Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE  

NLE Websites -- All DOE Office Websites (Extended Search)

HICEV AMERICA: HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE VEHICLE (HICEV) TECHNICAL SPECIFICATIONS Revision 0 November 1, 2004 Prepared by Electric Transportation Applications HICEV America Vehicle Specification i TABLE OF CONTENTS Minimum Vehicle Requirements 1 1. Regulatory Requirements 7 2. Chassis 8 3. Vehicle Characteristics 10 4. Drive System 11 5. Vehicle Performance 12 6. Hydrogen Fuel Storage System (HFSS) 14 7. Additional Vehicle Systems 17 8. Documentation 18 Appendices Appendix A - Vehicle Data 19 Appendix B - FMVSS Certification Methodology 26 DB12/7/04 HICEV America Vehicle Specification 2 MINIMUM VEHICLE REQUIREMENTS The HICEV America Program is sponsored by the U.S. Department of Energy Office of Transportation Technology to provide for independent assessment of hydrogen fueled, internal

2

Hydrogen Internal Combustion Engine (ICE) Vehicle Testing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Combustion Internal Combustion Engine (ICE) Vehicle Testing Activities James Francfort Idaho National Laboratory 2 Paper #2006-01-0433 Presentation Outline Background and goal APS Alternative Fuel (Hydrogen) Pilot Plant - design and operations Fuel dispensing and prototype dispenser Hydrogen (H2) and HCNG (compressed natural gas) internal combustion engine (ICE) vehicle testing WWW Information 3 Paper #2006-01-0433 Background Advanced Vehicle Testing Activity (AVTA) is part of DOE's FreedomCAR and Vehicle Technologies Program These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications (ETA) 4 Paper #2006-01-0433 AVTA Goal Provide benchmark data for technology modeling, research and development programs, and help fleet managers and

3

Module 3: Hydrogen Use in Internal Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

This course covers combustive properties, air/fuel ratio, types of pre-ignition problems, type of ignition systems, crankcase ventilation issues, thermal efficiency, emissions, power output, effect of mixing hydrogen

4

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

5

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

557 * November 2010 557 * November 2010 NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach National Renewable Energy Laboratory (NREL) Teams: Hydrogen Education, Melanie Caton; Market Transformation, Michael Ulsh Accomplishment: NREL started using its Ford hydrogen-powered internal combustion engine (H 2 ICE) bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. As the first national laboratory to receive such a bus, NREL

6

Thermochemical conversion of fuels into hydrogen-containing gas using recuperative heat of internal combustion engines  

Science Journals Connector (OSTI)

The problem of the thermochemical recuperation of heat from the exhaust gases of internal combustion engines (ICEs) as a method of ... the steam conversion of oxygen-containing fuels into syngas were developed, a...

V. A. Kirillov; A. B. Shigarov; N. A. Kuzin…

2013-09-01T23:59:59.000Z

7

Performance Comparison of Hydrogen Fuel Cell and Hydrogen Internal Combustion Engine Racing Cars  

Science Journals Connector (OSTI)

Students from RMIT University and the University of Applied Sciences Ingolstadt have collaborated to build a hydrogen-powered racing car. As part of the initial conceptual design ... lap simulation was developed ...

G. Pearson; M. Leary; A. Subic; J. Wellnitz

2011-01-01T23:59:59.000Z

8

Sandia Hydrogen Combustion Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sandia Hydrogen Combustion Research Sandia Hydrogen Combustion Research Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008...

9

Steam reforming of n-heptane at low concentration as a means for hydrogen injection into internal combustion engines  

SciTech Connect

Steam reforming of n-heptane at low concentration as a means for hydrogen injection into internal combustion engines, with the aim of running the engine at a lean fuel-air ratio (to reduce emissions and improve fuel economy), was studied in laboratory flow systems with both an integral and gradientless (Berty-type) fixed-bed reactor. The reaction kinetics were determined in the gradientless reactor over a Ni/Al/sub 2/O/sub 3/ catalyst at 632/sup 0/-679/sup 0/K, 1 atm total pressure, and 0.15-1.75 kPa partial pressure of n-heptane, with a recycling ratio of over 20:1. The reaction orders in hydrogen and n-heptane were 0.22 and -0.23, respectively, and the activation energy was 83.6 kj/mole. The reactant concentrations did not satisfy the equilibrium equations for the water-gas shift and methane-steam reactions at low conversions, but the agreement was good at high conversions. A small amount of benzene was produced, which decreased with increasing temperature, probably because of the polymerization, and ultimately, carbon formation.

Sjoestroem, K.

1980-01-01T23:59:59.000Z

10

Nanoparticle Emissions from Internal Combustion Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

11

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen...

12

Premixed Combustion of Hydrogen Augmented Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Premixed Combustion of Hydrogen Premixed Combustion of Hydrogen Augmented Natural Gas * Lean premixed combustion * Effective for emission reduction with natural gas * High hydrogen flame speed requires care in premixer design for SGH fuels * UC Irvine study quantifies effectiveness of hydrogen augmentation strategy * Lean stability limit improves linearly with hydrogen augmentation * Emissions reduction can be achieved * Two OEM's and the California Energy Commission have used the results to help guide them on adapting to hydrogen fuel UC Irvine Scott Samuelsen / Vince McDonell Project 98-01-SR062 1200 1300 1400 1500 1600 1700 1800 1900 0 10 20 30 40 50 60 Hydrogen Volume in Main Fuel (%) Adiabatic Flame Temperature (K) P0(3/4) High Stability High Stability Low emission Low emission operational zone operational zone

13

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

14

Chemical Looping for Combustion and Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

ChemiCal looping for Combustion and ChemiCal looping for Combustion and hydrogen produCtion Objective The objective of this project is to determine the benefits of chemical looping technology used with coal to reduce CO 2 emissions. Background Chemical looping is a new method to convert coal or gasified coal to energy. In chemical looping, there is no direct contact between air and fuel. The chemical looping process utilizes oxygen from metal oxide oxygen carrier for fuel combustion, or for making hydrogen by "reducing" water. In combustion applications, the products of chemical looping are CO 2 and H 2 O. Thus, once the steam is condensed, a relatively pure stream of CO 2 is produced ready for sequestration. The production of a sequestration ready CO 2 stream does not require any additional separation units

15

Modeling of Combustion Processes in Internal Combustion Engines  

Science Journals Connector (OSTI)

Improving internal combustion engines (ICE) and increasing the quality of operation are linked with the necessity of maximally increasing the degree of compression. For ICE with spark ignition (otto cycle), th...

V. A. Vinokurov; V. A. Kaminskii; V. A. Frost…

2000-11-01T23:59:59.000Z

16

Internal combustion engine intake valve  

SciTech Connect

In a inlet valve for use in an internal combustion engine in which the valve has a stem and a head, the head having, when seated, a first side positioned within a combustion chamber of an engine block and a second, opposite, side attached to the stem, the second side including that piston of the head forming the seat with the engine block when the valve is in a seated position, and first side including that portion of the head from the seat toward the chamber when the valve is in the seated position, and the engine including means for moving the valve from the closed position to an open position to allow a fuel mixture to enter the chamber, the improvement in the valve comprising: an extension ridge from the first side, positioned in alignment with the periphery of the valve head, the ridge forming with the seat a single, continuous, smooth outer surface along the periphery thereof for reducing the coefficient of drag of the fuel entering the chamber around the valve head when the valve is in the open position.

Mosler, W.B.

1988-10-25T23:59:59.000Z

17

Axial cylinder internal combustion engine  

SciTech Connect

This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.

Gonzalez, C.

1992-03-10T23:59:59.000Z

18

Upcoming Webinar December 16: International Hydrogen Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

19

International Hydrogen Infrastructure Challenges Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE...

20

Hypersonic hydrogen combustion in the thin viscous shock layer  

SciTech Connect

Different models of hypersonic diffusive hydrogen combustion in a thin viscous shock layer (TVSL) at moderate Reynolds numbers have been developed. The study is based on computations of nonequilibrium multicomponent flowfield parameters of air-hydrogen mixture in the TVSL near the blunt probe. The structure of computed combustion zones is analyzed. Under conditions of slot and uniform injections the zone structures are essentially different. Hydrogen injection conditions are discovered at which the nonreacting hydrogen zone and the zone enriched with the hydrogen combustion products appear near the body surface. Hydrogen, water, and OH concentrations identify these zones. More effective cooling of the probe surface occurs at moderate injections compared to strong ones. Under the blowing conditions at moderate Reynolds numbers the most effective cooling of the body surface occurs at moderate uniform hydrogen injection. The results can be helpful for predicting the degree of supersonic hydrogen combustion in hypersonic vehicle engines. 21 refs.

Riabov, V.V.; Botin, A.V. [Worcester Polytechnic Inst, Worcester, MA (United States)

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coal fuel slurry for internal combustion engines  

Science Journals Connector (OSTI)

A technoeconomic study of the production of coal-water fuel slurry for internal combustion engines and thermal power plants was performed. Based on the accumulated experimental data, it was found that, in the ...

N. I. Red’kina; G. S. Khodakov; E. G. Gorlov

2013-09-01T23:59:59.000Z

22

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion  

E-Print Network (OSTI)

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion A. J. Aspden1,2 , M. S. Day2 between fuel consumption and heat release. Keywords: turbulent premixed combustion, low Mach number flow or hydrogen-rich mixtures obtained from gasi- fication of coal or biomass. These types of fuels provide clean

Bell, John B.

23

The Effects of Ethanol/Gasoline Blends on Advanced Combustion Strategies in Internal Combustion Engines.  

E-Print Network (OSTI)

??This dissertation presents the effects of blending ethanol with gasoline on advanced combustion strategies in internal combustion engines. The unique chemical, physical and thermal properties… (more)

Fatouraie, Mohammad

2014-01-01T23:59:59.000Z

24

2.61 Internal Combustion Engines, Spring 2004  

E-Print Network (OSTI)

Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

Heywood, John B.

25

Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion  

SciTech Connect

The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

2007-05-01T23:59:59.000Z

26

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

27

Webinar: International Hydrogen Infrastructure Challenges-NOW...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges-NOW, DOE, and NEDO Webinar: International Hydrogen Infrastructure Challenges-NOW, DOE, and NEDO December 16, 2013 1:00PM EST...

28

Starting apparatus for internal combustion engines  

DOE Patents (OSTI)

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

29

Species measurements in a hypersonic, hydrogen-air, combustion wake  

SciTech Connect

A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water, and nitric oxide at stagnation enthalpies ranging from 5.6 MJ/kg to 12.2 MJ/kg and at a distance of approximately 100s times the thickness of the initial hydrogen jet. The amount of hydrogen mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, despite the fact that the proportion of hydrogen in the wake was increased with stagnation enthalpy. Roughly 50% of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

Skinner, K.A.; Stalker, R.J. [Univ. of Queensland, Brisbane, Queensland (Australia)] [Univ. of Queensland, Brisbane, Queensland (Australia)

1996-09-01T23:59:59.000Z

30

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson  

E-Print Network (OSTI)

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) · A good diesel fuel has a low ignition delay period and hence a high CN · Ethanol has

Minnesota, University of

31

Marine propulsion device internal combustion engine  

SciTech Connect

This patent describes an internal combustion engine. It comprises an engine block including a surface, means including the engine block surface for defining a substantially sealed chamber, and pressure relief means including a movable valve member for venting the chamber when the pressure in the chamber exceeds a predetermined value, the chamber containing one of the following: a flywheel, means for generating an electrical current, a finned heat exchanger, and means for starting the engine.

Anderson, P.A.; Bernau, W.A.; Breckenfeld, P.W.; Broughton, G.L.

1992-01-07T23:59:59.000Z

32

Electronic governor for an internal combustion engine  

SciTech Connect

An electronic governor for an internal combustion engine provided with a fuel injection pump for supplying fuel to the engine and having a control rack for adjusting fuel injection amount is described comprising, means providing a designated speed signal Vno indicative of the desired rotational speed No of the internal combustion engine, a speed detector detecting the rotational speed N of the internal combustion engine and producing the speed detection signal Vn indicative of the rotational speed N, a rack position detector detecting the position of the rack and producing a rack position detection signal VL indicative of the position of the rack, a speed deviation operation circuit responsive to the speed detection signal Vn for producing a constant speed control signal Vnd for effecting control to maintain the deviation of the actual rotational speed N from the designated rotational speed No within a permissible range, a rack position deviation operation circuit for producing a maximum rack position control signal VLd for effecting control to maintain the deviation of the rack position, a control mode selector and means responsive to the output of the control mode selector for controlling the rack to cause the deviation of the actual rotational speed N from the designated rotational speed No or the rack position from the maximum rack position to be within a certain range.

Nanjyo, H.; Suzuki, H.

1987-11-24T23:59:59.000Z

33

LabVIEW internal combustion engine detonation frequency analysis.  

E-Print Network (OSTI)

??The project discussed herein is to develop the hardware and software necessary to identify the detonation frequency of a BMW S14 internal combustion engine. This… (more)

McClain, Kevin

2011-01-01T23:59:59.000Z

34

The HERMES Polarized Hydrogen Internal Gas Target  

E-Print Network (OSTI)

internal gas targets. The HERMES hydrogen target is an internal polarized gas target using the storage cell frame on the right. atomic hydrogen beam and focuses it into a storage cell. The storage cellThe HERMES Polarized Hydrogen Internal Gas Target J. Stewart for The HERMES Collaboration

35

The OLYMPUS Internal Hydrogen Target  

E-Print Network (OSTI)

An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.

Bernauer, J C; Ciullo, G; Henderson, B S; Ihloff, E; Kelsey, J; Lenisa, P; Milner, R; Schmidt, A; Statera, M

2014-01-01T23:59:59.000Z

36

The OLYMPUS Internal Hydrogen Target  

E-Print Network (OSTI)

An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.

J. C. Bernauer; V. Carassiti; G. Ciullo; B. S. Henderson; E. Ihloff; J. Kelsey; P. Lenisa; R. Milner; A. Schmidt; M. Statera

2014-04-02T23:59:59.000Z

37

Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb  

Science Journals Connector (OSTI)

Laser-induced spark ignition of lean hydrogen–air mixtures was experimentally investigated using nanosecond pulses generated by Q-switched Nd:YAG laser (wavelength 1064 nm) at initial pressure of 3 MPa and temperature 323 K in a constant volume combustion chamber. Laser ignition has several advantages over conventional ignition systems especially in internal combustion engines, hence it is necessary to characterise the combustion phenomena from start of plasma formation to end of combustion. In the present experimental investigation, the formation of laser plasma by spontaneous emission technique and subsequently developing flame kernel was measured. Initially, the plasma propagates towards the incoming laser. This backward moving plasma (towards the focusing lens) grows much faster than the forward moving plasma (along the direction of laser). A piezoelectric pressure transducer was used to measure the pressure rise in the combustion chamber. Hydrogen–air mixtures were also ignited using a spark plug under identical experimental conditions and results are compared with the laser ignition ones.

Dhananjay Kumar Srivastava; Martin Weinrotter; Kurt Iskra; Avinash Kumar Agarwal; Ernst Wintner

2009-01-01T23:59:59.000Z

38

BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973  

E-Print Network (OSTI)

engines, now somewhat dated.) 6. M. Khovakh (general editor) Motor Vehicle Engines. English translation, Akademiai Kaido:Budapest, 1974. (A monograph on heat transfer in spark-ignition and diesel enginesBIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air

Goldwasser, Shafi

39

Copper contamination effects on hydrogen-air combustion under SCRAMJET (supersonic combustion ramjet) testing conditions  

SciTech Connect

Two forms of copper catalytic reactions (homogeneous and heterogeneous) in hydrogen flames were found in a literature survey. Hydrogen atoms in flames recombine into hydrogen molecules through catalytic reactions, and these reactions which affect the timing of the combustion process. Simulations of hydrogen flames with copper contamination were conducted by using a modified general chemical kinetics program (GCKP). Results show that reaction times of hydrogen flames are shortened by copper catalytic reactions, but ignition times are relatively insensitive to the reactions. The reduction of reaction time depends on the copper concentration, copper phase, particle size (if copper is in the condensed phase), and initial temperature and pressure. The higher the copper concentration of the smaller the particle, the larger the reduction in reaction time. For a supersonic hydrogen flame (Mach number = 4.4) contaminated with 200 ppm of gaseous copper species, the calculated reaction times are reduced by about 9%. Similar reductions in reaction time are also computed for heterogeneous copper contamination. Under scramjet testing conditions, the change of combustion timing appears to be tolerable (less than 5%) if the Mach number is lower than 3 or the copper contamination is less than 100 ppm. The higher rate the Mach number, the longer the reaction time and the larger the copper catalytic effects. 7 tabs., 8 figs., 34 refs.

Chang, S.L.; Lottes, S.A.; Berry, G.F.

1990-01-01T23:59:59.000Z

40

Hydrogen Energy Technology Geoff Dutton  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method for the operation of internal combustion engines. [gasification reactor for reforming gasoline  

SciTech Connect

This is a method for the operation of internal combustion engines which is designed to decontaminate the exhaust gases. The method includes: feeding a gasification air stream into a gasification reactor; feeding fuel into the same gasification reactor; combining the fuel with the gasification air into a homogeneous fuel-air mixture in the gasification reactor; and converting the fuel-air mixture by partial combustion into a soot -free reformed gas. Then, the reformed gas is fed from the gasification reactor to a mixer where the reformed gas is mixed with combustion air and the reformed gas-air mixture is fed to the internal combustion engine for further combustion with the result that there is intensive decontamination of the exhaust gases which thereby reduces air pollution. The reformed gas temperature is adjusted low for maximum engine output, and is adjusted higher for lower engine temperatures in order to obtain a reformed gas which is richer in hydrogen and thereby produce exhaust gases which are lower in harmful substances. In reference to the exhaust gases in an internal combustion engine, this method achieves the highest possible degree of decontamination, not only of the carbon monoxide and hydrocarbons , but also of the nitrous oxides in the exhaust gases. Using this method, the internal combustion engine can be operated not only with high-test, no-knock gasoline, but also with cheap, lead-free low octane, straight-run gasoline which is low in aromatics and olefins, which normally do not have no-knock properties, and the internal combustion engine can be operated with the lowest possible fuel consumption. The gasification reactor operates through chemical reaction in the presence of a catalyst. Optionally, this method may include a return of part of the reformed gas to the input of the gasification reactor.

Muhlberg, E.

1980-01-29T23:59:59.000Z

42

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Journals Connector (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam machines into a single process.

E. A. Olenev

2002-07-01T23:59:59.000Z

43

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Journals Connector (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam...

E. A. Olenev

2002-07-01T23:59:59.000Z

44

Cooling system for internal combustion engines  

SciTech Connect

A cooling system for an internal combustion engine is described comprising: a head-side water jacket and a block-side water jacket made independent of each other; and a radiator and a cooling fan shared between the two water jackets. The improvement comprises: a first cooling water conduit for connecting the outlet of the head-side water jacket and the inlet of the radiator; a mixing valve having two water inlets and one water outlet; a second cooling water conduit for connecting one of the water inlets of the mixing valve and the outlet of the radiator; a third conduit for connecting the water outlet of the block-side water jacket and the remaining one of the water inlets of the mixing valve; a water pump, a fourth conduit branched midway from the second conduit and connected with the water inlet of the head-side water jacket; an auxiliary water pump; a fifth conduit branched midway from the third conduit and connected with the first conduit; one-way valve; and a control unit for controlling the mixing ratio of the mixing valve, the displacement of the auxiliary water pump and the operation of the cooling fan.

Itakura, M.

1988-07-26T23:59:59.000Z

45

Optimal internal combustion engine tuning utilizing perturbation/correlation  

E-Print Network (OSTI)

OPTIMAL INTERNAL COMBUSTION ENGINE TUNING UTILIZING PERTURBATION/CORRELATION A Thesis by BRIAN DANIEL PAUTLER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 2003 Major Subject: Mechanical Engineering OPTIMAL INTERNAL COMBUSTION ENGINE TUNING UTILIZING PERTURBATION/CORRELATION A Thesis by BRIAN DANIEL PAUTLER Submitted to the Office of Graduate Studies of Texas A&M Umversity...

Brian Daniel Pautler

2012-06-07T23:59:59.000Z

46

Kinetics of Hematite to Wüstite by Hydrogen for Chemical Looping Combustion  

Science Journals Connector (OSTI)

Kinetics of Hematite to Wüstite by Hydrogen for Chemical Looping Combustion ... Industrial & Engineering Chemistry Research (1989), 28 (8), 1130-40 CODEN: IECRED; ISSN:0888-5885. ...

Esmail R. Monazam; Ronald W. Breault; Ranjani Siriwardane

2014-07-01T23:59:59.000Z

47

Overview of Hydrogen and Fuel Cell Activities: 6th International...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell...

48

E-Print Network 3.0 - asme internal combustion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

"A" and "B" correspond to the internal channel flow state of the combustible mixture... , heat loss, and combustion ... Source: Akbari, Pezhman "Pejman" - Department of Mechanical...

49

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

50

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Proceedings from the forum, which took...

51

Hydrogen and Fuel Cell Activities: 5th International Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

52

Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications  

SciTech Connect

The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated. 10 references.

Barbi, E.; Mahan, J.R.; O'brien, W.F.; Wagner, T.C.

1989-04-01T23:59:59.000Z

53

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network (OSTI)

UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A... UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A Thesis by SAMIR HUSEYNZADE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Huseynzade, Samir

2008-10-10T23:59:59.000Z

54

Hydrogen Power Inc formerly Hydrogen Power International and Equitex Inc |  

Open Energy Info (EERE)

Power Inc formerly Hydrogen Power International and Equitex Inc Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.) Place Englewood, Colorado Zip 80111 Sector Hydro, Hydrogen Product Holding company operating through its majority owned subsidiaries, Hydrogen Power International, FastFunds Financial Corp and Denaris Corp. Coordinates 35.425805°, -84.487497° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.425805,"lon":-84.487497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

International Hydrogen Fuel and Pressure Vessel Forum  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27–29, 2010 in Beijing, China. High pressure...

