Sample records for hydrogen infrastructure project

  1. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12T23:59:59.000Z

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  2. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31T23:59:59.000Z

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08T23:59:59.000Z

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  5. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2008-10-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  9. California Hydrogen Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4Applications | DepartmentFuelHydrogen

  10. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers

    Broader source: Energy.gov [DOE]

    Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

  11. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information

    Broader source: Energy.gov [DOE]

    Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

  12. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  13. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  14. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2009; Composite Data Products, Final Version March 19, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-03-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2009.

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-09-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

  16. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-05-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

  17. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  18. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  19. Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

  20. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  1. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  2. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.

    2007-05-17T23:59:59.000Z

    This presentation by Keith Wipke at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  3. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  4. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure...

  5. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Ronald Grasman

    2011-12-31T23:59:59.000Z

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

  6. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  7. Hydrogen Production Infrastructure Options Analysis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Options Analysis Hydrogen Production Infrastructure Options Analysis Presentation on hydrogen production and infrastructure options presented at the DOE Transition...

  8. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  9. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  10. Hydrogen Infrastructure Market Readiness Workshop: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Preliminary Results Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop...

  11. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Energy Savers [EERE]

    Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

  12. Controlled Hydrogen Fleet and Infrastructure Analysis (2008 Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.

    2008-06-10T23:59:59.000Z

    This presentation by Keith Wipke at the 2008 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  13. Hydrogen Fueling Infrastructure Research and Station Technology

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  14. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – Optimizingdevelopment of a hydrogen infrastructure has been identifiedrecent studies of hydrogen infrastructure have assessed

  15. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  16. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  17. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  18. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell...

  19. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  20. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth analysis...

  1. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  2. State Experience in Hydrogen Infrastructure in California

    Broader source: Energy.gov (indexed) [DOE]

    Experience in Hydrogen Infrastructure in California Gerhard H Achtelik Jr. February 17, 2011 Hydrogen Infrastructure Market Readiness Workshop California Environmental Protection...

  3. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect (OSTI)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28T23:59:59.000Z

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  4. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure.5Hydrogen, Fuel Cells & Infrastructure Technologies Program (EERE) President's Office of Science Berkeley, California #12;President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1

  5. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01T23:59:59.000Z

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  6. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    analysis of hydrogen infrastructure development strategiesalso presented. Keywords: Hydrogen Infrastructure, Renewableof a Tasmanian hydrogen infrastructure is performed

  7. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-06-10T23:59:59.000Z

    This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

  8. Hydrogen Infrastructure Transition Analysis: Milestone Report

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2006-01-01T23:59:59.000Z

    This milestone report identifies a minimum infrastructure that could support the introduction of hydrogen vehicles and develops and evaluates transition scenarios supported by this infrastructure.

  9. Optimal Dynamic Strategy of Building a Hydrogen Infrastructure in Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2005-01-01T23:59:59.000Z

    of Building a Hydrogen Infrastructure in Beijing Zhenhongthe on-going Hydrogen Infrastructure Transition (HIT)build up a regional hydrogen infrastructure while minimizing

  10. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Zoia (2005). "Hydrogen infrastructure strategic planningITS—RR—06—05 The Hydrogen Infrastructure Transition Model (a 50-year Hydrogen Infrastructure for Urban Beijing Zhenhong

  11. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Zoia (2005). "Hydrogen infrastructure strategic planningITS—RR—06—05 The Hydrogen Infrastructure Transition Model (a 50-year Hydrogen Infrastructure for Urban Beijing Zhenhong

  12. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    be powered by hydrogen, and pollution-free." "Join me in this important innovation to make our air for the foreseeable future. Even with the significant energy efficiency benefits that gasoline- electric hybrid - fossil fuels like natural gas and coal; renewable energy sources such as solar radiation, wind

  13. Hydrogen Delivery Infrastructure Analysis, Options and Trade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis, Options and Trade-offs, Transition and Long-term Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term Presentation on Hydrogen...

  14. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  15. Sandia National Laboratories: accelerate hydrogen infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accelerate hydrogen infrastructure technologies Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage...

  16. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Refueling Infrastructure for...

  17. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  18. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "2nd International Hydrogen Infrastructure Challenges Webinar," originally presented on March 10, 2015.

  19. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

  20. Sandia National Laboratories: Hydrogen Fueling Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Station Technology Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research and Innovation (CIRI), Energy,...

  1. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    * Convene industry and other stakeholders to share current statusstate-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and...

  2. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  3. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Broader source: Energy.gov (indexed) [DOE]

    methane reformer SOTA State-of-the-Art v Executive Summary Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a...

  4. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas,...

  5. International Hydrogen Infrastructure Challenges Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16,...

  6. H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...

    Energy Savers [EERE]

    H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and...

  7. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  8. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern...

  9. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

  10. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

  11. Office of Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    . Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Reduction #12;Major Fuel Cell Decisions FuelOffice of Hydrogen, Fuel Cells & Infrastructure Technologies (proposed) Steve Chalk May 6, 2002 #12 DAS Associate DASIndustrial Technologies Implementation A Director Solar Energy Technologies Director

  12. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues facing hydrogen infrastructure fuel cell electric vehicles in the U.S. Europe, Germany, Scandinavia, and Japan. o H2 Fueling o H2 Quality o H2 metering o H2 Station...

  13. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Broader source: Energy.gov (indexed) [DOE]

    h presentation slides: Natural Gas and hydrogen Infrastructure opportunities: markets and Barriers to Growth Matt Most, Encana Natural Gas 1 OctOber 2011 | ArgOnne nAtiOnAl...

  14. Hydrogen Infrastructure Market Readiness Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    NRELDOE Hydrogen Infrastructure Market Readiness Workshop Agenda Page 1 of 2 NRELDOE Workshop at the Gaylord National, Washington D.C., February 16-17, 2011 Transitioning to an...

  15. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  16. FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE

    E-Print Network [OSTI]

    DRAFT FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE DEMONSTRATION that complements FreedomCAR to develop both a low-cost hydrogen infrastructure and advanced hydrogen fuel cell a strategy to develop a hydrogen economy that emphasizes co-developing hydrogen infrastructure in parallel

  17. Hydrogen,Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    ;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

  18. Hydrogen Distribution and Delivery Infrastructure

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

  19. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Prospects for Building a Hydrogen Energy Infrastructure."A global survey of hydrogen energy research, development andof Engineering (2004). the Hydrogen Economy: Opportunities,

  20. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Prospects for Building a Hydrogen Energy Infrastructure."A global survey of hydrogen energy research, development andof Engineering (2004). the Hydrogen Economy: Opportunities,

  1. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared MappingInfrastructure

  2. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    Ideally a robust hydrogen infrastructure would rapidlya serviceable hydrogen infrastructure that is extensiveadding hydrogen dispensing infrastructure to a gasoline

  3. Hydrogen Vehicle and Infrastructure Codes and Standards Citations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used...

  4. Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California

    E-Print Network [OSTI]

    Lin, Zhenhong; Chen, Chien-Wei; Fan, Yueyue; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    P. Rutter, et al. Hydrogen infrastructure strategic planningModelling of Hydrogen infrastructure for vehicle refuellingof building up a hydrogen infrastructure in Southern

  5. Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2008-01-01T23:59:59.000Z

    response to FCV and hydrogen infrastructure questions amongits supporting hydrogen infrastructure. In 2006, UC Berke-standing of hydrogen FCVs and infrastructure, researchers at

  6. Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    for building up hydrogen infrastructure that are guided byModeling Regional Hydrogen Infrastructure Development . inNATURAL GAS BASED HYDROGEN INFRASTRUCTURE – OPTIMIZING

  7. Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    Techno-Economic Analysis of H2 Production by Gasification of Biomass, GTI 2.60 v Project completed. 31 Project Completed Summary Comment 1 H2 from Biomass: Catalytic Reforming of Pyrolysis Vapors, NREL 3.28 v Water Gas Shift, NREL 3.23 v Project funding discontinued based on unfavorable economic analysis. 6

  8. Geographically-Based Hydrogen Demand & Infrastructure Rollout Scenario Analysis (Presentation)

    SciTech Connect (OSTI)

    Melendez, M.

    2007-05-17T23:59:59.000Z

    This presentation by Margo Melendez at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Hydrogen Demand & Infrastructure Rollout Scenario Analysis.

  9. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

  10. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01T23:59:59.000Z

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  11. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31T23:59:59.000Z

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  12. Page 1 of 2 PON-11-609 Special Terms and Conditions Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    Page 1 of 2 PON-11-609 Special Terms and Conditions Hydrogen Fuel Infrastructure ATTACHMENT N the Commission for the 5% of the total project cost. 2. 33% Renewable Hydrogen Performance Incentive Recipient elected in its proposal to dispense renewable hydrogen at

  13. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California lessonsmelainafinal.pdf More...

  14. Deadline Extended for RFI Regarding Hydrogen Infrastructure and...

    Energy Savers [EERE]

    for a robust market introduction of hydrogen supply, infrastructure, and fuel cell electric vehicles (FCEVs). This input will augment financing strategies that DOE...

  15. Potential Role of Exergy in Analysis of Hydrogen Infrastructure

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2008-01-01T23:59:59.000Z

    The objective of this paper is to demonstrate the potential role of exergy (second-law) analysis, as a complementary tool for economic assessments of hydrogen infrastructures.

  16. Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2011-03-01T23:59:59.000Z

    Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

  17. Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    M.W. , Initiating hydrogen infrastructures: preliminaryNatural Gas Based Hydrogen Infrastructure – Optimizingof a Fossil Fuel-Based Hydrogen Infrastructure with Carbon

  18. Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – OptimizingM.W. , Initiating hydrogen infrastructures: preliminaryDesign of a Fossil Hydrogen Infrastructure with Capture and

  19. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    9] Moore RB, Raman V. Hydrogen infrastructure for fuel cellSperling D. The hydrogen infrastructure transition model (a 50-year hydrogen infrastructure for urban Beijing. Davis,

  20. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01T23:59:59.000Z

    to the FCV and hydrogen infrastructure over time and canvalued the FCV and hydrogen infrastructure (including range,response to FCV and hydrogen infrastructure questions among

  1. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  2. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    : Facilitate the creation and adoption of model building codes and equipment standards for hydrogen systems of hydrogen building codes for NFPA's hearing cycle. Facilitate in the adoption of the ICC codes in three key for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen

  3. National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure

    E-Print Network [OSTI]

    National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis to address the nation's energy and environmental goals. · The NREL Hydrogen Analysis Group provides

  4. Sandia National Laboratories: Center for Infrastructure Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Research and Innovation Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure...

  5. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University;Cluster Strategy => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (Vehicles Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels

  6. Sandia National Laboratories: hydrogen fueling infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Washington DC, Sandian's Christopher San Marchi (manager of Sandia's Hydrogen and Metallurgy Science Dept.) and Brian Somerday (also in the Hydrogen and Metallurgy Science...

  7. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  8. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01T23:59:59.000Z

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  9. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 Photoelectrochemical Hydrogen Production Eric L. Miller (Primary Contact), Daniela Paluselli, Bjorn Marsen, Richard HPEs based on best available materials systems. · Demonstrate 7.5% solar-to-hydrogen (STH) efficiency

  10. Final Report - Hydrogen Delivery Infrastructure Options Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen from Wind and Competing Sources", Conference Paper NRELCP-620-38138, May 2005 7 Smith, Steven J., et.a., (Battelle Memorial Institute, College Park, Maryland), "Near-Term...

  11. Near-Site Transportation Infrastructure Project

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. (Nuclear Assurance Corp., Norcross, GA (United States)) [Nuclear Assurance Corp., Norcross, GA (United States)

    1992-02-01T23:59:59.000Z

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities.

