National Library of Energy BETA

Sample records for hydrogen ice vehicle

  1. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  2. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  3. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  4. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures PDF icon HICEV ...

  5. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  6. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon ...

  7. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-Fueled Vehicle Safety Systems Animation Hydrogen-Fueled Vehicle Safety Systems Animation This animation demonstrates the multiple safety systems in hydrogen-fueled ...

  8. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Broader source: Energy.gov (indexed) [DOE]

    HYDROGEN TO THE HIGHWAYS Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers Lean Gasoline System Development for Fuel Efficient Small ...

  9. Policy Option for Hydrogen Vehicles and Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  10. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect (OSTI)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  11. Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers These slides were presented at the...

  12. The drive toward hydrogen vehicles just got shorter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the...

  13. Yeager Airport Hydrogen Vehicle Test Project

    SciTech Connect (OSTI)

    Davis, Williams

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  14. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on

  15. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) International Hydrogen ...

  16. Hydrogen Vehicle and Infrastructure Codes and Standards Citations

    Broader source: Energy.gov [DOE]

    This document lists codes and standards typically used for US hydrogen vehicle and infrastructure projects.

  17. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  18. Hydrogen Materials Compatibility for the H-ICE

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Google Bookmark Alternative

  20. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  1. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  2. Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells Program Overview Presentation given by U.S. Department of Energy at ...

  3. NREL Efforts Push Hydrogen Vehicles Further Along - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efforts Push Hydrogen Vehicles Further Along November 17, 2015 Woman stands outside in front of a podium next to a hydrogen fueling pump. NREL Associate Laboratory Director Barb...

  4. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  5. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Broader source: Energy.gov [DOE]

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles.

  6. Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Vehicles and Fuels in India Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India Presentation given by Ambrish Mishra of India's Ministry of ...

  7. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon 20080910_state_regional_vision.pdf More Documents & Publications Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Innovation and Coordination at the Callifornia Fuel Cell Partnership FCEVs and Hydrogen in California

  8. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  9. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Broader source: Energy.gov [DOE]

    Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  10. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  11. Ice method for production of hydrogen clathrate hydrates

    DOE Patents [OSTI]

    Lokshin, Konstantin; Zhao, Yusheng

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  12. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  13. Hydrogen Materials Compatibility for the H-ICE

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FCEVs) | Department of Energy for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. PDF icon Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar Slides More Documents

  15. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. PDF icon csd_workshop_2_elrick.pdf More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  16. Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview | Department of Energy Hydrogen and Fuel Cells Program Overview Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells Program Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Hydrogen and Fuel Cells Program overview. PDF icon 01_satyapal_plenary_2015_amr.pdf More Documents & Publications Hydrogen and Fuel Cells Program

  17. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Opportunity Nationwide | Department of Energy Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide September 11, 2014 - 2:38pm Addthis A fuel cell electric vehicle (FCEV) in Hawaii. Engineers from Idaho National Laboratory and National Renewable Energy Laboratory identified a new way to launch economically viable hydrogen fueling

  18. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  19. Hydrogen Fuel Cells for Small Unmanned Air Vehicles Webinar

    Broader source: Energy.gov [DOE]

    Download the presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Fuel Cells for Small Unmanned Air Vehicles" held on May 26, 2016.

  20. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version)

    Broader source: Energy.gov [DOE]

    Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an...

  1. Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences

    SciTech Connect (OSTI)

    Greene, David L; Lin, Zhenhong; Dong, Jing

    2013-01-01

    The success of hydrogen vehicles will depend on consumer behavior as well as technology, energy prices and public policy. This study examines the sensitivity of the future market shares of hydrogen-powered vehicles to alternative assumptions about consumers preferences. The Market Acceptance of Advanced Automotive Technologies model was used to project future market shares. The model has 1,458 market segments, differentiated by travel behavior, geography, and tolerance to risk, among other factors, and it estimates market shares for twenty advanced power-train technologies. The market potential of hydrogen vehicles is most sensitive to the improvement of drive train technology, especially cost reduction. The long-run market success of hydrogen vehicles is less sensitive to the price elasticity of vehicle choice, how consumers evaluate future fuel costs, the importance of fuel availability and limited driving range. The importance of these factors will likely be greater in the early years following initial commercialization of hydrogen vehicles.