56

The evaluation and application of Orimulsion by International Combustion Ltd  

SciTech Connect

Since the introduction of Orimulsion, in the 1980`s as a potential fuel for power generation, International Combustion Ltd. (ICL) have been involved with the original fuel manufacturer PdeV (Petroleos de Venezuela) and their commercial marketing organization (BITOR) in a comprehensive evaluation of this fuel for application to power generation boilers. This work encompassed both chemical and physical analyses of the original fuel formulations and modifications to improve handling and combustion performance. The first commercial scale firing demonstration of Orimulsion was performed by ICL in their full scale combustion test facilities at Derby in the UK. On this occasion PdeV took the opportunity to bring upwards of 40 visitors from 14 different countries to witness this full scale combustion demonstration which took place over a two week period during November, 1987. Further full scale combustion demonstration and development was carried out on alternative fuel formulations and combustion equipment for application to a 400 MWe front wall fired boiler at Florida Power and Light Sanford Utility in 1990. Recently the Orimulsion combustion work at ICL has concentrated on the application of the fuel in low NOx burner systems with potential for utilization in large (500 MWe plus) oil fired boilers both in the UK and USA. Fuel and gas handling equipment and hardware have been supplied by ICL to the 120 MWe and 500 MWe utility boilers operating on Orimulsion, on a continuous basis in the UK.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1996-12-31T23:59:59.000Z

57

International Hydrogen Infrastructure Challenges Workshop Summary – NOW, NEDO, and DOE  

Energy.gov (U.S. Department of Energy (DOE))

Webinar slides for the International Hydrogen Infrastructure Challenges Workshop Summary from NOW, NEDO, and DOE.

58

PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing spinning gas  

E-Print Network (OSTI)

PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing; published 28 August 2014) The efficiency of the internal combustion engine might be enhanced by employing Optimizing the internal combustion engine to achieve the highest possible fuel efficiency can be approached

59

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents (OSTI)

A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

1998-01-01T23:59:59.000Z

60

International Partnership for Hydrogen and Fuel Cells in the...  

Energy Savers (EERE)

Partnership for Hydrogen and Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the...

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MILD combustion for hydrogen and syngas at elevated pressures  

Science Journals Connector (OSTI)

As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with ga...

Mingming Huang; Zhedian Zhang; Weiwei Shao; Yan Xiong…

2014-02-01T23:59:59.000Z

62

Numerical investigation on the combustion and emission characteristics of a hydrogen assisted biodiesel combustion in a diesel engine  

Science Journals Connector (OSTI)

Abstract The present study aims to bridge the gap on hydrogen assisted biodiesel combustion, and to investigate its impacts on the engine performance, combustion and emission characteristics. Simulations were conducted on a diesel engine fueled by biodiesel with supplementary hydrogen inductions of 0.5%, 1%, 2% and 3% vol of H2 in air. A skeletal reaction mechanism was developed to include the reaction kinetics of biodiesel and hydrogen, with the CO, \\{NOx\\} and soot formation mechanisms embedded. The developed reaction mechanism was validated by performing the ignition delay calculations against the detailed biodiesel reaction mechanism, as well as the 3D numerical simulations against the experimental results. Good agreements in terms of ignition delay, cylinder pressure and heat release rate predictions were obtained. Key simulation results review that with the increase of hydrogen induction, a substantial increase in the peak cylinder pressure and heat release rate can be obtained under 50% and 100% load conditions, indicating an improved performance. But a reduced performance is observed at light load (10% loads) conditions due to the poor ignition and combustion processes. In terms of emissions, a general decreased trend is observed for both CO and soot emissions at all the engine speeds and loads, and a more remarkable reduction is found at 100% engine load conditions. Furthermore, due to the enhanced combustion, \\{NOx\\} emissions are increased slightly at 50% and 100% engine loads.

H. An; W.M. Yang; A. Maghbouli; J. Li; S.K. Chou; K.J. Chua; J.X. Wang; L. Li

2014-01-01T23:59:59.000Z

63

Methanol vaporization and injection system for internal combustion engine  

SciTech Connect

An engine equipped with an alcohol vaporization injection system operates as a four stroke cycle diesel engine that transfers the heat of exiting exhaust gases and cylinder head walls to the fuel. The engine runs on alcohol. The alcohol becomes vaporized and its pressure is high enough so that when a valve is opened between the high pressure fuel line and the combustion chamber (when it is at the peak of its compression ratio) enough alcohol will enter the combustion chamber to allow proper combustion. The overall advantages to this type of alcohol vaporization injection system is that it adds relatively few new mechanisms to the spark ignition four cycle internal combustion engine to enable it to operate as a diesel engine with a high thermal efficiency. This alcohol injection system exploits the engine's need for greater volumes of alcohol caused by the alcohol's relatively low heat of combustion (When compared to gasoline) by using this greater volume of fuel to return greater quantities of heat back to the engine to a much greater degree than other fuels can.

Bayley, R.I.

1980-05-06T23:59:59.000Z

64

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOE Patents (OSTI)

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

2011-11-01T23:59:59.000Z

65

Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas  

SciTech Connect

The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

Geyko, Vasily; Fisch, Nathaniel

2014-02-27T23:59:59.000Z

66

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network (OSTI)

In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal...

Huseynzade, Samir

2009-05-15T23:59:59.000Z

67

Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum  

Energy.gov (U.S. Department of Energy (DOE))

Agenda for the International Hydrogen Fuel and Pressure Vessel Forum held Sept. 27-29, 2010, in Beijing, China

68

Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method  

E-Print Network (OSTI)

Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

Chen, Haijie

2011-01-01T23:59:59.000Z

69

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Patents (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

70

Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal at the Hydrogen and Fuel Cells 2011 International Conference on May 17, 2011.

71

Hydrogen Sulfide Combustion:? Relevant Issues under Claus Furnace Conditions  

Science Journals Connector (OSTI)

Their mechanisms include the chemistry that leads to the formation of SO, SO2, SO3, and S2, as well as other chemical paths for the destruction of H2S. Another important source of chemistry and kinetics data that is more recent can be found in the University of Leeds, U.K. Sulfur Mechanism (which can be found on the Internet at www.chem.leeds.ac.uk/Combustion/Combustion.html). ... The databank contains the ideal gas heat capacity, free energy of formation, and enthalpy of formation for many species, and these values are accurate at the high temperatures that are typical of combustion for more than 59 stable and radical species. ... Clark et al.4 noted in their study of Claus chemistry that H2S combusts more quickly than the hydrocarbons that were present in the initial gas mixture. ...

Ivan A. Gargurevich

2005-08-23T23:59:59.000Z

72

Hydrogen production in a reversible flow filtration combustion reactor  

Science Journals Connector (OSTI)

The noncatalytic process of syngas production by means of partial oxidation of ... by air oxygen in a reversible flow filtration combustion reactor has been investigated experimentally. We have ... providing the ...

Yu. M. Dmitrenko; P. A. Klevan

2011-11-01T23:59:59.000Z

73

Coal-water slurry fuel internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

74

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

SciTech Connect

A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

1998-07-14T23:59:59.000Z

75

Coal/waste cofiring: International survey of combustion practices  

SciTech Connect

Coal is an abundant fuel resource worldwide with an historically stable price. The use of coal is expected to increase, particularly in developing countries; and, as industrialization increases, so will the amount of various waste materials and the environmental problems associated with their disposal. Therefore, coal/waste cofiring can offer an environmentally sound, economic approach to both waste remediation and energy production. This paper highlights the results of an international survey of coal/waste cofiring by describing the principal wastes used and the combustion technologies employed. Also provided are examples of cofiring and areas where cofired fuel parameters will have an effect on boiler performance.

Harding, N.S.; Smouse, S.M.; Ekmann, J.M.; Winslow, J.S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1996-12-31T23:59:59.000Z

76

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network (OSTI)

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery… (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

77

Design of battery pack and internal combustion engine thermal models for hybrid electric vehicles.  

E-Print Network (OSTI)

?? This thesis focuses on the design of computational models, capable of simulating the thermal behaviour of a battery pack and internal combustion engine equipping… (more)

Catacchio, Gabriele

2013-01-01T23:59:59.000Z

78

DOE Hydrogen and Fuel Cells Program: International Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Partnerships Roadmaps and R&D Status Cooperative R&D Projects U.S. Department of Energy Search help Home > International > International Partnerships Printable Version International Partnerships Bilateral and multilateral hydrogen and fuel cell technology R&D cooperation and collaboration will be a central tool in advancing hydrogen and fuel cells. Two key multilateral international partnerships that are facilitating cooperative R&D efforts are: International Partnership for Hydrogen and Fuel Cells in the Economy International Energy Agency Hydrogen and Fuel Cell Implementing Agreements International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) At the April 2003 International Energy Agency Ministerial, U.S. Secretary of Energy Spencer Abraham called for the establishment of the International

79

Idling control device for internal combustion engine with turbocharger  

SciTech Connect

An idling control device is described for an internal combustion engine with a turbocharger, comprising: an air intake pipe having an inlet at an upstream end thereof adapted to accept air which is to be supplied through the air intake pipe to the internal combustion engine a turbocharger having a housing incorporated in the air intake pipe between the inlet and the outlet, a throttle valve incorporated in the air intake pipe between the turbocharger and the outlet, a surge tank incorporated in the air intake pipe between the throttle valve and the outlet; a bypass air passage means provided in parallel with the air intake pipe between upstream of the turbocharger and downstream of the throttle valve; a flow-control valve incorporated in the bypass air passage means; an actuator operatively associated with the flow-control valve, a computer operatively associated with the actuator and arranged to receive signals relating to operating conditions of the engine; a check valve incorporated in the bypass air passage means downstream of the flow-control valve.

Ando, H.; Kondo, T.

1986-09-23T23:59:59.000Z

80

Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel - Georgia Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Prediction of Combustion Stability Prediction of Combustion Stability and Flashback in Turbines with High- Hydrogen Fuel-Georgia Institute of Technology Background Georgia Institute of Technology (Georgia Tech), in collaboration with Pennsylvania State University and gas turbine manufacturers, is conducting research to improve the state-of-the-art in understanding and modeling combustion instabilities, one of the most critical problems associated with burning high-hydrogen content (HHC) fuels in

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International Hydrogen Infrastructure Challenges Workshop Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

82

Hydrogen production in ultrarich combustion of hydrocarbon fuels in porous media  

Science Journals Connector (OSTI)

Rich and ultrarich combustion of methane, ethane, and propane inside inert porous media is studied experimentally and numerically to examine the suitability of the concept for hydrogen production. Temperature, velocities, and chemical products of the combustion waves were recorded experimentally at a range of equivalence ratios from stoichiometry (? = 1.0) to ? = 2.5, for a filtration velocity of 12 cm/s. Two-temperature numerical model based on comprehensive heat transfer and chemical mechanisms is found to be in a good qualitative agreement with experimental data. Partial oxidation products of methane, ethane, and propane (H2, CO, and C2 hydrocarbons) are dominant for ultrarich superadiabatic combustion. The maximum hydrogen yield is close to 50% for all fuels, and carbon monoxide yield is close to 80%.

Mario Toledo; Valeri Bubnovich; Alexei Saveliev; Lawrence Kennedy

2009-01-01T23:59:59.000Z

83

Exhaust gas recirculation system for an internal combustion engine  

DOE Patents (OSTI)

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

84

Mitigating the effect of siloxanes on internal combustion engines using landfill gasses  

DOE Patents (OSTI)

A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

Besmann, Theodore M

2014-01-21T23:59:59.000Z

85

Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by DOE's Sunita Satyapal was given at the 6th International Hydrogen and Fuel Cell Expo on March 3, 2010.

86

Traveling-Wave Thermoacoustic Engines With Internal Combustion  

DOE Patents (OSTI)

Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

Weiland, Nathan Thomas (Blacksburg, VA); Zinn, Ben T. (Atlanta, GA); Swift, Gregory William (Sante Fe, NM)

2004-05-11T23:59:59.000Z

87

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"  

E-Print Network (OSTI)

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except of Southern California, Los Angeles, CA 90089-1453 Introduction Hydrocarbon-fueled internal combustion engines. For the purposes of this paper: An internal combustion engine is a heat engine (a device in which thermal energy

88

Mach 2 combustion characteristics of hydrogen/hydrocarbon fuel mixtures  

SciTech Connect

The combustion of H/sub 2//CH/sub 4/ and H/sub 2//C/sub 2/H/sub 4/ mixtures containing 10 to 70 vol pct hydrocarbon at combustor inlet Mach number 2 and temperatures 2000 to 4000 R is investigated experimentally, applying direct-connect test hardware and techniques similar to those described by Diskin and Northam (1987) in the facilities of the NASA Langley Hypersonic Propulsion Branch. The experimental setup, procedures, and data-reduction methods are described; and the results are presented in extensive tables and graphs and characterized in detail. Fuel type and mixture are found to have little effect on the wall heating rate measured near the combustor exit, but H/sub 2//C/sub 2/H/sub 4/ is shown to burn much more efficiently than H/sub 2//CH/sub 4/, with no pilot-off blowout equivalence ratios greater than 0.5. It is suggested that H/sub 2//hydrocarbon mixtures are feasible fuels (at least in terms of combustion efficiency) for scramjet SSTO vehicles operating at freestream Mach numbers above 4.

Diskin, G.S.; Jachimowski, C.J.; Northam, G.B.; Bell, R.A.

1987-01-01T23:59:59.000Z

89

The effects and characteristics of hydrogen in SNG on gas turbine combustion using a diffusion type combustor  

Science Journals Connector (OSTI)

Abstract Converting coal to natural gas may be one of the alternative solutions for satisfying the demand for natural gas. However, synthetic natural gas (SNG) has not been proven effective in natural gas-fired power plants. In this research, several combustion tests using a diffusion type combustor were conducted to determine the effect of hydrogen content in SNG on gas turbine combustion. Three kinds of SNG with different H2 content up to 3%vol were used for the combustion tests. Even a small amount of hydrogen in SNG affects the flame structure: it shortened the flame length and enlarged the flame angle slightly. However, hydrogen content up to 3% in SNG did not affect the gas turbine combustion characteristics, which are emission performance and combustion efficiency. Due to a similarity with real gas turbine combustor conditions for power generation, a high pressure combustion test helped us verify the ambient pressure combustion tests conducted to determine the effect of hydrogen in SNG. In the high pressure combustion test, the pattern factors were identical even though the hydrogen content was varied from 0% to 3%.

Seik Park; Uisik Kim; Minchul Lee; Sungchul Kim; Dongjin Cha

2013-01-01T23:59:59.000Z

90

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes 2012 DOE Hydrogen and Fuel...

91

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

92

Experimental forward and reverse in situ combustion gasification of lignite with production of hydrogen-rich syngas  

Science Journals Connector (OSTI)

This research focused on the feasibility of applying the forward and reverse combustion approach to the in situ gasification of lignite with the production of hydrogen-rich syngas (H2 and CO). The so-called forwa...

Yong Cui; Jie Liang; Zhangqing Wang…

2014-03-01T23:59:59.000Z

93

Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$  

E-Print Network (OSTI)

We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capaciti...

Santilli, R M

2000-01-01T23:59:59.000Z

94

Hydrogen production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion  

Science Journals Connector (OSTI)

Abstract A novel Multi-Channel Membrane Reactor (MCMR) was designed and built for the small-scale production of hydrogen via Steam Methane Reforming (SMR). The prototype alternates an SMR gas channel to produce hydrogen catalytically, with a Methane Catalytic Combustion (MCC) gas channel to provide the heat of reaction needed by the endothermic reforming. A palladium–silver membrane inside the reforming gas channel shifts the reaction equilibrium, allowing lower operating temperatures, and producing pure hydrogen in a single vessel. Using an innovative air-spray coating technique, channels were coated with Ru–MgO–La2O3/?-Al2O3 and Pd/?-Al2O3 catalyst particles for the SMR and MCC reactions, respectively. Results for the proof-of-concept MCMR showed that methane conversion in the reformer of 91% and a hydrogen purity in excess of 99.99% were possible with the reformer operating at 570 °C and 15 bar.

Alexandre Vigneault; John R. Grace

2014-01-01T23:59:59.000Z

95

Comparative Investigation of Blade Lean Effect in Hydrogen?Fueled Combustion Turbine  

Science Journals Connector (OSTI)

Recently environmental problems have been actively researched all over the world. To overcome air pollution and fossil fuel exhaustion we have been investigating a hydrogen?fueled propulsion system. In the system hydrogen is injected from the turbine blade and/or vane surface. The system can realize higher power lighter weight and lower emission than conventional systems. However there exist many problems for the realization. One of them is the extremely high temperature region appearing on the wall. In the present study we clarify the effect of blade lean on the generation of high temperature region. The combusting turbulent flowfield around a normal a compound lean and a reverse compound lean blades are simulated using RANS and 5?step reduced combustion model. Comparing the numerical results it is confirmed that compound lean is promising to suppress the high temperature region.

R. Nakamura; M. Suzuki; M. Yamamoto

2011-01-01T23:59:59.000Z

96

Experimental study of combustion of hydrogen–syngas/methane fuel mixtures in a porous burner  

Science Journals Connector (OSTI)

Lean premixed combustion of hydrogen–syngas/methane fuel mixtures was investigated experimentally to demonstrate fuel flexibility of a two-section porous burner. The un-insulated burner was operated at atmospheric pressure. Combustion was stabilized at the interface of silicon-carbide coated carbon foam of 26 pores per centimeter (ppcm) and 4 ppcm. Methane (CH4) content in the fuel was decreased from 100% to 0% (by volume), with the remaining amount split equally between carbon monoxide (CO) and hydrogen (H2), the two reactive components of the syngas. Experiments for different fuel mixtures were conducted at a fixed air flow rate, while the fuel flow rate was varied to obtain a range of adiabatic flame temperatures. The CO and nitric oxide ( NO x ) emissions were measured downstream of the porous burner, in the axial direction to identify the post-combustion zone and in the transverse direction to quantify combustion uniformity. For a given adiabatic flame temperature, increasing H2/CO content in the fuel mixture decreased both the CO and NO x emissions. Presence of H2/CO in the fuel mixture also decreased temperature near the lean blow-off limit, especially for higher percentages of CO and H2 in the fuel.

S.K. Alavandi; A.K. Agrawal

2008-01-01T23:59:59.000Z

97

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network (OSTI)

as solar-charged hydrogen fuel cells were allowed to becomee.g. wind-generated hydrogen fuel cell hybrid vehicle) can

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

98

Valve supporting arrangement of an internal combustion engine  

SciTech Connect

A supporting arrangement is described for a valve of an internal combustion engine having a valve stem portion, comprising a rigid member for supporting the stem portion of the valve for axial movement of the valve, a stamped or press-formed upper retainer connected to the upper portion of the valve stem, a lower annular retainer disposed on the rigid member and surrounding the valve stem, and a coil spring compressed between the upper and lower retainers to bias the valve in a direction to close the associated valve opening. The upper retainer has a substantially constant thickness throughout and comprises an annular collar portion having an essentially constant diameter along the length thereof with the diameter at least substantially equal to the inner diameter of the coil spring. The collar portion is coaxially disposed within an upper portion of the coil spring, an annular flange portion extending radially outwardly from the upper end of the collar portion and engaging with the upper end of the coil spring, and means for achieving a spline connection between the central portion of the retainer and the upper portion of the valve stem, and wherein the upper retainer is divided along a diameter into two identical elements which are disposed about the upper portion of the valve stem such that the radial pressure exerted by the coil spring operates to bias the identical elements into their respective positions operative to connect the upper retainer to the valve stem.

Hayashi, Y.

1986-05-27T23:59:59.000Z

99

Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines  

E-Print Network (OSTI)

The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

Takata, Rosalind (Rosalind Kazuko), 1978-

2006-01-01T23:59:59.000Z

100

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network (OSTI)

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Numerical modeling of piston secondary motion and skirt lubrication in internal combustion engines  

E-Print Network (OSTI)

Internal combustion engines dominate transportation of people and goods, contributing significantly to air pollution, and requiring large amounts of fossil fuels. With increasing public concern about the environment and ...

McClure, Fiona

2007-01-01T23:59:59.000Z

102

Modeling the structural behavior of the piston rings under different boundary conditions in internal combustion engines  

E-Print Network (OSTI)

In the process of designing internal combustion engine, piston ring plays an important role in fulfilling the requirements of camber gas sealing, friction reduction and lubrication oil consumption. The goal of this thesis ...

Xu, Dian

2010-01-01T23:59:59.000Z

103

Computations and modeling of oil transport between piston lands and liner in internal combustion engines  

E-Print Network (OSTI)

The consumption of lubricating oil in internal combustion engines is a continuous interest for engine developers and remains to be one of the least understood areas. A better understanding on oil transport is critical to ...

Fang, Tianshi

2014-01-01T23:59:59.000Z

104

A new modeling approach of pressure waves at the inlet of internal combustion engines  

Science Journals Connector (OSTI)

This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy ... a pipe and a mechanical ideal mass damper spring

David Chalet; Alexandre Mahé; Jean-François Hétet…

2011-06-01T23:59:59.000Z

105

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel and Pressure Vessel Forum Hydrogen Fuel and Pressure Vessel Forum The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from compressed natural gas (CNG) and hydrogen vehicle deployments, and to identify R&D needs to aid the global harmonization of regulations, codes and standards to enable the successful deployment of hydrogen and fuel cell technologies. The forum also included additional discussion resulting from the DOE and U.S. Department of Transportation (DOT) co-sponsored International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009 in Washington, D.C.

106

Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Internal...

107

CSA International Certification Discussion Hydrogen Technology Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

108

Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$  

E-Print Network (OSTI)

We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capacities of quantum chemistry. In fact, magnegas contains up to 50% hydrogen, while having combustion exhaust with: 1) a positive oxygen balance (releasing more oxygen in the exhaust than that used in the combustion); 2) no appreciable carcinogenic or toxic substances; 3) considerably reduced carbon dioxide as compared to fossil fuels; 4) considerably reduced nitrogen oxides; and 5) general reduction of pollutants in the exhaust up to 96% of current EPA standards.

R. M. Santilli

2000-09-04T23:59:59.000Z

109

Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Syngas and Hydrogen Combustion  

SciTech Connect

The collaborative research initiative culminated in amassing a substantial combustion database of experimental results for dry and moist mixtures of syngas and hydrogen (SGH), including autoignition times using a rapid compression machine as well as laminar flame speeds using a counterflow twin-flame configuration. These experimental data provided the basis for assessment of the kinetics of SGH combustion at elevated pressures using global uncertainty analysis methods. A review of the fundamental combustion characteristics of H{sub 2}/CO mixtures, with emphasis on ignition and flame propagation at high pressures was also conducted to understand the state of the art in SGH combustion. Investigation of the reaction kinetics of CO+HO{sub 2}{center_dot} {yields} CO{sub 2} + {center_dot}OH and HO{sub 2}+OH {yields} H{sub 2}O+O{sub 2} by ab initio calculations and master equation modeling was further carried out in order to look into the discrepancies between the experimental data and the results predicted by the mechanisms.

Chih-Jen Sung; Hai Wang; Angela Violi

2009-02-28T23:59:59.000Z

110

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

vehicle -$1,612 No engine Vehicle retail cost to consumercosts, for hydrogen FCVs and conventional gasoline internal combustion engine vehicles (

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

111

U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum  

Energy.gov (U.S. Department of Energy (DOE))

Presentation at the International Hydrogen Fuel and Pressure Vessel Forum on September 27–29, 2010, in Beijing, China.