  12. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    the public-private partnerships in other countries focused on hydrogen, particularly Germany, Japan and the UK. In April, the DOE announced a new project leveraging the...

  13. Hydrogen Fuel Infrastructure PON-11-609 Attachment F Local Health Impacts Information

    E-Print Network [OSTI]

    Hydrogen Fuel Infrastructure PON-11-609 Attachment F ­ Local Health Impacts Information Air Quality Percentage of population under 5 years and over 65 years of age #12;Hydrogen Fuel Infrastructure PON-11

  14. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22T23:59:59.000Z

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  15. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting

    Broader source: Energy.gov (indexed) [DOE]

    Economic governments, students) Challenges: . Technology readiness to enable industry to commercialize es and hydrogen infrastructure in the 2020 Hydrogen Storage...

  16. International Hydrogen Infrastructure Challenges Workshop Summary - NOW,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergy Hydrogen

  17. Hydrogen Infrastructure Transition Analysis: Milestone Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-Layer

  18. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel HydrogenMDepartment

  19. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen and Fuel

  20. International Hydrogen Infrastructure Challenges Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEDO Marc Steen EC *Presenter NIP - A success story BMVBS-funding Status 012013 5 Germany NIP - Activities within the Lighthouse Projects 6 50 HRS Programm * joint Letter of...

  1. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24T23:59:59.000Z

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

  2. Questions, Answers, and Clarifications PON12606 December 14, 2012 1 Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    Infrastructure Questions, Answers and Clarifications Hydrogen Fuel Infrastructure Solicitation PON-12Questions, Answers, and Clarifications PON12606 December 14, 2012 1 Hydrogen Fuel for multiple hydrogen fueling stations? A.6 No. Q.7 Can the 65% Energy Commission share be increased to 75%? A

  3. ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou infrastructure, and potential benefits & barriers to the use of hydrogen as a vehicular fuel. Emphasis is placed Course statement: This course covers essential aspects of fuel cell vehicle technology, hydrogen fueling

  4. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment

  5. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    SciTech Connect (OSTI)

    Tolley, George S

    2010-06-29T23:59:59.000Z

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not large enough to noticeably affect sales penetration. A tax of $116 per metric ton makes centrally produced hydrogen profitable in the very first year but results in only 64% penetration by year 20 as opposed to the 60% penetration in the benchmark case. Provision of 15 seed stations publicly provided at the beginning of the simulation, in addition to the 15 existing stations in the benchmark case, gives sales penetration rates very close to the benchmark after 20 years, namely, 63% and 59% depending on where they are placed.

  6. Hydrogen Infrastructure Expansion: Consumer Demand and Cost-Reduction Potential (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.

    2014-04-01T23:59:59.000Z

    The presentation summarizes key challenges in financing hydrogen infrastructure and reviews analysis tools available to inform investment decisions and reduce financial risks.

  7. Webinar: International Hydrogen Infrastructure Challenges Workshop Summary – NOW, NEDO, and DOE

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, International Hydrogen Infrastructure Challenges Workshop Summary – NOW, NEDO, and DOE, originally presented on December 16, 2013.

  8. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01T23:59:59.000Z

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  9. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin ChartsQuality Act Jump to:

  10. Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    1 Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure Renewable Hydrogen 1. What if a proposal meets (or exceeds) the renewable hydrogen content requirement through for renewable hydrogen, does there have to be a physical pathway, or can there be credits that can be traded

  11. Infrastructure and Operations Improvement Project Director |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project risks. -Ensure that required and effective project management and control systems are developed, deployed and implemented to successfully manage and assess the project...

  12. Fuel Cell Vehicle Infrastructure Learning Demonstration: Status and Results; Preprint

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-09-01T23:59:59.000Z

    Article prepared for ECS Transactions that describes the results of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project.

  13. The U.S. National Hydrogen Storage Project Overview (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. National Hydrogen Storage Project Overview (presentation) The U.S. National Hydrogen Storage Project Overview (presentation) Status of Hydrogen Storage Materials R&D...

  14. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Costs to Estimate Hydrogen Pipeline Costs. Davis, ITS-Davis.production of hydrogen with pipeline distribution. Theatmosphere, and pipeline delivery of hydrogen to refueling

  15. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Costs to Estimate Hydrogen Pipeline Costs. Davis, ITS-Davis.production of hydrogen with pipeline distribution. Theatmosphere, and pipeline delivery of hydrogen to refueling

  16. AVTA: ARRA EV Project Annual Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports summarize charging behavior of drivers that participated in the EV Project, which deployed 14,000 Level 2 PEV chargers and 300 fast chargers.

  17. List of Attendees at the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting

    Broader source: Energy.gov [DOE]

    This list of attendees represents those that attended the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting pre-solicitation meeting in Detroit, Michigan, on March 19, 2003.

  18. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    SciTech Connect (OSTI)

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01T23:59:59.000Z

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  19. Siemens Global Studio Project: Experiences Adopting an Integrated GSD Infrastructure

    E-Print Network [OSTI]

    Herbsleb, James D.

    Siemens Global Studio Project: Experiences Adopting an Integrated GSD Infrastructure Mullick, N., Bass, M., El Houda, Z., and Paulish, D.J. Siemens Corporate Research, Inc Princeton, NJ Neel.Mullick, Matthew.Bass, Daniel.Paulish @Siemens.com Cataldo, M. and Herbsleb, J.D. Institute for Software Research

  20. Sandia National Laboratories: hydrogen fuel expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expertise Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  1. Sandia National Laboratories: hydrogen fueling station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    station Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  2. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30T23:59:59.000Z

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  3. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.D Electrolytic Processes

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 125 II.D Electrolytic Processes II.D.1 Photoelectrochemical Systems for Hydrogen Production Ken Varner, Scott Warren, J.A. Turner of the identified semiconductor materials as required. · Determine if existing photovoltaic (PV) device structures

  4. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    gas steam reformers located at refueling stations) to centralized production of hydrogen with pipeline distribution.

  5. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    gas steam reformers located at refueling stations) to centralized production of hydrogen with pipeline distribution.

  6. Questions, Answers, and Clarifications Addendum 2 Hydrogen Refueling Infrastructure Solicitation

    E-Print Network [OSTI]

    Competition, if only a percentage of $3,150,000 available funds is used for one 100% renewable hydrogen For the 100% Renewable Hydrogen Competition, if $3,150,000 of the available funds is used to fund a portion competition is intentionally prioritized so that 100% renewable hydrogen is funded before the funding is used

  7. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L. [Pacific Northwest National Laboratory, Richland, WA; San Marchi, Christopher W.

    2013-10-01T23:59:59.000Z

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  8. Tank waste remediation system privatization phase 1 infrastructure project W-519, project execution plan

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-08-28T23:59:59.000Z

    This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented.

  9. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    levelized fuel cost. Ş 2008 International Association for Hydrogen Energy.levelized cost of hydrogen, (2) capital cost of hydrogen and CO 2 infrastructure (3) well-to-tank energylevelized cost of hydrogen to truck pathway parameters. international journal of hydrogen energy

  10. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01T23:59:59.000Z

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  11. Near-Site Transportation Infrastructure Project. Final report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)] [Nuclear Assurance Corp., Norcross, GA (United States)

    1992-02-01T23:59:59.000Z

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities.

  12. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29T23:59:59.000Z

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

  13. Sandia National Laboratories: hydrogen fuel cell and infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced hydrogen storage systems that will enable longer driving ranges and help make fuel-cell systems competitive for different platforms and vehicle sizes. These advances in...

  14. Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

  15. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    concepts and knowledge in hydrogen energy systems and theirdevelop alternative hydrogen-energy scenarios. The scenariosof alternative hydrogen energy pathways to characterize an

  16. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01T23:59:59.000Z

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  17. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  18. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY

    E-Print Network [OSTI]

    ~--- - ~ .. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY Joan FUEL CELL VEHICLES: .A SOUTHERN CALIFORNIA CASE STUDY JoanM. Ogden Center for Energy and Environmental production, fuel cell vehicles are among the leading contenders in emerging markets for zero emission

  19. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report AAS Atomic Adsorption Spectroscopy

    E-Print Network [OSTI]

    Maleate dc Direct Current DCM Dichloromethane DCSF Diesel Combustion Simulation Facility DECSE Diesel Diesel Oxidation Catalyst DOE Department of Energy DPF Diesel Particulate Filter #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 620 DPG Distributed Power Generation DSC Differential

  20. Connecticut Company to Advance Hydrogen Infrastructure and Fueling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electrolysis. The Proton Energy Systems research team will collect data on station operation, maintenance, repair, and energy consumption. The Connecticut projects announced...

  1. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20T23:59:59.000Z

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  2. Hydrogen Fueling Infrastructure Research and Station Technology Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergyfor

  3. Hydrogen Vehicle and Infrastructure Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel HydrogenMDepartment of

  4. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen andReview and Peer

  5. Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen andReview and

  6. Hythane project by Hydrogen China Ltd and China Railway Construction...

    Open Energy Info (EERE)

    by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name: Hythane project by Hydrogen China Ltd and China Railway Construction Corporation...

  7. A toolkit for integrated deterministic and probabilistic assessment for hydrogen infrastructure.

    SciTech Connect (OSTI)

    Groth, Katrina; Tchouvelev, Andrei V.

    2014-03-01T23:59:59.000Z

    There has been increasing interest in using Quantitative Risk Assessment [QRA] to help improve the safety of hydrogen infrastructure and applications. Hydrogen infrastructure for transportation (e.g. fueling fuel cell vehicles) or stationary (e.g. back-up power) applications is a relatively new area for application of QRA vs. traditional industrial production and use, and as a result there are few tools designed to enable QRA for this emerging sector. There are few existing QRA tools containing models that have been developed and validated for use in small-scale hydrogen applications. However, in the past several years, there has been significant progress in developing and validating deterministic physical and engineering models for hydrogen dispersion, ignition, and flame behavior. In parallel, there has been progress in developing defensible probabilistic models for the occurrence of events such as hydrogen release and ignition. While models and data are available, using this information is difficult due to a lack of readily available tools for integrating deterministic and probabilistic components into a single analysis framework. This paper discusses the first steps in building an integrated toolkit for performing QRA on hydrogen transportation technologies and suggests directions for extending the toolkit.

  8. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    SciTech Connect (OSTI)

    Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

    2011-06-22T23:59:59.000Z

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

  9. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16T23:59:59.000Z

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  10. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage

    E-Print Network [OSTI]

    of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted as an automotive fuel. However, the lack of convenient and cost-effective hydrogen storage, particularly for an on market for cost-effective and efficient high-pressure hydrogen storage systems. The world's premier

  11. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo:March 2013)Ashless) CharacteristicsProject

  12. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power Project Groundof|than Ever | Departmentof

  13. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Leiby, Paul Newsome [ORNL; James, Brian [Directed Technologies, Inc.; Perez, Julie [Directed Technologies, Inc.; Melendez, Margo [National Renewable Energy Laboratory (NREL); Milbrandt, Anelia [National Renewable Energy Laboratory (NREL); Unnasch, Stefan [Life Cycle Associates; Rutherford, Daniel [TIAX, LLC; Hooks, Matthew [TIAX, LLC

    2008-03-01T23:59:59.000Z

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen res

  14. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    infrastructure includes the state’s natural gas-fired power generation facilities, electricinfrastructure includes the state’s natural gas-fired power generation facilities, electric

  15. PERMITTING OF A PROJECT INVOLVING HYDROGEN: A CODE OFFICIAL’S PERSPECTIVE

    SciTech Connect (OSTI)

    Kallman, Richard A.; Barilo, Nick F.; Murphy, W. F.

