interaction of molten corium and water followed by a severe accident of a nuclear reactor (TMI, Chernobyl, Fukushima Daiichi). The hydrogen, released from the reactor, accumulates usually as a stratified semi-confined layer of hydrogen-air mixture. A series of large scale experiments on hydrogen combustion and explosion in a semi-confined layer of uniform and non-uniform hydrogen-air mixtures in presence of obstructions or without them was performed at the Karlsruhe Inst. of Technology (KIT). Different flame propagation regimes from slow subsonic to relative fast sonic flames and then to the detonations were experimentally investigated in different geometries and then simulated with COMSD code with respect to evaluate amount of burnt hydrogen taken place during the Fukushima Daiichi Accident (FDA). The experiments were performed in a horizontal semi-confined layer with dimensions of 9x3x0.6 m with/without obstacles opened from below. The hydrogen concentration in the mixtures with air was varied in the range of 0-34 vol. % without or with a gradient of 0-60 vol. %H{sub 2}/m. Effects of hydrogen concentration gradient, thickness of the layer, geometry of the obstructions, average and maximum hydrogen concentration on flame propagation regimes were investigated with respect to evaluate the maximum pressure loads of internal structures. Blast wave strength and dynamics of propagation after explosion of the layer of hydrogen-air mixture was numerically simulated to reproduce the hydrogen explosion process during the Fukushima Daiichi Accident. (authors)

  14. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell...

  15. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Onboard Plasmatron Generation of Hydrogen rich Gas for...

  16. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    E-Print Network [OSTI]

    Grcar, Joseph F

    2008-01-01T23:59:59.000Z

    411–422. [9] I. Glassman, Combustion, 3rd Edition, AcademicB. Lewis, G. von Elbe, Combustion, Flames and Explosions ofin Ultra-Lean, Hydrogen-Air Combustion Joseph F. Grcar a a

  17. Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion

    E-Print Network [OSTI]

    Huseynzade, Samir

    2008-10-10T23:59:59.000Z

    UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A... UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A Thesis by SAMIR HUSEYNZADE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  18. Fuel agitating device for internal combustion engine

    SciTech Connect (OSTI)

    Scouten, D.G.

    1991-12-03T23:59:59.000Z

    This paper describes an agitator for fuel being conducted to an internal combustion engine comprising a casing, a fuel inlet conduit in the casing, a fuel outlet conduit in the casing, a chamber within the casing between the fuel inlet conduit and the fuel outlet conduit, the chamber including an entry portion proximate the fuel inlet conduit and an exit portion proximate the fuel outlet conduit and a central portion between the entry portion and the exit portion, flow divider means having a first divided portion in the entry portion and a second divider portion in the central portion for dividing the entry portion and the central portion into two fuel flow paths on opposite sides thereof, an inner wall in the casing defining the exit portion, flange means on the casing spaced radially inwardly from the inner wall and located between the second divider portion and the exit portion, and conduit means within the flange means for conducting fuel to the outlet conduit.

  19. Variable camshaft timing for internal combustion engine

    SciTech Connect (OSTI)

    Butterfield, R.P.; Smith, F.R.; Dembosky, S.K.

    1991-09-10T23:59:59.000Z

    This patent describes an internal combustion engine. It comprises a rotatable crankshaft; a camshaft, the camshaft being rotatable about its longitudinal central axis and being subject to a unidirectionally acting torque during the rotation thereof; first means mounted on the camshaft, the first means being oscillatable with respect to the camshaft about the longitudinal central axis of the camshaft at least through a limited arc; second means keyed to the camshaft for rotation therewith; rotary movement transmitting means interconnecting the crankshaft and one of the first means and the second means for transmitting rotary movement from the crankshaft to the camshaft; a first hydraulic cylinder having a body end pivotably attached to one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means; a second hydraulic cylinder having a body end pivotably attached to the one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means, the second hydraulic cylinder and the first hydraulic cylinder being disposed to act in opposite directions.

  20. Optimal internal combustion engine tuning utilizing perturbation/correlation

    E-Print Network [OSTI]

    Brian Daniel Pautler

    2003-01-01T23:59:59.000Z

    This thesis addresses the application of the perturbation/correlation method to optimizing the torque output of internal combustion engines. This application was inspired by observations of the limitations in current techniques of the automotive...

  1. Modeling piston skirt lubrication in internal combustion engines

    E-Print Network [OSTI]

    Bai, Dongfang, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Ever-increasing demand for reduction of the undesirable emissions from the internal combustion engines propels broader effort in auto industry to design more fuel efficient engines. One of the major focuses is the reduction ...

  2. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

  3. The effects of spark ignition parameters on the lean burn limit of natural gas combustion in an internal combustion engine

    E-Print Network [OSTI]

    Chlubiski, Vincent Daniel

    1997-01-01T23:59:59.000Z

    A full factorial experiment was conducted to determine the effects of internal combustion engine ignition parameters on the air-fuel ratio (A/F) lean limit of combustion with compressed natural gas (CNG). Spark electrical characteristics (voltage...

  4. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  5. argon-seeded hydrogen sheet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  6. attenuates hydrogen peroxide-induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  7. array-based electrochemical hydrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

  8. Combustion characteristics of hydrogen - carbon monoxide-based gaseous fuels

    SciTech Connect (OSTI)

    White, D.J.; Kubasco, A.J.; Lecren, R.T.; Notardonato, J.J.

    1983-01-01T23:59:59.000Z

    An experimental rig program has been conducted with the objective of evaluating the combustion performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Bluewater gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an ''optimum'' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit low NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  9. Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel

    SciTech Connect (OSTI)

    Lieuwen, Tim; Santavicca, Dom; Yang, Vigor

    2012-03-31T23:59:59.000Z

    During the duration of this sponsorship, we broadened our understanding of combustion instabilities through both analytical and experimental work. Predictive models were developed for flame response to transverse acoustic instabilities and for quantifying how a turbulent flame responds to velocity and fuel/air ratio forcing. Analysis was performed on the key instability mechanisms controlling heat release response for flames over a wide range of instability frequencies. Importantly, work was done closely with industrial partners to transition existing models into internal instability prediction codes. Experimentally, the forced response of hydrogen-enriched natural gas/air premixed and partially premixed flames were measured. The response of a lean premixed flame was investigated, subjected to velocity, equivalence ratio, and both forcing mechanisms simultaneously. In addition, important physical mechanisms controlling the response of partially premixed flames to inlet velocity and equivalence ratio oscillations were analyzed. This final technical report summarizes our findings and major publications stemming from this program.

  10. High order moment method for polydisperse evaporating sprays with mesh movement: application to internal combustion engines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to internal combustion engines D. Kaha,3 , O. Emreb,c,d,2 , Q. H. Trand , S. de Chaisemartind, , S. Jayd , F meshes. Extending the approach to internal combustion engine and fuel injection requires solving two simulations with spray in internal combustion engines have become a critical target in the automotive industry

  11. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  12. Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion

    E-Print Network [OSTI]

    Huseynzade, Samir

    2009-05-15T23:59:59.000Z

    In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal...

  13. High efficiency stoichiometric internal combustion engine system

    DOE Patents [OSTI]

    Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

    2009-06-02T23:59:59.000Z

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  14. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2011-03-22T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  15. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2008-11-04T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  16. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2007-11-06T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  17. Fuel Injector Nozzle For An Internal Combustion Engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr.; Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2006-04-25T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  18. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    Gas-Phase Combustion .41 Gas-Phase combustionfor traditional gas- phase combustion modeling are presented

  19. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Energy Savers [EERE]

    Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells...

  20. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02T23:59:59.000Z

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  1. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

    2011-11-01T23:59:59.000Z

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  2. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

  3. 1 Copyright 2007 by ASME A LEARNING ALGORITHM FOR OPTIMAL INTERNAL COMBUSTION

    E-Print Network [OSTI]

    Papalambros, Panos

    1 Copyright © 2007 by ASME A LEARNING ALGORITHM FOR OPTIMAL INTERNAL COMBUSTION ENGINE CALIBRATION-4256, Email: amaliko@umich.edu ABSTRACT Advanced internal combustion engine technologies have increased combustion engine calibration, fuel economy 1. INTRODUCTION The growing requests for better performance

  4. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    SciTech Connect (OSTI)

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27T23:59:59.000Z

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  5. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    OH. ” Proceedings of the Combustion Institute: 32(2):3171-Thermochemical Database for Combustion. ” Argonne NationalMicrowave Radiation. ” Combustion Science and Technology:

  6. Internal Combustion Engine Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary Loan TheInternal

  7. Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method

    E-Print Network [OSTI]

    Chen, Haijie

    2011-01-01T23:59:59.000Z

    Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

  8. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion in the development of combustion science. Several aspects of these two-dimensional flame cells are identified for premixed combustion when the other types of idealized flames are inapplicable. 1 #12;Nomenclature fuel

  9. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25T23:59:59.000Z

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  10. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H. (Fairmont, WV)

    1992-01-01T23:59:59.000Z

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  11. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14T23:59:59.000Z

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  12. A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol

    E-Print Network [OSTI]

    Mukasyan, Alexander

    A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from pre- pared via three combustion synthesis routes including volume combustion, impregnated substrate combustion, and so-called second wave impregnation combustion methods. These catalysts were characterized via

  13. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 22492257 SIMULATION OF THE TRANSIENT, COMPRESSIBLE, GAS-DYNAMIC

    E-Print Network [OSTI]

    Petzold, Linda R.

    ­2257 SIMULATION OF THE TRANSIENT, COMPRESSIBLE, GAS-DYNAMIC BEHAVIOR OF CATALYTIC-COMBUSTION IGNITION2249 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2249 combustion in a stagnation-flow configuration. The analysis considers the elementary heterogeneouschem- istry

  14. 1 Copyright 2003 by ASME 17th International Conference on Fluidised Bed Combustion

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1 Copyright © 2003 by ASME 17th FBC 17th International Conference on Fluidised Bed Combustion May COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven* Helsinki.zevenhoven@hut.fi * Corresponding author ABSTRACT A process for two-stage combustion of high-PVC solid waste with HCl recovery

  15. International Hydrogen Infrastructure Challenges Workshop Summary - NOW,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergy Hydrogen

  16. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    in combustion engines, or converted into hydrogen at fuelengines are now nearly zero-emitting. What do these lessons imply for hydrogen?Hydrogen will find it difficult to compete with the century-long investment in petroleum fuels and internal combustion engines.

  17. asme internal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference on Fluidised Bed Combustion Fossil Fuels Websites Summary: COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven*...

  18. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 20692076 PLANAR LASER-INDUCED FLUORESCENCE IMAGING OF CREVICE

    E-Print Network [OSTI]

    Long, Marshall B.

    2069 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2069 the impact of internal combustion engine hydrocarbon emissions on the environment have prompted tighter, absorbed into oil layers, left unvaporized, leakedinto the exhaust manifold, or left over from incomplete

  19. Hydrogen Energy Technology Geoff Dutton

    E-Print Network [OSTI]

    Watson, Andrew

    Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems OverallHydrogen Energy Technology Geoff Dutton April 2002 Tyndall Centre for Climate Change Research Tyndall°Centre for Climate Change Research Working Paper 17 #12;Hydrogen Energy Technology Dr Geoff Dutton

  20. A cycle simulation of coal particle fueled reciprocating internal-combustion engines

    E-Print Network [OSTI]

    Rosegay, Kenneth Harold

    1982-01-01T23:59:59.000Z

    modifications to conventional diesels or to- tally new designs to be successful. Anal tical Studies Very little analytical work has been directed at the combustion of coal particles in the cylinder of an 16 internal combustion engine. The first...A CYCLE SIMULATION OF COAL PARTICLE FUELED RECIPROCATING INTERNAL-COMBUSTION ENGINES A Thesis by KENNETH HAROLD ROSEGAY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree...

  1. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  2. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes 2013 DOE Hydrogen and Fuel Cells Program and...

  3. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2014-01-21T23:59:59.000Z

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  4. Sandia National Laboratories: Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesCombustion Combustion The Combustion Research Facility (CRF) is an internationally recognized center of excellence for combustion science and technology whose...