  2. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect (OSTI)

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  3. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures PDF icon HICEV Technical Specifications PDF icon HICEV America Test Sequence PDF icon ETA-HITP01 Implementation of SAE Standard J1263 - Road Load Measurements and Dynamometer Simulation Using Coast Down Techniques PDF icon ETA-HITP02 Implementation of SAE Standard J1666 May93 - HICE Vehicle

  4. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    SciTech Connect (OSTI)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

  5. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  6. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California ...

  7. Hydrogen Material Compatibility for Hydrogen ICE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon joseph_infrastructure_for_emerging_markets.pdf More Documents & Publications Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment Slides | Department of Energy

    An Overview of the Hydrogen Fueling Infrastructure

  8. 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting | Department of Energy Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting May 18-22, 2009 h4> Arlington, Virginia Monday, May 18, 2009 Plenary Session Poster Presentations Tuesday, May 19, 2009 Oral Presentations Poster Presentions Wednesday, May 20, 2009 Oral Presentations Thursday, May 21, 2009 Oral

  9. 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting | Department of Energy Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting May 9-13, 2011 Washington, D.C. Monday, May 9, 2011 Joint Plenary Session Plenary Session Poster Presentations Tuesday, May 10, 2010 Oral Presentations Poster Presentions Wednesday, May 11, 2011 Oral Presentations Poster Presentions

  10. Fuel Efficiency Potential of Hydrogen Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_16_wallner.pdf More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions E85 Optimized Engine Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines

  11. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  12. DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This table summarizes technical performance targets for hydrogen storage systems onboard light-duty vehicles.

  13. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  14. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost. PDF icon 11007_h2_threshold_costs.pdf More Documents & Publications DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies Program Overview

    The U.S. Department of Energy's (DOE's)

  15. Hydrogen Vehicles and Fueling Infrastructure in China

    Broader source: Energy.gov [DOE]

    Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

  16. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  17. Hydrogen Vehicles and Refueling Infrastructure in India

    Broader source: Energy.gov [DOE]

    Presentation given by L.M. Das of the India Institute of Technology at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

  18. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and

  19. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  20. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  1. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  2. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever December 29, 2014 ...

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  4. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  6. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  7. Control method for high-pressure hydrogen vehicle fueling station dispensers

    DOE Patents [OSTI]

    Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.

    2006-06-13

    A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.

  8. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  9. Parameter study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  10. Durability study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

    2010-11-01

    Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

  11. Series hybrid vehicles and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.; Van Blarigan, P.

    1995-05-10

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO{sub x} emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier II emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  12. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnash, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-14

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself.

  13. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  14. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-16

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

  15. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  16. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  17. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  18. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure | Department of Energy Systems Analysis » 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be highest in the near-term, when markets are very small and the technology and infrastructure are immature.

  19. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Onboard Hydrogen Storage for Light-Duty Vehicles DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles This table summarizes technical performance targets for hydrogen storage systems onboard light-duty vehicles. These targets were established through the U.S. DRIVE Partnership, a partnership between the U.S. Department of Energy (DOE), the U.S. Council for Automotive Research (USCAR), energy companies, and utility companies and organizations. View

  20. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.

  1. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Final List of Attendees | Department of Energy Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees PDF icon scenario_analysis_attendees.pdf More Documents & Publications Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31,

  2. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Infrastructure Meeting | Department of Energy 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_agenda1_07.pdf More Documents & Publications 2010 - 2025 Scenario Analysis

  3. Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting | Department of Energy 012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting May 14-18, 2012 Washington, D.C. Monday, May 14, 2012 Plenary Session Poster Presentations Tuesday, May 15, 2012 Oral

  4. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  5. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Broader source: Energy.gov [DOE]

    This document establishes the California Fuel Cell Partnership’s current consensus vision of next steps for vehicles and hydrogen stations in California.

  6. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

  7. Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    Proceedings for the Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

  8. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  9. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti007erickson2011o

  10. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This table lists the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Program’s Multiyear Research, Development and Demonstration Plan.

  11. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever

    Broader source: Energy.gov [DOE]

    The H2 Refuel H-Prize is challenging America’s innovators to develop systems that make it easier and convenient to fuel hydrogen powered vehicles.

  12. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell ...