    2012-05-11T23:59:59.000Z

    Recent growth in the development of hydrogen infrastructure has led to more requests for code officials to approve hydrogen-related projects and facilities. To help expedite the review and approval process, significant efforts have been made to educate code officials on permitting hydrogen vehicle fueling stations and facilities using stationary fuel cells (e.g., backup power for telephone cell tower sites). Despite these efforts, project delays continue because of several factors, including the limited experience of code officials with these types of facilities, submittals that lack the required information (including failure to adequately address local requirements), and submission of poor quality documents. The purpose of this paper is to help project proponents overcome these potential roadblocks and obtain timely approval for a project. A case study of an actual stationary application permitting request is provided to illustrate the value of addressing these issues.

  16. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfrared Mapping

  17. Structure finance for hybrid infrastructure models : the application of project finance into public-private partnerships for the construction and operation of infrastructure

    E-Print Network [OSTI]

    Patramanis, Theodoros

    2006-01-01T23:59:59.000Z

    This thesis studies the application of project finance as the most efficient financing method for the construction and operation of infrastructure projects such as motorways, airports, power plants, pipelines, wastewater/sewage ...

  18. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01T23:59:59.000Z

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  19. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    SciTech Connect (OSTI)

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01T23:59:59.000Z

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  20. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by DOE's Patrick Davis at a meeting on new fuel cell projects on March 13, 2007. newfcdavisdoe.pdf More Documents & Publications Federal Support for Hydrogen and...

  1. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  2. Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Wind-to-Hydrogen Cost Modeling and Project Findings, originally presented on January 17, 2013.

  3. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE INTERNATIONAL Worldwide hydrogen Infrastructure Developments Status 2014 8 Europe: Germany * Demo-project Clean Energy Partnership 15 public stations + 35 in process in 2016 *...

  4. Project no.: IST-FP6-STREP -027513 Project full title: Critical Utility InfrastructurAL Resilience

    E-Print Network [OSTI]

    Neves, Nuno

    to the hybrid composition of those infrastructures: operational network, called generically SCADA, devoted unwittingly, the SCADA network is sometimes connected to. In consequence, in scientific terms, our problem can systems problem including interconnected SCADA/embedded networks, corporate intranets, and Internet

  5. An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, J

    2010-01-01T23:59:59.000Z

    H. Mooiewek, (2007) “Hydrogen Infrastructure Fuelingfor Building an Early Hydrogen Infrastructure in Southernfacing early hydrogen infrastructure is cost. In this

  6. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    surrounding the hydrogen infrastructure expansion, includingM. (2003) “Initiating hydrogen infrastructures: preliminaryin planning new hydrogen infrastructure: 1) identifying

  7. Application of Social Impact Bonds in Built Infrastructure Sustainability Projects

    E-Print Network [OSTI]

    White, Robert Joseph

    2014-05-01T23:59:59.000Z

    Results: Total Energy Reduction ........ 84 Figure 25: TAMU-Siemens Project Demand Side ........................................................... 85 Figure 26: Univaiate Sensitivity Analysis for Fraction of Savings used to restore Sustainability Fund... projects to their clientele. The Siemens Corporation is an example of an ESCO and the Texas A&M University (TAMU), is an example of a client. TAMU and Siemens have entered into an agreement for Siemens to guarantee savings from sustainable improvement...

  8. An Infrastructure Project for Climate Research in Europe OASIS3 User Guide

    E-Print Network [OSTI]

    PRISM An Infrastructure Project for Climate Research in Europe OASIS3 User Guide prism 2-5 Edited Acknowledgements 1 2 Introduction 3 2.1 Step-by-step use of OASIS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 The OASIS3 sources 4 4 Interfacing a model with the PSMILe library 5 4.1 Initialisation

  9. A Software Infrastructure Project for Climate Research in Europe OASIS4 User Guide

    E-Print Network [OSTI]

    PRISM A Software Infrastructure Project for Climate Research in Europe OASIS4 User Guide (OASIS4 by sending an electronic mail to oasis4_help(at)lists.enes.org and as listed in Contact below. PRISM;Contents 1 Introduction 1 2 OASIS4 sources 3 2.1 Copyright Notice

  10. An Infrastructure Project for Climate Research in Europe OASIS3 User Guide

    E-Print Network [OSTI]

    Schmittner, Andreas

    PRISM An Infrastructure Project for Climate Research in Europe OASIS3 User Guide prism 2-5 Edited 3 2.1 Step-by-step use of OASIS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 The OASIS3 sources 4 4 Interfacing a model with the PSMILe library 5 4.1 Initialisation

  11. Debt Capacity and Optimal Capital Structure for Privately-Financed Infrastructure Projects

    E-Print Network [OSTI]

    productivity, profitability, and private sector capital formation. He estimated, for example, that a 1 effective utilization of resources, when compared with the more flexible and cost conscious private sectorDebt Capacity and Optimal Capital Structure for Privately-Financed Infrastructure Projects

  12. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project...

    Broader source: Energy.gov (indexed) [DOE]

    the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting at Argonne National Laboratory. The purpose of the meeting was to review the progress and plans...

  13. Natural Gas and Hydrogen Infrastructure Opportunities Workshop, October 18-19, 2011, Argonne National Laboratory, Argonne, IL : Summary Report.

    SciTech Connect (OSTI)

    Kumar, R. comp.; Ahmed, S. comp. (Chemical Sciences and Engineering Division)

    2012-02-21T23:59:59.000Z

    The overall objective of the Workshop was to identify opportunities for accelerating the use of both natural gas (NG) and hydrogen (H{sub 2}) as motor fuels and in stationary power applications. Specific objectives of the Workshop were to: (1) Convene industry and other stakeholders to share current status/state-of-the-art of NG and H{sub 2} infrastructure; (2) Identify key challenges (including non-technical challenges, such as permitting, installation, codes, and standards) preventing or delaying the widespread deployment of NG and H{sub 2} infrastructure. Identify synergies between NG and H{sub 2} fuels; and (3) Identify and prioritize opportunities for addressing the challenges identified above, and determine roles and opportunities for both the government and industry stakeholders. Plenary speakers and panel discussions summarized the current status of the NG and H{sub 2} infrastructure, technology for their use in transportation and stationary applications, and some of the major challenges and opportunities to more widespread use of these fuels. Two break-out sessions of three groups each addressed focus questions on: (1) infrastructure development needs; (2) deployment synergies; (3) natural gas and fuel cell vehicles (NGVs, FCVs), specialty vehicles, and heavy-duty trucks; (4) CHP (combined heat and power), CHHP (combined hydrogen, heat, and power), and synergistic approaches; and (5) alternative uses of natural gas.

  14. The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States

    E-Print Network [OSTI]

    Collantes, Gustavo Oscar

    2008-01-01T23:59:59.000Z

    the development of a hydrogen infrastructure Promote basicliability insurance of hydrogen infrastructure at reasonableinsurance for hydrogen infrastructure have mar- ginally

  15. Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen

    E-Print Network [OSTI]

    Melaina, Marc W

    2007-01-01T23:59:59.000Z

    survey: automotive hydrogen infrastructure. Fuel Cell Today.2003. Initiating hydrogen infrastructures: preliminary2005. Initiating hydrogen infrastructures: analysis of

  16. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    SciTech Connect (OSTI)

    Saur, G.

    2008-12-01T23:59:59.000Z

    This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

  17. Category:Smart Grid Projects - Advanced Metering Infrastructure | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation MediaGrant Projects

  18. NEUP Project Selections_September212011_IRP and Infrastructure Improvements

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges| Department of Energy Projects selections

  19. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I-1

    E-Print Network [OSTI]

    -Derived Hydrogen from a Thermally Ballasted Gasifier, Iowa State University. . . . II-73 5. Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass, Gas Technology Institute-34 8. Hydrogen Technical Analysis: Evaluation of Metal Hydride Slurries, TIAX LLC

  20. Determining the lowest-cost hydrogen delivery mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2007-01-01T23:59:59.000Z

    current lack of hydrogen infrastructure. Hydrogen fuel isof developing hydrogen infrastructure systems. This analysisa refueling infrastructure for hydrogen vehicles: a southern

  1. Determining the Lowest-Cost Hydrogen Delivery Mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2008-01-01T23:59:59.000Z

    current lack of hydrogen infrastructure. Hydrogen fuel isof developing hydrogen infrastructure systems. This analysisa Refueling Infrastructure for Hydrogen Vehicles: A Southern

  2. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  3. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and

  4. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: 1) the lack ofon the Costs of Hydrogen Infrastructure for Transportstudy. Studies of Hydrogen Infrastructure in China There

  5. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: (1) the lack of1.3.3. Studies of hydrogen infrastructure in China Thereon the costs of hydrogen Infrastructure for transport

  6. EIS-0431: Hydrogen Energy California's Project, Kern County, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

  7. Final Scientifc Report - Hydrogen Education State Partnership Project

    SciTech Connect (OSTI)

    Leon, Warren

    2012-02-03T23:59:59.000Z

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  8. Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California

    E-Print Network [OSTI]

    Lin, Zhenhong; Fan, Yueyue; Ogden, Joan M; Chen, Chien-Wei

    2008-01-01T23:59:59.000Z

    P. Rutter, et al. Hydrogen infrastructure strategic planningModelling of Hydrogen infrastructure for vehicle refuellingof building up a hydrogen infrastructure in Southern

  9. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Duleep, Gopal [HD Systems

    2013-06-01T23:59:59.000Z

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  10. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  11. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Cell Deployment and Hydrogen Infrastructure, Worldwide Web,of deploying hydrogen infrastructure. stream of hydrogenfeasibility of a hydrogen infrastructure is enhanced by

  12. Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California

    E-Print Network [OSTI]

    Lin, Zhenhong; Chen, Chien-Wei; Fan, Yueyue; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    Costs to Estimate Hydrogen Pipeline Costs. University ofPipeline network gradually expands and eventually takes over all hydrogenpipelines. These technologies compete with each other to meet an exogenously estimated hydrogen

  13. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  14. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  15. Hydrogen Energy California Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmit a Freedom ofofMissionHydrogen

  16. National Hydrogen Storage Project | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy U.S.August|DeployedHydrogen

  17. Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries

    E-Print Network [OSTI]

    Kumar, Vimal, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

  18. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    E-Print Network [OSTI]

    Wang, Guihua; Ogden, Joan M; Chang, Daniel P.Y.