  5. Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$

    E-Print Network [OSTI]

    Santilli, R M

    2000-01-01T23:59:59.000Z

    We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capaciti...

  6. Exhaust gas recirculation system for an internal combustion engine

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-05-21T23:59:59.000Z

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  7. Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"

    E-Print Network [OSTI]

    Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except of Southern California, Los Angeles, CA 90089-1453 Introduction Hydrocarbon-fueled internal combustion engines towards the use of hydrocarbon fueled internal combustion engines was the discovery of "large" amounts

  8. Cylinder Pressures and Vibration in Internal Combustion Engine Condition G O Chandroth, A J C Sharkey and N E Sharkey

    E-Print Network [OSTI]

    Sharkey, Amanda

    Cylinder Pressures and Vibration in Internal Combustion Engine Condition Monitoring G O Chandroth focus on the detection of incipient faults in an internal combustion engine using a minimum number. The cylinder pressure (P) developed within an internal combustion engine can be considered to be the pulse

  9. Optimization of the Calibration for an Internal Combustion Engine Management System Using Multi-Objective Genetic Algorithms

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Optimization of the Calibration for an Internal Combustion Engine Management System Using Multi, the level of complexity of internal combustion engines is increasing steadily and the number of these problems, almost since the advent of electronics control of internal combustion engines, finding a way

  10. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30T23:59:59.000Z

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  11. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOE Patents [OSTI]

    Weiland, Nathan Thomas (Blacksburg, VA); Zinn, Ben T. (Atlanta, GA); Swift, Gregory William (Sante Fe, NM)

    2004-05-11T23:59:59.000Z

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  12. Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp. 12751281 INFLUENCE OF GRAVITY ON THE PROPAGATION OF INITIALLY

    E-Print Network [OSTI]

    Heil, Matthias

    1275 Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp. 1275 of an initially spherical kernel of burned gas in a fresh reactive mixture in the presence of a gravity field, the same occurs at the front surface but typically the flame persists at the back. For Le 1, the combustion

  13. Towards a detailed soot model for internal combustion engines

    SciTech Connect (OSTI)

    Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Zhang, Hongzhi R. [Department of Chemical Engineering, University of Utah, 1495 East 100 South, Kennecott Research Building, Salt Lake City, UT 84112 (United States); Kubo, Shuichi [Frontier Research Center, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Kim, Kyoung-Oh [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan)

    2009-06-15T23:59:59.000Z

    In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot formation process. (author)

  14. Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$

    E-Print Network [OSTI]

    R. M. Santilli

    2000-09-04T23:59:59.000Z

    We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capacities of quantum chemistry. In fact, magnegas contains up to 50% hydrogen, while having combustion exhaust with: 1) a positive oxygen balance (releasing more oxygen in the exhaust than that used in the combustion); 2) no appreciable carcinogenic or toxic substances; 3) considerably reduced carbon dioxide as compared to fossil fuels; 4) considerably reduced nitrogen oxides; and 5) general reduction of pollutants in the exhaust up to 96% of current EPA standards.

  15. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOE Patents [OSTI]

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03T23:59:59.000Z

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  16. PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing spinning gas

    E-Print Network [OSTI]

    transfer to the wall [5,6], optimal piston trajectory [7], and other nonideal effects in combusting gas [8PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing spinning gas V. I. Geyko* and N. J. Fisch Department of Astrophysical Sciences, Princeton University

  17. Renewable Hydrogen: Integration, Validation, and Demonstration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.

    2008-07-01T23:59:59.000Z

    This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

  18. Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Syngas and Hydrogen Combustion

    SciTech Connect (OSTI)

    Chih-Jen Sung; Hai Wang; Angela Violi

    2009-02-28T23:59:59.000Z

    The collaborative research initiative culminated in amassing a substantial combustion database of experimental results for dry and moist mixtures of syngas and hydrogen (SGH), including autoignition times using a rapid compression machine as well as laminar flame speeds using a counterflow twin-flame configuration. These experimental data provided the basis for assessment of the kinetics of SGH combustion at elevated pressures using global uncertainty analysis methods. A review of the fundamental combustion characteristics of H{sub 2}/CO mixtures, with emphasis on ignition and flame propagation at high pressures was also conducted to understand the state of the art in SGH combustion. Investigation of the reaction kinetics of CO+HO{sub 2}{center_dot} {yields} CO{sub 2} + {center_dot}OH and HO{sub 2}+OH {yields} H{sub 2}O+O{sub 2} by ab initio calculations and master equation modeling was further carried out in order to look into the discrepancies between the experimental data and the results predicted by the mechanisms.

  19. A model for structural response to hydrogen combustion loads in severe accidents

    SciTech Connect (OSTI)

    Breitung, W.; Redlinger, R. [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik

    1995-09-01T23:59:59.000Z

    The response of structures to different pressure histories from hydrogen combustion is analyzed using the model of a linear undamped oscillator. The effective static pressures from a slow deflagration-to-detonation transition (DDT) and a stable detonation are calculated as functions of oscillator frequency. The response of components with a low natural frequency, such as the outermost shell in a large dry containment, is governed by the long-term pressure after combustion. Detonation peak pressure and impulse are not important. For structures with low frequencies, fast flames have a damage potential very similar to detonations. For the investigated pressure loads, the normally reflected detonation provides the bounding effective static pressure for oscillators up to 500 Hz. Fully confined DDT events can exceed the detonation load near the transition location for structural frequencies about {approximately}40 Hz.

  20. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    technology-chemistry-combustion- gasoline_surrogate CH3CO(+gasoline surrogate fuel includes 1550 species and 6000 reactions (Mehl, 2011). Simplified chemistry

  1. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    Modeling of Emissions from HCCI Engines using a ConsistentMechanism for Iso-Octane HCCI Combustion With TargetedCharge Compression Ignition (HCCI) Engine: Experimental and

  2. Emission control system and method for internal combustion engine

    SciTech Connect (OSTI)

    Owens, L.

    1980-06-03T23:59:59.000Z

    Fresh air is introduced into the exhaust pipe leading to the muffler for an internal combustion engine, while the air and exhaust gas mixture is cooled, not only in the muffler but also in a circuitous tube which extends from the muffler to the normal discharge or tail pipe and in which a special cooler may be installed. From the outlet of the special cooling tube, which faces forwardly, a portion of the air and exhaust gas mixture, now cooled, is led from a Y-connection to the intake tube of the air filter, so that the air and exhaust gas mixture will be introduced into the intake system prior to the carburetor. A rearwardly slanting arm of the Y-connection connects the front end of the special cooling pipe with the normal tail pipe. The carburetor has one or more air bleed tubes leading into the mixture passage at or below the butterfly valves, so that at idling speeds, a small amount of fresh air is introduced, irrespective of the position of the butterfly valves, to overcome any tendency for the engine, when idling, to cough or sputter due to the introduction of an air and exhaust gas mixture to the air filter intake.

  3. Evaluation and silicon nitride internal combustion engine components

    SciTech Connect (OSTI)

    Voldrich, W. (Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.)

    1992-04-01T23:59:59.000Z

    The feasibility of silicon nitride (Si[sub 3]N[sub 4]) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components' gas-pressure sinterable Si[sub 3]N[sub 4] (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si[sub 3]N[sub 4] components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  4. Rotating electrical machines - Part 22: AC generators for reciprocating internal combustion (RIC) engine driven generating sets

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1996-01-01T23:59:59.000Z

    Establishes the principal characteristics of a.c. generators under the control of their voltage regulators when used for reciprocating internal combustion engine driven generating sets. Supplements the requirements given in IEC 60034-1.

  5. Water distillation using waste engine heat from an internal combustion engine

    E-Print Network [OSTI]

    Mears, Kevin S

    2006-01-01T23:59:59.000Z

    To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

  6. Computations and modeling of oil transport between piston lands and liner in internal combustion engines

    E-Print Network [OSTI]

    Fang, Tianshi

    2014-01-01T23:59:59.000Z

    The consumption of lubricating oil in internal combustion engines is a continuous interest for engine developers and remains to be one of the least understood areas. A better understanding on oil transport is critical to ...

  7. Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines

    E-Print Network [OSTI]

    Takata, Rosalind (Rosalind Kazuko), 1978-

    2006-01-01T23:59:59.000Z

    The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

  8. Numerical modeling of piston secondary motion and skirt lubrication in internal combustion engines

    E-Print Network [OSTI]

    McClure, Fiona

    2007-01-01T23:59:59.000Z

    Internal combustion engines dominate transportation of people and goods, contributing significantly to air pollution, and requiring large amounts of fossil fuels. With increasing public concern about the environment and ...

  9. Piston ring design for reduced friction in modern internal combustion engines

    E-Print Network [OSTI]

    Smedley, Grant, 1978-

    2004-01-01T23:59:59.000Z

    Piston ring friction losses account for approximately 20% of the total mechanical losses in modern internal combustion engines. A reduction in piston ring friction would therefore result in higher efficiency, lower fuel ...

  10. CSA International Certification Discussion Hydrogen Technology Workshop

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  11. Hydrogen combustion in an MCO during interim storage (fauske and associates report 99-14)

    SciTech Connect (OSTI)

    PLYS, M.G.

    1999-05-12T23:59:59.000Z

    Flammable conditions are not expected to develop in an MCO during interim storage. This report considers potential phenomena which, although not expected t o occur, could lead t o flammable conditions. For example, reactions of hydrogen w i t h fuel over decades a r e postulated t o lead t o flammable atmospheric mixtures. For the extreme cases considered in this report, the highest attainable post-combustion pressure is about 13 atmospheres absolute, almost a factor of two and a half below the MCO design pressure of 31 atmospheres.

  12. Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER)

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Internal...

  13. Observing and modeling nonlinear dynamics in an internal combustion engine Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8088

    E-Print Network [OSTI]

    Tennessee, University of

    Observing and modeling nonlinear dynamics in an internal combustion engine C. S. Daw* Engineering motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion combustion engines can exhibit substantial cycle-to-cycle variation in combustion energy release

  14. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    SciTech Connect (OSTI)

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30T23:59:59.000Z

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior operability was demonstrated for the hydrogen-natural gas fuel. The micro-mixing fuel injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions, supporting the Department of Energy goals related to increased energy diversity while reducing greenhouse gases.

  15. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues facing hydrogen infrastructure fuel cell electric vehicles in the U.S. Europe, Germany, Scandinavia, and Japan. o H2 Fueling o H2 Quality o H2 metering o H2 Station...

  16. Power and efficiency limits for internal combustion engines via methods of finite-time thermodynamics

    E-Print Network [OSTI]

    Berry, R. Stephen

    Power and efficiency limits for internal combustion engines via methods of finite publication 17 June 1993) Analytical expressionsfor the upper bounds of power and efficiency of an internal and expensiveto compute and analyze.2If we are interestedin maximum power output or in maximum effi- ciency

  17. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Funding in FY09: 500k Funding for FY10: 840k request Barriers Understand and optimize hydrogen direct injection engine operation Evaluate in-cylinder emissions reduction...

  18. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells...

  19. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    of Combustion in Internal Combustion Engines," Paper 750890,clean burning internal combustion engines. Another importantthat occur in an internal combustion engine. Our goal is the

  20. Developing an approach utilizing local deterministic analysis to predict the cycle friction of the piston ring-pack in internal combustion engines

    E-Print Network [OSTI]

    Liu, Yang, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Nowadays, a rapid growth of internal combustion (IC) engines is considered to be a major contributor to energy crisis. About 20% of the mechanical loss in internal combustion engines directly goes to the friction loss ...

  1. Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 497500

    E-Print Network [OSTI]

    Serebrinsky, Santiago A.

    Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 497 of this parametrization, as a reference or for speciÿc calculations. ? 2003 International Association for Hydrogen Energy.00 ? 2003 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. doi

  2. International Journal of Hydrogen Energy 27 (2002) 403412 www.elsevier.com/locate/ijhydene

    E-Print Network [OSTI]

    Kim, Jai Sam

    International Journal of Hydrogen Energy 27 (2002) 403­412 www with the titanium atoms in the B2 TiFe surfaces. ? 2002 International Association for Hydrogen Energy. Published.00 ? 2002 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights

  3. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    DOE Patents [OSTI]

    Harris, Ralph E. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX); Bourn, Gary D. (Laramie, WY)

    2011-01-11T23:59:59.000Z

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  4. Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine Vehicle.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine key new technologies in the development of electric vehicles (EV), risks pertaining to them have at presenting the main results of these fire tests. KEYWORDS: electric vehicles, battery, fire, safety

  5. International Hydrogen Infrastructure Challenges Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor aInternationalDepartment

  6. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new : nuclear power plant production (MW) GP : total wind-nuclear power plant production (MW) EP : electrolyzerINTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR

  7. Wavelet Analysis of Cycle-to-Cycle Pressure Variations in an Internal Combustion Engine

    E-Print Network [OSTI]

    Asok K. Sen; Grzegorz Litak; Rodolfo Taccani; Robert Radu

    2006-07-19T23:59:59.000Z

    Using a continuous wavelet transform we have analyzed the cycle-to-cycle variations of pressure in an internal combustion engine. The time series of maximum pressure variations are examined for different loading and their wavelet power spectrum is calculated for each load. From the wavelet power spectrum we detected the presence of long, intermediate and short-term periodicities in the pressure signal. It is found that depending on the load, the long and intermediate-term periodicities may span several cycles, whereas the short-period oscillations tend to appear intermittently. Knowledge of these periodicities may be useful to develop effective control strategies for efficient combustion.

  8. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

  9. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13T23:59:59.000Z

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  10. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  11. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOE Patents [OSTI]

    Amey, David L. (Birmingham, MI); Degner, Michael W. (Farmington Hills, MI)

    2002-01-01T23:59:59.000Z

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  12. http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines

    E-Print Network [OSTI]

    Bjørnstad, Ottar Nordal

    http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines in alternative energy sources and powertrain configurations. Nevertheless, total global oil use is projected into clean and efficient turbulent combustion remains imperative. A single grand challenge was identified

  13. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Internal Combustion Engine Division Fall Technical Conference

    E-Print Network [OSTI]

    Daraio, Chiara

    1 Copyright © 2012 by ASME Proceedings of the ASME 2012 Internal Combustion Engine Division Fall and Combustion Systems ETH Zürich Switzerland ABSTRACT The emission trade-off between soot and NOx is an issue and on the aftertreatment sides in order to optimize the engine emissions while maintaining the highest possible efficiency

  14. International Journal of Hydrogen Energy 28 (2003) 125129 www.elsevier.com/locate/ijhydene

    E-Print Network [OSTI]

    Vilela Mendes, Rui

    International Journal of Hydrogen Energy 28 (2003) 125­129 www.elsevier.com/locate/ijhydene Quantum for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved. PACS: 31.50.+w 1. Introduction of the octahedral cage. 0360-3199/02/$ 22.00 ? 2002 International Association for Hydrogen Energy. Published

  15. TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY

    E-Print Network [OSTI]

    infrastructure enables ready access to fuel for hydrogen vehicles. · Hydrogen fuel cells provide stationaryTERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY Introduction of hydrogen energy technologies in order to improve their energy, economic, and environmental security

  16. H2 ICE Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2 ICE Combustion Share Description Hydrogen combustion inside a direct injection H2 engine Topic Energy Energy efficiency Vehicles Hydrogen & fuel cells Credit S. Ciatti This...

  17. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    be cleaner, and internal combustion engines are now nearlyin petroleum fuels and internal combustion engines. Hybrid-competitive with internal combustion engines. Battery

  18. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    be cleaner, and internal combustion engines are now nearlyfuels and internal combustion engines. Hybrid-electriccompetitive with internal combustion engines. Battery

  19. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  20. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOE Patents [OSTI]

    Hansen, Craig N. (Eden Prairie, MN); Cross, Paul C. (Shorewood, MN)

    1995-01-01T23:59:59.000Z

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  1. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  2. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01T23:59:59.000Z

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  3. Proceedings of ASME Internal Combustion Engine Division 2009 Fall Technical Conference September 27-30, 2009, Lucerne, Switzerland

    E-Print Network [OSTI]

    Daraio, Chiara

    September 27-30, 2009, Lucerne, Switzerland ICEF2009-14085 EXHAUST-STREAM AND IN-CYLINDER MEASUREMENTS Internal Combustion Engine Division Fall Technical Conference ICEF2009 September 20-24, 2009, Lucerne

  4. Combustion optimization in a hydrogen-enhanced lean burn SI engine

    E-Print Network [OSTI]

    Goldwitz, Joshua A. (Joshua Arlen), 1980-

    2004-01-01T23:59:59.000Z

    Lean operation of spark ignition (SI) automotive engines offers attractive performance incentives. Lowered combustion temperatures inhibit NO[sub]x pollutant formation while reduced manifold throttling minimizes pumping ...

  5. International Hydrogen Fuel and Pressure Vessel Forum | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergy Hydrogen Fuel

  6. Comparisons between measurement and analysis of fluid motion in internal combustion engines

    SciTech Connect (OSTI)

    Witze, P.O. (ed.)

    1981-10-01T23:59:59.000Z

    The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.

  7. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  8. Webinar: International Hydrogen Infrastructure Challenges Workshop Summary – NOW, NEDO, and DOE

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, International Hydrogen Infrastructure Challenges Workshop Summary – NOW, NEDO, and DOE, originally presented on December 16, 2013.

  9. LLNL input to FY94 hydrogen annual report

    SciTech Connect (OSTI)

    Schock, R.N.; Smith, J.R.; Rambach, G.; Pekala, R.W.; Westbrook, C.K.; Richardson, J.H.

    1994-12-16T23:59:59.000Z

    This report summarizes the FY 1994 progress made in hydrogen research at the Lawrence Livermore National Laboratory. Research programs covered include: Technical and Economic Assessment of the Transport and Storage of Hydrogen; Research and Development of an Optimized Hydrogen-Fueled Internal Combustion Engine; Hydrogen Storage in Engineered Microspheres; Synthesis, Characterization and Modeling of Carbon Aerogels for Hydrogen Storage; Chemical Kinetic Modeling of H2 Applications; and, Municipal Solid Waste to Hydrogen.

  10. Combustion lean limits fundamentals and their application to a SI hydrogen-enhanced engine concept

    E-Print Network [OSTI]

    Ayala, Ferran A. (Ferran Alberto), 1976-

    2006-01-01T23:59:59.000Z

    Operating an engine with excess air, under lean conditions, has significant benefits in terms of increased engine efficiency and reduced emissions. However, under high dilution levels, a lean limit is reached where combustion ...

  11. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Introduction to Internal Combustion Engines (3rd Edition).Coefficient in the Internal Combustion Engine,” SAE Paper

  12. HYDROGEN TECHNICAL ANALYSIS ON MATTERS BEING CONSIDERED BY THE INTERNATIONAL ENERGY AGENCY -

    E-Print Network [OSTI]

    when demand exceeds existing supply · Upstream costs of new hydrogen pipelines · Delivery distance of bulk hydrogen by truck or pipeline The end-use analysis addressed tailpipe emissions of various vehicleHYDROGEN TECHNICAL ANALYSIS ON MATTERS BEING CONSIDERED BY THE INTERNATIONAL ENERGY AGENCY

  13. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles...

  14. Catalytic combustion of very lean mixtures in a reverse flow reactor using an internal electrical heater

    SciTech Connect (OSTI)

    Cunill, F.; Beld, L. van de; Westerterp, K.R. [Univ. of Twente, Enschede (Netherlands)] [Univ. of Twente, Enschede (Netherlands)

    1997-10-01T23:59:59.000Z

    An experimental study of the reverse flow reactor, equipped with an internal electrical heater, for the autothermal combustion of very dilute organic compounds, in particular ethene, propane, and their mixtures, has been carried out. The influence of several operating parameters like electrical heater power, cycle period, chemical character, and concentration of the pollutants on the maximum temperature and on the shape of temperature profiles in the stationary state is discussed. Experimental results show that an internal electrical heater can be successfully used to oxidize completely very lean mixtures which would not be able to maintain an autothermal process only by themselves. The predictions with a heterogeneous one-dimensional model without using fit parameters show a good agreement with experiments except for critical situations.

  15. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

    2007-09-01T23:59:59.000Z

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  16. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOE Patents [OSTI]

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16T23:59:59.000Z

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  17. Fundamental studies in hydrogen-rich combustion : instability mechanisms and dynamic mode selection

    E-Print Network [OSTI]

    Speth, Raymond L., 1981-

    2010-01-01T23:59:59.000Z

    Hydrogen-rich alternative fuels are likely to play a significant role in future power generation systems. The emergence of the integrated gasification combined cycle (IGCC) as one of the favored technologies for incorporating ...

  18. International Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China

    E-Print Network [OSTI]

    challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNGInternational Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China September 27-29, 2010 Background The China Association for Hydrogen Energy, the Engineering Research Center of High Pressure

  19. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

  20. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01T23:59:59.000Z

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  1. Method and apparatus to clean the intake system of an internal combustion engine

    SciTech Connect (OSTI)

    Hein, S.R.; Clack, S.R.; Burrows, J.L.

    1991-02-05T23:59:59.000Z

    This patent describes an apparatus for cleaning the intake system of an internal combustion engine. It comprises: an air metering block having air passage means therein including an air outlet; an adapter means to connect the outlet of the air metering block to the intake system of the engine; air inlet means in the block communicating with the air passage means, an adjustment means within the air metering block for controlling the amount of air introduced into the air passage means; an injector means for connection to the intake system of an engine for injecting a solvent into the intake system of the engine; and a control means for controlling the injector means to vary the amount of solvent injected into the intake system of the engine by the injector means.

  2. Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a

    E-Print Network [OSTI]

    Hickman, Mark

    Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

  3. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. ” US PatentIntroduction to Internal Combustion Engines (3rd Edition).

  4. Available online at www.sciencedirect.com International Journal of Hydrogen Energy 28 (2003) 615623

    E-Print Network [OSTI]

    Deng, Xunming

    Available online at www.sciencedirect.com International Journal of Hydrogen Energy 28 (2003) 615/photoelectrochemical multijunction cell for hydrogen production E.L. Millera;, R.E. Rocheleaua, X.M. Dengb aHawaii Natural Energy-Si) solar cells demonstrating photovoltaic (PV) e ciencies up to 12.7% and open-circuit voltages up to 2:3 V

  5. Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 429435

    E-Print Network [OSTI]

    Gulari, Erdogan

    Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 429 Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. Keywords: CO oxidation; Gold on the energy from burning fossil fuels, which are expected to be de- pleted in the near future. Extensive uses

  6. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings

    Broader source: Energy.gov (indexed) [DOE]

    Hythane can be odorized, and, unlike hydrogen, its flame is not invisible in daylight. Mr. Lynch noted that worldwide most CNG cylinders are Type 1 (metal only), and,...

  7. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...

    Broader source: Energy.gov (indexed) [DOE]

    ihfpvproceedings.pdf More Documents & Publications Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles""...

  8. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Broader source: Energy.gov (indexed) [DOE]

    and Progress in Research, Development and Demonstration of Hydrogen - Compressed Natural Gas Vehicles in China Professor Z.Q. Mao Tsinghua University and Chair of the China...

  9. Improved Solvers for Advanced Engine Combustion Simulation |...

    Broader source: Energy.gov (indexed) [DOE]

    Improved Solvers for Advanced Engine Combustion Simulation Improved Solvers for Advanced Engine Combustion Simulation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  10. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  11. Sandia National Laboratories: Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Behavior On June 13, 2014, in Turbulent Combustion Laboratory The Turbulent Combustion Laboratory (TCL) provides a well-controlled, lab-scale environment for testing...

  12. Hydrogen Bus Technology Validation Program

    E-Print Network [OSTI]

    Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

    2005-01-01T23:59:59.000Z

    and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

  13. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    of Combustion in Internal Combustion Engines," Paper 750890,that occur in an internal combustion engine. Our goal is theLAG process in an internal combustion engine, con- ducted at

  14. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14T23:59:59.000Z

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  15. Technical Forum Participants at the International Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Pressure Vessel Forum, which was held on September 27-29, 2010, in Beijing, China. ihfpvgrouplarge.pdf More Documents & Publications R&D of Large Stationary Hydrogen...