  13. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Broader source: Energy.gov [DOE]

    Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

  14. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  15. NREL Acquires Fuel Cell Hybrid Vehicles from Toyota to Support Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure, Production, and Vehicle Performance Studies - News Releases | NREL Acquires Fuel Cell Hybrid Vehicles from Toyota to Support Hydrogen Infrastructure, Production, and Vehicle Performance Studies January 28, 2013 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) recently received four fuel cell hybrid vehicles - advanced (FCHV-adv) on loan from Toyota through a two-year Cooperative Research and Development Agreement. These vehicles will help

  16. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect (OSTI)

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  17. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  18. New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories, supported by the DOE’s Vehicle Technologies and Fuel Cell Technologies Offices, recently released the workshop report “Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles.” Held in September 2014, the workshop considered common opportunities and challenges in expanding the use of hydrogen and natural gas as transportation fuels.

  19. EERE Success Story-PNNL Advances Hydrogen-Fueled Vehicle Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PNNL Advances Hydrogen-Fueled Vehicle Technologies EERE Success Story-PNNL Advances Hydrogen-Fueled Vehicle Technologies July 26, 2013 - 12:00am Addthis Through multiple projects, Pacific Northwest National Laboratory (PNNL) is improving the performance and decreasing the cost of hydrogen fuel production and fuel cell technologies. PNNL's research is developing new materials-like a durable, high-performance cathode support-and improving the manufacturing processes by

  20. Safety and Regulatory Structure for CNG/Hydrogen Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNGHydrogen Vehicles and Fuels in the United States Safety and Regulatory Structure for CNGHydrogen Vehicles and Fuels in the United States Presentation given by Barbara ...

  1. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  2. Cryotank for storage of hydrogen as a vehicle fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Renewable hydrogen has no toxic or greenhouse gas emissions * Fuel cells using hydrogen achieve greater than 50% efficiency * Cost per mile will be comparable to...

  3. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti02erickson

  4. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  5. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  6. DOE Announces Webinars on Electric Vehicle Charging at Colleges, a Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leak Detector and More | Department of Energy Electric Vehicle Charging at Colleges, a Hydrogen Leak Detector and More DOE Announces Webinars on Electric Vehicle Charging at Colleges, a Hydrogen Leak Detector and More March 7, 2016 - 4:55pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically

  7. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina

  8. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 1 Summary Presentation | Department of Energy 1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis Meeting Discussion Group 1 Summary Presentation PDF icon group_1_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2

  9. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 2 Summary Presentation | Department of Energy 2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis Meeting Discussion Group 2 Summary Presentation PDF icon group_2_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1

  10. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  11. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected during this period lead to the conclusion that the BMW Hydrogen 7 Mono-Fuel demonstration vehicles are likely the cleanest combustion engine vehicles ever tested at Argonne's APRF.

  12. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's ... Introduction to SAE Hydrogen Fueling Standardization CNG and Hydrogen Tank Safety, R&D, ...

  13. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  14. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  15. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  16. Moving toward a commercial market for hydrogen fuel cell vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting fuel cell vehicle commercialization as a means of moving towards a sustainable energy future, increasing energy efficiency and reducing or eliminating air pollution and ...

  17. DOE Announces Up to $15.3 Million for Long-Term Hydrogen Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Up to $15.3 Million for Long-Term Hydrogen Vehicle Development DOE Announces Up to $15.3 Million for Long-Term Hydrogen Vehicle Development August 14, 2008 - 2:40pm Addthis WASHINGTON- U.S. Department of Energy (DOE) Under Secretary Clarence H. "Bud" Albright, Jr. today announced the selection of 10 cost-shared hydrogen storage research and development projects, which will receive up to $15.3 million over five years, subject to annual

  18. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  19. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  20. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Broader source: Energy.gov [DOE]

    Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

  1. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal agencies, state agencies, hydrogen providers, energy companies, technology developers, national labs, academia, and other trade associations or non-profit organizations. ...

  2. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel ... Refueling Infrastructure 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - ...

  3. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. PDF icon ...

  4. 2015 Hydrogen and Fuel Cell Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting

    Broader source: Energy.gov [DOE]

    At the Hydrogen and Fuel Cell Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting (AMR), advanced vehicle technologies projects funded by VTO and the Fuel Cell...

  5. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  6. HICEV America: Hydrogen Internal Combustion Engine Vehicle (HICEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the HICEV America Rough Road Test (ETA- HITP-005) including (1) driving through ... Vehicles should be capable of completing the HEV America Rough Road Test (ETA-HITP-005) ...