    2007-01-01T23:59:59.000Z

    spatial layouts of hydrogen infrastructure were determined.for Building a Hydrogen Energy Infrastructure. ?nal draft

  19. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems – Projected Performance and Cost Parameters

    Broader source: Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

  20. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  1. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

  2. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02T23:59:59.000Z

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  3. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.C Fossil-Based

    E-Print Network [OSTI]

    , noncatalytic decomposition of hydrogen sulfide (H2S) in H2S-rich waste streams into hydrogen and elemental at an industrial site. Approach · Develop a numerical model for the superadiabatic H2S decomposition reactor viability of the concept. · Designed and constructed a state-of-the-art superadiabatic H2S decomposition

  4. The Fuel-Travel-Back Approach to Hydrogen Station Siting

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

    2009-01-01T23:59:59.000Z

    W. (2003). "Initiating hydrogen infrastructures: preliminarycompact, lower-cost hydrogen infrastructure, it is possibleBuilding a Hydrogen Energy Infrastructure." Annual Review of

  5. Technical and Economic Assessment of Regional Hydrogen Transition Strategies

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher; Nicholas, Michael A

    2007-01-01T23:59:59.000Z

    Fuel- Based Hydrogen Infrastructure with Carbon Capture andStrategy of Building a Hydrogen Infrastructure in Beijing,"Natural Gas Based Hydrogen Infrastructure – Optimizing

  6. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    investment in biomass hydrogen infrastructure. Recall thatin biomass hydrogen infrastructure decline sharply betweento supply that hydrogen and the infrastructure is built to

  7. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    State Model of Hydrogen Infrastructure for US Urban Areas,investments for hydrogen infrastructure in the early stagesORNL) analyze hydrogen infrastructure and deployment with

  8. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    C, Ogden JM. Urban hydrogen infrastructure costs using thesteady state city hydrogen infrastructure system model (of a fossil fuel-based hydrogen infrastructure with carbon

  9. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section V. Integrated Hydrogen and Fuel Cell

    E-Print Network [OSTI]

    (NH3) as a chemical carrier for H2. · Evaluate the viability of autothermal NH3 reformation onSage Program to calculate and optimize the performance parameters for the autothermal reformation of ammonia Thermochemistry to determine the performance parameters for the autothermal reformation of NH3 gas to hydrogen

  10. Docket Number: 08-AFC-08A Project Title: Hydrogen Energy Center Application for Certification Amendment

    E-Print Network [OSTI]

    DOCKETED Docket Number: 08-AFC-08A Project Title: Hydrogen Energy Center Application FOR THE HYDROGEN ENERGY CALIFORNIA PROJECT Docket No. 08-AFC-08A NOTICE OF CALIFORNIA ENERGY COMMISSION COMMITTEE (CEC) is aware that the region surrounding the Hydrogen Energy California (HECA) project site has

  11. IPHE Infrastructure Workshop - Workshop Proceedings, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles and Hydrogen Fuel Stations Moving toward a commercial market for hydrogen fuel cell vehicles Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues...

  12. Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    Infrastructure with Carbon Capture and Sequestration: CaseINFRASTRUCTURE WITH CARBON CAPTURE AND SEQUESTRATION: CASEhydrogen production with carbon capture and sequestration,

  13. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  14. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report I. INTRODUCTION

    E-Print Network [OSTI]

    energy industries, academia, environmental organizations, federal and state government agencies Secretary for Energy Efficiency and Renewable Energy (EERE), the new Office of Hydrogen, Fuel Cells and fuels that lead to a clean and sustainable energy future. Fuel cell vehicles running on renewable

  15. ASME/SRNL Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop

    E-Print Network [OSTI]

    Continental Breakfast 8:30 am Welcome Natraj Iyer, Director, Material Science & Technology, Savannah River National Laboratory (SRNL) 8:45 am Opening Remarks Cheryl Cabbil, Acting Laboratory Director, SRNL 9:00 am Overview Tim Armstrong, Oak Ridge National Laboratory (ORNL) 9:00 am Material Testing for Hydrogen

  16. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VII. Conversion Devices

    E-Print Network [OSTI]

    addition on flame stability, combustor acoustics, emissions and efficiency in a gas turbine. · Establish burner that simulates the basic features of gas turbine combustors. · Apply advanced experimental problem areas in practical gas turbine combustors where hydrogen enrichment of hydrocarbon fuels could

  17. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Acronyms and Abbreviations

    E-Print Network [OSTI]

    Expander Motor/ Continuous Emissions Monitoring CERMET Ceramic and Metal CESI Catalytic Energy Systems Inc America, Inc., covers GDLs and GDEs EMF Electromagnetic Field EMI Electromagnetic Interference EMPA of Rubrivivax Gelatinosus CCH Complex Compound Hydride CCHS Complex Compound Hydrogen Storage System CCM

  18. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    the stations include compressors, hydrogen storage andthan compressors to supply pressurized gaseous hydrogen to

  19. Hydrogen Storage The goal of this project is to develop the metrologies necessary

    E-Print Network [OSTI]

    Hydrogen Storage METALS The goal of this project is to develop the metrologies necessary for rapid, high-throughput measurement of the hydrogen content of novel materials proposed for hydrogen storage to the research community. Objective Impact and Customers · Hydrogen is promoted as a petroleum replacement

  20. Project Final Report: Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|SpeedShop

    SciTech Connect (OSTI)

    Galarowicz, James

    2014-01-06T23:59:59.000Z

    In this project we created a community tool infrastructure for program development tools targeting Petascale class machines and beyond. This includes tools for performance analysis, debugging, and correctness tools, as well as tuning and optimization frameworks. The developed infrastructure provides a comprehensive and extensible set of individual tool building components. We started with the basic elements necessary across all tools in such an infrastructure followed by a set of generic core modules that allow a comprehensive performance analysis at scale. Further, we developed a methodology and workflow that allows others to add or replace modules, to integrate parts into their own tools, or to customize existing solutions. In order to form the core modules, we built on the existing Open|SpeedShop infrastructure and decomposed it into individual modules that match the necessary tool components. At the same time, we addressed the challenges found in performance tools for petascale systems in each module. When assembled, this instantiation of community tool infrastructure provides an enhanced version of Open|SpeedShop, which, while completely different in its architecture, provides scalable performance analysis for petascale applications through a familiar interface. This project also built upon and enhances capabilities and reusability of project partner components as specified in the original project proposal. The overall project team’s work over the project funding cycle was focused on several areas of research, which are described in the following sections. The reminder of this report also highlights related work as well as preliminary work that supported the project. In addition to the project partners funded by the Office of Science under this grant, the project team included several collaborators who contribute to the overall design of the envisioned tool infrastructure. In particular, the project team worked closely with the other two DOE NNSA laboratories Los Alamos and Sandia leveraging co-funding for Krell by ASC’s Common Computing Environment (CCE) program as laid out in the original proposal. The ASC CCE co-funding, coordinated through LLNL, was for 50% of the total project funding, with the ASC CCE portion of the funding going entirely to Krell, while the ASCR funding itself was split between Krell and the funded partners. This report covers the entire project from both funding sources. Additionally, the team leveraged the expertise of software engineering researchers from Carnegie Mellon University, who specialize in software framework design, in order to achieve a broadly acceptable component framework. The Component Based Tool Framework (CBTF) software has been released to the community. Information related to the project and the released software can be found on the CBTF wiki page at: http://sourceforge.net/p/cbtf/wiki/Home

  1. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    in the analysis of hydrogen energy stations, additionalattractiveness of the hydrogen energy station scheme in bothECONOMIC ANALYSIS OF HYDROGEN ENERGY STATION CONCEPTS: ARE '

  2. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  3. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    costs to estimate hydrogen pipeline costs. Davis, CA: UCfacilities and hydrogen pipelines will follow existingloca- tions for hydrogen pipelines [31]. To assess the

  4. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGasStorageNREL is a

  5. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  6. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  7. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

    2008-01-01T23:59:59.000Z

    support for FCVs and hydrogen infrastructure in Californiaand durability; c) hydrogen infrastructure expansion; and d)cell vehicle and hydrogen infrastructure technology over the

  8. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    of a fossil fuel-based hydrogen infrastructure with carbonnatural gas based hydrogen infrastructure – optimizingan energy carrier, hydrogen infrastructure strategies, and

  9. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Cell Deployment and Hydrogen Infrastructure, Worldwide Web,and V. Raman (1998), “Hydrogen Infrastructure for Fuel Cellfuel cell and hydrogen infrastructure development are

  10. Detailed Analysis of Urban Station Siting for California Hydrogen Highway Network

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, Joan M

    2007-01-01T23:59:59.000Z

    of a Fossil Fuel-Based Hydrogen Infrastructure with Carbonexpensive, then a hydrogen infrastructure would be postponedto the future hydrogen infrastructure. People will refuel at

  11. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    emissions factors and hydrogen infrastructure engineering/consumption of hydrogen infrastructure such as the hydrogenspatial layouts of hydrogen infrastructure were determined.

  12. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01T23:59:59.000Z

    for building a hydrogen energy infrastructure,[ Annu. Rev.Energy, Hydrogen, fuel cells and infrastructure technologiesBDeveloping an infrastructure for hydrogen vehicles: A

  13. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    S.E. , (1997) “Hydrogen Infrastructure Report”, p. E-5.M. (2003) “Initiating hydrogen infrastructures: preliminaryin planning new hydrogen infrastructure: 1) the lack of

  14. Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution

    E-Print Network [OSTI]

    Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – Optimizingof a Fossil Fuel-Based Hydrogen Infrastructure with Carbonbe achieved with hydrogen infrastructure technologies. One

  15. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    dialogue forum on the hydrogen infrastructure challenge suchfurther near-term hydrogen infrastructure investments areformulated a 10 year hydrogen infrastructure growth scenario

  16. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  17. Hydrogen Energy CA Project (08-AFC-8) Loreen R. McMahon

    E-Print Network [OSTI]

    Hydrogen Energy CA Project (08-AFC-8) Loreen R. McMahon Associate Public Adviser September 16, 2009 (email notification) www.energy.ca.gov/listservers /hydrogen_energy Notices and Announcements Documents > www.energy.ca.gov/sitingcases/hydrogen_energy/documents #12;Informal Participation Comments

  18. SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL

    E-Print Network [OSTI]

    Boyer, Edmond

    1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

  19. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    The models of coal-to-hydrogen plant costs given by Kreutzof the capital cost of coal-to-hydrogen plants as a function

  20. Sandia National Laboratories: Demonstration Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  1. Sandia National Laboratories: Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regulation, ... Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port On March 13, 2014, in Center for Infrastructure Research and...

  2. Forecourt and Gas Infrastructure Optimization

    Broader source: Energy.gov (indexed) [DOE]

    Forecourt and Gas Infrastructure Optimization Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland 2 Analysis of Market Demand and Supply...

  3. Hydrogen and Infrastructure Costs

    Broader source: Energy.gov (indexed) [DOE]

    Cells 3.0 M Portable Nuvera Fuel Cells 1.1 M Lift Truck Plug Power, Inc. (1) 3.4 M CHP Plug Power, Inc. (2) 2.7 M Back-up Power Univ. of N. Florida 2.5 M Portable ReliOn,...

  4. Sandia Energy - Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermalBehavior

  5. IPHE Infrastructure Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  6. Hydrogen Delivery - Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

  7. The U.S. National Hydrogen Storage Project Overview (presentation...

    Broader source: Energy.gov (indexed) [DOE]

    Examples of Hydrogen Storage Collaboration NSF- proposal review in process (507) NIST- neutron scattering U.S. Department of Energy Summary We need to accelerate the pace of...

  8. Panel 1, Hawaii Hydrogen Projects Status & Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status & Lessons Learned Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at...

  9. Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw

    E-Print Network [OSTI]

    Parker, Nathan C

    2007-01-01T23:59:59.000Z

    modeling optimal hydrogen infrastructure from biomass. Theoptimal biomass to hydrogen infrastructure Sets fields sitesto supply that hydrogen and the infrastructure is built to

  10. Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw

    E-Print Network [OSTI]

    Parker, Nathan

    2007-01-01T23:59:59.000Z

    modeling optimal hydrogen infrastructure from biomass. Theoptimal biomass to hydrogen infrastructure Sets fields sitesto supply that hydrogen and the infrastructure is built to

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    arguments for hydrogen infrastructure in hopes of keepingfor use while hydrogen infrastructure is scarce. This wouldstages of hydrogen refueling infrastructure development.

  12. Part B: Project Summary ITR: A Scalable Enabling IT Infrastructure for Developing Regions (ICT4B)

    E-Print Network [OSTI]

    Mankoff, Jennifer

    , low-power devices, 2) a new approach to low-cost networking based on intermittent connectivity (rather for social science research. The expected 10-100 times reduction in device cost stems from the co times reduction in infrastructure cost comes largely from 1) the focus on intermittent networking, which

  13. DATA FOR THE EVALUATION OF HYDROGEN RISKS ONBOARD VEHICLES: OUTCOMES FROM THE FRENCH PROJECT DRIVE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DATA FOR THE EVALUATION OF HYDROGEN RISKS ONBOARD VEHICLES: OUTCOMES FROM THE FRENCH PROJECT. Its objective was to provide data on the whole reaction chain leading to a hydrogen hazard onboard and accidental), the chronic leakage taking place within the engine was judged to be more problematic since

  14. Hydrogen Analysis

    Broader source: Energy.gov (indexed) [DOE]

    A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter...