  16. Alternative Transportation Technologies: Hydrogen, Biofuels,

    E-Print Network [OSTI]

    11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug and projected improvements in gasoline internal combustion engine technology are introduced rapidly 3) BIOFUELS Large scale use of biofuels, including ethanol and biodiesel 4) PLUG-IN HYBRID SUCCESS PHEVs play

  17. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    and gasoline internal combustion engine vehicles (ICEVs)replacement for internal combustion engines. And the changeto more typical internal combustion engine chemical fuel-to-

  18. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect (OSTI)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

    1992-04-01T23:59:59.000Z

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  19. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

    1997-01-01T23:59:59.000Z

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  20. Cooling system of an internal combustion engine having a turbo-charger

    SciTech Connect (OSTI)

    Hasegawa, M.; Fukuda, T.

    1986-09-02T23:59:59.000Z

    A cooling system of an internal combustion engine is described having a turbo-charger, comprising a cooling water circulation passageway filled with cooling water for cooling the engine including at least a cylinder head cooling portion, a cooling water circulation passageway for cooling the turbo-charger including a turbo-charger cooling portion, and means for supplying a part of the engine cooling water to the turbo-charger cooling water ciruclation passageway and returning it from there to the engine cooling water cirulation passageway, characterized in that the turbo-charger cooling portion is positioned at the same level or higher than the cylinder head cooling portion of the engine, the turbo-charger cooling water circulation passageway includes a water volume positioned at a level higher than the turbo-charger cooling portion. The volume is connected to a cooling water reservoir tank via a pressure relief valve which is opened when pressure in the volume exceeds a predetermined value to supply cooling water to the volume.

  1. Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend

    E-Print Network [OSTI]

    Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar

    Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.

  2. Modeling the performance of the piston ring-pack with consideration of non-axisymmetric characteristics of the power cylinder system in internal combustion engines

    E-Print Network [OSTI]

    Liu, Liang, 1971-

    2005-01-01T23:59:59.000Z

    The performance of the piston ring-pack is directly associated with the friction, oil consumption, wear, and blow-by in internal combustion engines. Because of non-axisymmetric characteristics of the power cylinder system, ...

  3. Coal combustion science

    SciTech Connect (OSTI)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01T23:59:59.000Z

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  4. NE]NL~GY r. ORNL/Sub/80-1 386/ &02 C)aS^" B ~Assessment of Internal Combustion

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    NE]NL~GY r. ORNL/Sub/80-1 386/ &02 C)aS^" B ~Assessment of Internal Combustion LAnM~~l~Engines COMBUSTION ENGINES AS DRIVERS FOR HEAT PUMPS FINAL REPORT Date Published: January 1984 Report Prepared Government or any agency thereof. #12;ORNL/Sub/80-13836/1&02 Dist. Category UC-95d ASSESSMENT OF INTERNAL

  5. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

  6. Tailored Materials for Improved Internal Combustion Engine Efficiency (Agreement ID:23725)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Bremer, Peer-Timo

    2010-01-01T23:59:59.000Z

    comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

  8. Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets

    SciTech Connect (OSTI)

    Sen, Asok K [Indiana University; Litak, Grzegorz [Technical University of Lublin; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

    2010-01-01T23:59:59.000Z

    In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.

  9. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    61. Heywood, J.B. , Internal Combustion Engine Fundamentals,69. Heywood, J.B. , Internal Combustion Engine Fundamentals,the oil pump of internal combustion engines – conducted at

  10. Accepted for publication in the INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, April 2009. Hydrogen Economy Transition in Ontario-Canada Considering the Electricity Grid

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    : Integrated Power System Plan IRR: Internal Rate of Return LMP: Locational Marginal Price MILP: Mixed and Power FCV: Fuel-Cell Vehicle HHV: Higher Heating Value HOEP: Hourly Ontario Energy Price HPP: Hydrogen

  11. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01T23:59:59.000Z

    J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

  12. COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES

    E-Print Network [OSTI]

    Matthews, Ronald D.

    2013-01-01T23:59:59.000Z

    SAE Paper 750173, 1975. L. , Fifteenth Symposium Combustion,The Combustion Institute, International Pittsburgh, on 64.chemistry of products of combustion: nitrogenous The

  13. Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE HydrogenPlans |Former WorkerFortDepartment

  14. International Partnership for a Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership for a Hydrogen Economy

  15. United States Energy Association Final Report International Partnership for the Hydrogen Economy Ministerial Conference

    SciTech Connect (OSTI)

    William L. Polen

    2006-04-05T23:59:59.000Z

    This report summarizes the activities of the United States Energy Association as it conducted the initial Ministerial Meeting of the International Partnership for the Hydrogen Economy in Washington, DC on November 18-21, 2003. The report summarizes the results of the meeting and subsequent support to the Office of Energy Efficiency and Renewable Energy in its role as IPHE Secretariat.

  16. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01T23:59:59.000Z

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  17. Japanese industrial research on lean combustion: A case study: International Research Monitoring Program

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-08-01T23:59:59.000Z

    In recent years, Japanese automakers have introduced a number of successful lean-combustion engines. These engines, in addition to the general expertise in building small cars, have made the Japanese automobiles into the gas mileage champions of the US market. The lean-combustion engines also provide very satisfactory performance and acceptable emissions. United States automakers and research managers, who were probably better informed about lean-combustion than the Japanese were, actively investigated lean-combustion but did not develop an engine. This report examines the basis for the Japanese innovations, the research that took the Japanese past the US state of the art to permit engine development. A preliminary review of recent (1980s) Japanese literature did not turn up strong evidence of new research activity in the lean-combustion area, but did provide background on new engines developed by several major manufacturers. The study was conducted solely through the Japanese and US published literature, with emphasis on early research conducted in the 1970s. This report presents an example of how Japanese research progress can be examined by reviewing the Japanese research literature. Although useful information was obtained by this method, it is still difficult to get a complete picture. When reviewing the literature, as was done for this report, one must remember that the marginal use of references by Japanese researchers obscures prior work, as does the tendency of the Japanese to publish several articles on similar or identical topics. 50 refs., 15 figs.

  18. Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2015: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01T23:59:59.000Z

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  1. International Hydrogen Fuel and Pressure Vessel Forum - Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor aInternational

  2. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor aInternationalDepartment of

  3. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  4. Review problems on photosynthesis, carbon cycle. Julie Wright, HAS222d/253e 2007 1) Photosynthesis resembles the hydrogen fuel cell we studied in the lab. The following reactions

    E-Print Network [OSTI]

    does hydrogen combustion differ from sugar/alcohol/biofuels combustion ecologically? 2) Why is carbon

  5. Improving Combustion Software to Solve Detailed Chemical Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

  6. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  7. CRADA with Cummins on Characterization and Reduction of Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins on Characterization and Reduction of Combustion Variations CRADA with Cummins on Characterization and Reduction of Combustion Variations 2012 DOE Hydrogen and Fuel Cells...

  8. Sandia National Laboratories: predictive engine spray combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predictive engine spray combustion modeling Sandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research On November 13, 2012, in CRF,...

  9. Sandia National Laboratories: spray combustion model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spray combustion model Sandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research On November 13, 2012, in CRF, Energy, Energy...

  10. Sandia National Laboratories: Silver Combustion Medal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silver Combustion Medal Two CRF Papers Named "Distinguished" for 34th International Symposium on Combustion On October 22, 2013, in Computational Modeling & Simulation, CRF,...

  11. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01T23:59:59.000Z

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  12. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

  13. Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)

    E-Print Network [OSTI]

    Lee, Dongwon

    Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI) The Hybrid and Hydrogen Vehicle Research Laboratory (HHVRL) at the Larson Transportation Institute (LTI on the internal combustion engine and fossil fuels to "greener" fuel cell and hybrid electric technology

  14. Department of Energy Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the

    E-Print Network [OSTI]

    .hydrogen.energy.gov Released September 2011 (second printing April 2012) #12;Department of Energy Hydrogen and Fuel Cells: · Improved ICE [internal combustion engine] vehicles coupled with greater use of biofuels, · A shifting manufacturing industry in the United States ... Developing and deploying the next generation of fuel cells

  15. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect (OSTI)

    Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1999-12-31T23:59:59.000Z

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich Demonstration Plant Research Centre, Juelich (FZJ) (Germany); Schatz Solar Hydrogen Project, Schatz Energy Research Centre, Humboldt State University (USA); INTA Solar Hydrogen Facility, INTA (Spain); Solar Hydrogen Fueled Trucks, Clean Air Now, Xerox (USA), Electrolyser (Canada); SAPHYS: Stand-Alone Small Size Photovoltaic Hydrogen Energy System, ENEA (Italy), IET (Norway), FZJ (Germany); Hydrogen Generation from Stand-Alone Wind-Powered Electrolysis Systems, RAL (United Kingdom), ENEA (Italy), DLR (Germany); Palm Desert Renewable Hydrogen Transportation Project; Schatz Energy Research Centre, City of Palm Desert (USA). Other demonstration projects are summarized in chapter 11.

  16. Proceedings: 15th International American Coal Ash Association Symposium on Management and Use of Coal Combustion Products (CCPs): Building Partnerships for Sustainability

    SciTech Connect (OSTI)

    None

    2003-05-01T23:59:59.000Z

    The theme of the symposium is ''building partnerships for sustainability.'' Topics discussed at the 15th International Symposium on Management and Use of CCPs included fundamental coal combustion product (CCP) use research, product marketing, applied research, CCP management and environmental issues, and commercial uses. There is a continuing international research interest in CCP use because of the prospects of avoiding disposal costs, reducing greenhouse gas emissions, and generating revenue from CCP sales.

  17. Studying the Internal Ballistics of a Combustion Driven Potato Cannon using High-speed Video

    E-Print Network [OSTI]

    Courtney, E D S

    2013-01-01T23:59:59.000Z

    A potato cannon was designed to accommodate several different experimental propellants and have a transparent barrel so the movement of the projectile could be recorded on high-speed video (at 2000 frames per second). Both combustion chamber and barrel were made of polyvinyl chloride (PVC). Five experimental propellants were tested: propane (C3H8), acetylene (C2H2), ethanol (C2H6O), methanol (CH4O), and butane (C4H10). The amount of each experimental propellant was calculated to approximate a stoichometric mixture and considering the Upper Flammability Limit (UFL) and the Lower Flammability Limit (LFL), which in turn were affected by the volume of the combustion chamber. Cylindrical projectiles were cut from raw potatoes so that there was an airtight fit, and each weighed 50 (+/- 0.5) grams. For each trial, position as a function of time was determined via frame by frame analysis. Five trials were taken for each experimental propellant and the results analyzed to compute velocity and acceleration as functions...

  18. Sandia National Laboratories: Sandia, SRI International Sign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Infrastructure Research and Innovation * CIRI * Combustion Research Facility * CRF * energy for transportation * hydrogen components * hydrogen fuel systems * Livermore Valley...

  19. Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames

    E-Print Network [OSTI]

    Bremer, Peer-Timo

    2010-01-01T23:59:59.000Z

    structures in lean premixed hydrogen ?ames. Combustion andStructures in Lean Premixed Hydrogen Flames P. -T. Bremersimulations of lean hydrogen ?ames subject to different

  20. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine...

    Office of Environmental Management (EM)

    Large Eddy Simulation (LES) Applied to LTCDieselHydrogen Engine Combustion Research Large Eddy Simulation (LES) Applied to LTCDieselHydrogen Engine Combustion Research 2009 DOE...

  1. CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER II. NUMERICAL CALCULATIONS

    E-Print Network [OSTI]

    Schefer, R.

    2010-01-01T23:59:59.000Z

    D.G. , Fourteenth Sympo- sium (International) on Combustion,The Combustion Institute, Pittsburgh, 107 (1973). Wilson,Program for Calculation of Combustion Reaction Equilibrium

  2. CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER I. EXPERIMENTAL MEASUREMENTS AND COMPARISON WITH NUMERICAL CALCULATIONS

    E-Print Network [OSTI]

    Robben, R.