  7. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  8. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. Through...

  9. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed to prepare for the commercialization of alternative fuel vehicle technologies. This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen. National Template: Hydrogen

  10. Evaluation of the hydrogen-fueled rotary engine for hybrid vehicle applications

    SciTech Connect (OSTI)

    Salanki, P.A.; Wallace, J.S.

    1996-09-01

    The hydrogen-fueled engine has been identified as a viable power unit for ultra-low emission series-hybrid vehicles. The Wankel engine is particularly well suited to the use of hydrogen fuel, since its design minimizes most of the combustion difficulties. In order to evaluate the possibilities offered by the hydrogen fueled rotary engine, dynamometer tests were conducted with a small (2.2 kW) Wankel engine fueled with hydrogen. Preliminary results show an absence of the combustion difficulties present with hydrogen-fueled homogeneous charge piston engines. The engine was operated unthrottled and power output was controlled by quality governing, i.e. by varying the fuel-air equivalence ratio on the lean side of stoichiometric. The ability to operate with quality governing is made possible by the wide flammability limits of hydrogen-air mixtures. NO{sub x} emissions are on the order of 5 ppm for power outputs up to 70% of the maximum attainable on hydrogen fuel. Thus, by operating with very lean mixtures, which effectively derates the engine, very low NO{sub x} emissions can be achieved. Since the rotary engine has a characteristically high power to weight ratio and a small volume per unit power compared to the piston engine, operating a rotary engine on hydrogen and derating the power output could yield an engine with extremely low emissions which still has weight and volume characteristics comparable to a gasoline-fueled piston engine. Finally, since engine weight and volume affect vehicle design, and consequently in-use vehicle power requirements, those factors, as well as engine efficiency, must be taken into account in evaluating overall hybrid vehicle efficiency.

  11. Hydrogen Vehicles: Impacts of DOE Technical Targets on Market Acceptance and Societal Benefits

    SciTech Connect (OSTI)

    Lin, Zhenhong; Dong, Jing; Greene, David L

    2013-01-01

    Hydrogen vehicles (H2V), including H2 internal combustion engine, fuel cell and fuel cell plugin hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers towidespread commercialization of H2Vs. This study estimates the market acceptance of H2Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H2Vs could reach 20e70% market shares by 2050, depending on progress in achieving the technical targets.With a basic hydrogen infrastructure (w5% hydrogen availability), the H2V market share is estimated to be 2e8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H2Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleumuse and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H2Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons.

  12. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China

    Broader source: Energy.gov [DOE]

    Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

  13. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop

    Broader source: Energy.gov [DOE]

    Agenda and presentations from the Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop hosted by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office and Pacific Northwest National Laboratory in Dallas, Texas, on October 29, 2015.

  14. TEST: DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This table summarizes technical performance targets for hydrogen storage systems onboard light-duty vehicles. These targets were established through the U.S. DRIVE Partnership, a partnership between the U.S. Department of Energy (DOE), the U.S. Council for Automotive Research (USCAR), energy companies, and utility companies and organizations.

  15. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen resources necessary to support the committee's hydrogen vehicle penetration scenario, or another similar demand scenario (NAS, 2004, p. 4).' Each of the scenarios was extensively discussed at the stakeholder meetings and each received support from industry. Although there was no consensus on a particular vehicle penetration rate, it was agreed that this set of scenarios is inclusive of industry expectations and could provide a basis to interpolate or extrapolate the results to other cases. The purpose of the DOE study was not to select any one scenario but to assess the costs and impacts of achieving each.

  16. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  17. Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technology PDF icon 2004deerheywood.pdf More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons WORKSHOP REPORT:Light-Duty Vehicles Technical ...

  18. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  19. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    SciTech Connect (OSTI)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis’s existing GATE centers have become the campus’s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  20. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    SciTech Connect (OSTI)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  1. Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles

    SciTech Connect (OSTI)

    Berry, G; Daily III, W

    2004-06-03

    This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing 100 billion kilograms of hydrogen fuel annually (10.7 quads/yr) from a balanced blend of primary energy sources will likely require 16.2 quads of primary energy input, with an additional 0.96 Quads of electricity for hydrogen storage. These energy flows are comparable to or smaller than projected growth in individual primary energy sources over the 2005-2050 timeframe except perhaps the case of windpower.