  15. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    with CCS promises a greater CO 2 reduc- tion potential thanpotential coal-based hydrogen transportation system in Ohio with CO 2 capture and storage (CCS).

  16. Hydrogen Tank Project Q2 Report - FY 11

    SciTech Connect (OSTI)

    Johnson, Kenneth I.; Alvine, Kyle J.; Skorski, Daniel C.; Nguyen, Ba Nghiep; Kafentzis, Tyler A.; Dahl, Michael E.; Pitman, Stan G.

    2011-05-15T23:59:59.000Z

    Quarterly report that represents PNNL's results of HDPE, LDPE, and industrial polymer materials testing. ASTM D638 type 3 samples were subjected to a high pressure hydrogen environment between 3000 and 4000 PSI. These samples were tested using an instron load frame and were analyzed using a proprietary set of excel macros to determine trends in data. The development of an in-situ high pressure hydrogen tensile testing apparatus is discussed as is the stress modeling of the carbon fiber tank exterior.

  17. EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

  18. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  19. Hydrogen Fuel Cell Demonstration Project at Port of Honolulu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell HydrogenHydrodynamic

  20. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    National Laboratory; 2007. Ohio energy data report. Publicdemand (MW) % Total Ohio demand (2002) Energy ef?ciency andof hydrogen energy 33 (2008) 5287–5303 Fig. 1 – Ohio GIS

  1. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  2. Electrolysis: Technology and Infrastructure Options Today, electrolysis systems supply 4% of the world's hydrogen. Although electrolysis can be

    E-Print Network [OSTI]

    . In order to achieve the cost target of $2.85 per kg of hydrogen, electricity would need to be available to these stations at prices of 4.5 cents per kWh or less assuming full utilization of the station. As space 2010 hydrogen delivery target), electricity prices of 3.5 cents per kWh or less will be required if we

  3. Project Title: Advanced Thermal Hydrogen Compression Contractor: Ergenics, Inc.

    E-Print Network [OSTI]

    goals of: Long Term: $1.50/gallon of gasoline equivalent (2010) Near Term: $3.00/gallon of gasoline development. H2 Purity: Increase H2 quality to protect both fuel cell catalyst and advanced hydrogen storage a baseline for understanding impurity impact on advanced storage materials (alanates & carbon nanomaterials

  4. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  5. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative and exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.

  6. 1 INTRODUCTION Around the world people are busy with the realization of infrastructural projects. Different tasks

    E-Print Network [OSTI]

    Hack, Robert

    professionals involved in the project. Generally, these projects for the development of large civil- ated and meant to be (re-) used in this lifecycle and the main problem, as known today. This paper summarizes available meth- ods and software packages as used by different professionals

  7. Hydrogen as an Energy Carrier: Outlook for 2010, 2030, and 2050

    E-Print Network [OSTI]

    Ogden, Joan M

    2004-01-01T23:59:59.000Z

    of the 11th World Hydrogen Energy Conference, Stuttgart,Prospects for Building a Hydrogen Energy Infrastructure,”Infrastructure for a Fossil Hydrogen Energy System with CO 2

  8. An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, J

    2010-01-01T23:59:59.000Z

    2008. Analysis of the Transition to Hydrogen Fuel CellVehicles & the Potential Hydrogen Energy InfrastructureH. Mooiewek, (2007) “Hydrogen Infrastructure Fueling

  9. Parallel digital forensics infrastructure.

    SciTech Connect (OSTI)

    Liebrock, Lorie M. (New Mexico Tech, Socorro, NM); Duggan, David Patrick

    2009-10-01T23:59:59.000Z

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  10. Malm Hydrogen and CNG/Hydrogen filling station and Hythane bus project

    E-Print Network [OSTI]

    has continued and the latest step is now to test hydrogen mixed together with natural gas for local to the specification of natural gas. The mixture can be used directly in the current CNG city buses without any Energikonsult AB, Sweden, 2005-04-15 bengt.ridell@carlbro.se 1. Background The largest private utility company

  11. Stormwater management in Boston : to what extent are demonstration projects likely to enable citywide use of green infrastructure?

    E-Print Network [OSTI]

    Marks, Alex (Alex Corin)

    2014-01-01T23:59:59.000Z

    Green infrastructure (GI) has been increasingly recognized as the most effective approach for major cities to manage the environmental impacts of stormwater runoff. However, adoption of this infrastructure has yet to achieve ...

  12. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01T23:59:59.000Z

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  13. Hydrogen Storage Grand Challenge Individual Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel HydrogenM M a a r r c c

  14. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  15. Technical Analysis of Projects Being Funded by the DOE Hydrogen Program

    SciTech Connect (OSTI)

    Edward G. Skolnik

    2006-02-10T23:59:59.000Z

    In July 2000, Energetics began a project in which we performed site-visit based technical analyses or evaluations on hydrogen R&D projects for the purpose of providing in-depth information on the status and accomplishments of these projects to the public, and especially to hydrogen stakeholders. Over a three year period, 32 site-visit analyses were performed. In addition two concepts gleaned from the site visits became subjects of in depth techno-economic analyses. Finally, Energetics produced a compilation document that contains each site-visit analysis that we have performed, starting in 1996 on other contracts through the end of Year One of the current project (July 2001). This included 21 projects evaluated on previous contracts, and 10 additional ones from Year One. Reports on projects visited in Years One and Two were included in their respective Annual Reports. The Year Two Report also includes the two In-depth Analyses and the Compilation document. Reports in Year three began an attempt to perform reviews more geared to hydrogen safety. This Final Report contains a summary of the overall project, all of the 32 site-visit analyses and the two In-depth Analyses.

  16. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect (OSTI)

    John Smart

    2013-09-01T23:59:59.000Z

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  17. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  18. Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and

    E-Print Network [OSTI]

    California at Davis, University of

    pathways for further analysis. The study will examine the potential to use the current natural gas that natural gas pipelines could support, the effect on natural gas quality from any potential contaminants in the hydrogen, and issues related to separating out the hydrogen from the natural gas at the destination

  19. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California fry.pdf More Documents &...

  20. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  1. Sandia National Laboratories: fueling infrastructure development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fueling infrastructure development New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for...

  2. Geographically-Based Infrastructure Analysis | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Analysis given by Keith Parks of the National Renewable Energy Laboratory during the DOE Hydrogen Transition Analysis Workshop on January 26,...

  3. Develop Improved Materials to Support the Hydrogen Economy

    SciTech Connect (OSTI)

    Dr. Michael C. Martin

    2012-07-18T23:59:59.000Z

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  4. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  5. Hydrogen Pilot Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectPrograms | Open EnergySurrey,Contents

  6. Innovative Financing for Green Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Topic OverviewFinancing green infrastructure is critical to taking projects from planning to implementation and beyond, including sustaining operations and maintenance. This 90-minute webcast will...

  7. DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartmentWorkshop |2024

  8. Integrating Customer Relationship Management and Project Lifecycle Management using Information Technology Infrastructure Library Techniques to Improve Service Delivery

    E-Print Network [OSTI]

    Millet, Sabbas

    2008-05-16T23:59:59.000Z

    -facing staff, and a platform for measuring product performance. ITIL (Information Technology Infrastructure Library) is a set of best practices, or body of knowledge, which describes all aspects of delivering IT services. ITIL Version 3 is used by the ISO...

  9. Technical and Economic Assessment of Regional Hydrogen Transition Strategies

    E-Print Network [OSTI]

    Ogden, Joan; Yang, Christopher; Nicholas, Michael

    2007-01-01T23:59:59.000Z

    Costs to Estimate Hydrogen Pipeline Costs,” Report No. UCD-travel distance and pipeline length for hydrogen deliveryLos Angeles. Hydrogen Infrastructure Layout – Pipelines and

  10. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Environmental Management (EM)

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure...

  11. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

  12. Hydrogen Delivery Infrastructure Option Analysis

    E-Print Network [OSTI]

    , vehicles can still drive with gasoline/diesel derived from tar sand, oil shale, and coal derived liquids

  13. Hydrogen Production Infrastructure Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e

  14. Sandia National Laboratories: produce and deliver hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produce and deliver hydrogen High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI),...

  15. Sandia National Laboratories: studying hydrogen's effects on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    studying hydrogen's effects on materials and engines Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research...

  16. Sandia National Laboratories: hydrogen-storage materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen-storage materials ECIS-I2CNER: Hydrogen Infrastructure Research Aids Energy Independence Goal On February 14, 2013, in CRF, Energy, Livermore Valley Open Campus (LVOC),...

  17. Sandia National Laboratories: fully certified commercial hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fully certified commercial hydrogen fueling station Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research...

  18. National Hydrogen Learning Demonstration Status Webinar (Text...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Association. Today, Mr. Wipke is here to talk to us about work on hydrogen fuel cell vehicles and the Controlled Hydrogen Fleet and Infrastructure Demonstration and...

  19. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) · METU Ragueneau · SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  20. Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural

    E-Print Network [OSTI]

    a bus in Albany, GA. Our strategy is to produce hydrogen from biomass pyrolysis oils in conjunction: (1) slow pyrolysis of biomass to produce charcoal, and (2) high temperature processing to form rate of 4.4 million Nm3 , the selling price of hydrogen is estimated to be $9.50/GJ. The production

  1. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

    2013-12-16T23:59:59.000Z

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

  2. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01T23:59:59.000Z

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

  3. MFC Communications Infrastructure Study

    SciTech Connect (OSTI)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01T23:59:59.000Z

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  4. IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021. Final report

    SciTech Connect (OSTI)

    CROCKETT, JOHN

    2006-12-31T23:59:59.000Z

    The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

  5. Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85

    E-Print Network [OSTI]

    Corts, Kenneth S.

    2009-01-01T23:59:59.000Z

    biodiesel, hydrogen, and plug-in electric vehicles and their fueling infrastructure would be useful. Each technology

  6. Hydrogen Technology Research at SRNL

    SciTech Connect (OSTI)

    Danko, E.

    2011-02-13T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  7. Social infrastructure

    E-Print Network [OSTI]

    Kurlbaum, Ryan E. (Ryan Edward)

    2013-01-01T23:59:59.000Z

    Current urbanization patterns and aging transportation infrastructures have marginalized millions of US citizens. The result is that 4 .5 million US residents live within 100 meters of a four-lane highway' and have become ...

  8. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01T23:59:59.000Z

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  9. Lively Infrastructure

    E-Print Network [OSTI]

    Amin, Ash

    2014-10-06T23:59:59.000Z

    and slack within and across the city’s infrastructural networks (Lahoud, 2010; Vale and Campanella, 2005; Batty, 2013). Importantly, this writing shows that there is nothing purely technical or mechanical about even the most digitised infrastructures... given to, and commanded by, building a house piece by piece when time and resource allow, the measures taken to pirate water and electricity, build sanitary pits, and make indoor or outdoor showers and kitchens, making a house into a home...

  10. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  11. area existing infrastructure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 112 Middleware for the next generation Grid infrastructure...

  12. Strategic Plan for the Computational Infrastructure

    E-Print Network [OSTI]

    Sugar, Robert

    Strategic Plan for the Computational Infrastructure for Lattice Gauge Theory Lattice QCD Executive is a defining problem for hadron physics just as the hydrogen atom is for atomic physics. Indeed, the DOE

  13. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Distribution Workshop American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure...

  14. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    SciTech Connect (OSTI)

    Johnson, Rolland P.