    2010-01-01T23:59:59.000Z

    l~ Roberts, "Catathermal Combustion: A New Process for Lm'l-significant gas phase combustion is induced by the presenceInternational) on Combustion (to be published), The

  3. THE COMBUSTION OF SOLVENT REPINED COAL IN AN OPPOSED FLOW DIFFUSION FLAME

    E-Print Network [OSTI]

    Chin, W.K.

    2011-01-01T23:59:59.000Z

    pyrolysis of various polymers under combustion conditions.Fourteenth Symposium (International) on Combustion,The Combustion Institute Pittsburgh, 1177. Chin, W.K. and

  4. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    Internal Combustion Engines The methods described below for tracing fuel component carbon in the emissions

  5. Advanced Combustion and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuels Advanced Combustion and Fuels 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

  6. In this research project I will design and build a demo model of Professor Sun's patented camless valve actuator device. Modern internal combustion engines rely on valves in each

    E-Print Network [OSTI]

    Minnesota, University of

    valve actuator device. Modern internal combustion engines rely on valves in each cylinder to open, they can be programmed to allow much more efficiency in the combustion cycle at any engine speed, with any the engine and instead replaces it with electronic actuators that can be precisely controlled by the onboard

  7. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Duty Diesel Truck Internal Combustion Engine Lower Heatinglow efficiency internal combustion engine (ICE) operation,the fuel in internal combustion engines, there are several

  8. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01T23:59:59.000Z

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  9. Hydrogen and water reactor safety: proceedings

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  10. U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010, in Beijing, China. U.S. DOE Hydrogen and Fuel Cell Activities More Documents & Publications DOE Hydrogen...

  11. Estimation of a Noise Level Using Coarse-Grained Entropy of Experimental Time Series of Internal Pressure in a Combustion Engine

    E-Print Network [OSTI]

    Grzegorz Litak; Rodolfo Taccani; Krzysztof Urbanowicz; Janusz A. Holyst; Miroslaw Wendeker; Alessandro Giadrossi

    2004-05-22T23:59:59.000Z

    We report our results on non-periodic experimental time series of pressure in a single cylinder spark ignition engine. The experiments were performed for different levels of loading. We estimate the noise level in internal pressure calculating the coarse-grained entropy from variations of maximal pressures in successive cycles. The results show that the dynamics of the combustion is a nonlinear multidimensional process mediated by noise. Our results show that so defined level of noise in internal pressure is not monotonous function of loading.

  12. Proceedings: 15th International American Coal Ash Association Symposium on Management and Use of Coal Combustion Products (CCPs): Building Partnerships for Sustainability

    SciTech Connect (OSTI)

    None

    2003-01-01T23:59:59.000Z

    Topics discussed at the 15th International American Coal Ash Association (ACAA) Symposium, ''Management and Use of Coal Combustion Products (CCPs),'' included fundamental CCP use, research, product marketing, applied research, CCP management and environmental issues, and commercial uses. There is a continuing international research interest in CCP use because of its commercial value and its environmental benefits, such as reducing greenhouse gas emissions, reducing landfill needs, and utilizing recycled materials instead of virgin materials. CCP use also can reduce disposal costs and generate revenue from CCP sales.

  13. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect (OSTI)

    Doyle, T.A.

    1998-01-31T23:59:59.000Z

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  14. AN EXPERIMENTAL AND THEORETICAL STUDY OF HEAT TRANSFER WITH COMBUSTION

    E-Print Network [OSTI]

    Heperkan, Hasan A.

    2013-01-01T23:59:59.000Z

    HDyna.mics of the Exothermic Process in Combustion,n 15thSymposium (International) on Combustion, Tokyo, 1974. H, S.Methods L Glassman, Combustion, Academic Press, 1977. D. J.

  15. NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL

    E-Print Network [OSTI]

    Ghoniem, A.F.

    2013-01-01T23:59:59.000Z

    1VJcDona·ld, H. (1979) Combustion r 1 iodeJ·ing in Two and1979) Practical Turbulent-Combustion Interaction Models forInternation on Combustors. Combustion The 17th Symposium

  16. Formation mechanisms of combustion chamber deposits

    E-Print Network [OSTI]

    O'Brien, Christopher J. (Christopher John)

    2001-01-01T23:59:59.000Z

    Combustion chamber deposits are found in virtually all internal combustion engines after a few hundred hours of operation. Deposits form on cylinder, piston, and head surfaces that are in contact with fuel-air mixture ...

  17. Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 355367

    E-Print Network [OSTI]

    de Weck, Olivier L.

    ­367 www.elsevier.com/locate/ijhydene The future of hydrogen infrastructure for fuel cell vehicles in China In the paper the future of hydrogen infrastructure for fuel cell vehicles in China is discussed. It is believed, developing fuel cell vehicles will be a promising solution because fuel cell vehicles, fueled by hydrogen

  18. ME 374C Combustion Engine Processes ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 374C ­ Combustion Engine Processes Page 1 ABET EC2000 syllabus ME 374C ­ Combustion Engine combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors to an appropriate major sequence in engineering. Textbook(s): Internal Combustion Engines and Automotive Engineering

  19. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for clean energy technology manufacturers. March 28, 2014 Sales Tax Exemption for Hydrogen Generation Facilities In North Dakota, the sale of hydrogen used to power an internal...

  20. Vehicle Technologies Office Merit Review 2014: Lubricant Formulations to Enhance Engine Efficiency (LFEEE) in Modern Internal Combustion Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  1. Experimental and Computational Studies of the Combustion of Classical and Alternative Fuels

    E-Print Network [OSTI]

    Niemann, Ulrich

    of blending hydrogen with methane on engine operation,hydrogen combustion at elevated pressures is of considerable interest, for example in connection with engine

  2. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Pipelines * Nuclear Energy * Office of Science Extending Collaborations * Other Federal Agencies - DOT, EPA, Others * International Collaborations Hydrogen from Diverse...

  3. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  4. Proceedings of ASME 2012 Internal Combustion Engine Division Spring Technical Conference May 69, 2012, Torino, Piemonte, Italy

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    - CYLINDER HCCI ENGINE WITH HIGH RESIDUALS Erik Hellstr¨om, Jacob Larimore, and Anna Stefanopoulou University ABSTRACT Cyclic variability (CV) in lean HCCI combustion at the lim- its of operation is a known phenomenon of lean HCCI operation with negative valve overlap (nvo). A com- bustion analysis method that estimates

  5. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOE Patents [OSTI]

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21T23:59:59.000Z

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  6. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    internal combustion engine, con- ducted at General Motors, demonstrated its positive effect on the reduction of emissions

  7. Second Law Analysis of Constant Temperature Diesel Combustion

    SciTech Connect (OSTI)

    Druecke, Dr. Ben [University of Wisconsin; Foster, Prof. Dave [University of Wisconsin; Klein, Prof. Sandy [University of Wisconsin; Daw, C Stuart [ORNL; Chakravarthy, Veerathu K [ORNL; Graves, Ronald L [ORNL

    2006-01-01T23:59:59.000Z

    The results from a second law analysis of a constant temperature diesel combustion process are presented and show that this process is not significantly more reversible than conventional combustion. In addition to quantifying the total availability destruction in combustion, the magnitudes of the combustion irreversibilities attributable to each irreversible subprocess (mixing, oxidation and internal heat transfer) were determined. The primary contributor to combustion irreversibilities is the thermal interaction of reacting and non-reacting species during the oxidation and internal thermal energy transfer subprocesses. Increasing combustion temperature significantly decreases availability destruction by making the oxidation and internal thermal energy transfer processes more reversible. While increasing combustion temperature decreases combustion irreversibility, it also results in an increase in exhaust temperature. A tradeoff exists between large availability destruction at low combustion temperatures and large amounts of availability discarded in the exhaust at high combustion temperatures. The optimum amount of work was found to occur for a combustion temperature of approximately 1600 K.

  8. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01T23:59:59.000Z

    CombustionCombustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Coupled Droplet Combustion . . . . . . . . . . . . Burning

  9. Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...

  10. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies...

  11. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  12. advanced combustion concepts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Alan J. Toepfer 16 Combustion lean limits fundamentals and their application to a SI hydrogen-enhanced engine concept MIT - DSpace Summary: Operating an engine with excess...

  13. Overview of the DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    petroleum. --EERE Strategic Plan, October 2002-- Overview of the DOE Advanced Combustion Engine R&D Presented at the 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  14. Advancement in Fuel Spray and Combustion Modeling for Compression...

    Broader source: Energy.gov (indexed) [DOE]

    Applications Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  15. Predictive modeling of combustion processes

    E-Print Network [OSTI]

    Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

  16. Development of Advanced Small Hydrogen Engines

    SciTech Connect (OSTI)

    Krishna Sapru; Zhaosheng Tan; Ben Chao

    2010-09-30T23:59:59.000Z

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  17. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22T23:59:59.000Z

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  18. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01T23:59:59.000Z

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

  19. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-05T23:59:59.000Z

    Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

  20. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31T23:59:59.000Z

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  1. Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Weber, Kevin Howard

    2010-01-01T23:59:59.000Z

    Symposium (International) on Combustion (1981) 1. [9] B. A.Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute (1998) 353. [34] C. S. McEnally, L.

  2. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    vane pump for the oil pump of internal combustion engines –speed control of oil pumps in internal combustion engines –oil and coolant are at lower temperatures, and heat sources from adjacent cylinders undergoing combustion

  3. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  4. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    None

    2013-07-08T23:59:59.000Z

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  5. The President's Hydrogen Initiative: US DOE's Approach

    E-Print Network [OSTI]

    as technologies mature and conventional internal combustion engine cars are phased out in favor of superior low

  6. Hydrogen diffusion in Lead Zirconate Titanate and Barium Titanate

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Vijayakumar, M.; Bowden, Mark E.; Schemer-Kohrn, Alan L.; Pitman, Stan G.

    2012-08-28T23:59:59.000Z

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ?32?MPa. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  7. International Journal of Mass Spectrometry 248 (2006) 18 Molecular hydrogen ion elimination from alkyl iodides

    E-Print Network [OSTI]

    Strathclyde, University of

    reported on many occasions [1­7]. Recently, we have studied the ionization/dissociation pro- cesses of some 26510 98695. E-mail address: kkosmid@cc.uoi.gr (C. Kosmidis). ethane, propane, etc.) has been studied of propane, Tonokura et al. [13] have shown that the atomic hydrogen elim- ination channel exhibits a site

  8. International Journal of Hydrogen Energy 32 (2007) 44894502 www.elsevier.com/locate/ijhydene

    E-Print Network [OSTI]

    Kandlikar, Satish

    Hydrogen fuel cells are being developed as highly efficient and cost effective energy conversion devices.elsevier.com/locate/ijhydene Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell J.P. Owejana, , T.A. Trabolda , D.L. Jacobsonb , M. Arifb , S.G. Kandlikarc aGeneral Motors Fuel Cell Activities, 10

  9. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect (OSTI)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14T23:59:59.000Z

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  10. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  11. 8. annual U.S. hydrogen meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The proceedings contain 35 papers arranged under the following topical sections: Government`s partnership role for hydrogen technology development; Government/industry partnerships -- Demonstrations; Entering the market -- Partnerships in transportation; Hydrogen -- The aerospace fuel; Codes and Standards; Advanced technologies; and Opportunities for partnerships in the utility market. Of the three markets identified (transportation, power production, and village power) papers are presented dealing with the first two. Three parts of the transportation market were covered: cars, trucks, and buses. Progress was reported in both fuel cell and internal combustion engine vehicle propulsion systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Simulation of turbulent explosion of hydrogen-air mixtures

    E-Print Network [OSTI]

    Ahmed, I.; Swaminathan, N.

    2014-04-27T23:59:59.000Z

    ]. Also, fundamental understanding of hydrogen combustion is important from safety view points, for example generation and accumulation of hydrogen in nuclear reactors [7] and rupturing of a pressurised hydrogen storage tank can lead to explosions. A...