112

Renewable Hydrogen: Integration, Validation, and Demonstration  

SciTech Connect

This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

Harrison, K. W.; Martin, G. D.

2008-07-01T23:59:59.000Z

113

International Partnership for a Hydrogen Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding .... "With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free. President George W. Bush 2003 State of the Union Address January 28, 2003

114

Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data  

Science Journals Connector (OSTI)

Reduced mechanisms for methane-air and hydrogen-air combustion including NO formation have been constructed with the computational singular perturbation (CSP) method using the fully automated algorithm described by Massias et al. The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 2.11 for methane and a 71-reaction mechanism for hydrogen including NOx formation. A 10-step reduced mechanism for methane has been constructed which reproduces accurately laminar burning velocities, flame temperatures and mass fraction distributions of major species for the whole flammability range. Many steady-state species are also predicted satisfactorily. This mechanism is an improvement over the seven-step set of Massias et al, especially for rich flames, because the use of HCNO, HCN and C2H2 as major species results in a better calculation of prompt NO. The present 10-step mechanism may thus also be applicable to diffusion flames. A five-step mechanism for lean and hydrogen-rich combustion has also been constructed based on a detailed mechanism including thermal NO. This mechanism is accurate for a wide range of the equivalence ratio and for pressures as high as 40 bar. For both fuels, the CSP algorithm automatically pointed to the same steady-state species as those identified by laborious analysis or intuition in the literature and the global reactions were similar to well established previous methane-reduced mechanisms. This implies that the method is very well suited for the study of complex mechanisms for heavy hydrocarbon combustion.

A Massias; D Diamantis; E Mastorakos; D A Goussis

1999-01-01T23:59:59.000Z

115

Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies  

Science Journals Connector (OSTI)

Hydrogen systems can provide viable, sustainable options for meeting the world's energy requirements. Hydrogen is relevant to all of the energy sectors—transportation, buildings, utilities and industry. It can provide storage options for baseload (geothermal), seasonal (hydroelectric) and intermittent (PV and wind) renewable resources, and when combined with emerging decarbonization technologies, can reduce the climate impacts of continued fossil fuel utilization. However, hydrogen energy systems still face a number of technical and economical barriers that must first be overcome for hydrogen to become a competitive energy carrier. Advances must be made in hydrogen production, storage, transport and utilization technologies and in the integration of these components into complete energy systems. To expedite the advancement of hydrogen technologies and realize a hydrogen future, nations have come together under the auspices of the International Energy Agency's (IEA) Hydrogen Program to collaborate and address the important barriers that impede hydrogen's worldwide acceptance. Through well-structured, collaborative projects, experts from around the world address many of the technical challenges and long-term research needs that face the hydrogen community. These collaborations have already led to significant advances in renewable hydrogen production and solid storage materials and to the development of tools to evaluate and optimize integrated hydrogen energy systems.

Carolyn C. Elam; Catherine E.Gregoire Padró; Gary Sandrock; Andreas Luzzi; Peter Lindblad; Elisabet Fjermestad Hagen

2003-01-01T23:59:59.000Z

116

Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends combining with EGR  

Science Journals Connector (OSTI)

An experimental study on the effect of hydrogen fraction and EGR rate on the combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends was investigated. The results show that flame development duration, rapid combustion duration and total combustion duration are increased with the increase of EGR rate and decreased with the increase of hydrogen fraction in the blends. Hydrogen addition shows larger influence on flame development duration than that on rapid combustion duration. The coefficient of variation of the indicated mean effective pressure increases with the increase of EGR rate. And hydrogen addition into natural gas decreases the coefficient of variation of the indicated mean effective pressure, and this effectiveness becomes more obviously at high EGR rate. Engine fueled with natural gas–hydrogen blends combining with proper EGR rate can realize the stable low temperature combustion in gas engine.

Erjiang Hu; Zuohua Huang; Bing Liu; Jianjun Zheng; Xiaolei Gu

2009-01-01T23:59:59.000Z

117

Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

FORUM AGENDA FORUM AGENDA U.S. Department of Energy and Tsinghua University International Hydrogen Fuel and Pressure Vessel Forum Tsinghua University Beijing, PRC September 27 - 29, 2010 The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from CNG and hydrogen vehicle deployments, and to identify R&D needs to aid the global harmonization of regulations, codes and standards to enable the successful deployment of hydrogen and fuel cell technologies. Forum Objectives: * Address and share data and information on specific technical topics discussed at the workshop in

118

Analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion  

SciTech Connect

A chemical kinetic mechanism for the combustion of hydrogen has been assembled and optimized by comparing the observed behavior as determined in shock tube and flame studies with that predicted by the mechanism. The reactions contained in the mechanism reflect the current state of knowledge of the chemistry of the hydrogen/air system, and the assigned rate coefficients are consistent with accepted values. It was determined that the mechanism is capable of satisfactorily reproducing the experimental results for a range of conditions relevant to scramjet combustion. Calculations made with the reaction mechanism for representative scramjet combustor conditions at Mach 8, 16, and 25 showed that chemical kinetic effects can be important and that combustor models which use nonequilibrium chemistry should be used in preference to models that assume equilibrium chemistry. For the conditions examined the results also showed the importance of including the HO/sub 2/ chemistry in the mechanism. For Mach numbers less than 16, the studies suggest that an ignition source will most likely be required to overcome slow ignition chemistry. At Mach 25, the initial temperature and pressure was high enough that ignition was rapid and the presence of an ignition source did not significantly affect reaction rates.

Jachimowski, C.J.

1988-02-01T23:59:59.000Z

119

"Optimization of efficiency of internal combustion engines via using  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimization of efficiency of internal combustion engines via using Optimization of efficiency of internal combustion engines via using spinning gas and non-spectroscopic method of determining gas constituents through rotation ..--.. Inventors Nathaniel Fisch, Vasily Geyko An important use of the disclosed approach is the improvement efficiency of thermal cycles and as result efficiency of engines. Different cycles and different ways of compression of spinning gas may be used to maximize possible efficiency gain. In conventional internal combustion engines, gas spinning is either not used at all or used only with the purpose of increasing turbulence and better mixing. In the disclosed method, gas rotation is used for energy storage, hence it allows an improvement in thermal cycle efficiency. To achieve significant effect related to

120

Experimental and numerical investigation of hydrogen combustion in a supersonic flow  

SciTech Connect

Supersonic combustion ramjet, or SCRAMJET, engines are currently being evaluated for the propulsion of hypersonic vehicles. A unique supersonic wind tunnel facility has been built at the Aerospace Research Laboratory to simulate the operation of a SCRAMJET over a range of Mach numbers of 5 to 6.5 and altitudes of 40,000 to 150,000 ft. The tunnel provides high stagnation temperature, clean air in a continuous Mach 2 flow to the combustor where hydrogen is injected and burned. One of the major parameters in the design of the engine is the combustion efficiency, a quantity which is extremely difficult to evaluate directly. Wall pressure and temperature measurements were made on a model combustor in the ARL facility and a one-dimensional, chemical equilibrium, finite difference model was used to infer combustion efficiency. The initial stagnation temperature was maintained around or below 850 K and an inlet static pressure of 1/2 atm, or less. At these relative low temperatures, thermal choking occurred for relatively low equivalence ratios, limiting this parameter to a maximum of 0.1, depending on the injection configuration. A detailed validation of the analytical model requires extensive knowledge of the physical properties of the flowfield. Since reliable, non-intrusive measurements methods are still under development, the results of the combustion efficiency evaluation were compared with a detailed numerical simulation of the flowfield of interest. The numerical simulation used a 3-D full Navier-Stokes program, which includes a finite rate chemistry model to duplicate one of the experimental cases. The calculations were performed on a CRAY - 2S supercomputer at the National Supercomputer Applications Center at NASA Langley. The solution required 35 CPU hours.

Segal, C.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition  

Science Journals Connector (OSTI)

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition ... The performance of a four-stroke Honda GC160E spark ignition (SI) internal combustion (IC) engine operating on landfill gas (LFG) was investigated, as well as the impact of H2 and CO (syngas) addition on emissions and engine efficiency. ... In addition, variation across both the syngas content (up to 15%) and the ratio of H2 to CO in the syngas (H2/CO = 0.5, 1, and 2) were tested. ...

McKenzie P. Kohn; Jechan Lee; Matthew L. Basinger; Marco J. Castaldi

2011-02-07T23:59:59.000Z

122

Review and recent developments of laser ignition for internal combustion engines applications  

Science Journals Connector (OSTI)

Performance of future ignition system for internal combustion engines should be reliable and efficient to enhance and sustain combustion stability, since ignition not only initiates combustion but also influences subsequent combustion. Lean burn systems have been regarded as an advanced combustion approach that could improve thermal efficiency while reducing exhaust gas emissions. However, current engines cannot be operated sufficiently lean due to ignition related problems such as the sluggish flame initiation and propagation along with potential misfiring. A high exhaust gas recirculation engines also has similar potential for emissions improvement, but could also experience similar ignition problems, particularly at idle operation. Similarly, ignition is an important design factor in gas turbine and rocket combustor. Recently, non-conventional ignition techniques such as laser-induced ignition methods have become an attractive field of research in order to replace the conventional spark ignition systems. The fundamentals of conventional laser-induced spark ignition have been previously reviewed. Therefore, the objective of this article is to review progress on the use of such innovative techniques of laser-induced ignition including laser-induced cavity ignition and laser-induced multi-point ignition. In addition, emphasis is given to recent work to explore the feasibility of this interesting technology for practical applications concerning internal combustion engines.

Mohamed H. Morsy

2012-01-01T23:59:59.000Z

123

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network (OSTI)

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

124

Developing an approach utilizing local deterministic analysis to predict the cycle friction of the piston ring-pack in internal combustion engines  

E-Print Network (OSTI)

Nowadays, a rapid growth of internal combustion (IC) engines is considered to be a major contributor to energy crisis. About 20% of the mechanical loss in internal combustion engines directly goes to the friction loss ...

Liu, Yang, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

125

Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines  

SciTech Connect

This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

Piedrafita, R.

1986-02-18T23:59:59.000Z

126

Projecting full build-out environmental impacts and roll-out strategies associated with viable hydrogen fueling  

E-Print Network (OSTI)

2 August 2011 Available online 15 September 2011 Keywords: Hydrogen Infrastructure Fuel cell gasoline internal combustion engine vehicles to hydrogen fuel cell electric vehicles (FCEVs) is likely include hydrogen in fuel cell pow- e

Dabdub, Donald

127

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

128

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage.  

E-Print Network (OSTI)

??Efficient hydrogen storage is required for fuel cell vehicles to be competitive with those driven by internal combustion engines. Current methods of storage such as… (more)

Barcelo, Steven James

2009-01-01T23:59:59.000Z

129

International Partnership for Hydrogen Energy IPHE | Open Energy  

Open Energy Info (EERE)

Partnership for Hydrogen Energy IPHE Partnership for Hydrogen Energy IPHE Jump to: navigation, search Name International Partnership for Hydrogen Energy (IPHE) Place Washington, Washington, DC Zip 20004 Sector Hydro, Hydrogen Product The IPHE serves as a mechanism to organize and implement effective, efficient, and focused international research, development, demonstration and commercial utilization activities related to hydrogen and fuel cell technologies. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Study of hydrogen mixing within the combustion engineering system 80+ containment  

SciTech Connect

A scoping study is performed to determine how hydrogen distributes throughout an evolutionary, advanced pressurized water reactor (PWR) spherical containment given a variety of hydrogen inflows and delivery locations. The study uses MAAP and a preliminary containment design for the Combustion Engineering (C-E) System 80+{trademark} standard design as the bases for the detailed thermal-hydraulic analyses. Results are compared to applicable design criteria from the Advanced Light Water Reactor (ALWR) Requirements Document. The C-E System 80+ containment design is based on the Cherokee-Perkins System 80{sup R} spherical containment design, revised to accommodate ALWR Requirements Document design criteria. A feature of this design is the 500,000-gal in-containment refueling water storage tank (IRWST) located in the lower region of the containment building. This tank is the source for the safety injection and containment spray pumps, and the discharge location for the primary system safety and bleed valves. The containment design directs water accumulation on lower floors to the IRWST to preclude its depletion.

Hawley, J.T.; Hammersley, R.J.; Plys, M.G. (Fauske Associates, Inc., Burr Ridge, IL (USA))

1989-11-01T23:59:59.000Z

131

Carbon and Hydrogen Analyses of the Components of a Mixture Utilizing Separation-Combustion Gas Chromatography  

Science Journals Connector (OSTI)

......Utilizing Separation-Combustion Gas Chromatography...temperature copper oxide combustion tube which feeds...solution of brominated hydrocarbons (1% v/v) in...was passed into a combustion tube. Following...Wisconsin) was used to heat the combustion tube...indi- cated by the data of Table II. The......

Sam N. Pennington; Harry D. Brown

1968-10-01T23:59:59.000Z

132

TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY  

E-Print Network (OSTI)

TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY Introduction international partnership to help the world advance toward a sustainable hydrogen economy and to address our greenhouse gas emissions levels. The International Partnership for the Hydrogen Economy (IPHE) will provide

133

A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol  

E-Print Network (OSTI)

cells using hydrogen as fuel are efficient, quiet, and have near zero harmful emissions. Elemental fuel cells that use precious metal catalysts such as platinum require hydrogen fuel which contains lessA Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from

Mukasyan, Alexander

134

Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions  

SciTech Connect

The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

none,

1980-08-01T23:59:59.000Z

135

Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions  

SciTech Connect

The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

none,

1980-08-01T23:59:59.000Z

136

Initiation of combustion processes in a hydrogen-oxygen mixture under the action of a low-energy strong-current electron beam  

Science Journals Connector (OSTI)

The process of combustion initiation in a hydrogen-oxygen mixture by a beam of electrons with an energy of ?10 keV and a mean cross-sectional size of ?10 cm is considered theoretically and experimentally. The ...

S. S. Katsnelson; G. A. Pozdnyakov

2007-03-01T23:59:59.000Z

137

Modeling of contact between liner finish and piston ring in internal combustion engines based on 3D measured surface  

E-Print Network (OSTI)

When decreasing of fossil fuel supplies and air pollution are two major society problems in the 21st century, rapid growth of internal combustion (IC) engines serves as a main producer of these two problems. In order to ...

Zhao, Qing, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

138

Combustion Characteristics and Heat Release Analysis of a Spark-Ignited Engine Fueled with Natural Gas?Hydrogen Blends  

Science Journals Connector (OSTI)

It can be seen that the laminar-burning velocity of hydrogen is 5 times that of natural gas and that the quenching distance of hydrogen is one-third that of natural gas, while the latter is beneficial to reduce the unburned hydrocarbons near the wall and from the top-land crevice. ... The signal of cylinder pressure was acquired for every 0.5 deg CA, the acquisition process covered 254 completed cycles, and the averaged value of these 254 cycles was outputted as the pressure data for calculation of the combustion parameters. ... Two factors are considered to influence the cylinder pressure:? one is the increase in flame propagation speed or combustion speed with the increase of the hydrogen fraction in the blends, and this will cause a rapid rising in the cylinder pressure and bring a higher value of the peak cylinder pressure; another is the decrease in the heating value of the fuel blends with the increase of the hydrogen fraction in natural gas?hydrogen blends, and this will decrease the volumetric heat release rate and the cylinder pressure rising, leading to the lower value of the peak cylinder pressure. ...

Zuohua Huang; Bing Liu; Ke Zeng; Yinyu Huang; Deming Jiang; Xibin Wang; Haiyan Miao

2007-08-15T23:59:59.000Z

139

Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects  

Science Journals Connector (OSTI)

Abstract In the recent years the fuel cells have received much attention. Among various technologies, the Proton Exchange Membrane Fuel Cell (PEMFC) is currently the most appropriate and is used in several vehicles prototype. A comparative technical, economical and ecological analysis between an Internal Combustion Engine fueled with Diesel driving an electricity Generator (ICE-G) and a PEMFC fed by hydrogen produced by ethanol steam reforming was performed. The technical analysis showed the advantages of the PEMFC in comparison to the ICE-G based in energetic and exergetic aspects. The economic analysis shows that fuel cells are not economic competitive when compared to internal combustion engine driving an electricity generator with the same generation capacity; it will only be economically feasible in a long term; due to the large investments required. The environmental analysis was based on concepts of CO2 equivalent, pollution indicator and ecological efficiency. Different to the ICE-G system, the Fuel Cell does not emit pollutants directly and the emission related to this technology is linked mainly with hydrogen production. The ecological efficiency of PEMFC was 96% considering the carbon dioxide cycle, for ICE-G system this parameter reach 51%.

Lúcia Bollini Braga; Jose Luz Silveira; Marcio Evaristo da Silva; Einara Blanco Machin; Daniel Travieso Pedroso; Celso Eduardo Tuna

2014-01-01T23:59:59.000Z

140

A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines  

SciTech Connect

We present a detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine Second Law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane the estimated Second Law efficiency increases for constant volume reforming are 9% and 11%, respectively. The Second Law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

Chakravarthy, Veerathu K [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Pihl, Josh A [ORNL] [ORNL; Conklin, Jim [ORNL] [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow  

SciTech Connect

A time-splitting method for the numerical simulation of stiff nonequilibrium combustion problem was developed. The algorithm has been applied to simulate the shock-induced combustion and to investigate a supersonic one-and two-phase flowfield. The results are physically reasonable and demonstrate that the presence of particles has a dramatic effect on the nozzle flowfield and the thrust. Supersonic combustion usually happens in high speed flying aerodynamic problems, such as supersonic combustion ramjet (scramjet) engine for hypersonic airbreathing vehicles. Particularly for the scramjet engine, due to short residence time in the combustion chamber, it still contains incomplete combustion fuel as it enters the nozzle. For solid propellant rocket motors, the exhaust stream contains particles of aluminum oxide. In these two-phase nozzle flows, transfer of momentum and heat between gas particles often result in a decrease of nozzle efficiency.

Chang, H.T.; Hourng, L.W. [National Central Univ., Chung Li (Taiwan, Province of China). Dept. of Mechanical Engineering; Chien, L.C. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Physics

1997-05-01T23:59:59.000Z

142

Combustion optimization in a hydrogen-enhanced lean burn SI engine  

E-Print Network (OSTI)

Lean operation of spark ignition (SI) automotive engines offers attractive performance incentives. Lowered combustion temperatures inhibit NO[sub]x pollutant formation while reduced manifold throttling minimizes pumping ...

Goldwitz, Joshua A. (Joshua Arlen), 1980-

2004-01-01T23:59:59.000Z

143

Nanostructured Oxygen Carriers for Chemical Looping Combustion and Chemical Looping Hydrogen Production.  

E-Print Network (OSTI)

??Chemical looping combustion (CLC) is an emerging technology for clean energy-production. In CLC, an oxygen carrier is periodically oxidized with air and then reduced in… (more)

Solunke, Rahul Dushyantrao

2011-01-01T23:59:59.000Z

144

Technical Forum Participants at the International Hydrogen Fuel and Pressure Vessel Forum  

Energy.gov (U.S. Department of Energy (DOE))

Photo of the Technical Forum Participants at the International Hydrogen Fuel and Pressure Vessel Forum, which was held on September 27–29, 2010, in Beijing, China.

145

Terms of Reference for the International Partnership for the Hydrogen Economy  

Energy.gov (U.S. Department of Energy (DOE))

Updated version (October 31, 2003) of the Terms of Reference for the International Partnership for the Hydrogen Economy, including purpose, functions, organization.

146

Webinar: International Hydrogen Infrastructure Challenges Workshop Summary – NOW, NEDO, and DOE  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, International Hydrogen Infrastructure Challenges Workshop Summary – NOW, NEDO, and DOE, originally presented on December 16, 2013.

147

DOE Hydrogen Analysis Repository: Potential for Stationary Fuel Cells to  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Hydrogen Vehicles Project Summary Full Title: Analyzing the Potential for Stationary Fuel Cells to Augment Hydrogen Availability in the Transition to Hydrogen Vehicles Project ID: 281 Principal Investigator: David Greene Brief Description: This analysis was focused on the role that combined heat and hydrogen power (CHHP) could play in increasing hydrogen refueling availability during the transition to hydrogen vehicles. Keywords: Stationary fuel cell; hydrogen; plug-in hybrid electric vehicle; hydrogen fuel cell vehicle; combined heat, hydrogen and power; internal combustion engine Performer Principal Investigator: David Greene Organization: Oak Ridge National Laboratory (ORNL)

148

The railplug: Development of a new ignitor for internal combustion engines. Final report  

SciTech Connect

A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of {open_quotes}Star Wars{close_quotes} defense technology, specifically the railgun. The {open_quotes}railplug{close_quotes} is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NOx while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

Matthews, R.D.; Nichols, S.P.; Weldon, W.F.

1994-11-29T23:59:59.000Z

149

Methane-to-hydrogen conversion in a reversible flow filtration combustion reactor at a high pressure  

Science Journals Connector (OSTI)

The noncatalytic process of partial oxidation of methane to syngas in a reversible flow filtration combustion reactor at high pressures has been considered. ... conversion process — the maximum temperature in the...

Yu. M. Dmitrenko; P. A. Klyovan

2013-09-01T23:59:59.000Z

150

Combustion lean limits fundamentals and their application to a SI hydrogen-enhanced engine concept  

E-Print Network (OSTI)

Operating an engine with excess air, under lean conditions, has significant benefits in terms of increased engine efficiency and reduced emissions. However, under high dilution levels, a lean limit is reached where combustion ...

Ayala, Ferran A. (Ferran Alberto), 1976-

2006-01-01T23:59:59.000Z

151

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

152

Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

153

Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

154

Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines  

SciTech Connect

Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

Yiguang Ju; Frederick Dryer

2009-02-07T23:59:59.000Z

155

Cylinder Pressures and Vibration in Internal Combustion Engine Condition G O Chandroth, A J C Sharkey and N E Sharkey  

E-Print Network (OSTI)

of sensory information. Inducing several faults in a 4 stroke diesel engine, cylinder pressure (P­stroke high speed diesel engine. The explosion of the hydrocarbon­air mixture within the complex geometryCylinder Pressures and Vibration in Internal Combustion Engine Condition Monitoring G O Chandroth

Sharkey, Amanda

156

Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a  

E-Print Network (OSTI)

Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

Hickman, Mark

157

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

158

Fundamental studies in hydrogen-rich combustion : instability mechanisms and dynamic mode selection  

E-Print Network (OSTI)

Hydrogen-rich alternative fuels are likely to play a significant role in future power generation systems. The emergence of the integrated gasification combined cycle (IGCC) as one of the favored technologies for incorporating ...