    2008-05-07T23:59:59.000Z

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  15. Sandia National Laboratories: hydrogen storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  16. Sandia National Laboratories: hydrogen production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar...

  17. Hydrogen Codes and Standards (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2006-05-01T23:59:59.000Z

    Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

  18. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  19. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  20. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  1. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  2. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  3. TECHNICAL AND ECONOMIC ASSESSMENT OF TRANSITION STRATEGIES TOWARD WIDESPREAD USE OF HYDROGEN AS AN ENERGY CARRIER

    E-Print Network [OSTI]

    Ogden, J; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

    2005-01-01T23:59:59.000Z

    Strategies For Developing Hydrogen Energy Systems With CO 2International Journal of Hydrogen Energy, vol. 24, pp.Prospects for Building a Hydrogen Energy Infrastructure,”

  4. Hydrogen as an Energy Carrier: Outlook for 2010, 2030, and 2050

    E-Print Network [OSTI]

    Ogden, Joan M

    2004-01-01T23:59:59.000Z

    International Journal of Hydrogen Energy, v. 23, No. 6,of the 11th World Hydrogen Energy Conference, Stuttgart,Prospects for Building a Hydrogen Energy Infrastructure,”

  5. Technical and Economic Assessment of Transition Strategies Toward Widespread Use of Hydrogen as an Energy Carrier

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

    2005-01-01T23:59:59.000Z

    Strategies For Developing Hydrogen Energy Systems With CO 2International Journal of Hydrogen Energy, vol. 24, pp.Prospects for Building a Hydrogen Energy Infrastructure,”

  6. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01T23:59:59.000Z

    case study,[ Int. J. Hydrogen Energy, vol. 24, pp. 709–BProspects for building a hydrogen energy infrastructure,[1999. U.S. Department of Energy, Hydrogen, fuel cells and

  7. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  8. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  9. Dueling Stakeholders and Dual-Hatted Systems Engineers: Engineering Challenges, Capabilities and Skills in Government Infrastructure Technology Projects

    E-Print Network [OSTI]

    Brooks, JoAnn M.

    2009-10-02T23:59:59.000Z

    Engineering projects that support government enterprises face substantial challenges due to demands from diverse stakeholders and rapidly-changing technologies. In this paper, we present findings from analysis of five case ...

  10. Dueling Stakeholders and Dual-Hatted Systems Engineers: Engineering Challenges, Capabilities, and Skills in Government Infrastructure Technology Projects

    E-Print Network [OSTI]

    Brooks, JoAnn M.

    Systems engineering projects that support government enterprises face substantial challenges due to demands from diverse stakeholders and rapidly changing technologies. In this paper, we present findings from the analysis ...

  11. Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) - Infrastructure Rehabilitation - Final

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.; Popp, Michael C.

    of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout...

  12. Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) – Infrastructure Rehabilitation – Preliminary

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

    of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout...

  13. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30T23:59:59.000Z

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  14. Energy Infrastructure Events and Expansions Infrastructure Security...

    Office of Environmental Management (EM)

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S....

  15. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  16. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...

    Broader source: Energy.gov (indexed) [DOE]

    Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen...

  17. Sandia National Laboratories: cost-effective hydrogen storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost-effective hydrogen storage Storing Hydrogen Underground Could Boost Transportation, Energy Security On February 26, 2015, in Capabilities, Center for Infrastructure Research...

  18. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    500/kW Anode tail gas Hydrogen Engine Gen-Set ICE/GeneratorFuel Cell Deployment and Hydrogen Infrastructure, WorldwideOffice (2005), “Florida Hydrogen Business Partnership,”

  19. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected...

  20. The Least-cost Hydrogen for Southern California Zhenhong Lin*

    E-Print Network [OSTI]

    Fan, Yueyue

    of hydrogen infrastructure build-up in Southern California during 2010-2060. Given an exogenous demand, the model generates temporal and spatial decisions for building a hydrogen infrastructure, in terms of when emissions, and oil dependence [1]-[3]. Although a hydrogen refueling infrastructure does not currently exist

  1. HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY

    SciTech Connect (OSTI)

    Danko, E

    2007-02-26T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  2. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared MappingInfrastructure

  3. SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH

    SciTech Connect (OSTI)

    Danko, E

    2008-02-08T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  4. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItĆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  5. Integrated Mirco-Machined Hydrogen Gas Sensors

    SciTech Connect (OSTI)

    Frank DiMeoJr. Ing--shin Chen

    2005-12-15T23:59:59.000Z

    The widespread use of hydrogen as both an industrial process gas and an energy storage medium requires fast, selective detection of hydrogen gas. This report discusses the development of a new type of solid-state hydrogen gas sensor that couples novel metal hydride thin films with a MEMS (Micro-Electro-Mechanical System) structure known as a micro-hotplate. In this project, Micro-hotplate structures were overcoated with engineered multilayers that serve as the active hydrogen-sensing layer. The change in electrical resistance of these layers when exposed to hydrogen gas was the measured sensor output. This project focused on achieving the following objectives: (1) Demonstrating the capabilities of micro-machined H2 sensors; (2) Developing an understanding of their performance; (3) Critically evaluating the utility and viability of this technology for life safety and process monitoring applications. In order to efficiently achieve these objectives, the following four tasks were identified: (1) Sensor Design and Fabrication; (2) Short Term Response Testing; (3) Long Term Behavior Investigation; (4) Systems Development. Key findings in the project include: The demonstration of sub-second response times to hydrogen; measured sensitivity to hydrogen concentrations below 200 ppm; a dramatic improvement in the sensor fabrication process and increased understanding of the processing properties and performance relationships of the devices; the development of improved sensing multilayers; and the discovery of a novel strain based hydrogen detection mechanism. The results of this program suggest that this hydrogen sensor technology has exceptional potential to meet the stringent demands of life safety applications as hydrogen utilization and infrastructure becomes more prevalent.

  6. GFOC Project results: High Temperature / High Pressure, Hydrogen Tolerant Optical Fiber

    SciTech Connect (OSTI)

    E. Burov; A. Pastouret; E. Aldea; B. Overton; F. Gooijer; A. Bergonzo

    2012-02-12T23:59:59.000Z

    Tests results are given for exposure of multimode optical fiber to high temperatures (300 deg. C) and high partial pressure (15 bar) hydrogen. These results demonstrate that fluorine down doped optical fibers are much more hydrogen tolerant than traditional germanium doped multimode optical fibers. Also demonstrated is the similar hydrogen tolerance of carbon coated and non-carbon coated fibers. Model for reversible H2 impact in fiber versus T{sup o}C and H2 pressure is given. These results have significant impact for the longevity of use for distributed temperature sensing applications in harsh environments such as geothermal wells.

  7. A Mul&-Scale Design and Control Framework for Dynamically Coupled Sustainable and Resilient Infrastructures,

    E-Print Network [OSTI]

    Daly, Samantha

    electricity. -RedistribuRng power demand over Rme in both infrastructures with the electric power infrastructure. This is the project's test bed applicaRon. 0 FUEL PUMP PHEV BATTERY Outlet Personal TransportaRon Infrastructure Electric

  8. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01T23:59:59.000Z

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

  9. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01T23:59:59.000Z

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  10. Resonant charge transfer of hydrogen Rydberg atoms incident at a Cu(100) projected band-gap surface

    E-Print Network [OSTI]

    Gibbard, J A; Kohlhoff, M; Rennick, C J; So, E; Ford, M; Softley, T P

    2015-01-01T23:59:59.000Z

    The charge transfer (ionization) of hydrogen Rydberg atoms (principal quantum number $n=25-34$) incident at a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected bandgap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed at hydrogen principal quantum numbers for which the Rydberg energy matches the energy of one of the image states. The integrated surface ionization signals show clear periodicity as the energies of states with increasing $n$ come in and out of resonance with the image states. The velocity dependence of the surface ionization dynamics is also investigated. Decreased velocity of the incident H atom leads to a greater mean distance of ionization and a lower field required to extract the ion. The surface-ionization profiles (signal versus applied field) ...

  11. RESEARCH INFRASTRUCTURES Roadmap 2008

    E-Print Network [OSTI]

    Horn, David

    RESEARCH INFRASTRUCTURES FOR FRANCE Roadmap 2008 #12;INTRODUCTION European research infrastructures and development, benefiting to Europe's economy and competitiveness. This roadmap for the research infrastructures....................................................................................................6 3. The roadmap: existing and already decided RIs and others at the planning stage

  12. INFRASTRUCTURE SECURITY & ENERGY

    E-Print Network [OSTI]

    Schrijver, Karel

    INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY DELIVERY & ENERGY RELIABILITY Delivery and Energy Reliability #12;INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY Federal agencies to support waivers and specific response legal authorities #12;INFRASTRUCTURE SECURITY

  13. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptional sErvicE

  14. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptional

  15. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptionalto enhance

  16. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptionalto

  17. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptionaltoCurrent

  18. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party

  19. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supported the

  20. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supported thethe

  1. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supported

  2. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supportedFrom a

  3. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supportedFrom

  4. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have

  5. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we haveto enhance the

  6. Towards A Hydrogen Economy, 3. edition

    SciTech Connect (OSTI)

    NONE

    2007-05-15T23:59:59.000Z

    The report provides a study of the movement towards using hydrogen as a key energy carrier in the future and takes a high-level look at the current state of hydrogen and addresses the infrastructure requirements needed to make the hydrogen economy a reality. The report offers a detailed look at the move to a hydrogen economy by: identifying the current status of hydrogen production and use; discussing the key business drivers of the move towards hydrogen; discussing the barriers to implementation that stand in the way of a transition; providing a critical look at whether the hydrogen economy can succeed; describing the options that exist for a hydrogen infrastructure; identifying the key government initiatives making the hydrogen economy a reality; providing company-by-company profiles of automobile manufacturer efforts to develop and commercialize hydrogen vehicles; and, providing profiles of key hydrogen infrastructure manufacturers.

  7. Sandia National Laboratories: hydrogen storage options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage options Storing Hydrogen Underground Could Boost Transportation, Energy Security On February 26, 2015, in Capabilities, Center for Infrastructure Research and Innovation...

  8. Sandia National Laboratories: Hydrogen Contaminant Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  9. Sandia National Laboratories: Hydrogen Financial Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  10. Sandia National Laboratories: hydrogen degradation of materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    degradation of materials ECIS-I2CNER: Hydrogen Infrastructure Research Aids Energy Independence Goal On February 14, 2013, in CRF, Energy, Livermore Valley Open Campus (LVOC),...

  11. Sandia National Laboratories: Hydrogen Compatibility of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compatibility of Materials ECIS-I2CNER: Hydrogen Infrastructure Research Aids Energy Independence Goal On February 14, 2013, in CRF, Energy, Livermore Valley Open Campus (LVOC),...

  12. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  13. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect (OSTI)

    Truitt, R.W. [Westinghouse Hanford Co., Richland, WA (United States); Pounds, T.S.; Smith, S.O. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1994-08-24T23:59:59.000Z

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  14. Modeling Risks in Infrastructure Asset Management

    E-Print Network [OSTI]

    Seyedolshohadaie, Seyed Reza

    2012-10-19T23:59:59.000Z

    in privatizing and operational risks in maintenance and rehabilitation of infrastructure facilities. To this end, a valuation procedure for valuing large-scale risky projects is proposed. This valuation approach is based on mean-risk portfolio optimization...

  15. Dispersion of agglomeration through transport infrastructure

    E-Print Network [OSTI]

    Fang, Wanli, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    My dissertation aims to assess transport infrastructure's influence on the productivity, scale and distribution of urban economic activities through changing intercity accessibility. Standard project-level cost-benefit ...