  13. IX International Materials Research Congress: Cancun 2002 A Hybrid Multijunction Photoelectrode for Hydrogen ProductionA Hybrid Multijunction Photoelectrode for Hydrogen Production

    E-Print Network [OSTI]

    for Hydrogen ProductionA Hybrid Multijunction Photoelectrode for Hydrogen Production Fabricated with Amorphous light H2 O2 Good Hydrogen Efficiency Long Term Chemical Stability Low Cost Materials ­ SS substrates....Bandgap engineered TiO2? SOME CHOICES: Fe2O3 Selected for Initial Hybrid Photoelectrode Development #12;6IX IMRC

  14. Sandia National Laboratories: 34th International Symposium on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th International Symposium on Combustion Two CRF Papers Named "Distinguished" for 34th International Symposium on Combustion On October 22, 2013, in Computational Modeling &...

  15. Structural Analysis of Combustion Models

    E-Print Network [OSTI]

    Tóth, J; Zsély, I

    2013-01-01T23:59:59.000Z

    Using ReactionKinetics, a Mathematica based package a few dozen detailed models for combustion of hydrogen, carbon monoxide and methanol are investigated. Essential structural characteristics are pulled out, and similarities and differences of the mechanisms are highlighted. These investigations can be used before or parallel with usual numerical investigations, such as pathway analysis, sensitivity analysis, parameter estimation, or simulation.

  16. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    from the combustion of residual fuel oil and distillate fuelfrom oil and gas systems except from fuel combustion (IPCC,SEDS from combustion of residual fuel oil from international

  17. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

  18. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21T23:59:59.000Z

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  19. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

    1993-12-21T23:59:59.000Z

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  20. Microscale combustion: Technology development and fundamental research Yiguang Ju a

    E-Print Network [OSTI]

    Ju, Yiguang

    of micro-thrusters, micro internal combustion engines, and micro chemical reactors summarized. ThirdlyReview Microscale combustion: Technology development and fundamental research Yiguang Ju a , Kaoru Maruta b,* a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ

  1. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 William de Ojeda International Truck and Engine Company 26 Feb 2008 This...

  2. Combustion & Health

    E-Print Network [OSTI]

    Hamilton, W.

    2012-01-01T23:59:59.000Z

    ) ? Combustion of fossil fuels for ? Electricity ? Industrial processes ? Vehicle propulsion ? Cooking and heat ? Other ? Munitions ? Fireworks ? Light ? Cigarettes, hookahs? FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? SCALE (think health... for public health and strategies to reduce GHG ? Reduce CO2 emissions by 50% by 2030 ? Reduction in PM2.5 deaths greatly offset costs in all models FFCOMBUSTION & HEALTH FFCOMBUSTION: PM EXPOSURE ? Combustion is source of most concern ? Health...

  3. Comment/Rebuttal Comments on "Electrorheology Leads to Efficient Combustion" by

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Comment/Rebuttal Comments on "Electrorheology Leads to Efficient Combustion" by Tao et al. O¨ mer L of combustion in general and internal combustion (IC) engine combustion technology in particular. Given posit that "because combustion starts at the interface between fuel and air and most harmful emissions

  4. Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring,HydrogenofHydrogen|August

  5. Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |PanelEnergy5/2011Hydrogen

  6. Promote Chemistry Learning with Dynamic Visualizations: Generation, Selection, and Critique

    E-Print Network [OSTI]

    Zhang, Zhihui

    2011-01-01T23:59:59.000Z

    to burn hydrogen inside the internal combustion engine asif hydrogen Why using burns in internal combustion engines

  7. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    SciTech Connect (OSTI)

    Vories, K.C. (ed.)

    2003-07-01T23:59:59.000Z

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal mine sites (K.C. Vories). The questions and answers are also included.

  8. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    Optical Measurement of Combustion Products by Zeeman Atomicand T. Hadeishi • . . • . • . • • . • Combustion Sources offrom Pulverized Coal Combustion J. Pennucci, R. Greif, F.

  9. Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Combustion To develop a more thorough understanding of combustion, scientists and engineers must be able to analyze the interaction of many different chemical species at...

  10. Sandia National Laboratories: Predictive Simulation of Internal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Internal Combustion Engines Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF,...

  11. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01T23:59:59.000Z

    hybrid electric vehicle internal combustion engine light duty vehicles MARKet ALlocation energy system

  12. Investigation of Flow, Turbulence, and Dispersion within Built Environments

    E-Print Network [OSTI]

    Pan, Hansheng

    2011-01-01T23:59:59.000Z

    T. Hydrogen-fueled internal combustion engines. Progress incontrol technology in internal combustion engines (ICEs) wasHydrogen use in internal combustion engines. 2001. http://

  13. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  14. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23T23:59:59.000Z

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  15. Formula Hybrid International Competition

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    torque at low speeds than do internal combustion engines, a hybrid could offer competitive advantages with a traditional combustion engine into a hybrid vehicle, overcoming numerous technical challenges along the way

  16. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    CO 2 emissions & energy consumption International Partnership for the Hydrogen Economy Norway An IPHE Vision: "... consumers will have the practical option of purchasing a...

  17. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    SciTech Connect (OSTI)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31T23:59:59.000Z

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

  18. Turbulent combustion

    SciTech Connect (OSTI)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  19. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA)

    1990-01-01T23:59:59.000Z

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  20. COMBUSTION RESEARCH Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    internal combustion engines, heat transfer processes are critical to: quenching of wall reactions which cause high hydrocarbon emissions,

  1. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  2. Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Lemieux, Jessy Mario

    2013-01-01T23:59:59.000Z

    G. B. Symposium (International) on Combustion 1986, 809–814.R. Proceedings of the Combustion Institute 2009, Da Silva,H. Proceedings of the Combustion Institute 2002, 29, 1285–

  3. Vehicle Technologies Office Merit Review 2015: Spray Combustion Cross-Cut Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about spray combustion...

  4. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  5. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions...

  6. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16T23:59:59.000Z

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  7. Optically accessible high-pressure combustion apparatus Stephen D. Tsea)

    E-Print Network [OSTI]

    Tse, Stephen D.

    . DOI: 10.1063/1.1634358 I. INTRODUCTION Recognizing that combustion processes within internal combustion engines take place in elevated pressure environ- ments, that most fundamental information of atmospheres, and hence are representative of those in inter- nal combustion engines. Of particular interest

  8. 2002 Spring Technical Meeting Central States Section / The Combustion Institute

    E-Print Network [OSTI]

    Tennessee, University of

    Motors Research & Development Center Local Fuel-Air Ratio Measurements in Internal Combustion Engines Research Laboratory A Multi-dimensional Combustion Model for Gasoline Direct-Injection Engine Design 10 Emissions from Small Utility Engines 12:00 PM Lunch & Business Meeting SESSION A.2: Multiphase Combustion

  9. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  10. Engine Valve Actuation For Combustion Enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2004-05-18T23:59:59.000Z

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  11. Engine valve actuation for combustion enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2008-03-04T23:59:59.000Z

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  12. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  13. Quantification of Hydrogen Peroxide during the Low Temperature Oxidation of Alkanes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the efficiency of internal combustion engines (1). Advanced combustion concepts that rely on compression 1000 K is fundamental to explain the development of autoignition in engines (2

  14. Predicting the behavior of a lean-burn hydrogen-enhanced engine concept

    E-Print Network [OSTI]

    Ivanic, Žiga, 1978-

    2004-01-01T23:59:59.000Z

    (cont.) Lean operation of a spark ignition (SI) internal combustion engine (ICE) offers attractive performance incentives. Lowered combustion temperatures inhibit formation of nitrogen oxides (NOx), while reduced intake ...

  15. Simulation of lean premixed turbulent combustion

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    turbulent methane combustion. Proc. Combust. Inst. , 29:in premixed turbulent combustion. Proc. Combust. Inst. ,for zero Mach number combustion. Combust. Sci. Technol. ,

  16. A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

    2006-01-01T23:59:59.000Z

    Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

  17. Visualizing Low-Swirl Combustion Simulations at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen flame Low-Swirl Combustion: Experiments and Simulations Working Together energy16gunther.jpg Simulations that ran on the Franklin Cray XT at NERSC captured the detailed...

  18. Evaluation of the Fuel Economy Impacts of Low Temperature Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15, 2013 Neeraj Shidore...

  19. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    SciTech Connect (OSTI)

    APOLONIO DEL TORO

    2008-05-27T23:59:59.000Z

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  20. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    XBL 803-181) product combustion gas mixtures is in samplethrough reaction in the post-combustion gases. The selectiveaddition to the post-combustion gases have been investigated

  1. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    gases of light fuel oil combustion as a function of severalsystem suitable for the combustion of light oils are underoil, shale, and biomass in these devices poses a dilemma. Much of the scientific understanding of combustion

  2. Six ORNL researchers receive SAE International awards | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fuels and internal combustion engines. Szybist investigates effects of fuels on combustion, engine efficiency, and emissions for conventional spark ignition and...

  3. Combustion Theory and Modelling Vol. 12, No. 2, April 2008, 349365

    E-Print Network [OSTI]

    Heil, Matthias

    Combustion Theory and Modelling Vol. 12, No. 2, April 2008, 349­365 Premixed flames. Introduction An important realistic aspect in combustion is the reversibility of the chemical reactions, since. This is all the more true for the combustion of high caloric fuels, such as hydrogen with oxygen, where

  4. Combustion in Meso-scale Vortex Chambers Ming-hsun Wu*

    E-Print Network [OSTI]

    Yang, Vigor

    1 Combustion in Meso-scale Vortex Chambers Ming-hsun Wu* , Yanxing Wang, Vigor Yang and Richard A) #12;2 COMBUSTION IN MESO-SCALE VORTEX CHAMBERS Ming-hsun Wu, Yanxing Wang, Vigor Yang and Richard A with the chemical energy varying from 25 to 174W. For the largest combustion volume, hydrogen and hydrocarbons

  5. Advanced Combustion and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    and predictive tools for fuel property effects on combustion and engine efficiency optimization (Fuels & Lubricants Technologies) * Lack of modeling capability for combustion and...

  6. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    SciTech Connect (OSTI)

    B. D. Nichols; C. Müller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

    1998-10-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

  7. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    SciTech Connect (OSTI)

    C. Müller; E. D. Hughes; G. F. Niederauer; H. Wilkening; J. R. Travis; J. W. Spore; P. Royl; W. Baumann

    1998-10-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK

  8. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  9. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    in fuel consumption, compared to a conventional vehicle with a gasoline internal combustion engine times the efficiency of traditional combustion technologies. A conventional combustion-based power plant at efficiencies up to 60% (and even higher with cogeneration). The gasoline engine in a conventional car is less

  10. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    SciTech Connect (OSTI)

    Schuon, S R; Misencik, J A

    1981-01-01T23:59:59.000Z

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  11. Visual Exploration of Turbulent Combustion and Laser-Wakefield Accelerator Simulations

    E-Print Network [OSTI]

    hydrogen flames under different levels of turbulence ­ Lean combustion reduces emissions Important hydrogen flames] #12;Visual Exploration of Turbulent Combustion and Laser-Wakefield Accelerator Simulations 12 Tracking Graph Extraction Pipeline 1. Concatenate to obtain 4D mesh 2. Extract isotherm in 4D 3

  12. Corresponding author: frederique.battin-leclerc@ensic.inpl-nancy.fr Proceeding of the European Combustion Meeting 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    -ignited internal combustion engines, the n-heptane/iso-octane blend (PRF mixture) has long been the most commonly

  13. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  14. Combustion chemistry

    SciTech Connect (OSTI)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  15. Combustion Control

    E-Print Network [OSTI]

    Riccardi, R. C.

    1984-01-01T23:59:59.000Z

    American industry is responding to the challenges of high fuel prices, intense international competition, and a renewed emphasis on quality. To meet these demands, industry has looked at many opportunities--some have been cost effective, some...

  16. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul chugh; James Hower

    2008-08-31T23:59:59.000Z

    This paper discusses the roles and responsibilities of each position within the Combustion Byproducts Recyclcing Consortium.