Speth, Raymond L., 1981-

2010-01-01T23:59:59.000Z

159

Combustion Engine  

Energy.gov (U.S. Department of Energy (DOE))

Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

160

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

experts presented information and data on testing and certification of storage tanks for compressed hydrogen, CNG, and HCNG fuels. 1 Specific objectives of the Forum were...

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department will present a live webinar titled"International Hydrogen Infrastructure Challenges—NOW,DOE, and NEDO" on Monday, December 16, from 8:00 a.m. to 10:00 a.m. Eastern Standard Time.

162

International Partnerships for the Hydrogen Economy Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships for the Hydrogen Economy Fact Sheet Partnerships for the Hydrogen Economy Fact Sheet "I am proposing $1.2 billion in research funding so that America can lead the world in developing clean, hydrogen powered automobiles" President George Bush, 2003 State of the Union Address, January 28, 2003 A growing number of countries have committed to accelerate the development of hydrogen and fuel cell technologies in order to improve their energy, environment and economic security. For example, those countries that have made commitments include: * The United States has committed $1.7 billion for the first five years of a long- term hydrogen infrastructure, fuel cells, and hybrid vehicle technologies development program. * The European Union has committed up to 2 billion Euros over five years to

163

APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS PRE-COMBUSTION SOLVENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS PRE-COMBUSTION SOLVENTS PRE-COMBUSTION SORBENTS PRE-COMBUSTION MEMBRANES POST-COMBUSTION SOLVENTS POST-COMBUSTION SORBENTS POST-COMBUSTION MEMBRANES OXY-COMBUSTION OXYGEN PRODUCTION CHEMICAL LOOPING ADVANCED COMPRESSION R&D COLLABORATIONS B-1 APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS NATIONAL ENERGY TECHNOLOGY LABORATORY PRE-COMBUSTION SOLVENTS B-6 SRI International - CO 2 Capture Using AC-ABC Processt B-7 PRE-COMBUSTION SORBENTS B-14 TDA Research - CO 2 Capture for Low-Rank Coal IGCC Systems B-15 URS Group - Sorbent Development for WGS B-18 Air Products and Chemicals - Advanced Acid Gas Separation B-24 Ohio State University-Department of Chemical Engineering - Calcium Looping for Hydrogen Production B-33

164

Hydrogen Station & ICE Vehicle Operations and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Station & ICE Vehicle Operations and Testing Jim Francfort for Lee Slezak WestStart CALSTART Hydrogen Internal Combustion Engine Symposium - February 2006 INL/CON-06-01109 Presentation Outline * Background and Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design and operations * Fuel Dispensing * Prototype Dispenser Testing * Hydrogen and HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * WWW Information AVTA Background and Goal * AVTA is part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications * AVTA Goal - Provide benchmark data for technology

165

Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications  

DOE Patents (OSTI)

An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

1997-01-01T23:59:59.000Z

166

Diagnosis of a turbocharging system of 1 MW internal combustion engine  

Science Journals Connector (OSTI)

A diagnostic procedure is presented purposely for the turbocharging system of 1 MW internal combustion engine (I.C.E.) and specifically, for the filters and compressor modules. This study is part of a wider research activity, concerning the development of a diagnosis system dedicated to the cogenerative I.C.E. installed at the Engineering Faculty in Perugia. Firstly a 1-D thermodynamic model of the CHP engine working fluid was developed to simulate failure conditions of the turbocharging groups, which are not directly replicable on the I.C.E. to avoid plant stoppage. This model is able to simulate the degradation in performance of the engine components. It also takes into account the effect of compensation which the regulation system activates in case of efficiency loss or failure relative to filters or compressors. In order to identify and assess such failures, the fuzzy logic was chosen as the tool for the diagnosis system design. The developed diagnosis system displayed a good reliability degree with the 1-D thermodynamic model results, for operating conditions in correspondence of bad performance either on behalf of the filters or the compressor. Moreover, the procedure can be implemented in the plant monitoring system and provides in real-time diagnosis results about the status of the components and the need of maintenance, on the basis of few parameters already measured on the I.C.E.

L. Barelli; G. Bidini; F. Bonucci

2013-01-01T23:59:59.000Z

167

Optimization of Advanced Diesel Engine Combustion Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

168

A hydrogen and oxygen combined cycle with chemical-looping combustion  

Science Journals Connector (OSTI)

Abstract In the current paper, new systems integrating chemical-looping hydrogen (CLH) generation and the hydrogen (H2) and oxygen (O2) combined cycle have been proposed. The new methane-fueled cycle using CLH has been investigated with the aid of the exergy principle (energy utilization diagram methodology). First, H2 is produced in the CLH, in which FeO and Fe3O4 are used as the looping material. The H2 and O2 combined cycle then uses H2 as fuel. Two types of these combined cycles have been analyzed. Waste heat from the H2–O2 combined cycle is utilized in the CLH to produce H2. The advantages of CLH and the H2 and O2 combined cycle have resulted in a breakthrough in performance. The new system can achieve 59.8% net efficiency with CO2 separation when the turbine inlet temperature is 1300 °C. Meanwhile, the cycle is environmentally superior because of the recovery of CO2 without an energy penalty.

Xiaosong Zhang; Sheng Li; Hui Hong; Hongguang Jin

2014-01-01T23:59:59.000Z

170

CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system  

Science Journals Connector (OSTI)

Abstract This study investigates the temporal development of bubble hydrodynamics in the fuel reactor of a hydrogen-fueled chemical looping combustion (CLC) system by using a computational model. The model also investigates the molar fraction of products in gas and solid phases. The study assists in developing a better understanding of the CLC process, which has many advantages such as being a potentially promising candidate for an efficient carbon dioxide capture technology. The study employs the kinetic theory of granular flow. The reactive fluid dynamic system of the fuel reactor is customized by incorporating the kinetics of an oxygen carrier reduction into a commercial computational fluid dynamics (CFD) code. An Eulerian multiphase treatment is used to describe the continuum two-fluid model for both gas and solid phases. CaSO4 and H2 are used as an oxygen carrier and a fuel, respectively. The computational results are validated with the experimental and numerical results available in the open literature. The CFD simulations are found to capture the features of the bubble formation, rise and burst in unsteady and quasi-steady states very well. The results show a significant increase in the conversion rate with higher dense bed height, lower bed width, higher free board height and smaller oxygen carrier particles which upsurge an overall performance of the CLC plant.

Atal Bihari Harichandan; Tariq Shamim

2014-01-01T23:59:59.000Z

171

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

172

The Internal Molecular Potential Between the Substituent Groups in a Benzene Ring as Derived from the Heats of Combustion  

Science Journals Connector (OSTI)

It is shown that differences in the observed heats of combustion of isomeric benzene derivatives can be interpreted as the internal molecular potential existing between their substituent groups. A like interpretation can be given for the differences between the values observed for the heats of combustion of certain nonisomeric benzene derivatives and those calculated by the rule of additivity. This internal potential, to which the attractive and repulsive forces between the groups are due, results from the electrostatic potential of the group moments (dipole effect), the polarization of the substituents and of the ring (induction effect), the dispersion effect, and from steric hindrance. We have, therefore, a new and direct method of measuring the internal potential, which determines both the internal motion of groups within an organic molecule and its most stable configuration. The values thus measured are in good agreement with values theoretically evaluated from the above intermolecular (van der Waals) forces. From the data derived by this method we conclude in the case of o-xylene that valence angles of 120° between the C—CH3 bond and the aromatic C—C bonds are extremely stable, for the energy required to distort these angles through 10° is greater than 2 K cal/mole. We find, also, very restricted rotation for the butane molecule, from which it follows that saturated aliphatic hydrocarbons in the gaseous state tend to form zigzag chains. Such restricted rotation is found for the ether molecule as well.

H. A. Stuart

1931-10-01T23:59:59.000Z

173

Tailored Materials for Improved Internal Combustion Engine Efficiency (Agreement ID:23725)  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

174

Modeling Investment Strategies in the Transition to a Hydrogen Transportation Economy  

E-Print Network (OSTI)

economy" personal vehicles will be powered by either fuel cells or hydrogen fueled internal combustion in hydrogen fueling stations. An investigation focusing on the driver agents and how they drive the demand for hydrogen fuel was reported at the 2008 NHA Conference. In this report we shift the focus to the investor

Kemner, Ken

175

H2 Internal Combustion Engine Research Towards 45% efficiency and Tier2-Bin5 emissions  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

176

Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

177

International Journal of Hydrogen Energy 32 (2007) 886894 www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

reduction reaction (ORR) kinet- ics, low membrane hydration and dominant oxygen depletion as the mainInternational Journal of Hydrogen Energy 32 (2007) 886­894 www, , Chao-Yang Wanga , Ay Sub aElectrochemical Engine Center (ECEC), Department of Mechanical and Nuclear

178

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

179

Surface Combustion Microengines Based on Photocatalytic Oxidations of Hydrocarbons at Room Temperature  

Science Journals Connector (OSTI)

Surface Combustion Microengines Based on Photocatalytic Oxidations of Hydrocarbons at Room Temperature ... For instance internal combustion engines depend on an exothermic combustion of a mixture of hydrocarbon fuel or hydrogen and air, inside a sealed cylinder equipped with a movable piston.1 Once ignited using an electrical or compression heating system, the combustion products have more available energy than the original mixture, and this energy can be translated into work by driving the piston. ... One possible explanation for the lack of data is that the temperature increase of surface or suspended colloids is hard to measure due to fast heat dissipation through solid bond vibrations or solvent molecules in continuous UV radiation. ...

Ming Su; Vinayak P. Dravid

2005-09-22T23:59:59.000Z

180

A cycle simulation of coal particle fueled reciprocating internal-combustion engines  

E-Print Network (OSTI)

- Summary of Experimental Diesel Engine Operation on Solid Coal Fuels Page Table 2 - Property Data for Coal (Char) Particles . . 23 Table 3 - Summary of the Combustion Model and Reaction Constants 40 Table 4 ? Specifications of the Base Case Engine... Efforts The first attempt to operate a solid particle fueled piston engine was performed nearly a century ago by Rudolf Diesel, inventor of the compression-ignition engine. Since then, at least a dozen separate attempts to oper- ate diesel engines...

Rosegay, Kenneth Harold

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

182

Collaborative Combustion Research with BES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Research with BES Collaborative Combustion Research with BES 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

183

Non-Petroleum-Based Fuel Effects on Advanced Combustion | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuel Effects on Advanced Combustion Non-Petroleum-Based Fuel Effects on Advanced Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

184

Low-Temperature Diesel Combustion Cross-Cut Research | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Temperature Diesel Combustion Cross-Cut Research Low-Temperature Diesel Combustion Cross-Cut Research 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review...

185

Low-Temperature Automotive Diesel Combustion | Department of...  

Energy Savers (EERE)

Diesel Combustion Low-Temperature Automotive Diesel Combustion 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

186

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen...

187

Light-Duty Diesel Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light-Duty Diesel Combustion Light-Duty Diesel Combustion 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

188

Light Duty Efficient Clean Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Efficient Clean Combustion Light Duty Efficient Clean Combustion 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

189

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Today’s energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

190

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

191

A retrospective survey of the use of laboratory tests to simulate internal combustion engine materials tribology problems  

SciTech Connect

Progress in the Field of tribology strongly parallels, and has always been strongly driven by, developments and needs in transportation and related industries. Testing of candidate materials for internal combustion engine applications has historically taken several routes: (1) replacement of parts in actual engines subjected to daily use, (2) testing in special, instrumented test engines, (3) and simulative testing in laboratory tribometers using relatively simple specimens. The advantages and disadvantages of each approach are reviewed using historical examples. A four-decade, retrospective survey of the tribomaterials literature focused on the effectiveness of laboratory simulations for engine materials screening. Guidelines for designing and ducting successful tribology laboratory simulations will be discussed. These concepts were used to design a valve wear simulator at Oak Ridge National Laboratory.

Blau, P.J.

1992-12-31T23:59:59.000Z

192

Studying the Internal Ballistics of a Combustion Driven Potato Cannon using High-speed Video  

E-Print Network (OSTI)

A potato cannon was designed to accommodate several different experimental propellants and have a transparent barrel so the movement of the projectile could be recorded on high-speed video (at 2000 frames per second). Both combustion chamber and barrel were made of polyvinyl chloride (PVC). Five experimental propellants were tested: propane (C3H8), acetylene (C2H2), ethanol (C2H6O), methanol (CH4O), and butane (C4H10). The amount of each experimental propellant was calculated to approximate a stoichometric mixture and considering the Upper Flammability Limit (UFL) and the Lower Flammability Limit (LFL), which in turn were affected by the volume of the combustion chamber. Cylindrical projectiles were cut from raw potatoes so that there was an airtight fit, and each weighed 50 (+/- 0.5) grams. For each trial, position as a function of time was determined via frame by frame analysis. Five trials were taken for each experimental propellant and the results analyzed to compute velocity and acceleration as functions...

Courtney, E D S

2013-01-01T23:59:59.000Z

193

10 Questions Regarding SAE Hydrogen Fueling Standards  

Energy.gov (U.S. Department of Energy (DOE))

In this article, DOE interviews one of the world's leading experts who spearheaded the development of the recently established Society of Automotive Engineers (SAE) standards known as J2601, which establish a fast hydrogen fueling protocol enabling a driving range equivalent to internal combustion gasoline engine vehicles.

194

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

195

Ultrarich Filtration Combustion of Ethane  

Science Journals Connector (OSTI)

Ultrarich filtration combustion of ethane is studied in a porous medium composed of alumina spheres with the aim to achieve optimized conversion to hydrogen and syngas. ... Dhamrat, R. S.; Ellzey, J. L.Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor Combust. ...

Mario Toledo; Khriscia Utria; Alexei V. Saveliev

2014-01-28T23:59:59.000Z

196

Pressure-time characterization of an internal combustion engine with sinusoidal piston travel  

SciTech Connect

A unique engine configuration called the Stiller-Smith Engine creates a nonconventional pressure versus time response due to the sinusoidal nature of the motion-conversion mechanism. The differences in response are due in part to the utilization of stock piston/cylinder assemblies for engineering prototypes, and the elimination of piston dwell. If all other engine considerations were equal, fuel conversion criteria would at this stage of development favor the slider-crank, but newly identified design and dynamic characteristics of the sinusoidal engine may shift the balance. To understand the differences in potential power, several analytical procedures and experimental tests have been designed to determine the changes in combustion pressure due to sinusoidal piston travel. The experimental results from these test are presented along with a qualitative analysis for future piston/cylinder design requirements.

Smith, J.; Churchill, R.; Woodrow, G.

1987-01-01T23:59:59.000Z

197

Development of Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments  

Energy.gov (U.S. Department of Energy (DOE))

Compact sensors have been developed to allow for real-time monitoring of O2 and NOx during combustion.

198

Identification of Potential Efficiency Opportunities in Internal Combustion Engines Using a Detailed Thermodynamic Analysis of Engine Simulation Results  

SciTech Connect

Current political and environmental concerns are driving renewed efforts to develop techniques for improving the efficiency of internal combustion engines. A detailed thermodynamic analysis of an engine and its components from a 1st and 2nd law perspective is necessary to characterize system losses and to identify efficiency opportunities. We have developed a method for performing this analysis using engine-simulation results obtained from WAVE , a commercial engine-modeling software package available from Ricardo, Inc. Results from the engine simulation are post-processed to compute thermodynamic properties such as internal energy, enthalpy, entropy, and availability (or exergy), which are required to perform energy and availability balances of the system. This analysis is performed for all major components (turbocharger, intercooler, EGR cooler, etc.) of the engine as a function of crank angle degree for the entire engine cycle. With this information, we are able to identify potential efficiency opportunities as well as guide engine experiments for exploring new technologies for recovering system losses.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Graves, Ronald L [ORNL

2008-01-01T23:59:59.000Z

199

Hydrogen: The ultimate fuel and energy carrier  

Science Journals Connector (OSTI)

Hydrogen: The ultimate fuel and energy carrier ... Some of the questions include: 1)Why choose hydrogen as a fuel, 2) How is hydrogen produced, 3)Why is this combustion nonpolluting, 4) How is hydrogen stored? ... Hydrogen ...

Gustav P. Dinga

1988-01-01T23:59:59.000Z

200

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

SciTech Connect

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Definition: Combustion | Open Energy Information  

Open Energy Info (EERE)

Combustion Combustion Jump to: navigation, search Dictionary.png Combustion The process of burning; chemical oxidation accompanied by the generation of light and heat.[1][2] View on Wikipedia Wikipedia Definition "Burning" redirects here. For combustion without external ignition, see spontaneous combustion. For the vehicle engine, see internal combustion engine. For other uses, see Burning (disambiguation) and Combustion (disambiguation). Error creating thumbnail: Unable to create destination directory This article's introduction section may not adequately summarize its contents. To comply with Wikipedia's lead section guidelines, please consider modifying the lead to provide an accessible overview of the article's key points in such a way that it can stand on its own as a

202

17 - Hydrogen as a fuel in transportation  

Science Journals Connector (OSTI)

Abstract: Hydrogen has attracted fresh attention in recent decades as an alternative renewable and sustainable transportation fuel. Hydrogen can fuel conventional or hybridized power trains, through highly efficient and low emission hydrogen-fueled internal combustion engines (H2ICE) and proton exchange membrane fuel cells (PEMFC). High capacity and cost-effective onboard vehicle hydrogen storage remains a major challenge, along with the affordability of building out a distributed hydrogen production, distribution, and fueling infrastructure. Current practice is to store hydrogen onboard vehicles as a compressed gas, cryogenic liquid, or in chemical form for conversion on demand. Recent hydrogen demonstrations and field trials have advanced the technology, lowered costs, and improved public perception.

J.R. Anstrom

2014-01-01T23:59:59.000Z

203

Simulation of lean premixed turbulent combustion  

E-Print Network (OSTI)

combustion systems that can burn fuels such as hydrogen or syngas.syngas, which is obtained from coal gasi?cation. E?ective utilization of these fuels requires combustion

2008-01-01T23:59:59.000Z

204

E-Print Network 3.0 - advanced wall-fired combustion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass and Animal Waste Combustion Energy Engine Emission Fuel Cells... Gasification Internal Combustion Engine Performance Pollutants Formation (NOx, Hg) and...

205

The effects of blending hydrogen with methane on engine operation, efficiency, and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

-01-0474 -01-0474 The effects of blending hydrogen with methane on engine operation, efficiency, and emissions Thomas Wallner and Henry K. Ng Argonne National Laboratory Robert W. Peters University of Alabama at Birmingham Copyright © 2007 SAE International ABSTRACT Hydrogen is considered one of the most promising future energy carriers and transportation fuels. Because of the lack of a hydrogen infrastructure and refueling stations, widespread introduction of vehicles powered by pure hydrogen is not likely in the near future. Blending hydrogen with methane could be one solution. Such blends take advantage of the unique combustion properties of hydrogen and, at the same time, reduce the demand for pure hydrogen. In this paper, the authors analyze the combustion properties of hydrogen/methane

206

Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Retooling Today's Retooling Today's Engines for the Hydrogen Economy to someone by E-mail Share Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Facebook Tweet about Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Twitter Bookmark Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Google Bookmark Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Delicious Rank Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Digg Find More places to share Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on AddThis.com... Retooling Today's Engines for the Hydrogen Economy Hydrogen-Powered Internal Combustion Engines Gain Momentum in the Quest to

207

American Wind Power Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name American Wind Power & Hydrogen LLC Place New York, New York Zip 10022 Sector Hydro, Hydrogen, Vehicles Product AWP&H is a hydrogen transportation system integrator focused on hydrogen infrastructure, electrolysis, and hydrogen fueled internal combustion engine vehicles. References American Wind Power & Hydrogen LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Wind Power & Hydrogen LLC is a company located in New York, New York . References ↑ "American Wind Power & Hydrogen LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Wind_Power_Hydrogen_LLC&oldid=342137"

208

Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers  

SciTech Connect

The effect of hydrogen sulfide (H{sub 2}S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides - such as iron oxide, nickel oxide, manganese oxide, and copper oxide - was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H{sub 2}S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H{sub 2}S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H{sub 2}S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H{sub 2}S for all four metal oxides.

Tian, H.J.; Simonyi, T.; Poston, J.; Siriwardane, R. [US DOE, Morgantown, WV (United States). National Energy Technology Laboratory

2009-09-15T23:59:59.000Z

209

Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell  

Science Journals Connector (OSTI)

Abstract Open circuit losses encompass a set of phenomena that reduce PEM fuel cell (PEMFC) efficiency, especially at low current densities. Properly modelling these losses is crucial for obtaining PEMFC models that reproduce accurately the experimental behaviour of \\{PEMFCs\\} operating at low current densities. The open circuit losses can be disaggregated into three distinct contributions: mixed potential, hydrogen crossovers and internal short-circuits. The aim of this work is to obtain a model for the anodic and the cathodic pressure effects on the hydrogen crossovers and the internal short-circuits in a commercial PEMFC. In order to achieve this goal, the hydrogen crossovers and the internal short-circuit were measured experimentally on a commercial PEMFC by linear voltammetry. The measurements were performed at a given temperature and gas inlet humidification level, for different anodic and cathodic pressures.

J.J. Giner-Sanz; E.M. Ortega; V. Pérez-Herranz

2014-01-01T23:59:59.000Z

210

NETL: 2009 Conference Proceedings - Pre-combustion CO2 Capture Kick-off  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-combustion CO2 Capture Kick-off Meetings Pre-combustion CO2 Capture Kick-off Meetings Pittsburgh, PA November 12-13, 2009 Table of Contents Disclaimer Presentations PRESENTATIONS Welcome/Sequestration Program Overview [PDF-842KB] Sean Plasynski, Sequestration Technology Manager Hydrogen Selective Ex-foliated Zeolite Membranes [PDF-3.4MB] University Of Minnesota Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods [PDF-746KB] Pall Corporation Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic-Carbonate Membrane Reactor [PDF-1.7MB] Arizona State University CO2 Capture from IGCC Gas Streams Using the AC-ABC Process [PDF-842KB] SRI International A Low-Cost, High-Efficiency Regenerable Sorbent for Pre-Combustion CO2 Capture [PDF-1.2MB]

211

On the Combustion of Hydrogen-Rich Gaseous Fuels with Low Calorific Value in a Porous Burner  

Science Journals Connector (OSTI)

It was also observed that, for the Wobbe Index varying from 5 to 44 MJ/Nm3, it is possible to burn stably at ?260 kW/m2, which reveals the fuel interchangeability potential of the present burner design. ... A range of low calorific value gaseous fuel mixtures containing CH4, H2, CO2, CO, and N2 have been burned in a porous radiant burner to analyze the effects of the fuel composition on flame stability and pollutant emissions. ... There are, however, gaps in the fundamental understanding of syngas combustion and emissions, as most previous research has focused on flames burning individual fuel components such as H2 and CH4, rather than syngas mixts. ...