  16. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22T23:59:59.000Z

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  17. DOE Hydrogen Program FY 2004 Progress Report II.E.2 Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    to commercialization Technical Barriers The Hydrogen, Fuel Cells & Infrastructure Technologies (HFCIT) Program Multi Optimization: Continued optimization of materials and device designs to demonstrate high

  18. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01T23:59:59.000Z

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  19. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Energy Savers [EERE]

    data below is from an electric vehicle charging infrastructure project run by the New York State Energy Research and Development Authority (NYSERDA). The reports describe...

  20. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Initiatives for Hydrogen Delivery Workshop City of Tulare Renewable Biogas Fuel Cell Project Transportation and Stationary Power Integration Workshop Agenda,...

  1. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Prospects for Hydrogen and Fuel Cells. International Energyamongst others, for hydrogen fuel cell, advanced biofueltC/TJ) (IPCC, 1996). Hydrogen / Fuel Cells During the last

  2. Interdependence of Electricity System Infrastructure and Natural...

    Energy Savers [EERE]

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  3. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  4. The Hydrogen Energy California Project, OAS-RA-13-22

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success StoriesInvestigationsThe FederalHydrogen Energy

  5. Sandia Energy - Hydrogen Fuel Cell Project Seeks to Reduce Port Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePower Company's (ORPC's)NanomaterialsHydrogen

  6. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Water Infrastructure Security Water Infrastructure...

  7. Sandia National Laboratories: hydrogen research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lead to a commercial technology for ports worldwide. Ports have been a major water- and air-pollution source in the U.S.-but remained ... ECIS-I2CNER: Hydrogen Infrastructure...

  8. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31T23:59:59.000Z

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the College’s yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  9. HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Danko, E

    2009-03-02T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  10. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    -constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel

  11. Public Works Transportation Infrastructure Study

    E-Print Network [OSTI]

    Minnesota, University of

    Public Works Transportation Infrastructure Study Minneapolis City of Lakes Minneapolis Public Works Transportation Infrastructure Study #12;Public Works Transportation Infrastructure Study Minneapolis City Works Transportation Infrastructure Study Minneapolis City of Lakes Background: · Currently, funding

  12. State Experience in Hydrogen Infrastructure in California

    E-Print Network [OSTI]

    Applied engineering focus San Francisco Airport - SFO, Linde $1.7 $2.4 120 Mixed use, medium duty airport Angeles $1.3M 65 APCI Hermosa Beach $1.5M 76 APCI Hawthorne $1.2M 60 Linde W. Sacramento $1.9M 76 Linde

  13. DOE Hydrogen, Fuel Cells, and Infrastructure Technologies

    E-Print Network [OSTI]

    : Economic Analysis of Stationary PEM Fuel Cell Systems · Harry Stone, Economist and Principal Investigator. #12;8 Skill Set ­ Models (Battelle) Battelle Team: Economic Analysis of Stationary PEM Fuel Cell Systems Economic analysis of stationary fuel cells and their associated markets to understand the cost

  14. Hydrogen Vehicles and Refueling Infrastructure in India

    Broader source: Energy.gov (indexed) [DOE]

    in taxis, three-wheelers etc Increase the number of buses to at least 10,000 Impact on air quality Particulate pollution stabilised PM10 at ITO Traffic Intersection (March...

  15. Upcoming Webinar December 16: International Hydrogen Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E

  16. Geographically Based Hydrogen Demand and Infrastructure Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003Not MeasurementDeep GeologicDepartment

  17. International Hydrogen Infrastructure Challenges Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor aInternationalDepartment

  18. Final Report - Hydrogen Delivery Infrastructure Options Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting FederalThorium,Department of Energy Report

  19. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuel

  20. Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e&Funding and the

  1. Hydrogen Infrastructure Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e&Funding and theNear-term

  2. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015 Peer Review. d r a m a1, in:0 th ,

  3. Final Technical Report: Hydrogen Codes and Standards Outreach

    SciTech Connect (OSTI)

    Hall, Karen I.

    2007-05-12T23:59:59.000Z

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  4. Final Technical Report for the Martin County Hydrogen Fuel Cell Development Project

    SciTech Connect (OSTI)

    Eshraghi, Ray

    2011-03-09T23:59:59.000Z

    In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processes must be enhanced to meet the extrusion line’s speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energy’s goal of fuel cell commercialization.

  5. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas [DGS Metallurgical Solutions Inc; Boggess, Todd [Secat; San Marchi, Chris [Sandia National Laboratories (SNL); Jansto, Steven [Reference Metals Company; Somerday, Dr. B [Sandia National Laboratories (SNL); Muralidharan, Govindarajan [ORNL; Sofronis, Prof. Petros [University of Illinois

    2010-01-01T23:59:59.000Z

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  6. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  7. DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment of Energy

  8. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment ofDepartment

  9. Webinar November 6: 2014 and 2015 Hydrogen Student Design Contest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scoring Tool, a Student Design Contest for Hydrogen Infrastructure, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells...

  10. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    infrastructure with carbon capture and sequestration: casenuclear and fossil with carbon capture and sequestration (with the addition of carbon capture equipment on a hydrogen

  11. Sandia National Laboratories: critical R&D barriers to hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  12. NREL: Hydrogen and Fuel Cells Research - Energy Department Announces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Department Announces New Tools for Hydrogen Fueling Infrastructure Deployment April 21, 2015 The Energy Department has announced two new tools and the release of two reports...

  13. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    The New 12- Cylinder Hydrogen Engine in the 7 Series: The Hinjected turbocharged hydrogen engine could potentiallyhydrogen or gasoline) vehicles using rotary engines and BMW

  14. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    SciTech Connect (OSTI)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30T23:59:59.000Z

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  15. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? ”kg/day unit. hybrids or 20 hydrogen fuel cell vehicles (eachand Development of a PEM Fuel Cell, Hydrogen Reformer, and

  16. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01T23:59:59.000Z

    BProspects for building a hydrogen energy infrastructure,[case study,[ Int. J. Hydrogen Energy, vol. 24, pp. 709–1999. U.S. Department of Energy, Hydrogen, fuel cells and

  17. Sandia National Laboratories: green hy-drogen power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hy-drogen power Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port On March 13, 2014, in Center for Infrastructure Research and Innovation...

  18. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01T23:59:59.000Z

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  19. State Transmission Infrastructure Authorities: The Story So Far; December 2007 - December 2008

    SciTech Connect (OSTI)

    Porter, K.; Fink. S.

    2008-05-01T23:59:59.000Z

    This report examines the status and future direction of state transmission infrastructure authorities. It summarizes common characteristics, discusses current transmission projects, and outlines common issues the state infrastructure authorities have faced.

  20. A sociotechnical framework for understanding infrastructure breakdown and repair

    SciTech Connect (OSTI)

    Sims, Benjamin H [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    This paper looks at how and why infrastructure is repaired. With a new era of infrastructure spending underway, policymakers need to understand and anticipate the particular technical and political challenges posed by infrastructure repair. In particular, as infrastructure problems are increasingly in the public eye with current economic stimulus efforts, the question has increasingly been asked: why has it been so difficult for the United Statesto devote sustained resources to maintaining and upgrading its national infrastructure? This paper provides a sociotechnical framework for understanding the challenges of infrastructure repair, and demonstrates this framework using a case study of seismic retrofit of freeway bridges in California. The design of infrastructure is quite different from other types of design work even when new infrastructure is being designed. Infrastructure projects are almost always situated within, and must work with, existing infrastructure networks. As a result, compared to design of more discrete technological artifacts, the design of infrastructure systems requires a great deal of attention to interfaces as well as adaptation of design to the constraints imposed by existing systems. Also, because of their scale, infrastructural technologies engage with social life at a level where explicit political agendas may playa central role in the design process. The design and building of infrastructure is therefore often an enormously complex feat of sociotechnical engineering, in which technical and political agendas are negotiated together until an outcome is reached that allows the project to move forward. These sociotechnical settlements often result in a complex balancing of powerful interests around infrastructural artifacts; at the same time, less powerful interests have historically often been excluded or marginalized from such settlements.

  1. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Vehicle and Infrastructure Codes and Standards Citations

    E-Print Network [OSTI]

    , Use, and Handling · 705 Testing of Hydrogen Piping Systems NFPA 52, Vehicular Gaseous Fuel Systems International Fuel Gas Code (International Code Council, 2009) · 101.2.1 Gaseous Hydrogen Systems · 704 Piping NFPA 52, Vehicular Gaseous Fuel Systems Code (National Fire Protection Association, 2010) · 5

  2. Global Infrastructures Abstract/Summary

    E-Print Network [OSTI]

    Sahay, Sundeep

    facilities, electricity supply, state of the physical building etc. The socioeconomic and geopolitical in large hospitals (and other corporate infrastructures) and infrastructures supporting the governance the practical development of infrastructures supporting the governance of the health care sector in developing

  3. Energy Department Announces up to $4 Million to Advance Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrogen delivery research and development projects. Topic areas include: Forecourt compressors for 700 bar gaseous hydrogen dispensing: Projects selected under this topic will...

  4. Sandia Energy - Resilient Electric Infrastructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resilient Electric Infrastructures Home Stationary Power Grid Modernization Resilient Electric Infrastructures Resilient Electric Infrastructuresashoter2015-04-29T22:16:42+00:00...

  5. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07T23:59:59.000Z

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the establishment of an ad hoc NGV Infrastructure Working Group (NGV-I WG) to address the most critical technical barriers to NGV infrastructure development. This recommendation has been considered and approved by both the DOE and GRI and is the basis of continued collaboration in this area.

  6. Seismic Engineering Research Infrastructures for European Synergies (SERIES)

    E-Print Network [OSTI]

    Seismic Engineering Research Infrastructures for European Synergies (SERIES) M.N. Fardis University of Patras, Greece SUMMARY: Through the 4-year project SERIES (Seismic Engineering Research Infrastructures of their research. It also helps them to enhance their potential, by jointly developing novel seismic testing

  7. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION, In memory of Prof. Roy Severn #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES · Project Framework · Experimental Campaign · Outcome Outline #12;SEISMIC ENGINEERING RESEARCH

  8. Super Projects (Arkansas)

    Broader source: Energy.gov [DOE]

    A 2004 amendment to the state constitution authorizes the state to attract super projects by issuing bonds to fund a project’s infrastructure, limited to 5% of the net general revenues during the...

  9. London 2012 Infrastructure Design, Sustainability and Innovation,

    E-Print Network [OSTI]

    Painter, Kevin

    February 2013 #12;#12;London 2012 Aspiration of a Sustainable Games #12;#12;Project Management , for both soil and groundwater treatment. As part of this work, we have managed the excavation and reuseLondon 2012 Infrastructure Design, Sustainability and Innovation, Inspiring an Industry

  10. Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report

    E-Print Network [OSTI]

    Lipman, Tim; Shah, Nihar

    2007-01-01T23:59:59.000Z

    here. The interest in hydrogen and fuel cell technologies atof new and improved hydrogen and fuel cell technologies.policy drivers for hydrogen and fuel cells include the

  11. Hydrogen Delivery InfrastructureHydrogen Delivery Infrastructure Option AnalysisOption Analysis

    E-Print Network [OSTI]

    ;11 Minimize Right of Way Cost Transmission lines -- DOT (49 CFR 192) allows mixed energy transmission Liquide) Transmission lines -- 600 miles exist in US -- 10-18" lines (100,000-500,000 kg/d) -- Size range for transmission -- NG transmission lines: interstate lines use no odorants; lines in a state might require (such

  12. Microsoft Word - GHGT11_Litynski_NETL Infrastructure.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Program to Develop Infrastructure for Carbon Storage: Overview of the Regional Carbon Sequestration Partnerships and other R&D Field Projects John Litynski 1* , Traci Rodosta 1...