  17. 7. International Immersive Projection Technologies Workshop 9. Eurographics Workshop on Virtual Environments (2003)

    E-Print Network [OSTI]

    Kuhlen, Torsten

    2003-01-01T23:59:59.000Z

    H, Neuenhofstraße 181, 52078 Aachen, Germany 3 Institute for Internal Combustion Engines Aachen (VKA), Aachen

  18. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. ace15daw.pdf More Documents & Publications Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion...

  19. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    duty Diesel Combustion Research Advanced Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin...

  20. Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine

    E-Print Network [OSTI]

    Cedrone, Kevin David

    2010-01-01T23:59:59.000Z

    There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

  1. Combustion Timing Control of Natural Gas HCCI Engines Using Physics-Based Modeling and LQR Controller

    E-Print Network [OSTI]

    Abdelgawad, Marwa

    2012-07-16T23:59:59.000Z

    Homogeneous Charge Compression Ignition (HCCI) Engines hold promises of being the next generation of internal combustion engines due to their ability to produce high thermal efficiencies and low emission levels. HCCI combustion is achieved through...

  2. Sandia National Laboratories: Sandia Expands an International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECAbout ECFacilitiesCRFSandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research Sandia Expands an International Collaboration...

  3. Chaotic Combustion in Spark Ignition Engines

    E-Print Network [OSTI]

    M. Wendeker; J. Czarnigowski; G. Litak; K. Szabelski

    2002-12-27T23:59:59.000Z

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process.

  4. Ab initio Equation of State data for hydrogen, helium, and water and the internal structure of Jupiter

    E-Print Network [OSTI]

    N. Nettelmann; B. Holst; A. Kietzmann; M. French; R. Redmer; D. Blaschke

    2008-06-06T23:59:59.000Z

    The equation of state of hydrogen, helium, and water effects interior structure models of giant planets significantly. We present a new equation of state data table, LM-REOS, generated by large scale quantum molecular dynamics simulations for hydrogen, helium, and water in the warm dense matter regime, i.e.for megabar pressures and temperatures of several thousand Kelvin, and by advanced chemical methods in the complementary regions. The influence of LM-REOS on the structure of Jupiter is investigated and compared with state-of-the-art results within a standard three-layer model consistent with astrophysical observations of Jupiter. Our new Jupiter models predict an important impact of mixing effects of helium in hydrogen with respect to an altered compressibility and immiscibility.

  5. Transport Properties for Combustion Modeling

    E-Print Network [OSTI]

    Brown, N.J.

    2010-01-01T23:59:59.000Z

    a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

  6. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  7. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  8. Sandia National Laboratories: Hydrogen and Combustion Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology demonstration, one that could lead to a commercial technology for ports worldwide. Ports have been a major water- and air-pollution source in the U.S.-but remained...

  9. Sandia Hydrogen Combustion Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed Penalty

  10. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  11. Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

  12. To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell

  13. Combustion 2000

    SciTech Connect (OSTI)

    None

    2000-06-30T23:59:59.000Z

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  14. Combustion 2000

    SciTech Connect (OSTI)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30T23:59:59.000Z

    This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has s

  15. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  16. TECHNICAL AND ECONOMIC ASSESSMENT OF TRANSITION STRATEGIES TOWARD WIDESPREAD USE OF HYDROGEN AS AN ENERGY CARRIER

    E-Print Network [OSTI]

    Ogden, J; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

    2005-01-01T23:59:59.000Z

    Strategies For Developing Hydrogen Energy Systems With CO 2International Journal of Hydrogen Energy, vol. 24, pp.Prospects for Building a Hydrogen Energy Infrastructure,”

  17. Hydrogen as an Energy Carrier: Outlook for 2010, 2030, and 2050

    E-Print Network [OSTI]

    Ogden, Joan M

    2004-01-01T23:59:59.000Z

    International Journal of Hydrogen Energy, v. 23, No. 6,of the 11th World Hydrogen Energy Conference, Stuttgart,Prospects for Building a Hydrogen Energy Infrastructure,”

  18. Technical and Economic Assessment of Transition Strategies Toward Widespread Use of Hydrogen as an Energy Carrier

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

    2005-01-01T23:59:59.000Z

    Strategies For Developing Hydrogen Energy Systems With CO 2International Journal of Hydrogen Energy, vol. 24, pp.Prospects for Building a Hydrogen Energy Infrastructure,”

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

  20. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19T23:59:59.000Z

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  1. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2004-10-19T23:59:59.000Z

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  2. Flow Turbulence Combust (2009) 82:437453 DOI 10.1007/s10494-008-9145-3

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    an important role in the design and analysis of practical combustion devices such as internal combustion engines, industrial burners and furnaces, and gas turbine combustors. Combustion of hydrocarbon fuelsFlow Turbulence Combust (2009) 82:437­453 DOI 10.1007/s10494-008-9145-3 Efficient Implementation

  3. Hydrogen as a near-term transportation fuel

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29T23:59:59.000Z

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  4. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    University and the University of Southern California, will redesign a gas turbine combustion system to operate on hydrogen-rich opportunity fuels. This technology should...

  5. Maintain Combustion Systems

    E-Print Network [OSTI]

    Fletcher, R. J.

    1979-01-01T23:59:59.000Z

    Energy is consumed, and wasted, in liberal amounts in the combustion processes which supply heat energy to boilers and process heaters. Close attention to combustion systems can be extremely beneficial: Optimum air to fuel ratios, i.e., maintaining...

  6. Consider Compressed Combustion

    E-Print Network [OSTI]

    Crowther, R. H.

    1982-01-01T23:59:59.000Z

    sharing systems employing gas turbines. Incentives for compressed combustion have been explored and are presented in this discussion....

  7. Turbulent Combustion Luc Vervisch

    E-Print Network [OSTI]

    Kern, Michel

    ;19 "Perfect" combustion modes: Fuel + Oxidizer () Products Engines, gas turbines... Laboratory experiment1 Turbulent Combustion Modeling Luc Vervisch INSA de Rouen, IUF, CORIA-CNRS Quelques problèmes rencontrés en chimie numérique : Hydrologie - Combustion - Atmosphère 16 décembre, INRIA Rocquencourt #12

  8. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Combustion Engine Lower Heating Value Liquefied Natural Gasnatural gas directly as the fuel in internal combustionliquefied natural gas (LNG) used in SI and CI combustion

  9. Parallel Performance of a Combustion Chemistry Simulation Gregg Skinner

    E-Print Network [OSTI]

    Padua, David

    of reactive ow. Reactive ow modeling problems are governed by equations conserving mass, energy, and momentum combustion- generated pollutants, reducing knocking in internal combustion engines, studying. They are coupled with a hydrodynamic system driven by the energy released or absorbed from the chemical reactions

  10. Proceedings of the Combustion Institute, Volume 28, 2000/pp. 17931800 MORPHOLOGY AND BURNING RATES OF EXPANDING SPHERICAL

    E-Print Network [OSTI]

    Tse, Stephen D.

    within internal combustion engines are substantially higher, a novel experimental apparatus- termined for pressures up to a few atmospheres. Since combustion processes within internal combus- tion1793 Proceedings of the Combustion Institute, Volume 28, 2000/pp. 1793­1800 MORPHOLOGY AND BURNING

  11. Combustive management of oil spills

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  12. autonomous solar hydrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles University of California eScholarship Repository Summary: Furuhama S. (1988) Hydrogen engine systems for land ve-hydrogen vehicles to date have used internal...

  13. President's Hydrogen Fuel Mark Paster

    E-Print Network [OSTI]

    or diesel fuel. #12;Emissions from Fossil Fuel Combustion Vehicles and power plants are significant powered vehicle, and be able to refuel it near their homes and places of work, by 2020." - Secretary Strategy Produce hydrogen from renewable, nuclear, and coal with technologies that will all yield virtually

  14. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01T23:59:59.000Z

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  15. LES of a Hydrogen-Enriched Lean Turbulent Premixed Flame

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    LES of a Hydrogen-Enriched Lean Turbulent Premixed Flame Francisco E. Hern´andez-P´erez , Clinton the observed behaviour is examined. Hydrogen-hydrocarbon fuel blends appear to be a promising option to synergistically pave the way toward pure hydrogen-based combustion systems while alleviating green-house gas

  16. aluminum particle combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. 2014-07-15 26 A cycle simulation of coal particle fueled reciprocating internal-combustion engines Texas A&M University - TxSpace Summary: problems (which are summarized in...

  17. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01T23:59:59.000Z

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  18. Pyrolysis and Combustion of Acetonitrile (CH{sub 3}CN)

    SciTech Connect (OSTI)

    Britt, P.F.

    2002-05-22T23:59:59.000Z

    Acetonitrile (CH{sub 3}CN) is formed from the thermal decomposition of a variety of cyclic, noncyclic, and polymeric nitrogen-containing compounds such as pyrrole and polyacrylonitrile. The pyrolysis and combustion of acetonitrile have been studied over the past 30 years to gain a more detailed understanding of the complex mechanisms involved in the release of nitrogen-containing compounds such as hydrogen cyanide (HCN) in fires and nitrogen oxides (NOx) in coal combustion. This report reviews the literature on the formation of HCN and NOx from the pyrolysis and combustion of acetonitrile and discusses the possible products found in an acetonitrile fire.

  19. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen is a versatile energy car-

    E-Print Network [OSTI]

    to a conventional vehicle with a gasoline internal combustion engine. In addition, fuel cells operate quietly, have pollution-free, but they can also have more than two times the efficiency of traditional combustion technologies. A conventional combustion-based power plant typically generates electricity at efficiencies of 33

  20. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01T23:59:59.000Z

    in our current approach. The liquefaction of hydrogen allows also for its use in transport applications for example BMW developed a car that utilises liquid hydrogen instead of compressed gas hydrogen making the use of cryogenic hydrogen even more... efficient. 11     Figure 13. Decentralised production of hydrogen pathways for Energy and Hydrogen Cryomagnetic solutions for a hospital environment. The shaded region in the figure represents the decentralised production of hydrogen using renewable...

  1. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    SciTech Connect (OSTI)

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23T23:59:59.000Z

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  2. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  3. OXIDATION OF FUELS IN THE COOL FLAME REGIME FOR COMBUSTION AND REFORMING FOR FUEL CELLS.

    SciTech Connect (OSTI)

    NAIDJA,A.; KRISHNA,C.R.; BUTCHER,T.; MAHAJAN,D.

    2002-08-01T23:59:59.000Z

    THE REVIEW INTEGRATES RECENT INVESTIGATIONS ON AUTO OXIDATION OF FUEL OILS AND THEIR REFORMING INTO HYDROGEN RICH GAS THAT COULD SERVE AS A FEED FOR FUEL CELLS AND COMBUSTION SYSTEMS.

  4. Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery

    E-Print Network [OSTI]

    Bongartz, Dominik

    2014-01-01T23:59:59.000Z

    Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when ...

  5. Combustion and Flame 140 (2005) 4659 www.elsevier.com/locate/jnlabr/cnf

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    . There is growing interest in the use of hydrogen fuels for transportation and power generation. When burning in air-ignition [1] and diesel [4] engines are dom- inated by partially premixed combustion at elevated pressures

  6. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

    2008-10-21T23:59:59.000Z

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  7. Low NOx combustion

    SciTech Connect (OSTI)

    Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

    2007-06-05T23:59:59.000Z

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  8. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31T23:59:59.000Z

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  9. Sandia National Laboratories: Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion New Polarized-Depolarized Measurement Capability Extends Use of RamanRayleigh Methods to More Flame Types On April 23, 2014, in Capabilities, CRF, Energy, Facilities,...

  10. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    SciTech Connect (OSTI)

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01T23:59:59.000Z

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  11. THE EFFECT OF CO ON HYDROGEN PERMEATION THROUGH PD AND INTERNALLY OXIDIZED AND UN-OXIDIZED PD ALLOY MEMBRANES

    SciTech Connect (OSTI)

    Shanahan, K.; Flanagan, T.; Wang, D.

    2010-10-20T23:59:59.000Z

    The H permeation of internally oxidized Pd alloy membranes such as Pd-Al and Pd-Fe, but not Pd-Y alloys, is shown to be more resistant to inhibition by CO(g) as compared to Pd or un-oxidized Pd alloy membranes. The increased resistance to CO is found to be greater at 423 K than at 473 K or 523 K. In these experiments CO was pre-adsorbed onto the membranes and then CO-free H{sub 2} was introduced to initiate the H permeation.