R. W. Francisco, Jr.; F. Rua; M. Costa; R. C. Catapan; A. A. M. Oliveira

2009-12-30T23:59:59.000Z

212

Sales Tax Exemption for Hydrogen Generation Facilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Exemption for Hydrogen Generation Facilities Tax Exemption for Hydrogen Generation Facilities Sales Tax Exemption for Hydrogen Generation Facilities < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner In North Dakota, the sale of hydrogen used to power an internal combustion engine or a fuel cell is exempt from sales tax. In addition, any equipment used by a hydrogen generation facility for the production and storage of hydrogen is exemption from sales tax. Stationary and portable hydrogen containers or pressure vessels, piping, tubing, fittings, gaskets, controls, valves, gauges, pressure regulators, safety relief devices are

213

Some recent advances in droplet combustion  

Science Journals Connector (OSTI)

This paper reviews the theoretical and experimental advances in droplet combustion since the 1982 Second International Colloquium on Drops and Bubbles. Specific topics discussed include multicomponent droplet combustion and microexplosion convection droplet combustion the combustion of slurries propellants and hazardous wastes soot formation in droplet burning and several miscellaneous subjects. Areas of further research are suggested.

C. K. Law

1990-01-01T23:59:59.000Z

214

Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations. Progress report, 1 December 1985-31 May 1986  

SciTech Connect

The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.

Chitsomboon, T.; Tiwari, S.N.

1986-08-01T23:59:59.000Z

215

A comparative study of the Stiller-Smith and slider-crank mechanisms for eight-cylinder internal combustion engine use  

SciTech Connect

This paper reports that the possible alternatives to the slider-crank for internal combustion engine use, the Scotch yoke in its various forms and inversions has received considerable attention. Among these, the Stiller-Smith mechanism has shown promise as being a viable option. Kinetostatic models were formulated to determine loading within similar eight-cylinder, four-stroke, compression-ignition engines with emphasis placed on comparing the number and similarity of mechanism components, implications of component and linkage motions, the loading experienced by similar bearing surfaces, and the friction losses of specific components.

Smith, J.E.; Smith, J.C.; McKisic, A.D. (Mechanical and Aerospace Engineering, West Virginia Univ., Morgantown, WV (US))

1991-07-01T23:59:59.000Z

216

Vehicle Technologies Office Merit Review 2014: Lubricant Formulations to Enhance Engine Efficiency (LFEEE) in Modern Internal Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

217

International Journal of Hydrogen Energy 32 (2007) 463468 www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

methods for hydrogen production include reforming of hydro- carbons such as natural gas, coal gasification.elsevier.com/locate/ijhydene Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer Prem The electrochemical step in two thermochemical cycles for hydrogen production is reported. One cycle involves

Weidner, John W.

218

Combustion of high-sulfur coal and anthracite wastes in a rotary kiln combustor with an advanced internal air distributor  

SciTech Connect

Fluid bed combustors have received extensive testing with both high-sulfur coal and anthracite wastes. Rotary kilns are effective and popular devices for waste combustion. The Angelo Rotary Furnace{trademark} has been developed to improve the operation of rotary pyrolyzer/combustor systems through enhanced air distribution, which in this process is defined as staged, swirled combustion air injection. Fourteen of these new furnaces have been installed worldwide. Two units in Thailand, designed for rice hull feed with occasional lignite feed, have been recently started up. An older unit in Pennsylvania is being upgraded with a new, more advanced air distribution system for a series of tests this fall in which inexpensive high-sulfur coal and anthracite wastes will be fired with limestone. The purposes of these tests are to determine the burning characteristics of these two fuels in this system, to discover the Ca/S ratios necessary for operation of a rotary kiln combusting these fuels, and to observe the gas-borne emissions from the furnace. An extensive preliminary design study will be performed on a commercial installation for combustion of anthracite wastes. 14 refs., 5 figs., 1 tab.

Cobb, J.T. Jr. (Pittsburgh Univ., PA (USA)); Ahn, Y.K. (Gilbert/Commonwealth, Inc., Reading, PA (USA)); Angelo, J.F. (Universal Energy International, Inc., Little Rock, AR (USA))

1990-01-01T23:59:59.000Z

219

Thermal ignition combustion system  

SciTech Connect

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

220

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Hydrogen Analysis Repository: Life Cycle Analysis of Vehicles for  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis of Vehicles for Canada Life Cycle Analysis of Vehicles for Canada Project Summary Full Title: Life Cycle Analysis of Vehicles Powered by a Fuel Cell and by Internal Combustion Engine for Canada Project ID: 117 Principal Investigator: Xianguo Li Purpose In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station.

222

Using HyPro to Evaluate Competing Hydrogen Pathways, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

89 89 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives Develop understanding of how a hydrogen production infrastructure for H 2 fuel cell (FC)/ internal combustion engine (ICE) vehicles might develop in the U.S. Quantify production methods under consistent cost and state-of-technology assumptions. Analyze infrastructure development under dynamic conditions over time. Determine factors that will drive infrastructure development. Define role of externalities such as policy and technology advancement. Develop a computational model to aid in the analysis. Technical Barriers This project addresses the following technical barriers from the Systems Analysis section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and

223

NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)  

SciTech Connect

Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

Not Available

2010-08-01T23:59:59.000Z

224

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network (OSTI)

on the internal combustion engine and fossil fuels to "greener" fuel cell and hybrid electric technology: · Vehicle integration and control expertise; · Alternative fuel infrastructure including hydrogen, LNG; · Vehicle test track and dynamometer facilities; · Vehicle fabrication facilities; and · Fuel cell

Lee, Dongwon

225

Research Teams - Combustion Energy Frontier Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Teams Research Teams Associates Greg Smith, Senior Research Chemist, SRI International Jeffrey A. Sutton, Assistant Professor, Ohio State Univeristy Combustion Energy...

226

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

SciTech Connect

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

227

Combustion Safety Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 1-2, 2012 March 1-2, 2012 Building America Stakeholders Meeting Austin, Texas Combustion Safety in the Codes Larry Brand Gas Technology Institute Acknowledgement to Paul Cabot - American Gas Association 2 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Widely adopted fuel gas codes: * National Fuel Gas Code - ANSI Z223.1/NFPA 54, published by AGA and NFPA (NFGC) * International Fuel Gas Code - published by the International Code Council (IFGC) * Uniform Plumbing Code published by IAPMO (UPC) Safety codes become requirements when adopted by the Authority Having Jurisdiction (governments or fire safety authorities) 3 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Formal Relationships Between these codes: - The IFGC extracts many safety

228

Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

229

Gasoline-Like Fuel Effects on Advanced Combustion Regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regimes Gasoline-Like Fuel Effects on Advanced Combustion Regimes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

230

Gasoline-like fuel effects on advanced combustion regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regimes Gasoline-like fuel effects on advanced combustion regimes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

231

L'hydrogene pour le transport sur route : réalisations et développements  

Science Journals Connector (OSTI)

Hydrogen for road transportation : achievements and developments. At the beginning of this millenium, hydrogen appears as a potential energy carrier for the future. Thus, it could serve as a storage medium for renewable energy forms, which should play an increasing part in the world energy supply. In a closer future, hydrogen could also become a fuel for prospective fuel-cell and internal-combustion vehicles. We present here an inventory of the various technologies related to the use of hydrogen in road transportation : propulsion type (fuel cell and electric motor, or internal combustion engine), hydrogen production, on-board storage, infrastructure. Safety, standardization and regulation aspects will also be addressed. Presently, the majority of hydrogen buses are equipped with polymer membrane fuel cells (PEMFC), directly supplied with hydrogen from pressurized vessels (300 bars). On the other hand, car manufacturers are developing various types of experimental vehicles : internal-combustion engine cars with liquid hydrogen storage, fuel cell (PEMFC) cars with storage of hydrogen (liquid, gaseous, hydride) or of methanol. The type of required infrastructured will depend on the type of fuel chosen by the car makers and on the requirements of the oil companies. Several hydrogen supply stations, of different technologies, have already been set up. They deliver gaseous or liquid hydrogen produced by reforming of natural gas or by electrolysis. The building of a hydrogen-based fueling system requires the development of specific means of production, transportation, storage and delivery. Public acceptance will have to be won by guaranteeing safety, reliability, performance and competitivity. Presently, research and development work is mainly carried out on : on-board storage of hydrogen ; on-board systems for the production of hydrogen from methanol and petrol ; standardization and regulation. Résumé En ce début de millénaire, l'hydrogène apparaît comme un vecteur énergétique potentiel du futur. Il pourrait, en effet, servir d'intermédiaire de stockage des énergies renouvelables dont la part dans l'approvisionnement énergétique mondial est amenée à croître. Dans un avenir bien plus proche, l'hydrogène pourrait également devenir un carburant pour les futurs véhicules, équipés de pile à combustible ou de moteur à combustion interne. Nous faisons ici un état des lieux des différentes technologies liées à l'utilisation de l'hydrogène dans le transport sur route : type de propulsion (pile à combustible et moteur électrique ou moteur à combustion interne), production d'hydrogène, stockage embarqué, infrastructure. Les aspects de sécurité, normalisation et réglementation sont également abordés. Actuellement, la majorité des bus à hydrogène est équipée de piles à membrane polymère (PEMFC) alimentées directement en hydrogène, stocké dans des réservoirs sous pression (300 bars). Par contre, les constructeurs d'automobiles développent différents types de prototypes : voitures à moteur à combustion interne avec stockage d'hydrogène liquide, voitures à pile PEM avec stockage d'hydrogène (liquide, gaz, hydrures) ou de méthanol. Le type d'infrastructure dépendra du combustible primaire choisi par les constructeurs d'automobiles et des impératifs des compagnies pétrolières. Plusieurs stations-service hydrogène, de différentes technologies, ont été réalisées. Elles délivrent de l'hydrogène gazeux ou liquide, produit par reformage de gaz naturel ou par électrolyse. La mise en place d'une filière « Hydrogène å nécessite, en effet, le développement de moyens de production, de transport, de distribution et de stockage spécifiques. L'acceptation du public devra être gagnée par des garanties de sécurité, de fiabilité, de performance et de compétitivité. Les travaux de recherche et développement se concentrent actuellement sur : le stockage embarqué d'hydrogène ; les systèmes embarqués de production d'hydrogène à partir de méthanol et d'essence ; la normalisa

Michel Junker; Laurence Bocquet; Madjid Bendif; Daniel Karboviac

2001-01-01T23:59:59.000Z

232

Advanced Combustion  

SciTech Connect

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

233

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

234

DOE Hydrogen and Fuel Cell Overview: ASME 2011 5th International Conference on Energy Sustainability  

Energy.gov (U.S. Department of Energy (DOE))

Plenary presentation by Sunita Satyapal at the ASME 2011 5th International Conference on Energy Sustainability on August 8, 2011, in Washington, DC.

235

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011.

236

International Journal of Hydrogen Energy 32 (2007) 44894502 www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

.elsevier.com/locate/ijhydene Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell J.P. Owejana is the main product of the electrochemical reaction in a proton exchange membrane (PEM) fuel cell. Where Hydrogen fuel cells are being developed as highly efficient and cost effective energy conversion devices

Kandlikar, Satish

237

International Journal of Hydrogen Energy 31 (2006) 7792 www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

for fueling automotives to reduce car- bon dioxide emissions, limit dependence on imported petroleum-grade crude oils into transport fuels. World oil refineries and chemical plants' demand for hydrogen-free tech- nologies, including either battery- or fuel-cell--operated vehicles. However, the H2 fuel

Yildiz, Bilge

238

OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES  

SciTech Connect

Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

2011-07-14T23:59:59.000Z

239

Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 429435  

E-Print Network (OSTI)

catalyst; Ceria; Co-precipitation; Fuel cell 1. Introduction In the past, the world has widely relied.o@chula.ac.th (S. Osuwan). hydrogen is the ideal fuel for the fuel cell system since it simpliÿes system; received in revised form 25 September 2003 Abstract The proton exchange membrane fuel cells

Gulari, Erdogan

240

Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft  

Science Journals Connector (OSTI)

Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper we report on the design fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

Gary L. Mills; Brian Buchholtz; Al Olsen

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL- High-Pressure Combustion Research Facility  

SciTech Connect

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2013-07-08T23:59:59.000Z

242

NETL- High-Pressure Combustion Research Facility  

ScienceCinema (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2014-06-26T23:59:59.000Z

243

Development of Advanced Small Hydrogen Engines  

SciTech Connect

The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

Krishna Sapru; Zhaosheng Tan; Ben Chao

2010-09-30T23:59:59.000Z

244

NREL: Hydrogen and Fuel Cells Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 25, 2010 New Report Identifies Ways to Reduce Cost of Fuel Cell Power Plants A new report by the National Renewable Energy Laboratory details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs. October 18, 2010 NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies NREL uses its hydrogen-powered internal combustion engine bus as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. The U.S. Department of Energy funded the lease for the bus to

245

Hydrogen engine performance analysis project. Second annual report  

SciTech Connect

Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

1980-01-01T23:59:59.000Z

246

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

247

Combustion Noise  

E-Print Network (OSTI)

stabilize or destabilize the modes of the system, depending on the configuration of the combustor and the form of the coupling [26, 30]. In contrast to combustion instability, in broad-band combustion noise the unsteadiness in the rate of combustion... from th s in a mod on tempera , entropic a de of indir t frequenci r, open que sical theory assical expe s [14] who it by a spa d a transie le gases. A e bubble si idered as a flame was ent was o ng and dif depended udy it wa ion, ? ?,p r t? : (a...

Dowling, Ann P.; Mahmoudi, Yasser

2014-01-01T23:59:59.000Z

248

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

249

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

250

20 - Chemical looping combustion (CLC)  

Science Journals Connector (OSTI)

Abstract: Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of the greenhouse gas CO2. The technology involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, i.e. fuel reactor and air reactor, are used in the process. The outlet gas from the fuel reactor consists ideally of CO2 and H2O, and the latter is easily removed by condensation. This chapter presents the basic principles, gives an overview of oxygen-carrier materials and operational experiences, discusses the application to gaseous, liquid and solid fuels, and the use for combustion as well as for hydrogen production.

A. Lyngfelt

2013-01-01T23:59:59.000Z

251

Pulse combustion  

Science Journals Connector (OSTI)

Pulse combustion has been gaining increased interest because of its potential for higher combustion efficiency greater combustion intensity and lower pollutant emissions. Unsteady combustion causes increased mass momentum and heat transfer. As a result reactants mix faster heat release is accelerated and heat transfer is enhanced in unsteady reacting flows. Many of these phenomena were discovered long ago by engineers looking for the cause of often detrimental combustion instabilities. Much more recently some of these enhanced transfer properties have been used to design efficient and compact pulse combustors. Although to date successful commercialization on a large scale has been limited to home heating units (e.g. the Lenox Pulse Furnace) highly efficient pulse spray dryers (Bepex Unison Dryer) pulse calciners and pulse waste incinerators have been designed. Pulsations have also been applied to carbon black fluidized bed gasifiers. Not all these designs will become economically viable. However the development of tunable pulse combustors that can be acoustically matched to the changing resonance frequency of these pulse processes have made many of them more promising. Recent findings that pulsation can enhance burning even in turbulent flows lend further encouragement to the developers of novel pulse combustion devices.

Jechiel I. Jagoda

2000-01-01T23:59:59.000Z

252

Determination of Syngas Premixed Gasoline and Methanol Combustion Products at Chemical Equilibrium via Lagrange Multipliers Method  

Science Journals Connector (OSTI)

(10) Several patents for generating hydrogen-rich syngas out of methanol to combust the syngas in an automotive engine have been published. ... On the other hand, the high flame speed of hydrogen causes higher NOx emissions and combustion instability when syngas is combusted with a near-stoichiometric air/fuel ratio. ...

Osman Sinan Süslü; Ipek Becerik

2014-02-11T23:59:59.000Z

253

Argonne TTRDC - Engines - Combustion Visualization - emissions,  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Visualization Combustion Visualization Exploring Combustion Using Advanced Imaging Techniques In the photo, the GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Fig. 1. The GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Two-dimensional image of hydrogen combustion OH chemiluminescence. Fig. 2. Two-dimensional image of hydrogen combustion OH chemiluminescence.

254

COMBUSTION RESEARCH - FY-1979  

E-Print Network (OSTI)

deposition due to the heat of combustion. The problem wedimensionless heat of combustion, QpYoxoolhw t transferredfraction of specie i heat of combustion per gram of fuel

,

2012-01-01T23:59:59.000Z

255

Sandia National Laboratories Combustion Research Facility  

E-Print Network (OSTI)

Hydrogen & Combustion Technologies Department Livermore, CA DOE Hydrogen, Fuel Cells, and Infrastructure collector, compressor, high-P storage, pump, FC stack (efficiency vs power) · Developing: ICE gen-set, wind Borns, Scott Jones, Paul Pickard ­ Economic modeling of H2 unit cost · Production: reforming

256

High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas and Blends - Materials Testing and Design Requirements for Hydrogen Components and Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Hydrogen...

257

Experimental investigation of the effect of combined hydrogen and diesel combustion on the particulate size distribution from a high speed direct injection diesel engine  

Science Journals Connector (OSTI)

The effects of hydrogen addition and exhaust gas recirculation (EGR) levels on the exhaust particulate matter size distribution in a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4-cylinder, direct injection engine equipped with a modern high-pressure common rail. A nano-Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) was used in this work to study the particulate matter size distribution. All tests were conducted at the set operating point of 1,500 rpm. The experimental work showed that the particulate matter size distribution was not dramatically altered by the addition of EGR, but the main peak was shifted towards the nucleation mode with the addition of hydrogen. The addition of hydrogen increases the emissions of nitrogen oxides (NOx), but reduces the emissions of unburnt hydrocarbons (THC). Conversely, the addition of EGR reduces NOx, but can increase THC. Hydrogen addition increases the peak cylinder pressure and the maximum rate of pressure rise.

L. McWilliam; A. Megaritis

2009-01-01T23:59:59.000Z

258

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

259

Hydrogen Production from Carbohydrates: A Mini-Review  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Hydrogen Production from Carbohydrates: A Mini-Review Y.-H. Percival Zhang *,1,2,3 1 Department of Biological Systems Engineering, Virginia Tech, 210-A Seitz Hall, Blacksburg, VA 24061, USA 2 Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA 24061, USA 3 DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831, USA * Tel: 540-231-7414. Fax: 540-231-7414. Email: ypzhang@vt.edu. The hydrogen economy promises a clean energy future featuring higher energy utilization ef ciency and fewer pollutants compared to liquid fuel/internal combustion engines. Hydrogen production from the enriched low-cost biomass carbohydrates would achieve nearly zero carbon emissions in a whole life cycle. In this book chapter, we present latest advances of hydrogen generation from biomass carbohydrates by chemical catalysis (e.g., gasi cation,

260

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2013 DOE Hydrogen and Fuel Cells Program...

262

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2011  

Energy.gov (U.S. Department of Energy (DOE))

Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

263

Turbulent combustion  

SciTech Connect

Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

264

Combustion & Health  

E-Print Network (OSTI)

FFCOMBUSTION & HEALTH Winifred J. Hamilton, PhD, SM Clear Air Through Energy Efficiency (CATEE) Galveston, TX October 9?11, 2012 FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? Biggest threat to world ecosystems (and to human health...) ? Combustion of fossil fuels for ? Electricity ? Industrial processes ? Vehicle propulsion ? Cooking and heat ? Other ? Munitions ? Fireworks ? Light ? Cigarettes, hookahs? FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? SCALE (think health...

Hamilton, W.

2012-01-01T23:59:59.000Z

265

Method and system for controlled combustion engines  

DOE Patents (OSTI)

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

266

Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons  

DOE Patents (OSTI)

A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

Muradov, Nazim Z. (Melbourne, FL)

2011-08-23T23:59:59.000Z

267

Observation of mixing and combustion processes of H2 jet injected into supersonic streamwise vortices  

Science Journals Connector (OSTI)

We will present the main results of our experimental investigation of the supersonic mixing and combustion processes of gaseous hydrogen injected into the streamwise...

T. Sunami; F. Scheel

2005-01-01T23:59:59.000Z

268

Combustion Control  

E-Print Network (OSTI)

using a liquid fuel. The air and fuel valve designs are vastly different, with different flow characteristics. These factors make the initial adjustment of the system difficult, and proper maintenance of ratio accuracy unlikely. Linked valves... casing of the fuel control regulator with the combustion air piping. The upstream pressure on the burner air orifice is applied to the main diaphragm of the pressure balanced regulator. Assuming sufficient gas pressure at the regulator inlet...

Riccardi, R. C.

1984-01-01T23:59:59.000Z

269

Chapter 8 - Hydrogen, Fuel Cells and Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Abstract Hydrogen has long been advocated as the ultra-clean fuel because its combustion produces pure water and no pollutants. As long ago as the 1930s, a German engineer demonstrated that an internal-combustion engine could be made to run on hydrogen. More recently, the automotive company BMW has built and demonstrated a small fleet of cars fuelled by hydrogen with the fuel stored on board as cryogenic liquid. An alternative approach to utilizing hydrogen is in an electrochemical fuel cell to generate electricity to drive an electric motor. This mode of transport is the counterpart of the battery electric vehicle (BEV). Fuel cell vehicles provide greater driving range and faster refuelling than \\{BEVs\\} and are therefore clearly a desirable way forward for electric traction. Unfortunately, there remain problems with the generation, the distribution and the storage of hydrogen, as well as with the cost of the fuel cells themselves. This chapter discusses these matters and concludes that, with the possible exception of fleets of buses, it will be some while yet before fuel cell vehicles become commonplace.

Ronald M. Dell; Patrick T. Moseley; David A.J. Rand

2014-01-01T23:59:59.000Z

270

Predicting the behavior of a lean-burn hydrogen-enhanced engine concept  

E-Print Network (OSTI)

(cont.) Lean operation of a spark ignition (SI) internal combustion engine (ICE) offers attractive performance incentives. Lowered combustion temperatures inhibit formation of nitrogen oxides (NOx), while reduced intake ...

Ivanic, Žiga, 1978-

2004-01-01T23:59:59.000Z

271

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

272

Bonfire Tests of High Pressure Hydrogen Storage Tanks | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonfire Tests of High Pressure Hydrogen Storage Tanks Bonfire Tests of High Pressure Hydrogen Storage Tanks These slides were presented at the International Hydrogen Fuel and...

273

A nanostructured composite material for hydrogen storage: design & analysis.  