  2. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  3. Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31, 2007

    Broader source: Energy.gov [DOE]

    This list describes the participants at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  4. Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional Alternative Transportation Vehicles - Compressed Air Vehicles (CAVs) * Use electricity from the grid to power air compressor that stores compressed air - Natural Gas Vehicles (NGVs) * Connection to grid is in competing demand for fuel * Still an internal combustion engine (ICE) - Hydrogen Vehicles * Use fuel cell

  5. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of ...

  6. Vehicle & Systems Simulation & Testing

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary

  7. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOE Patents [OSTI]

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  8. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    SciTech Connect (OSTI)

    Brosha, Eric L; Sekhar, Praveen K; Mukundan, Rangchary; Williamson, Todd L; Barzon, Fernando H; Woo, Leta Y; Glass, Robert S

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  9. EERE Success Story-PNNL Advances Hydrogen-Fueled Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL research is also on hydrogen fuel processing, including producing hydrogen fuel from biomass. PNNL is also advancing hydrogen storage applications, for example, through ...

  10. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  11. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect (OSTI)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  12. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  13. vehicles

    National Nuclear Security Administration (NNSA)

    for NNSA.

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:www.nnsa.energy.govblogbay-area-national-labs-team-tackle-...

  14. vehicles

    National Nuclear Security Administration (NNSA)

    for NNSA.

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:nnsa.energy.govblogbay-area-national-labs-team-tackle-long...

  15. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    SciTech Connect (OSTI)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  16. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  17. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  18. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Most importantly, fuel cell vehicles are family-friendly, full-function vehicles that will ... These retail-like stations should provide easy access and customer-friendly fueling to any ...

  19. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  20. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  1. Safety and Regulatory Structure for CNG/Hydrogen Vehicles and Fuels in the United States

    Broader source: Energy.gov [DOE]

    Presentation given by Barbara Hennessey and Nha Nguyen at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

  2. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis Meeting Discussion Group 2 Summary Presentation PDF icon ...

  3. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis Meeting Discussion Group 1 Summary Presentation PDF icon ...

  4. R&D Needs for Global Technical Regulations for Hydrogen Vehicle Systems

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  5. Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India

    Broader source: Energy.gov [DOE]

    Presentation given by Ambrish Mishra of India's Ministry of Petroleum and Natural Gas at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

  6. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  7. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720 Hydrogen as a Vehicle Fuel into September 2005 the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates Santa Monica, California

  8. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Compressed Natural Gas and Hydrogen Fuels workshop hosted by the U.S. departments of Energy and Transportation on December 10-11, 2009 in Washington, D.C.

  9. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  12. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  16. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  18. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  19. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  20. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  1. Hydrogen-fueled internal combustion engines.

    SciTech Connect (OSTI)

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  2. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  3. Affordable Hydrogen Fuel Cell Vehicles: Quaternary Phosphonium Based Hydroxide Exchange Membranes

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: The University of Delaware is developing a new fuel cell membrane for vehicles that relies on cheaper and more abundant materials than those used in current fuel cells. Conventional fuel cells are very acidic, so they require acid-resistant metals like platinum to generate electricity. The University of Delaware is developing an alkaline fuel cell membrane that can operate in a non-acidic environment where cheaper materials like nickel and silver, instead of platinum, can be used. In addition to enabling the use of cheaper metals, the University of Delawares membrane is 500 times less expensive than other polymer membranes used in conventional fuel cells.

  4. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  5. Transportation and Stationary Power Integration Workshop: ""An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Overview of electricity and fuel cell vehicles, commercialization, where we are, observations, next steps

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt072vssmackie2011

  7. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt072vssmackie2012

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  9. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  10. developing viable solid-state materials to store hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  11. Distance-dependent radiation chemistry: Oxidation versus hydrogenation of CO in electron-irradiated H2O/CO/H2O ices

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven; Kimmel, Gregory A.