  12. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  13. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  14. Effect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames

    E-Print Network [OSTI]

    Im, Hong G.

    ], thereby enabling stable combustion at lean mixture conditions. In the case of natural gas engines, enriching the fuel with hydrogen has the proven benefits of improving the combustion stability and reducingEffect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames

  15. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01T23:59:59.000Z

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  16. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

    1993-01-01T23:59:59.000Z

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  17. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18T23:59:59.000Z

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  18. Combustion Analysis Software Package for Internal Combustion Engines -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration MarchCanadian2016 AnnualEnergy Innovation

  19. Sandia National Laboratories: combustion simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion simulation Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy,...

  20. Sandia National Laboratories: advanced combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF, Energy, Partnership, Transportation Energy...

  1. Sandia National Laboratories: Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy, Facilities, News,...

  2. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25,...

  3. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process...

  4. Fifteenth combustion research conference

    SciTech Connect (OSTI)

    NONE

    1993-06-01T23:59:59.000Z

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  5. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  6. Hydrogen Production - Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consumer on a cost-per-mile-driven basis as a comparable conventional internal-combustion engine or hybrid vehicle. DOE is engaged in research and development of a variety of...

  7. Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review

    E-Print Network [OSTI]

    applications. The IPHE (International Partnership for the Hydrogen Economy) safety program to assess storageHydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review Crystal Laboratory and Elvin Yuzugullu Sentech, Inc. June 28, 2007 #12;SUMMARY REPORT Hydrogen Storage

  8. Computation of azimuthal combustion instabilities in an helicopter combustion chamber

    E-Print Network [OSTI]

    Nicoud, Franck

    Computation of azimuthal combustion instabilities in an helicopter combustion chamber C. Sensiau to compute azimuthal combustion instabilities is presented. It requires a thermoacoustic model using a n - formulation for the coupling between acoutics and combustion. The parameters n and are computed from a LES

  9. CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-8088 USA

    E-Print Network [OSTI]

    Tennessee, University of

    -2053 USA ABSTRACT Under constant nominal operating conditions, internal combustion engines can exhibit sub Introduction Under constant nominal operating conditions, internal combustion engines can exhibit substantialCYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES C.S. DAW Engineering Technology

  10. Recrutement d'un assistant mandat (F/H) au sein de l'Universit de Mons -Facult Polytechnique -Service de Thermique et Combustion

    E-Print Network [OSTI]

    Dupont, Stéphane

    - Service de Thermique et Combustion N° de l'offre: UMONS/: 36 Avis interne Avis externeAvis interne/externe au sein de: Faculté Polytechnique Thermique et Combustion L'Université de Mons recrute un doctorat dans le domaine de combustion. Participation à l'encadrement des étudiants (exercices et travaux

  11. Reaction and diffusion in turbulent combustion

    SciTech Connect (OSTI)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01T23:59:59.000Z

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  12. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE INTERNATIONAL Worldwide hydrogen Infrastructure Developments Status 2014 8 Europe: Germany * Demo-project Clean Energy Partnership 15 public stations + 35 in process in 2016 *...

  13. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01T23:59:59.000Z

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  14. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    SciTech Connect (OSTI)

    Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

    2010-02-19T23:59:59.000Z

    Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  15. Dry low combustion system with means for eliminating combustion noise

    DOE Patents [OSTI]

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17T23:59:59.000Z

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  16. Sandia Combustion Research: Technical review

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  17. Four Lectures on Turbulent Combustion

    E-Print Network [OSTI]

    Peters, Norbert

    Four Lectures on Turbulent Combustion N. Peters Institut f¨ur Technische Mechanik RWTH Aachen Turbulent Combustion: Introduction and Overview 1 1.1 Moment Methods in Modeling Turbulence with Combustion and Velocity Scales . . . . . . . . . . . 11 1.4 Regimes in Premixed Turbulent Combustion

  18. Journal of Alloys and Compounds 460 (2008) 125129 Hydrolysis of ball milling AlBihydride and AlBisalt mixture for

    E-Print Network [OSTI]

    Li, Weixue

    2008-01-01T23:59:59.000Z

    in internal combustion engines or fuel cells because hydrogen is a clean energy and has a large combustion

  19. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02T23:59:59.000Z

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  20. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

    2011-01-15T23:59:59.000Z

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  1. Pore structure of soot deposits from several combustion Karl J. Rockne a,b,*, Gary L. Taghon b

    E-Print Network [OSTI]

    Rockne, Karl J.

    (typically when the C/O2 ratio >2) by internal combustion engines, industrial and domestic combustion sourcesPore structure of soot deposits from several combustion sources Karl J. Rockne a,b,*, Gary L. Taghon b , David S. Kosson a,1 a Department of Chemical and Biochemical Engineering, Rutgers, The State

  2. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  3. Project Sponsors: UCI Combustion

    E-Print Network [OSTI]

    Mease, Kenneth D.

    of a Commercial Microturbine Generator". 8th U. S. National Combustion Meeting. · R. Hack and V. McDonell. (2008 Microturbine Generator." Journal of Eng. Gas Turb. & Power 130 (1). OVERVIEW Fluid dynamics and chemical

  4. Maintain Combustion Systems 

    E-Print Network [OSTI]

    Fletcher, R. J.

    1979-01-01T23:59:59.000Z

    the lowest excess air possible, for example, can produce big savings. Maintaining combustion equipment - from fuel preparation equipment through burners and controls in optimum operating condition also can save large amounts of energy, and keep a plant...

  5. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20T23:59:59.000Z

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  6. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

    1988-01-01T23:59:59.000Z

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  7. Sandia Combustion Research Program

    SciTech Connect (OSTI)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01T23:59:59.000Z

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  8. Thermodynamic Model of Aluminum Combustion in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, . L

    2006-06-19T23:59:59.000Z

    Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

  9. Distributed ignition method and apparatus for a combustion engine

    DOE Patents [OSTI]

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07T23:59:59.000Z

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  10. Pulsed jet combustion generator for premixed charge engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA); Hom, K. (Hercules, CA)

    1990-01-01T23:59:59.000Z

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  11. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  12. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15T23:59:59.000Z

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  13. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  14. The Combustion Institute 5001 Baum Boulevard

    E-Print Network [OSTI]

    Tennessee, University of

    as applied to fuel cells and fuel processing, and combustion control including artificial neural networks. Fundamentals of micro-combustors, mesoscale combustion modeling and diagnostics, catalytic combustion

  15. Low-Temperature Automotive Diesel Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Automotive Diesel Combustion Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin June 8,...

  16. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  17. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  18. Hydrogen Analysis

    Broader source: Energy.gov (indexed) [DOE]

    A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter...

  19. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, ERB 1016B, Madison, WI 53706 (United States)

    2008-12-15T23:59:59.000Z

    A reduced chemical kinetic mechanism for the oxidation of primary reference fuel (PRF) has been developed and applied to model internal combustion engines. Starting from an existing reduced reaction mechanism for n-heptane oxidation, a new reduced n-heptane mechanism was generated by including an additional five species and their relevant reactions, by updating the reaction rate constants of several reactions pertaining to oxidation of carbon monoxide and hydrogen, and by optimizing reaction rate constants of selected reactions. Using a similar approach, a reduced mechanism for iso-octane oxidation was built and combined with the n-heptane mechanism to form a PRF mechanism. The final version of the PRF mechanism consists of 41 species and 130 reactions. Validation of the present PRF mechanism was performed with measurements from shock tube tests, and HCCI and direct injection engine experiments available in the literature. The results show that the present PRF mechanism gives reliable performance for combustion predictions, as well as computational efficiency improvements for multidimensional CFD simulations. (author)

  20. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

    2011-08-30T23:59:59.000Z

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  1. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02T23:59:59.000Z

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  2. Second Law Comparisons of Volumetric and Flame Combustion in an Ideal Engine with Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Graves, Ronald L [ORNL

    2006-01-01T23:59:59.000Z

    We summarize the results of a theoretical second law (exergy) analysis of an idealized internal combustion engine operating in flame versus volumetric (e.g., HCCI-like) combustion modes. We also consider the impact of exhaust heat recovery. Our primary objective is to better understand the fundamental differences (if any) in thermodynamic irreversibility among these different combustion modes and the resulting impact on engine work output. By combustion irreversibility, we mean that portion of the fuel energy that becomes unavailable for producing useful work due to entropy generation in the combustion process, exclusive of all other heat and friction losses. A key question is whether or not volumetric combustion offers any significant irreversibility advantage over conventional flame combustion. Another key issue is how exhaust heat recovery would be expected to change the net work output of an ideal piston engine. Based on these results, we recommend specific research directions for improving the fuel efficiency of advanced engines.

  3. EFFECTS OF HYDROGEN ADDITION ON THE MARKSTEIN LENGTH AND FLAMMABILITY LIMIT

    E-Print Network [OSTI]

    Im, Hong G.

    combustion at lean mixture conditions. In the case of natural gas engines, enriching the fuel with hydrogenEFFECTS OF HYDROGEN ADDITION ON THE MARKSTEIN LENGTH AND FLAMMABILITY LIMIT OF STRETCHED METHANE, Ann Arbor, MI, USA A computational study is performed to investigate the effects of hydrogen addition

  4. Nanoparticle Emissions from Internal Combustion Engines

    E-Print Network [OSTI]

    Minnesota, University of

    Meeting Ultra Fine Particles in the Atmosphere 15 March 2000 Engine Exhaust Particle Emissions: Some, low S fuel 1988 engine low S fuel 1979 Roadway study The new engine increased number emissions 10 of highly agglomerated solid carbonaceous material and ash and volatile organic and sulfur compounds

  5. Reed valves for internal combustion engines

    SciTech Connect (OSTI)

    Boyesen, E.

    1987-09-29T23:59:59.000Z

    A two-cycle engine is described comprising a cylinder and a piston working in the cylinder. The engine has a compression chamber below the piston and a fuel intake system including a ported valve seat for delivering fuel into the compression chamber. The cylinder has an exhaust port and a transfer passage for delivering compressed fuel from the compression chamber to the space above the piston, and a reed valve overlying the port in the valve seat and adapted to flex away from the ported seat during the upward stroke of the piston. The reed valve is of multiple layer construction with an outlet layer formed of relatively rigid resin material and an inner layer presented inwardly for contact with the valve seat and formed of relatively flexible temperature-resistant synthetic rubber material. The rubber layer is thinner than the resin layer and the resin and rubber layers are adhesively bonded to each other.

  6. Internal Combustion Efficiency | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary Loan The

  7. Fluidized-bed combustion

    SciTech Connect (OSTI)

    Botros, P E

    1990-04-01T23:59:59.000Z

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  8. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    HC Hydrocarbon HCCI Homogenous Charge Compression Ignition HiMICS Homogenous Charge Intelligent Multiple Injection Combustion System IC Internal Combustion IDI Indirect Injection IMEP Indicative Mean Effective Pressure ISPOL Isuzu Poland... in HC and CO formation [2]. Two main methods have been developed to achieve the low temperature combustion. They are homogenous charge compression ignition (HCCI) and premixed compression ignition (PCI). 1.2.3 HCCI and Its Development HCCI...

  9. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on...

  10. Stretch Efficiency - Thermodynamic Analysis of New Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stretch Efficiency - Thermodynamic Analysis of New Combustion Regimes (Agreement 10037) Stretch Efficiency - Thermodynamic Analysis of New Combustion Regimes (Agreement 10037)...

  11. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

  12. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  13. Improving alternative fuel utilization: detailed kinetic combustion...

    Energy Savers [EERE]

    Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

  14. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  15. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19T23:59:59.000Z

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  16. Studies in combustion dynamics

    SciTech Connect (OSTI)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  17. Reversed flow fluidized-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  18. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07T23:59:59.000Z

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  19. Packed Bed Combustion: An Overview

    E-Print Network [OSTI]

    Hallett, William L.H.

    Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

  20. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19T23:59:59.000Z

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.