E-Print Network (OSTI)

??Hydrogen has long been considered an ideal energy carrier for a sustainable energy economy, for both direct combustion and as a fuel for polymer-electrolyte fuel… (more)

Al-Hajjaj, A.A.

2012-01-01T23:59:59.000Z

274

Low-Temperature Diesel Combustion Cross-Cut Research | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Density and Temperature on Soot Formation under High-EGR Conditions Low-Temperature Diesel Combustion Cross-Cut Research LES Applied to Low-Temperature, Diesel and Hydrogen...

275

The Influence of Bromine Compounds on Combustion Processes  

Science Journals Connector (OSTI)

17 December 1963 research-article The Influence of Bromine Compounds on Combustion Processes C. F. Cullis A. Fish R. B. Ward Studies of the effect of small additions of hydrogen bromide and of four bromomethanes on...

1963-01-01T23:59:59.000Z

276

Prospects on fuel economy improvements for hydrogen powered vehicles.  

SciTech Connect

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

277

Sandia National Laboratories: Sandia Expands an International...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECAbout ECFacilitiesCRFSandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research Sandia Expands an International Collaboration...

278

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

279

Combustion in Meso-scale Vortex Chambers Ming-hsun Wu*  

E-Print Network (OSTI)

with the chemical energy varying from 25 to 174W. For the largest combustion volume, hydrogen and hydrocarbons-7]. With the large energy densities of hydrocarbon fuels (~50 MJ/kg), combustion-based micro power devices remain of a small combustor not only makes the heat generated from the combustion process hard to keep pace

Yang, Vigor

280

Combustion chemistry  

SciTech Connect

This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

24/07/20031 Hydrogen Storage  

E-Print Network (OSTI)

metal hydrides #12;24/07/200314 Slide no. Burning hydrogen · Fuel cells · Direct combustion · Non24/07/20031 Slide no. Hydrogen Storage with Emphasis on Metal Hydrides Allan Schrøder Pedersen and production · Transport · Hydrogen may well be such an intermediate energy carrier #12;24/07/20037 Slide no

282

Combustion and Flame 156 (2009) 771779 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Combustion and Flame 156 (2009) 771­779 Contents lists available at ScienceDirect Combustion Cylindrical chamber Flow correction Hydrogen Syngas High pressure The effect of nonspherical (i.e. cylindrical are measured for hydrogen and syngas mixtures at atmospheric and elevated pressures. Flow-corrected flame

Ju, Yiguang

283

hydrogen pilot plant, H2ICE vehicle testing INL alternative energy vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Pilot Plant, H2ICE Hydrogen Pilot Plant, H2ICE Vehicle Testing, & INL Alternative Energy Vehicles (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INL/CON-05-00694 AVTA Presentation Outline * Arizona Public Service's Alternative Fuel (Hydrogen) Pilot Plant Design and Operations * Hydrogen internal combustion engine vehicle testing * Oil bypass filter system evaluation * Diesel engine idling testing * INL alternative fuel infrastructure * INL alternative fuel fleet * WWW information APS Alternative Fuel (Alt-Fuel) Pilot Plant - Partners * Arizona Public Service (APS) * Electric Transportation Applications (ETA) * Idaho National Laboratory (INL) * Started operations - 2002 Alt-Fuel Pilot Plant & Vehicle Testing - Objectives * Evaluate the safety & reliability of operating ICE

284

A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 | Open Energy  

Open Energy Info (EERE)

A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Jump to: navigation, search Tool Summary Name: A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Agency/Company /Organization: US DOT Focus Area: Vehicles Topics: Analysis Tools Website: www.fuelcells.org/wp-content/uploads/2012/02/busreport.pdf From 2002-2007 > 20 cities in the US, Europe, China, Japan & Australia demonstrated buses powered by fuel cells or hydrogen-fueled internal combustion engines. The resulting report analyzes lessons learned from the demonstrations, identifies key remaining challenges for introduction of the technology, & suggests potential roles for government in supporting commercialization of fuel cell buses. How to Use This Tool This tool is most helpful when using these strategies:

285

Hydrogen & Fuel Cells Program Overview  

E-Print Network (OSTI)

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell

286

Combustion Timing Control of Natural Gas HCCI Engines Using Physics-Based Modeling and LQR Controller  

E-Print Network (OSTI)

Homogeneous Charge Compression Ignition (HCCI) Engines hold promises of being the next generation of internal combustion engines due to their ability to produce high thermal efficiencies and low emission levels. HCCI combustion is achieved through...

Abdelgawad, Marwa

2012-07-16T23:59:59.000Z

287

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

288

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace15daw.pdf More Documents & Publications Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines:...

289

A rental car strategy for commercialization of hydrogen in Florida  

Science Journals Connector (OSTI)

This article proposes a hydrogen rental-car strategy for transitioning from fleets to consumers in Orlando, Florida. Orlando is the No. 1 tourist destination in the United States, but most car renters visit only a few destinations. A hydrogen rental-car fleet serving this cluster of destinations could provide visitors with a positive first exposure to hydrogen vehicles with minimal commitment, creating hydrogen advocates and potential early adopters in their home regions. The rental-car business combines the logistical advantages of a fleet operation with outreach to many consumers. A hydrogen-powered rental-car fleet at the Orlando International Airport could provide guaranteed demand, supporting an initial rollout of refueling stations. We surveyed 435 rental-car customers in Orlando to understand the idea from the consumer point of view. We analyzed the bundles of destinations visited by the respondents and found that only three stations—an existing station at the Orlando International Airport plus new stations near the theme parks and in downtown Orlando—could serve 64% of renters. Half of all respondents indicated a willingness to pay more to rent a hydrogen car, and this subset of customers ranked the ability to use a pollution-free car as the most important factor in their decision. We then identify the major barriers to a hydrogen rental-car business model from the corporate point of view and propose a number of potential solutions. The most significant barrier appears to be the fleet purchase costs, which we think can be offset by the benefits of free media coverage and contained by beginning with converted internal-combustion vehicles and converting eventually to fuel-cell vehicles. We also outline possible synergies with NASA, Disney, refueling stations, manufacturers and state government.

Lee Lines; Michael Kuby; Ronald Schultz; James Clancy; Zhixiao Xie

2008-01-01T23:59:59.000Z

290

Ab initio Equation of State data for hydrogen, helium, and water and the internal structure of Jupiter  

E-Print Network (OSTI)

The equation of state of hydrogen, helium, and water effects interior structure models of giant planets significantly. We present a new equation of state data table, LM-REOS, generated by large scale quantum molecular dynamics simulations for hydrogen, helium, and water in the warm dense matter regime, i.e.for megabar pressures and temperatures of several thousand Kelvin, and by advanced chemical methods in the complementary regions. The influence of LM-REOS on the structure of Jupiter is investigated and compared with state-of-the-art results within a standard three-layer model consistent with astrophysical observations of Jupiter. Our new Jupiter models predict an important impact of mixing effects of helium in hydrogen with respect to an altered compressibility and immiscibility.

N. Nettelmann; B. Holst; A. Kietzmann; M. French; R. Redmer; D. Blaschke

2007-12-06T23:59:59.000Z

291

Integration of Calcium and Chemical Looping Combustion using Composite CaO/CuO-Based Materials  

Science Journals Connector (OSTI)

In oxy-fuel combustion, fuel is combusted in pure oxygen rather than air. ... Shen, L.; Wu, J.; Xiao, J.Experiments on Chemical Looping Combustion of Coal with a NiO Based Oxygen Carrier Combust. ... Abanades, J. C.; Murillo, R.; Fernandez, J. R.; Grasa, G.; Martinez, I.New CO2 Capture Process for Hydrogen Production Combining Ca and Cu Chemical Loops Environ. ...

Vasilije Manovic; Edward J. Anthony

2011-10-24T23:59:59.000Z

292

Advanced Combustion | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

293

To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the  

E-Print Network (OSTI)

grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value

Cañizares, Claudio A.

294

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and oxygen/air under high temperature and pressure to form synthesis gas. This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller amounts of other gaseous components, such as methane. The syngas can then undergo the water-gas shift reaction to convert CO and water (H2O) to H2 and CO2, producing a H2 and CO2-rich gas mixture. The concentration of CO2 in this mixture can range from 15-50%. The CO2 can then be captured and separated, transported, and ultimately sequestered, and the H2-rich fuel combusted.

295

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

296

DOE Hydrogen Analysis Repository: A Portfolio of Power-Trains for Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

A Portfolio of Power-Trains for Europe A Portfolio of Power-Trains for Europe Project Summary Full Title: A Portfolio of Power-Trains for Europe: A Fact-Based Analysis Project ID: 266 Principal Investigator: Brief Description: This study reports the results of a factual evaluation of battery electric vehicles, fuel cell electric vehicles, plug-in hybrid electric vehicles, and internal combustion engine vehicles for the European market based on proprietary industry data. Keywords: Alternative fuel vehicles (AFV); Fuel cell vehicles (FCV); Plug-in hybrid electric vehicles (PHEV); Costs; Greenhouse gases (GHG); Emissions; Battery electric vehicles (BEV); Internal combustion engine (ICE); Hydrogen Purpose A group of companies, government organisations and a non-governmental organization - the majority with a specific interest in fuel cell

297

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

298

Chemical Looping Combustion  

Science Journals Connector (OSTI)

Chemical looping combustion (CLC) and looping cycles in general represent an important new ... technologies, which can be deployed for direct combustion as well as be used in gasification...2...stream suitable fo...

Edward John (Ben) Anthony

2012-01-01T23:59:59.000Z

299

Chemistry of Combustion Processes  

Science Journals Connector (OSTI)

The quantitative description and understanding of combustion processes needs extreme computational efforts and has at ... treatment can give a lot of insight into combustion processes, as demonstrated in the foll...

J. Warnatz

2000-01-01T23:59:59.000Z

300

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Oxy-Combustion CO2 Emissions Control IEP - Oxy-Combustion CO2 Emissions Control Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications Project No.: DE-NT0005290 Alstom oxy-combustion test facility Alstom oxy-combustion test facility. Alstom will develop an oxyfuel firing system design specifically for retrofit to tangential-fired (T-fired) boilers and provide information to address the technical gaps for commercial boiler design. Several oxyfuel system design concepts, such as internal flue gas recirculation and various oxygen injection schemes, will be evaluated for cost-effectiveness in satisfying furnace design conditions in a T-fired boiler. The evaluation will use an array of tools, including Alstom's proprietary models and design codes, along with 3-D computational fluid dynamics modeling. A

302

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

SciTech Connect

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

303

Hydrogen Fuel Quality  

SciTech Connect

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

304

Modeling and Rendering Physically-Based Wood Combustion  

Science Journals Connector (OSTI)

Rendering of wood combustion has received some attention recently, but prior work has not incorporated effects of internal wood properties such as density variation (i.e. "grain") and pre-combustion processes such as drying. In this paper we present ...

Roderick M. Riensche; Robert R. Lewis

2009-11-01T23:59:59.000Z

305

Using Parametrized Finite Combustion Stage Models to Characterize Combustion in Diesel Engines  

Science Journals Connector (OSTI)

Characterizing combustion in diesel engines is not only necessary when researching the instantaneous combustion phenomena but also when investigating the change of the combustion process under variable engine operating conditions. ... This project partly is financially supported by the Fundamental Research Funds for the Central Universities, Harbin Engineering University, China, HEUCF120307, and the International Science and Technology Cooperation Program of China. ... Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (2011), 225 (3), 309-318 CODEN: PMAEET; ISSN:0957-6509. ...

Yu Ding; Douwe Stapersma; Hugo Grimmelius

2012-10-29T23:59:59.000Z

306

Homogeneous catalysts in hypersonic combustion  

SciTech Connect

Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

1989-01-01T23:59:59.000Z

307

Hydrogen storage systems for automotive applications: project StorHy  

Science Journals Connector (OSTI)

Around two thirds of world's oil usage is associated with transportation with road vehicles consuming around 40%. Also, transportation accounts for around 25% of greenhouse emissions worldwide, with around 90% coming from road vehicles. This situation is further complicated by the fact that oil reserves are running out. For this reason, the automotive industry supported by relevant governing bodies is rapidly exploring alternative propulsion solutions (such as hybrid, electric and hydrogen powered vehicle technologies). This paper presents the main objectives and progressive findings of an EU funded research project titled 'StorHy â?? Hydrogen Storage Systems for Automotive Applications'. This research project was conducted in partnership between a number of participating organisations under the auspice of the EU Thematic Priority 6 program titled 'Sustainable development, global change and ecosystems'. The integrated project, StorHy, aims to develop robust, safe and efficient on-board vehicle hydrogen storage systems suitable for use in hydrogen-fuelled fuel cell or internal combustion engine vehicles. Research work covering the whole spectrum of hydrogen storage technologies (compressed gas, cryogenic liquid and solid materials) is carried out with a focus on automotive applications. The aim is to develop economically and environmentally attractive solutions for all three storage technologies.

Joerg Wellnitz

2008-01-01T23:59:59.000Z

308

An Investigation of the Toxic Effects of Combustion Products—Analysis of Smoke Components  

Science Journals Connector (OSTI)

......hydrogen cyanide, and hydrocarbons. Part of a much...Extrapolation of this data yields at least...injuries. According to data published by the...periods of smoldering combustion before actual ignition...oxygen depletion, heat, hydrogen chloride...hydrogen cyanide, and hydrocarbons. The following......

Joseph Rio; Thomas Manning; Jesse Bidanset; Joseph Balkon; Louis Trombetta; Michael Barletta

1988-01-01T23:59:59.000Z

309

Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2010 annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

310

Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2008 annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office's mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

311

Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2010 annual report on the work of the the Advanced Combustion Engine R&D subprogram.The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office by removing the technical barriers to commercialization of internal combustion engines for passenger and commercial vehicles that meet future Federal emissions regulations.

312

Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

313

Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%....

314

New energy, new hazards ? The hydrogen scenario  

E-Print Network (OSTI)

"energy carrier" ? Hydrogen based economy and associated energy converters fuel cell systems are said dioxide...)1 . Besides, energy conversion yields seem to be better and finally it allows fossil fuels. Hydrogen can be used as an energy carrier for many traditional technologies such as cars (direct combustion

Paris-Sud XI, Université de

315

Hydrogen Highways  

E-Print Network (OSTI)

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

316

Bonfire Tests of High Pressure Hydrogen Storage Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010Beijing, P.R. China September 27, 2010 Bonfire Tests of High...

317

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international harmonization between natural gas and hydrogen...

318

Low NOx combustion  

SciTech Connect

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

319

Low NOx combustion  

SciTech Connect

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

320

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

322

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier  

E-Print Network (OSTI)

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier DOE Hydrogen Program Contractors biomass #12;Approach Outline Gasifier Pilot Plant· Develop subsystems for the hydrogen production system and pyrolysis occur simultaneously in a single reactor · Exothermic combustion provides heat · Endothermic

323

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

324

Transition of combustion into detonation within a channel with the diameter less than the critical diameter of the existence of stationary detonation  

Science Journals Connector (OSTI)

An experimental investigation was carried out for transition of combustion into detonation of oxygen-hydrogen and hydrogen-air stoichiometric ... the critical diameter of the existence of stationary detonation in...

D. I. Baklanov; V. V. Golub; K. V. Ivanov; M. S. Krivokopytov

2012-04-01T23:59:59.000Z

325

Coal combustion science. Quarterly progress report, April 1993--June 1993  

SciTech Connect

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

326

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

327

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

328

Past experiences with automotive external combustion engines  

SciTech Connect

GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

Amann, C.A.

1999-07-01T23:59:59.000Z

329

A method for the study of inhibitor consumption in combustion processes  

Science Journals Connector (OSTI)

A kinetic method is described for determining the inhibitor consumption during chain processes in closed vessels, under non-steady state conditions. The inhibited combustion of hydrogen, regarded as a model of...

V. V. Azatyan; V. I. Sklyarenko

1975-01-01T23:59:59.000Z

330

E-Print Network 3.0 - alternative combustion regimes Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

CHAMBERS Ming-hsun Wu, Yanxing Wang, Vigor Yang and Richard A... with the chemical energy varying from 25 to 174W. For the largest combustion volume, hydrogen and hydrocarbons...

331

Hydrogen PEM Fuel Cells: A Market Need Provides Research Opportunities  

SciTech Connect

It has been said that necessity is the mother of invention. Another way this can be stated is that market demands create research opportunities. Because of the increasing demand for oil (especially for fueling vehicles utilizing internal combustion engines) and the fact that oil is a depleting (not renewable) energy source, a market need for a renewable source of energy has created significant opportunities for research. This paper addresses the research opportunities associated with producing a market competitive (i.e., high performance, low cost and durable) hydrogen proton exchange membrane (PEM) fuel cell. Of the many research opportunities, the primary ones to be addressed directly are: Alternative membrane materials, Alternative catalysts, Impurity effects, and Water transport. A status of Department of Energy-sponsored research in these areas will be summarized and the impact of each on the ability to develop a market-competitive hydrogen PEM fuel cell powered vehicle will be discussed. Also, activities of the International Partnership for the Hydrogen Economy in areas such as advanced membranes for fuel cells and materials for storage will be summarized.

Payne, Terry L [ORNL; Brown, Gilbert M [ORNL; Bogomolny, David [Sentech, Inc.

2010-01-01T23:59:59.000Z

332

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

333

Fifteenth combustion research conference  

SciTech Connect

The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

NONE

1993-06-01T23:59:59.000Z

334

The enhancement of the mixing and combustion processes in supersonic flow applied to scramjet engine  

SciTech Connect

The Reynolds averaged parabolized Navier-Stokes equations are employed for the numerical study of turbulent mixing and combustion of a supersonic hydrogen jet in a supersonic airflow. A one-equation differential turbulence model is utilized. The simplified flame sheet model is employed for the numerical simulation of the supersonic combustion. 24 refs.

Kopchenov, V.I.; Lomkov, K.E. (Tsentral'nyi NII Aviatsionnogo Motorostroeniia, Moscow (Russian Federation))

1992-07-01T23:59:59.000Z

335

Visual Exploration of Turbulent Combustion and Laser-Wakefield Accelerator Simulations  

E-Print Network (OSTI)

hydrogen flames under different levels of turbulence ­ Lean combustion reduces emissions Important-dependent, difficult to characterize) · Scientific Goal: ­ Understanding the temporal evolution of burning cells Simulations 4 Feature Tracking in Combustion Simulations · Isotherm represents "flame surface" · Fuel

336

Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine  

SciTech Connect

A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

2010-02-23T23:59:59.000Z

337

Transition to hydrogen economy in the United States: A 2006 status report  

Science Journals Connector (OSTI)

Energy crises in the latter part of the 20th century, as well as the current increase in the cost of oil, emphasize the need for alternate sources of energy in the United States. Concerns about climate change dictate that the source be clean and not contribute to global warming. Hydrogen has been identified as such a source for many years and the transition to a hydrogen economy was predicted to occur from the mid-1970s to 2000. This paper reports on the status of this transition in the year 2006. Instead of being a clean source of energy, most of the hydrogen produced in the US results from steam reforming of fossil fuels, releasing CO 2 and other pollutants to the atmosphere. Nuclear process heat is ideally suited for the production of hydrogen, either using electricity for electrolysis of water, or heat for thermochemical hydrogen production or reforming of fossil fuels. However, no new nuclear plants have been ordered or built in the United States since 1979, and it may be many years before high-temperature nuclear reactors are available for production of hydrogen. Considerable research and development efforts are focused on commercializing hydrogen-powered vehicles to lessen the dependence of the transportation sector on imported oil. However, the use of hydrogen fuel cell vehicles (FCV) in 2006 is two orders-of-magnitude less than what has been predicted. Although it makes little sense environmentally or economically, hydrogen is also used as fuel in internal combustion engines. Development of hydrogen economy will require a strong intervention by external forces.

W.C. Lattin; V.P. Utgikar

2007-01-01T23:59:59.000Z

338

Electrochemical hydrogen Storage Systems  

SciTech Connect

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

339

Producing hydrogen using nuclear energy  

Science Journals Connector (OSTI)

The earliest means of separating hydrogen from water was by electrolysis using electrical energy that usually had been produced by low-efficiency thermodynamic processes. Substitution of thermal energy for electrical energy in high-temperature electrolysis gives a somewhat higher overall efficiency, but significantly complicates the process. Today, the vast majority of hydrogen is produced by steam methane reforming (SMR) followed by a water-shift reaction. A well-designed SMR plant will yield hydrogen having 75â??80% of the energy of the methane used. Recent work in Japan has demonstrated the feasibility of substituting high-temperature heat from a gas-cooled nuclear reactor to replace the heat supplied in SMR by the combustion of methane. Using high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been studied extensively. Bench-scale tests have been carried out in Japan demonstrating the sulphur-iodine (SI) process to produce hydrogen.

Robert E. Uhrig

2008-01-01T23:59:59.000Z

340

HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report  

SciTech Connect

This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

Brian D. James, Peter O. Schmidt, Julie Perez

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

WASTE HYDROGEN PIPELINES MONITORING IN MODERN POWER PLANT Pawel Gsior, Jerzy Kaleta  

E-Print Network (OSTI)

for combustion generators (leading technology), and the second one use purified hydrogen for fuel cells of four supply gas pipelines (one with pure hydrogen to the fuel cell and three others with waste hydrogen and constructed. Two energetic technologies were applied. First use hydrogen and hydrocarbons as a fuel

Boyer, Edmond

342

Hydrogen’s Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

343

Reaction and diffusion in turbulent combustion  

SciTech Connect

The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

1993-12-01T23:59:59.000Z

344

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

345

Sandia Combustion Research: Technical review  

SciTech Connect

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

346

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

347

Engine Combustion & Efficiency - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

348

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

349

Hydrogen Purity Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

350

Spontaneous Human Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Spontaneous Human Combustion Spontaneous Human Combustion Name: S. Phillips. Age: N/A Location: N/A Country: N/A Date: N/A Question: One of our 8th grade students has tried to find information in our library about spontaneous human combustion, but to no avail. Could you tell us where we might locate a simple reference, or provide some in information about this subject for him. Replies: Sorry, but this is definitely "fringe science"...try asking in bookstores. I seem to recall one of those "believe it or not" type of TV shows did an episode on spontaneous human combustion a few years ago in which they reported on some British scientists who investigated this purported phenomenon. Remember that people (back in the Dark Ages, and before) used to believe in "spontaneous generation" of certain plants and animals because they were not aware of the reproduction methods used by those plants and animals.

351

Advanced diesel combustion  

Science Journals Connector (OSTI)

Future emission norms will further reduce the vehicle emissions of diesel engines. To meet the goal of achieving these stringent limits while maintaining attractive attributes of marketability, the combustion ...