  13. Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has

    E-Print Network [OSTI]

    -neutral fuels, in terms of both technology and infrastructure. Hydrogen could link the power system used for natural gas. Existing fuel cells can convert hydrogen efficiently into electric power devices and small power units, which do not require a large hydrogen infrastructure. Applications like

  14. Available online at www.sciencedirect.com International Journal of Hydrogen Energy 29 (2004) 355367

    E-Print Network [OSTI]

    de Weck, Olivier L.

    ­367 www.elsevier.com/locate/ijhydene The future of hydrogen infrastructure for fuel cell vehicles in China In the paper the future of hydrogen infrastructure for fuel cell vehicles in China is discussed. It is believed, developing fuel cell vehicles will be a promising solution because fuel cell vehicles, fueled by hydrogen

  15. The processing of alcohols, hydrocarbons and ethers to produce hydrogen for a PEMFC for transportation applications

    SciTech Connect (OSTI)

    Dams, R.A.J.; Hayter, P.R.; Moore, S.C. [Wellman CJB Limited, Portsmouth (United Kingdom)

    1997-12-31T23:59:59.000Z

    Wellman CJB Limited is involved in a number of projects to develop fuel processors to provide a hydrogen-rich fuel in Proton Exchange Membrane Fuel Cells (PEMFC) systems for transportation applications. This work started in 1990 which resulted in the demonstration of 10kW PEMFC system incorporating a methanol reformer and catalytic gas clean-up system. Current projects include: The development of a compact fast response methanol reformer and gas clean-up system for a motor vehicle; Reforming of infrastructure fuels including gasoline, diesel, reformulated fuel gas and LPG to produce a hydrogen rich gas for PEMFC; Investigating the potential of dimethylether (DME) as source of hydrogen rich gas for PEMFCs; The use of thin film palladium diffusers to produce a pure hydrogen stream from the hydrogen rich gas from a reformer; and Processing of naval logistic fuels to produce a hydrogen rich gas stream for PEMFC power system to replace diesel generators in surface ships. This paper outlines the background to these projects and reports their current status.

  16. Hydrogen Economy: Opportunities and Challenges *

    E-Print Network [OSTI]

    A hydrogen economy, the long-term goal of many nations, can potentially provide energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, and the response of petroleum markets. This study uses the U.S. MARKAL model to simulate the impacts of hydrogen technologies on the U.S. energy system and identify potential impediments to a successful transition. Preliminary findings identify potential market barriers facing the hydrogen economy, as well as opportunities in new R&D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. The objective of this paper is to study the transition from a petroleum-based energy system to a hydrogen economy, and ascertain the consequent opportunities and

  17. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01T23:59:59.000Z

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  18. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31T23:59:59.000Z

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  19. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  20. NGNP Infrastructure Readiness Assessment: Consolidation Report

    SciTech Connect (OSTI)

    Brian K Castle

    2011-02-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  1. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    potential for the natural gas-sourced hydrogen FCV is moderate, but lifecycle emissions can be dramatically reduced by using CCS

  2. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    2007). Natural Gas (CNG / LNG / GTL) Natural gas, which iscompressed (CNG) or liquefied (LNG) form Chapter 5 Transportthe hydrogen section. CNG and LNG combustion characteristics

  3. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  4. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  5. FY 97 Report on hydrogen sensors for enhanced surveillance program project LL-ESP96-13

    SciTech Connect (OSTI)

    Nave, S.E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-30T23:59:59.000Z

    A prototype for an all fiber optic hydrogen sensor system was developed. Capability to measure concentrations of hydrogen in air or nitrogen in the range of 0.5 percent to 4.0 percent with a resolution of 0.1 percent was demonstrated. A DC planar magnetron sputter system was procured and assembled for use in the thin metal film deposition necessary for fabrication of the palladium and palladium-silver alloy sensors used in this development. A method was developed to coat the metal films with an organic coating permeable to hydrogen but not oxygen and other reactive gases. The results of tests on these sensors gave positive results but long-term studies are required to confirm protection under conditions expected to be encountered in a real world application. A new type of sensor base on a layered yttrium/palladium structure was constructed and tested. The greater magnitude and wavelength dependence of the spectral response observed may lead to a more robust sensor. However, the need to have oxygen present for this sensor in order for it to rapidly recover after exposure to hydrogen may complicate its use.

  6. DOE Carbon-based Hydrogen Storage Center of Excellence: Center Highlights and NREL Activities (Presentation)

    SciTech Connect (OSTI)

    Blackburn, J. L.; Curtis, C.; Davis, M.; Dillon, A. C.; Engtrakul, C.; Gennett, T.; Heben, M. J.; Jones, K. M.; Kim, Y.-H.; Parilla, P. A.; Simpson, L. J.; Whitney, E. S.; Zhang, S. B.; Zhao, Y.

    2006-05-01T23:59:59.000Z

    Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

  7. Pipeline and Pressure Vessel R&D under the Hydrogen Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Critical Property Needs American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure...

  8. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis...

  9. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis...

  10. activity hydrogen-fueled mercedes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it should be noted that biofuels 72 Technology Commercialization Showcase 2008 Hydrogen, Fuel Cells & Infrastructure Renewable Energy Websites Summary: response, and...

  11. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29T23:59:59.000Z

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  12. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1846P CustomTraining Sandia providesPRAsandhowtheycanbemanaged to increase levels of safety and security. Like othertrainings,Sandiaexpertsdesigncoursesto beasbroadorin

  13. COLLEGE OF ENGINEERING Infrastructure

    E-Print Network [OSTI]

    solar energy (8). ME Ketul Popat and John Williams in the Department of Mechanical EngineeringCOLLEGE OF ENGINEERING Infrastructure #12;2 COLLEGE OF ENGINEERING This publication focuses on just a few of the incredible College of Engineering faculty and students who are conducting research related

  14. NuclearHydrogen Oil and gas

    E-Print Network [OSTI]

    Birmingham, University of

    Policy NuclearHydrogen Transport Education Oil and gas Distribution Society Supply Ecology Demand Hydrogen 08 Policy and society 10 Environment 11 Transport 12 Manufacturing 14 Oil and gas 15 Nuclear 16 and infrastructure, and broaden our methods of generation. Our declining reserves of oil and gas must be repla

  15. In Situ Nuclear Characterization Infrastructure

    SciTech Connect (OSTI)

    James A. Smith; J. Rory Kennedy

    2011-11-01T23:59:59.000Z

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  16. INFRASTRUCTURE Engineering and Physical Sciences

    E-Print Network [OSTI]

    Berzins, M.

    the vital research that underpins this development. The UK Government Strategy for National Infrastructure and resilient infrastructure supplying water, energy, communications, transport systems and waste systems. Infrastructure is a broad topic and is relevant to other sectors including Healthcare, Renewable and Clean Energy

  17. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell...

  18. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Energy Group l 19 l R e n e w a b l e Hydrogen Table 1: U.S.International Renewable Hydrogen Demonstration Projects (CONTINUED) U.S. ProjectS Hydrogen Production from

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Utilization Data Base Evaluate Infrastructure Effectiveness Develop Sustainable Business Models Develop Models For Future Infrastructure Deployments Relevance MILESTONES...

  1. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Office of Environmental Management (EM)

    Infrastructure Protection Cyber Vulnerability Assessment More Documents & Publications Wireless System Considerations When Implementing NERC Critical Infrastructure Protection...

  2. January 2005 HYDROGEN EMBRITTLEMENT OF

    E-Print Network [OSTI]

    1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline R&D Project Review Meeting Oak Ridge National Laboratory, Oak Ridge TN January 5-6, 2005 #12;2 January 2005 Hydrogen

  3. Composites Technology for Hydrogen Pipelines

    E-Print Network [OSTI]

    Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

  4. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  5. Nahr Beirut : projections on an infrastructural landscape

    E-Print Network [OSTI]

    Frem, Sandra

    2009-01-01T23:59:59.000Z

    A century ago, Nahr Beirut was a riparian river which flowed from a mountainous valley to a coastal plain, the Beirut Peninsula, before entering the Julian Beinart Mediterranean Sea. After being for centuries the distant ...

  6. Livingston Campus Infrastructure Improvements The Project

    E-Print Network [OSTI]

    Neimark, Alexander V.

    transformation of the Livingston Campus for undergraduate, graduate and professional studies, a series will be installed at the intersection of Avenue E and Rockafeller Road to help control traffic movement and to create a gateway to the Livingston Campus academic core. Additionally, an expanded intercampus bus stop

  7. Transmission Infrastructure Investment Projects (2009) | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTankToledo, Ohio, DataTechnicalDepartment ofKnow?Energy

  8. Pennsylvania Regional Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the path forIn-Vehicle,Pennsylvania Regional

  9. Infrastructure and Operations Improvement Project Director | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News linkThermal Phenomena in Nuclear EnergyPlasma

  10. Nano Structured Activated Carbon for Hydrogen Storge. Project Final Technical Report (May 2, 2005-Dec. 31, 2012)

    SciTech Connect (OSTI)

    Cabasso, Israel; Yuan, Youxin

    2013-02-27T23:59:59.000Z

    Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

  11. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01T23:59:59.000Z

    in our current approach. The liquefaction of hydrogen allows also for its use in transport applications for example BMW developed a car that utilises liquid hydrogen instead of compressed gas hydrogen making the use of cryogenic hydrogen even more... efficient. 11     Figure 13. Decentralised production of hydrogen pathways for Energy and Hydrogen Cryomagnetic solutions for a hospital environment. The shaded region in the figure represents the decentralised production of hydrogen using renewable...

  12. Grid Connectivity Research, Development & Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. asymmetric transfer hydrogenation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Columbus,...

  14. One Step Hydrogen Generation Through Sorption Enhanced Reforming

    Energy Savers [EERE]

    or otherwise restricted information. Project Objective Develop compact, hydrogen production technology for large-scale applications Reduces cost of hydrogen by...

  15. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect (OSTI)

    Ermi, A.M.

    1997-05-01T23:59:59.000Z

    Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.

  16. Sandia National Laboratories: Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Washington DC, Sandian's Christopher San Marchi (manager of Sandia's Hydrogen and Metallurgy Science Dept.) and Brian Somerday (also in the Hydrogen and Metallurgy Science...

  17. Future Smart Energy -Fuel Cell and Hydrogen Summer School 2014, Aalborg, Denmark

    E-Print Network [OSTI]

    Berning, Torsten

    Future Smart Energy - Fuel Cell and Hydrogen Technology Summer School 2014, Aalborg, Denmark August #12;31 Future Smart Energy - Fuel Cell and Hydrogen Technology Samuel Simon Araya Introduction to fuel cells History Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen

  18. TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY

    E-Print Network [OSTI]

    infrastructure enables ready access to fuel for hydrogen vehicles. · Hydrogen fuel cells provide stationaryTERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY Introduction of hydrogen energy technologies in order to improve their energy, economic, and environmental security

  19. Sensors and Actuators B 49 (1998) 258267 Pd/PVDF thin film hydrogen sensor based on

    E-Print Network [OSTI]

    Mandelis, Andreas

    1998-01-01T23:59:59.000Z

    hydrogen detection, such as the process of lead- acid battery charging. As the hydrogen infrastructureSensors and Actuators B 49 (1998) 258­267 Pd/PVDF thin film hydrogen sensor based on laser Laboratories and Centre for Hydrogen and Electrochemical Studies, Uni6ersity of Toronto, 5 Kings College Road

  20. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    storage; major advances in hydrogen production; overcoming the built-in advantages of the current gasoline andgasoline, naphtha). FCVs with liquid fuels have advantages in terms of fuel storagegasoline-ICE (JHFC, 2006). Vehicle electrification requires a more powerful, sophisticated and reliable energy-storage