Dirk Adolph; Hartwig Busch; Stefan Pischinger; Andreas Kolbeck…

2008-01-01T23:59:59.000Z

352

Advanced Combustion Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The workhorse of America's electric power sector is the coal-fired power plant. Today, coal combustion plants account for more than half of the Nation's electric power generation. Largely because...

353

Catalytic Combustion Processes  

Science Journals Connector (OSTI)

This work presents experimental data on the effect of catalytic additives on the combustion characteristics of ammonium nitrate and perchlorate and the explosives of different classes. Burning rates are determ...

A. P. Glaskova

1991-01-01T23:59:59.000Z

354

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

355

Nuclear Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

356

Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels  

SciTech Connect

A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

2014-12-02T23:59:59.000Z

357

Advanced Combustion Technology to Enable High Efficiency Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

358

Coal combustion system  

DOE Patents (OSTI)

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

359

Sandia Combustion Research Program  

SciTech Connect

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

1988-01-01T23:59:59.000Z

360

Pulsed jet combustion generator for premixed charge engines  

DOE Patents (OSTI)

A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA); Hom, K. (Hercules, CA)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Internal Combustion Engine Energy Retention (ICEER)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturer VSATT Vehicle Systems Analysis Technical Team 3 Relevance for DOE Fuel-Saving Mission The "Cold-Start" Penalty: Consider the following... * ICEs presently...

362

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

2004, ACORE Power?Gen Renewable  Energy, Las Vegas, NV the International Renewable Hydrogen TransmissionNovember 1998, National Renewable Energy Laboratory, NREL/

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

363

National Agenda for Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

and Standards C. Blake Presented at the International Symposium on Materials Issues in a Hydrogen Economy Richmond, Virginia November 12-15, 2007 NOTICE The submitted manuscript...

364

Combustion Model for Engine Concept Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an advanced combustion model are used...

365

Advanced Hydrogen Turbine Development  

SciTech Connect

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

366

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

367

PRODUCTION OF HYDROGEN BY SUPERADIABATIC DECOMPOSITION OF HYDROGEN SULFIDE  

E-Print Network (OSTI)

in a cylindrical vessel packed with a porous ceramic medium with a high thermal capacity. The intensive heat internal surfaces permits the accumulation of combustion energy in the solid matrix. As a result, flame hydrocarbons via the superadiabatic partial oxidation have shown the high potential of this approach. It has

368

The hydrogen materials community: its history and current status in the World Hydrogen Movement  

Science Journals Connector (OSTI)

This review briefly summarises the history of the hydrogen materials community as an important part of the World Hydrogen Movement. It analysis the history and current status of the interrelation between the Hydrogen Energy (HE) and Hydrogen Materials (HM) communities. During the last 15 years, great advances in this cooperation have come about, thanks to the thorough activities of the Permanent Working International Scientific Committee on Hydrogen Treatment of Materials and the international conferences 'Hydrogen economy and hydrogen treatment of materials' under the auspices of the International Association for Hydrogen Energy (IAHE). The conclusion is that promoting this cooperation will be the responsibility of the World Hydrogen Movement in the 21st century, in general, and of nuclear HE technology, in particular.

Victor A. Goltsov; Lyudmila F. Goltsova; Vasily V. Vasekin

2008-01-01T23:59:59.000Z

369

In situ combustion with metallic additives SUPRI TR 87  

SciTech Connect

In-situ combustion is the most energy efficient of the thermal oil recovery methods. In this process, a portion of a reservoir`s oil is burned in-situ as fuel to drive the recovery process. In light oil reservoirs, too little fuel may be deposited, making sustained combustion difficult. In heavy oil reservoirs, too much fuel may be deposited leading to high air injection requirements and unfavorable economics. This study has been designed to attack these problems. Water soluble metallic additives are investigated as agents to modify fuel deposition and combustion performance. This report describes seven combustion tube runs using two cradle oils and two metallic additives. The oils are 12{degrees} and 34{degrees} API, both from Cymric (California). The metallic additives tested are ionic nitrate (Fe(NO{sub 3}){sub 3}9H{sub 2}O) and zinc nitrate (Zn(NO{sub 3}){sub 2}6H{sub 2}O). Iron and tin additives improved the combustion efficiency in all cases. Fluctuations in the produced gas compositions were observed in all control runs, but nearly disappeared with the iron and tin additives. The combustion front velocities were also increased by iron and tin. Changes were also observed in the apparent hydrogen to carbon (H/C) ratio of the fuel, heat of combustion, air requirements, and amount of fuel deposited. Iron and tin caused increases in fuel concentration while causing a decrease in air requirement. The increase in fuel concentration varied between the oils, however, tin and iron were consistently more effective than zinc. A particularly interesting result occurred with the Cymric light oil. In the control runs, a sustained combustion front was not achieved, while in the iron additive runs, stable, sustained combustion was achieved. Iron and tin salts are suitable additives to increase fuel deposition when that is needed. Additives suitable for use as a fuel reducing agent have not yet been found. 26 refs., 23 figs, 6 tabs.

Holt, R.J.

1992-07-01T23:59:59.000Z

370

In situ combustion with metallic additives SUPRI TR 87  

SciTech Connect

In-situ combustion is the most energy efficient of the thermal oil recovery methods. In this process, a portion of a reservoir's oil is burned in-situ as fuel to drive the recovery process. In light oil reservoirs, too little fuel may be deposited, making sustained combustion difficult. In heavy oil reservoirs, too much fuel may be deposited leading to high air injection requirements and unfavorable economics. This study has been designed to attack these problems. Water soluble metallic additives are investigated as agents to modify fuel deposition and combustion performance. This report describes seven combustion tube runs using two cradle oils and two metallic additives. The oils are 12{degrees} and 34{degrees} API, both from Cymric (California). The metallic additives tested are ionic nitrate (Fe(NO{sub 3}){sub 3}9H{sub 2}O) and zinc nitrate (Zn(NO{sub 3}){sub 2}6H{sub 2}O). Iron and tin additives improved the combustion efficiency in all cases. Fluctuations in the produced gas compositions were observed in all control runs, but nearly disappeared with the iron and tin additives. The combustion front velocities were also increased by iron and tin. Changes were also observed in the apparent hydrogen to carbon (H/C) ratio of the fuel, heat of combustion, air requirements, and amount of fuel deposited. Iron and tin caused increases in fuel concentration while causing a decrease in air requirement. The increase in fuel concentration varied between the oils, however, tin and iron were consistently more effective than zinc. A particularly interesting result occurred with the Cymric light oil. In the control runs, a sustained combustion front was not achieved, while in the iron additive runs, stable, sustained combustion was achieved. Iron and tin salts are suitable additives to increase fuel deposition when that is needed. Additives suitable for use as a fuel reducing agent have not yet been found. 26 refs., 23 figs, 6 tabs.

Holt, R.J.

1992-07-01T23:59:59.000Z

371

DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Pre-Combustion Carbon Capture Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants June 11, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced the selection of nine projects that will develop pre-combustion carbon capture technologies that can reduce CO2 emissions in future coal-based integrated gasification combined cycle (IGCC) power plants. The projects, totaling nearly $14.4 million, will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Pre-combustion processes convert fossil fuels into a gaseous mixture of hydrogen and CO2 prior to combustion. The CO2 is then separated and the

372

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents (OSTI)

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

2013-04-02T23:59:59.000Z

373

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents (OSTI)

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

2011-08-30T23:59:59.000Z

374

Hydrogenases and Hydrogen Metabolism of Cyanobacteria  

Science Journals Connector (OSTI)

...lowers the potential solar energy conversion efficiencies...molecular hydrogen from solar energy and water by using...several individual projects, two major international...International Energy Agency; http...direct conversion of solar energy (114...

Paula Tamagnini; Rikard Axelsson; Pia Lindberg; Fredrik Oxelfelt; Röbbe Wünschiers; Peter Lindblad

2002-03-01T23:59:59.000Z

375

A MODEL FOR POROUS-MEDIUM COMBUSTION  

Science Journals Connector (OSTI)

......these applied in coal combustion appears in...understanding of the chemistry of combustion...GLASSMAN, Combustion (Academic Press...ESSENHIGH, In Chemistry of Coal Utilization...POROUS-MEDIUM COMBUSTION 177 8. D. A......

J. NORBURY; A. M. STUART

1989-02-01T23:59:59.000Z

376

Vehicle Technologies Office: Combustion Engine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

377

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

378

APBF Effects on Combustion  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

379

APBF Effects on Combustion  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

380

New Phenomenological Six-Zone Combustion Model for Direct-Injection Diesel Engines  

Science Journals Connector (OSTI)

New Phenomenological Six-Zone Combustion Model for Direct-Injection Diesel Engines ... Nevertheless, to comply with ever more stringent emission standards, particularly regarding NOx and particulate matter (PM) emissions, such as EURO 6 in Europe, diesel engine manufacturers have to find new in-cylinder combustion strategies and/or complex after-treatment devices to reduce their emissions. ... Heywood, J. B. Internal Combustion Engines Fundamentals; McGraw-Hill: New York, 1988. ...

Alain Maiboom; Xavier Tauzia; Samiur Rahman Shah; Jean-François Hétet

2009-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network (OSTI)

gasification-based combustion turbine systems. The paper dmws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy...-14, 1994 Coupled with gasification, combustion turbine power generation also may provide attractive opportunities for other fuels, such as low-value residual oils and petroleum coke. Residual oil firing of boilers in large steam turbine-based power...

Karp, A. D.; Simbeck, D. R.

382

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

383

Studies in combustion dynamics  

SciTech Connect

The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

384

Thermal ignition combustion system  

SciTech Connect

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

385

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......predicted and measured data. The CFD simulations...methods to improve the heat transfer rate and provide quantitative data which can be used...important in the combustion and the heat transfer processes...models on hydrogen-hydrocarbon combustion modelling......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

386

Improving alternative fuel utilization: detailed kinetic combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

387

Mechanism of Hydrocarbon Formation in Combustion Processes  

Science Journals Connector (OSTI)

Emissions from transportation systems that derive their energy directly from combustion processes include products of incomplete combustion, oxides of...

R. A. Matula

1973-01-01T23:59:59.000Z

388

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

SciTech Connect

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

389

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

390

Reversed flow fluidized-bed combustion apparatus  

DOE Patents (OSTI)

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

391

Aviation Combustion Toxicology: An Overview  

Science Journals Connector (OSTI)

......in a radiant heat furnace. Rats...the produced combustion products in...in both the combustion tube and radiant heat systems proved...literature data for CO2, low...acrolein, and heat expo- sures...primary toxic combustion gases and are...structures. The hydrocarbon constituents......

Arvind K. Chaturvedi

2010-01-01T23:59:59.000Z

392

Four Lectures on Turbulent Combustion  

E-Print Network (OSTI)

, combustion in a Diesel engine or in furnaces essentially taakes place under non-premixed conditions. In the Diesel engine a liquid fuel spray is injected into hot compressed air, the fuel evaporates and mixes combustion are in general subdivided into two classes: premixed or non-premixed combustion. For example

Peters, Norbert

393

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

394

High-pressure Storage Vessels for Hydrogen, Natural Gas and Hydrogen-Natural Gas Blends  

Energy.gov (U.S. Department of Energy (DOE))

These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

395

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07T23:59:59.000Z

396

Integrated Combined Heat and Power/Advanced Reciprocating Internal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

397

Hydrogen Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

398

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

399

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

400

SIAM Conference on Numerical Combustion Sedona, AZ May 9-12, 2004  

SciTech Connect

The Society for Industrial and Applied Mathematics hosted the Tenth International Conference on Numerical Combustion held May 9-12, 2004 in Sedona, Arizona. This distinguished conference series began in 1985 in Sophia Antipolis, France and was followed by conferences in San Francisco, California (1987), Juan les Pins, France (1989), St. Petersburg Beach, Florida (1991), Garmisch, Germany (1993), New Orleans, Louisiana (1996), York, England (1998), Amelia Island, Florida (2000), and Sorrento, Italy (2002). SIAM is widely recognized as the originator and the U.S. anchor of this important meeting whose topics concerns the applied mathematics and computation associated with combustion and reactive flow. In particular, the International Numerical Combustion Symposiums have become one of the international major venues for research on direct simulation and modeling turbulent reacting flow. It is also one of the major international venues for theoretical work in reacting flows. This meeting drew approximately 200 participants from 30 countries whose research included the topics in turbulence, kinetics, detonation, flames, pollution, microgravity, micro-combustion, ignition, applications of parallel processing, tera-scale computation of combustion applications, material synthesis, droplets and sprays, heterogeneous combustion, energetic materials (propellants and explosives), engine and furnace combustion, fires, numerical methods and, software engineering for combustion applications.

None

2004-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi, Manikanda Rajagopal, Razi Nalim  

E-Print Network (OSTI)

-chamber internal combustion engines and in innovative pressure-gain combustors for gas turbine engines. Jet engines using low-cost, low-carbon natural gas need improved methods for ignition of lean mixtures rotor combustor. A wave rotor combustion chamber is best ignited with a jet of hot gas that may come

Zhou, Yaoqi

402

Hydrogen Cryomagnetics  

E-Print Network (OSTI)

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4     Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

403

Review problems on photosynthesis, carbon cycle. Julie Wright, HAS222d/253e 2007 1) Photosynthesis resembles the hydrogen fuel cell we studied in the lab. The following reactions  

E-Print Network (OSTI)

resembles the hydrogen fuel cell we studied in the lab. The following reactions were taken from the review) the overall reaction of photosynthesis is: H2O + CO2 ---> O2 + CH2O E'o = -1.24 Hydrogen fuel cell: 2H2O does hydrogen combustion differ from sugar/alcohol/biofuels combustion ecologically? 2) Why is carbon

404

Experts Guide | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

405

Downloads | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

406

Press Releases | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

407

Argonne Researchers | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

408

In The News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

409

Feature Stories | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

410

Photos | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

411

Current Postdoctoral Researchers | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

412

Employee Spotlights | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

413

Success Stories | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

414

Science Highlights | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

415

Hydrogen production costs -- A survey  

SciTech Connect

Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

Basye, L.; Swaminathan, S.

1997-12-04T23:59:59.000Z

416

Effects of built-in internal fields and Al alloy content on donor binding energy of a hydrogenic impurity in a wurtzite GaN/AlGaN quantum dot  

Science Journals Connector (OSTI)

Built-in internal field induced donor hydrogenic binding energy of an impurity in a wurtzite GaN/AlGaN quantum dot is investigated. The built-in internal electric field has the contribution from spontaneous and piezo-electric polarisation. The computations are carried out with the inclusion of conduction band non-parabolicity through the energy dependent effective mass. It is calculated with a variational approach within the framework of single band effective-mass approximation. A two-parametric trial wave function is employed in order to improve the results. The effects of quantum confinement and the strength of internal electric fields on the donor binding energy are discussed. The results show that the strength of the internal field is of the order MV/cm and it has more influence on the geometrical confinement and the composition of Al alloy content in the GaN/AlxGa1-xN quantum dot. These results are in good agreement with the other investigators.

M. Pattammal; A. John Peter

2014-01-01T23:59:59.000Z

417

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

418

STATEMENT OF CONSIDERATIONS REQUEST BY INTERNATIONAL FUEL CELLS CORPORATION (IFC) FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERNATIONAL FUEL CELLS CORPORATION (IFC) FOR AN INTERNATIONAL FUEL CELLS CORPORATION (IFC) FOR AN ADVANCED WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC36-97GO10211, W(A)-97-018, CH-0926 The Petitioner, IFC, was awarded this cooperative agreement in response to a proposal for a feasibility study for a hydrogen fueled portable electric generator to compete with mid to large size batteries and small to mid size internal combustion engines. The initial phase of this work is being performed under DOE Contract No. DE-FC36-97GO10211. IFC has requested a waiver of domestic and foreign patent rights for all subject inventions under this agreement. As brought out in IFC's response to question 3, the total estimated cost of the project is $300,000 with IFC paying 50% ($150,000) and DOE providing the balance.

419

Experimental Investigation in Optimizing the Hydrogen Fuel on a Hydrogen Diesel Dual-Fuel Engine  

Science Journals Connector (OSTI)

Lee et al.(8) studied the performance of a dual-injection hydrogen-fueled engine by using solenoid in-cylinder injection and an external fuel injection technique. ... Zuohua, H.; Jinhua, W.; Bing, L.; Ke, Z.; Jinrong, Y.; Deming, J. Combustion Characteristics of a Direct-Injection Engine Fueled with Natural Gas-Hydrogen Mixtures Energy Fuels 2006, 20 ( 2) 540– 546 ... Timed manifold injection (TMI) has the potential of being the most appropriate fueling strategy. ...

N. Saravanan; G. Nagarajan

2009-04-10T23:59:59.000Z

420

Predicting the Net Heat of Combustion of Organosilicon Compounds from Molecular Structures  

Science Journals Connector (OSTI)

Predicting the Net Heat of Combustion of Organosilicon Compounds from Molecular Structures ... ?Hc° is an important physicochemical property which can be used to calculate the reactive heat in many chemical engineering processes such as the processes of hydrogenation and dehydrogenation of hydrocarbon. ... (4) In his paper, empirical equations have been developed to predict the gross and the net heats of combustion of organosilicon compounds based on the atomic contribution method. ...

Yong Pan; Juncheng Jiang; Yinyan Zhang

2012-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coal Combustion Products Extension Program  

SciTech Connect

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

422

Combustion powered linear actuator  

DOE Patents (OSTI)

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

423

NETL: Hydrogen Selective Exfoliated Zeolite Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Selective Exfoliated Zeolite Membranes Hydrogen Selective Exfoliated Zeolite Membranes Project No.: DE-FE0001322 The University of Minnesota is developing a technically and economically viable membrane for carbon dioxide (CO2) separation from typical water-gas-shift (WGS) mixture feeds. The goal of this project is to further develop recently developed membrane technology based on exfoliated zeolite coatings as components for carbon capture in integrated gasification combined cycle plants. These membranes have the potential to contribute to carbon capture by high-temperature separation of hydrogen from CO2 and other gases present in shifted synthesis gas. Molecular sieve membrane for the pre-combustion capture of CO2. Molecular sieve membrane for the pre-combustion capture of CO2. Related Papers and Publications:

424

US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

The ACEC focuses on advanced engine and aftertreatment technology for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion.

425

Assessment of Combustion and Turbulence Models for the Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion...

426

US DRIVE Advanced Combustion and Emission Control Technical Team...  

Energy Savers (EERE)

for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion. acecroadmapjune2013.pdf More Documents...

427

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Abbreviations & Acronyms Abbreviations & Acronyms Reference Shelf Solicitations & Awards Abbreviations & Acronyms The Combustion Technologies Product uses a number of abbreviations and acronyms. This web page gives you a definition of frequently used terms, as follows: 1½-Generation PFBC -- A PFBC plant where the hot (about 1400ºF) PFBC exhaust gases are used as a vitiated air supply for a natural gas combustor supplying high-temperature gas (above 2000ºF) to a combustion turbine expander (synonym for "PFB-NGT"). 1st-Generation PFBC -- Commercial PFBC technology where an unfired low-temperature (below 1650ºF) ruggedized turbine expander expands PFBC exhaust gases (synonym for "PFB-EGT"). 2nd-Generation PFBC (see synonyms: "APFBC," "PFB-CGT") -- Advanced PFBC where a carbonizer (mild gasifier) provides hot (about 1400ºF) coal-derived synthetic fuel gas to a special topping combustor. The carbonizer char is burned in the PFBC, and the PFBC exhaust is used as a hot (about 1400ºF) vitiated air supply for the topping combustor. The syngas and vitiated air are burned in a topping combustor to provide high-temperature gas (above 1700ºF) to a combustion turbine expander.

428

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Public Power District's Sheldon Station with APFBC Technology Nebraska Public Power District's Sheldon Station with APFBC Technology FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: APFBC Repowering Project Summary Key Features Site Layout Performance Environmental Characteristics Cost Other Combustion Systems Repowering Study Links: A related study is underway that would repower Sheldon Unit 1 and Unit 2 with gasification fluidized-bed combined cycle technology (GFBCC). CLICK HERE to find out more about repowering the Sheldon station with GFBCC instead. APFBC Repowering Project Summary Click on picture to enlarge Advanced circulating pressurized fluidized-bed combustion combined cycle systems (APFBC) are systems with jetting-bed pressurized fluidized-bed (PFB) carbonizer/gasifier and circulating PFBC combustor. The PFB carbonizer and PFBC both operate at elevated pressures (10 to 30 times atmospheric pressure) to provide syngas for operating a gas turbine topping combustor giving high cycle energy efficiency. The remaining char from the PFB carbonizer is burned in the pressurized PFBC. The combustion gas from the PFB also feeds thermal energy to the gas turbine topping combustor. This provides combined cycle plant efficiency on coal by providing the opportunity to generate electricity using both high efficiency gas turbines and steam.

429

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

boost. * H 2 enrichment extends lean limit, improves C p C v ratio, lowers cylinder heat loss, assists cold start, lowers combustion irreversibility. IC Engine Work Reformer...

430

International Energy Agency  

Energy.gov (U.S. Department of Energy (DOE))

The International Energy Agency (IEA) provides a mechanism for member countries to task- and cost-share research activities through two agreements—one supporting hydrogen activities and another...

431

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

432

Classical combustion diagnostics for engine research  

SciTech Connect

The use of engine diagnostic techniques in research on the reciprocating internal combustion engine has contributed substantially to engine progress over the years. Many of these techniques were developed before the advent of the laser, and most engine research still uses these classical methods. This paper provides historical snapshots of efforts to understand flame propagation and knock in homogeneous-charge engines, and fuel-air mixing and some of its ramifications in diesels. Such a review demonstrates the accomplishments facilitated by measurement of pressure, temperature, fluid motions, and chemistry within the cylinder. A critique of these classical diagnostics is then offered.

Amann, C.A.

1985-01-01T23:59:59.000Z

433

Sandia National Laboratories: Diesel Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Combustion Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects On April 17, 2013, in Capabilities, Computational Modeling & Simulation, CRF, Materials...

434

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

435

Municipal Waste Combustion (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste" means all materials and substances discarded from residential...

436

ALS Evidence Confirms Combustion Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

are produced, generally, when insufficient oxygen or other factors result in incomplete combustion of organic matter (e.g., in engines and incinerators, when biomass burns in...

437

Numerical Modeling of HCCI Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Numerical Modeling of HCCI Combustion Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick...

438

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network (OSTI)

and motor vehicle PEM fuel cell systems. Energy Policy 2004;reformer (SMR) and a PEM fuel cell. The SMR is used forFCVs or diverted to a PEM fuel cell (or internal combustion

Yang, Christopher

2008-01-01T23:59:59.000Z

439

Hydrogen Photoproduction Is Attenuated by Disruption of an Isoamylase Gene in Chlamydomonas reinhardtii  

Science Journals Connector (OSTI)

...concerns associated with fossil fuel consumption and depletion...can be combusted or used with fuel cell technologies to provide...microorganisms, including the green alga Chlamydomonas reinhardtii...Hydrogen production by green algae was first reported using Scenedesmus...

Matthew C. Posewitz; Sharon L. Smolinski; Saradadevi Kanakagiri; Anastasios Melis; Michael Seibert; Maria L. Ghirardi

2004-07-21T23:59:59.000Z

440

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report and Appendices  

Energy.gov (U.S. Department of Energy (DOE))

This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Combustion Byproducts Recycling Consortium  

SciTech Connect

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

442

Combustion Byproducts Recycling Consortium  

SciTech Connect

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

2008-08-31T23:59:59.000Z

443

Grid Interaction Tech Team, and International Smart Grid Collaboration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

444

Space shuttle based microgravity smoldering combustion experiments  

E-Print Network (OSTI)

zone, and smolder heat of combustion (energy per unit massand Q is the smolder heat of combustion. The mass fluxes ofdata. The smolder heat of combustion is not well determined

Walther, David C; Fernandez-Pello, Carlos; Urban, David L

1999-01-01T23:59:59.000Z

445

Combustion Catalysts in Industry- An Update  

E-Print Network (OSTI)

applications of combustion catalysts for coal are presented. Combustion efficiency and calculations are discussed, followed by an explanation of the theories of combustion catalysis and a review of three case histories....

Merrell, G. A.; Knight, R. S.

446

Self-tuning regulators for combustion oscillations  

Science Journals Connector (OSTI)

...interaction of acoustic waves and combustion processes. An abundant literature...numerical simulations of the combustion processes and coupled fluid dynamics...nonlinear analysis of controlled combustion processes. In Proc. 1999 IEEE Int...

2003-01-01T23:59:59.000Z

447

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Although internal combustion engines have been used Although internal combustion engines have been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. In fact, boosting the efficiency of internal combustion engines is one of the most promising and cost-effective approaches to increasing vehicle fuel economy over the next 30 years. The United States can cut its transportation fuel use 20%-40% through commercialization of advanced engines-resulting in greater economic, environmental, and energy security. Using these engines in hybrid and plug-in hybrid electric vehicles will enable even greater fuel savings benefits. The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of

448

Advanced Combustion Operation in a Compression Ignition Engine  

Science Journals Connector (OSTI)

In this study, advanced combustion operating modes were investigated on a DDC/VM Motori 2.5 L, four-cylinder, turbocharged, common rail, direct-injection light-duty diesel engine, with exhaust emission being the main focus. ... This process is based on work from Al-Qurashi et al., who conducted fundamental flame studies that showed that the thermal effect of EGR enhances the oxidative reactivity of diesel soot. ... Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill Book Company: New York, 1988; p 930. ...

Gregory K. Lilik; José Martín Herreros; André L. Boehman

2008-12-15T23:59:59.000Z

449

Closed loop air cooling system for combustion turbines  

DOE Patents (OSTI)

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

450

Hydrogen Vehicles: Impacts of DOE Technical Targets on Market Acceptance and Societal Benefits  

SciTech Connect

Hydrogen vehicles (H2V), including H2 internal combustion engine, fuel cell and fuel cell plugin hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers towidespread commercialization of H2Vs. This study estimates the market acceptance of H2Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H2Vs could reach 20e70% market shares by 2050, depending on progress in achieving the technical targets.With a basic hydrogen infrastructure (w5% hydrogen availability), the H2V market share is estimated to be 2e8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H2Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleumuse and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H2Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons.

Lin, Zhenhong [ORNL; Dong, Jing [Iowa State University; Greene, David L [ORNL

2013-01-01T23:59:59.000Z

451

Combustion-thermoelectric tube  

SciTech Connect

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid conduction to allow for obtaining super-adiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si-Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si{sub 0.7}Ge{sub 0.3} properties, a conversion efficiency of about 11% is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25% appear possible. This places this energy conversion in line with the other high efficiency, direct electric power generation methods.

Park, C.W.; Kaviany, M.

1999-07-01T23:59:59.000Z

452

Atmospheric and combustion chemistry of dimethyl ether  

SciTech Connect

It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J. [Risoe National Lab., Roskilde (Denmark); Wallington, T.J. [Ford Motor Co., Dearborn, MI (United States)

1997-12-31T23:59:59.000Z

453

Simulation of Lean Premixed Turbulent Combustion J. Bell1, M. Day1, A. Almgren1, M. Lijewski1, C. Rendleman1, R.  

E-Print Network (OSTI)

. There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels in alternative fuels such as hydrogen or syngas, which is obtained from coal gasification. Effective utilization of these fuels requires combustion devices that can operate cleanly and efficiently over a broad range of fuels

Bell, John B.

454

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network (OSTI)

model. ?H c is the heat of combustion, and the ratio ?H c /?may have widely varying heats of combustion (CO vs. gaseous

Lautenberger, Chris

2007-01-01T23:59:59.000Z

455

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

engine * Integration of proposed air path and HCCI combustion control strategies into ECU software * Prototype level 2 updates and proof of combustion concept for vehicle readiness...

456

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

engine installed and vehicle available for application, emission and fuel economy optimization with advanced combustion modes. 4 Advanced combustion control strategy, capable of...

457

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

458

Vehicle Technologies Office: Advanced Combustion Engines | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

459

Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary...

460

The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs  

Science Journals Connector (OSTI)

Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the “Hydrogen Economy”, as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of “electric car”, battery electric as well as hybrid cars – all featuring electric drive trains – are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication satellites. Similar trends can be expected in the future for RADAR Earth Observation satellites and space infrastructure concepts of great scale. This paper examines current activities along the hydrogen value chain, both in the terrestrial and the aerospace sector. A general assessment of the synergy potential is complemented by a thorough analysis of specific applications serving as role models like a lunar manned base or pressurised rover, an aircraft APU or a high power telecommunications satellite. Potential performance improvements and cost savings serve as key performance indicators in these comparisons and trade-offs.

Norbert Frischauf; Beatriz Acosta-Iborra; Frederik Harskamp; Pietro Moretto; Thomas Malkow; Michel Honselaar; Marc Steen; Scott Hovland; Bernhard Hufenbach; Max Schautz; Manfred Wittig; Alexander Soucek

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Catal International Ltd | Open Energy Information  

Open Energy Info (EERE)

Catal International Ltd. Place: Sheffield, United Kingdom Zip: S10 3YT Sector: Hydro, Hydrogen Product: Catal has worked together with LIFE-IC on the "hydrogen producing steam...

462

Overview of U.S. Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Hydrogen and Fuel United States Hydrogen and Fuel Cell Activities U.S. Department of Energy Dr. Sunita Satyapal Fuel Cell Technologies Program CNG and Hydrogen Lessons Learned Workshop December 10, 2009 2 Workshop Objectives * To coordinate lessons learned from compressed natural gas and hydrogen vehicles * Collect feedback from demonstration activities and real world applications in the United States and internationally * Identify additional RD&D to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international codes and standards harmonization * Identify potential future collaborations, workshops, education and communication strategies 3 Hydrogen and Fuel Cells - Where are we today? Fuel Cells for Transportation

463

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

464

NREL: Hydrogen and Fuel Cells Research - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of people working in laboratory setting. NREL interns contribute to hydrogen and fuel cell R&D. Photo by Dennis Schroeder, NREL NREL offers industry, academia, and...

465

New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage  

SciTech Connect

Hydrogen fuel cell vehicles are a promising alternative to internal combustion engines that burn gasoline. A significant challenge in developing fuel cell vehicles is to store enough hydrogen on-board to allow the same driving range as current vehicles. One option for storing hydrogen on vehicles is to use tanks filled with porous materials that act as “sponges” to take up large quantities of hydrogen without the need for extremely high pressures. The materials must meet many requirements to make this possible. This project aimed to develop two related classes of porous materials to meet these requirements. All materials were synthesized from molecular constituents in a building-block approach, which allows for the creation of an incredibly wide variety of materials in a tailorable fashion. The materials have extremely high surface areas, to provide many locations for hydrogen to adsorb. In addition, they were designed to contain cations that create large electric fields to bind hydrogen strongly but not too strongly. Molecular modeling played a key role as a guide to experiment throughout the project. A major accomplishment of the project was the development of a material with record hydrogen uptake at cryogenic temperatures. Although the ultimate goal was materials that adsorb large quantities of hydrogen at room temperature, this achievement at cryogenic temperatures is an important step in the right direction. In addition, there is significant interest in applications at these temperatures. The hydrogen uptake, measured independently at NREL was 8.0 wt %. This is, to the best of our knowledge, the highest validated excess hydrogen uptake reported to date at 77 K. This material was originally sketched on paper based on a hypothesis that extended framework struts would yield materials with excellent hydrogen storage properties. However, before starting the synthesis, we used molecular modeling to assess the performance of the material for hydrogen uptake. Only after modeling suggested record-breaking hydrogen uptake at 77 K did we proceed to synthesize, characterize, and test the material, ultimately yielding experimental results that agreed closely with predictions that were made before the material was synthesized. We also synthesized, characterized, and computationally simulated the behavior of two new materials displaying the highest experimental Brunauer?Emmett?Teller (BET) surface areas of any porous materials reported to date (?7000 m2/g). Key to evacuating the initially solvent-filled materials without pore collapse, and thereby accessing the ultrahigh areas, was the use of a supercritical CO2 activation technique developed by our team. In our efforts to increase the hydrogen binding energy, we developed the first examples of “zwitterionic” metal-organic frameworks (MOFs). The two structures feature zwitterionic characteristics arising from N-heterocyclic azolium groups in the linkers and negatively charged Zn2(CO2)5 nodes. These groups interact strongly with the H2 quadrupole. High initial isosteric heats of adsorption for hydrogen were measured at low H2 loading. Simulations were used to determine the H2 binding sites, and results were compared with inelastic neutron scattering. In addition to MOFs, the project produced a variety of related materials known as porous organic frameworks (POFs), including robust catechol-functionalized POFs with tunable porosities and degrees of functionalization. Post-synthesis metalation was readily carried out with a wide range of metal precursors (CuII, MgII, and MnII salts and complexes), resulting in metalated POFs with enhanced heats of hydrogen adsorption compared to the starting nonmetalated materials. Isosteric heats of adsorption as high as 9.6 kJ/mol were observed, compared to typical values around 5 kJ/mol in unfunctionalized MOFs and POFs. Modeling played an important role throughout the project. For example, we used molecular simulations to determine that the optimal isosteric heat of adsorption (Qst) for maximum hydrogen delivery using MOFs is appro

Snurr, Randall Q.; Hupp, Joseph T.; Kanatzidis, Mercouri G.; Nguyen, SonBinh T.

2014-11-03T23:59:59.000Z

466

Combustion of viscous hydrocarbons  

SciTech Connect

A method is described for utilizing viscous hydrocarbons as combustible pre-atomized fuels, comprising: (A) forming a hydrocarbon-in-water emulsion using an effective amount of a surfactant package comprising at least one water-soluble surfactant, the hydrocarbon-in-water emulsion (1) comprising a hydrocarbon characterized by API gravity of about 20/sup 0/ API or less, viscosity of about 1000 centipoise or greater at 212/sup 0/F., a paraffin content of about 50% by weight or less and, an aromatic content of about 15% by weight or greater, and (2) having a hydrocarbon water ratio from about 60:40 to about 90:10 by volume; and (B) burning the resultant hydrocarbon-in-water emulsion.

Hayes, M.E.; Hrebenar, K.R.; Murphy, P.L.; Futch, L.E. Jr.; Deal, J.F. III; Bolden, P.L. Jr.

1987-08-04T23:59:59.000Z

467

Combustion of viscous hydrocarbons  

SciTech Connect

A method is described for utilizing viscous hydrocarbons as combustible fuels comprising: (A) forming a hydrocarbosol using a surfactant package in a proportion of about 1:100 to about 1:20,000 by weight based on hydrocarbon, (1) the surfactant package comprising (a) at least one water-soluble surfactant, an effective amount of which surfactant promotes emulsification of a hydrocarbon with API gravity of about 20/sup 0//sup o/ API or less; and (b) at least one water-soluble bioemulsifier, being a microboally-derived substance which predominantly resides at hydrocarbon/water interfaces to substantially surround hydrocarbon droplets in hydrocarbon-in-water emulsions; (2) the hydrocarbosol (a) comprising a hydrocarbon characterized by an API gravity of about 20/sup 0//sup o/ API or less; (b) having a hydrocarbon:water ratio of about 70:30 by volume; and (B) burning the resultant hydrocarbosol.

Hayes, M.E.; Hrebenar, K.R.; Murphy, P.L.; Futch, L.E. Jr.; Deal, J.F. III

1986-10-21T23:59:59.000Z

468

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbines for APFBC Gas Turbines for APFBC FBC Repower Simple Description Detailed Description APFBC Specs GTs for APFBC Suited for Repowering Existing Power Plants with Advanced Pressurized Fluidized-Bed Combined Cycles APFBC combined cycles have high energy efficiency levels because they use modern, high-temperature, high-efficiency gas turbines as the core of a combined power cycle. This web page discusses a current U.S. Department of Energy project that is evaluating combustion turbines suited for repowering existing steam plants. The natural-gas-fueled version of the Siemens Westinghouse Power Corporation W501F. Modified versions of this gas turbine core are suited for operating in APFBC power plants. Contents: Introduction APFBC Repowering Considerations

469

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

470

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

471

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

472

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

473

NETL: News Release - DOE Selects Projects to Develop Pre-Combustion Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

June 11, 2009 June 11, 2009 DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants Washington, D.C. - The U.S. Department of Energy (DOE) today announced the selection of nine projects that will develop pre-combustion carbon capture technologies that can reduce CO2 emissions in future coal-based integrated gasification combined cycle (IGCC) power plants. The projects, totaling nearly $14.4 million, will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Pre-combustion processes convert fossil fuels into a gaseous mixture of hydrogen and CO2 prior to combustion. The CO2 is then separated and the hydrogen-rich gas can be used in power plants. Compared with post-combustion processes, the pressure and concentration of CO2 in pre-combustion processes are relatively high - offering the potential to apply novel CO2 capture technologies such as membranes, solvents and sorbents.

474

Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems  

SciTech Connect

Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

Westbrook, C.K.

2000-07-07T23:59:59.000Z

475

Diffusion and effusion of hydrogen in microcrystalline silicon  

SciTech Connect

The diffusion and effusion of hydrogen in hydrogenated microcrystalline silicon films deposited in an electron cyclotron resonance reactor were studied for various deposition temperatures T{sub s}. For deposition temperatures below 250 C, hydrogen effusion is found to be dominated by desorption of hydrogen from internal surfaces followed by rapid out-diffusion of H{sub 2}. Higher substrate temperatures result in an increased hydrogen stability suggesting the growth of a more compact material. For this latter type of samples, a hydrogen diffusion coefficient similar as in compact plasma-grown a-Si:H films is found despite a different predominant bonding of hydrogen according to infrared absorption.

Beyer, W.; Hapke, P.; Zastrow, U.

1997-07-01T23:59:59.000Z

476

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

Energy.gov (U.S. Department of Energy (DOE))

Applied low temperature combustion to the Navistar 6.4L V8 engine with 0.2g NOx/bhp-hr operation attained at the rated 16.5 BMEP

477

Sandia National Laboratories: accelerate hydrogen infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

have been a major water- and air-pollution source in the U.S.-but remained ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

478

Sandia National Laboratories: hydrogen fuel systems  

NLE Websites -- All DOE Office Websites (Extended Search)

have been a major water- and air-pollution source in the U.S.-but remained ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

479

Hydrogenases and Hydrogen Metabolism of Cyanobacteria  

Science Journals Connector (OSTI)

...wastes into valuable, energy-rich compounds such...hydrogen from solar energy and water by using a renewable process. The present...IEA (International Energy Agency; http...the European program COST (European Cooperation...

Paula Tamagnini; Rikard Axelsson; Pia Lindberg; Fredrik Oxelfelt; Röbbe Wünschiers; Peter Lindblad

2002-03-01T23:59:59.000Z

480

Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "hydrogen internal combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

482

Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

483

High-Speed Combustion and Detonation Project Scaling Up for Mira | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Speed Combustion and Detonation Project Scaling Up for Mira High-Speed Combustion and Detonation Project Scaling Up for Mira March 26, 2013 Printer-friendly version Researchers at the Argonne Leadership Computing Facility (ALCF) are simulating the high-speed combustion and detonation of hydrogen-oxygen mixtures to enable safer and more widespread use of hydrogen as an alternative fuel. This is one of 16 projects in the ALCF's Early Science Program (ESP), which is aimed at preparing key scientific applications for the architecture and scale of Mira, Argonne's new 10-petaflop IBM Blue Gene/Q supercomputer. Using pre-production time on Mira for real scientific problems, these projects vet the system and gather knowledge that will help future projects take full advantage of Mira's vastly increased power and capabilities when it goes into production later this year.

484

Validation of reduced kinetic models for simulations of non-steady combustion processes  

E-Print Network (OSTI)

In the present work we compare reliability of several most widely used reduced detailed chemical kinetic schemes for hydrogen-air and hydrogen-oxygen combustible mixtures. The validation of the schemes includes detailed analysis of 0D and 1D calculations and comparison with experimental databases containing data on induction time, equilibrium temperature, composition of the combustion products, laminar flame speed and the flame front thickness at different pressures. 1D calculations are carried out using the full gasdynamical system for compressible viscous thermal conductive multicomponent mixture. The proper choice of chemical kinetics models is essential for obtaining reliable quantitative and qualitative insight into combustion phenomena such as flame acceleration and stability, ignition, transition from deflagration-to-detonation (DDT) using a multiscale numerical modeling.

Ivanov, M F; Liberman, M A; Smygalina, A E

2013-01-01T23:59:59.000Z

485

Experimental Study of In Situ Combustion with Decalin and Metallic Catalyst  

E-Print Network (OSTI)

Using a hydrogen donor and a catalyst for upgrading and increasing oil recovery during in situ combustion is a known and proven technique. Based on research conducted on this process, it is clear that widespread practice in industry is the usage...

Mateshov, Dauren

2011-02-22T23:59:59.000Z

486

Experiments related to the resuspension of aerosols during hydrogen burns  

SciTech Connect

We have performed seven ''add-on'' experiments in two large combustion facilities to investigate the capability of hydrogen burns to remove simulated structural and fission product aerosols previously deposited on small metal discs that have surfaces prototypical of those found in nuclear reactor containments. Our results suggest that hydrogen combustion provides an especially effective mechanism for removal (and, presumably, resuspension) of sedimented aerosols produced in a hypothetical nuclear reactor core-degradation or core-melting accident. The presence of condensing steam does not seem to assure adhesion of sedimented aerosols during hydrogen burns. Differences are exhibited between different surfaces as well as between types of aerosol. In-depth studies will be required to assess the impact exposure of sedimented aerosols to hydrogen burns might have on the radiological source term.

Nelson, L.S.; Guay, K.P.

1987-01-01T23:59:59.000Z

487

Sandia National Laboratories: Sandia, SRI International Sign...  

NLE Websites -- All DOE Office Websites (Extended Search)

ECFacilitiesCenter for Infrastructure Research and Innovation (CIRI)Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation Sandia, SRI...

488

Staged Combustion of Pulverized Coal  

Science Journals Connector (OSTI)

The emissions of nitrogen oxides are much higher with the combustion of fossil fuels containing organic bound nitrogen compounds than with clean fuels like natural gas and light distillate oil. During combusti...

H. Kremer; R. Mechenbier; W. Schulz

1987-01-01T23:59:59.000Z

489

Light Duty Efficient Clean Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel efficiency over the FTP city drive cycle by 10.5% over today's state-of-the-art diesel engine. Develop & design an advanced combustion system that synergistically meets...

490

Chemical Kinetics of Combustion Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Combustion Processes Hai Wang B. Yang, J. Camacho, S. Lieb, S. Memarzadeh, S.-K. Gao and S. Koumlis University of Southern California 2010 CEFRC Conference Benzene + O( 3 P) ...

491

Plum Combustion | Open Energy Information  

Open Energy Info (EERE)

Plum Combustion Plum Combustion Jump to: navigation, search Name Plum Combustion Place Atlanta, Georgia Product Combustion technology, which reduces NOx-emissions. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Collaborative Combustion Research with BES  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

493

Fuels for Advanced Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

494

Low Temperature Automotive Diesel Combustion  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

495

Hydrogen program overview  

SciTech Connect

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

496

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

497

Proceedings NATIONAL HYDROGEN VISION MEETING  

E-Print Network (OSTI)

.3 Storage, Alan Niedzwiecki, Quantum Technologies, Inc. 6.4 Fuel Cells, William Miller, International Fuel Cells 6.5 End-Use, Byron McCormick, General Motors; Arthur Smith, NiSource, Inc. 7.0 Links to Presentations: The Future of Hydrogen Energy Development..... 23 7.1 The Honorable Robert Walker, The Wexler

498

Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion  

SciTech Connect

A method is described for combusting material with controlled generation of both nitrogen oxides and products of incomplete combustion comprising: (A) combusting material in a first combustion zone to produce gaseous exhaust containing products of incomplete combustion and products of complete combustion; (B) passing the gaseous exhaust from the first combustion zone into a second combustion zone having a width and an axial direction; (C) injecting through a lance with an orientation substantially parallel to said axial direction at least one stream of oxidant, without fuel, having a diameter less than 1/100 of the width of the second combustion zone and having an oxygen concentration of at least 30% into the second combustion zone at a high velocity of at least 300 feet per second; (D) aspirating products of incomplete combustion into the high velocity oxidant; (E) combusting products of incomplete combustion aspirated into the high velocity oxidant with high velocity oxidant within the second combustion zone to carry out a stable combustion by the mixing of the aspirated products of incomplete combustion with the high velocity oxidant; and (F) spreading out the combustion reaction by aspiration of products of complete combustion into the oxidant, said products of complete combustion also serving as a heat sink, to inhibit NO[sub x] formation.

Ho, Min-Da.

1993-05-25T23:59:59.000Z

499

An investigation into the feasibility of an external combustion, steam injected gas turbine  

E-Print Network (OSTI)

output of the turbine without increasing the work required for compression. Second, the steam may be generated with waste 15 heat from the combustion process. In an internal combustion gas turbine, this would result in an increased work output per... which are: 1. Gas Turbine Engine 2. Heat Exchanger Unit 3. Steam Generator Unit 4. Dynamometer 26 A detailed description of the equipment used in the experiment will be presented in the section entitled Ap- paratus since the purpose...

Ford, David Bruce

2012-06-07T23:59:59.000Z

500

Chemical Looping Combustion Kinetics  

SciTech Connect

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z