    2014-11-26

    Electron-stimulated oxidation of CO in layered H2O/CO/H2O ices was investigated with infrared reflection-absorption spectroscopy (IRAS) as function of the distance of the CO layer from the water/vacuum interface. The results show that while both oxidation and reduction reactions occur within the irradiated water films, there are distinct regions where either oxidation or reduction reactions are dominant. At depths less than ~ 15 ML, CO oxidation dominates over the sequential hydrogenation of CO to methanol (CH3OH), and CO2 is the major product of CO oxidation, consistent with previous observations. At its highest yield, CO2 accounts for ~45% of all the reacted CO. Another oxidation product is identified as the formate anion (HCO2-). In contrast, for CO buried more than ~ 35 ML below the water/vacuum interface, the CO-to-methanol conversion efficiency is close to 100%. Production of CO2 and formate are not observed for the more deeply buried CO layers, where hydrogenation dominates. Experiments with CO dosed on pre-irradiated ASW samples suggest that OH radicals are primarily responsible for the oxidation reactions. Possible mechanisms of CO oxidation, involving primary and secondary processes of water radiolysis at low temperature, are discussed. The observed distance-dependent radiation chemistry results from the higher mobility of hydrogen atoms that are created by the interaction of the 100 eV electrons with the water films. These hydrogen atoms, which are primarily created at or near the water/vacuum interface, can desorb from or diffuse into the water films, while the less-mobile OH radicals remain in the near-surface zone resulting in preferential oxidation reactions there. The diffusing hydrogen atoms are responsible for the hydrogenation reactions that are dominant for the more deeply buried CO layers.

  12. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Hydrogen Infrastructure Strategies

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  19. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric vehicles or

  2. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Integrated Vehicle Thermal Management

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Vehicle Model Validation

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric Vehicles:...

  7. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per ...

  8. Testing and Validation of Vehicle to Grid Communication Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Validation of Vehicle to Grid Communication Standards Testing and Validation of Vehicle to Grid Communication Standards 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  9. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  10. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  11. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  12. Highline Hydrogen Hybrids | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hybrids Jump to: navigation, search Name: Highline Hydrogen Hybrids Place: farmington, Arkansas Zip: 72730-1500 Sector: Hydro, Hydrogen, Vehicles Product: US-based...

  13. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

  14. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests Matthew B. Post, Robert Burgess, Carl Rivkin, and William Buttner National Renewable Energy Laboratory Kathleen O'Malley U.S. Department of Energy and Sentech Antonio Ruiz U.S. Department of Energy Technical Report NREL/TP-5600-56177 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency &

  15. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  16. Status and Progress in Research, Development and Demonstration of Hydrogen-Compressed Natural Gas Vehicles in China

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  18. Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington, and Oregon to advance hydrogen storage technologies to be used in fuel cell...

  19. DOE Hydrogen Storage Technical Performance Targets for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicles DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles This table summarizes technical performance targets for hydrogen storage systems ...

  20. Target Explanation Document: Onboard Hydrogen Storage for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles This ...

  1. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Technical paper ...

  2. Hydrogen & Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  4. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  5. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  6. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  7. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  8. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  9. Making Vehicle Technology Deployment Scenarios More Robust

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Multi-Material Lightweight Prototype Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Vehicle Mass and Fuel Efficiency Impact Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Medium and Heavy Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. 2011 DOE Vehicle Technologies KIVA-Development

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Analysis of Electric Vehicle Battery Performance Targets

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Houston Zero Emission Delivery Vehicle Deployment Project

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Vehicle to Grid Communication Standards Development Support

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Vehicle to Grid Communications Field Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. SANBAG- Ryder Natural Gas Vehicle Project

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. SANBAG- Ryder Natural Gas Vehicle Project

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  10. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  11. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  14. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  15. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  16. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle...

    Energy Savers [EERE]

    Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  17. Hydrogen Release Behavior

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  18. Hydrogen Delivery Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (United States Driving Research and Innovation for Vehicle efficiency and Energy ... In addition, the need for lower-cost, more reliable, and more durable hydrogen central ...

  19. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research ...

  20. Hawaii Hydrogen Energy Park

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. HYDROGEN TO THE HIGHWAYS

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Hydrogen Safety Sensors

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  3. Hydrogen Education in Texas

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  4. Vehicle Technologies Program Merit Review

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Plug IN Hybrid Vehicle Bus

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. AVTA Vehicle Component Cost Model

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  8. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. 2009 DOE Hydrogen Program Review Presentation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 DOE Hydrogen Program Review Presentation 2009 DOE Hydrogen Program Review Presentation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

  19. Hydrogen-Powered Buses Brochure - 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-Powered Buses Brochure - 2010 Hydrogen-Powered Buses Brochure - 2010 This brochure outlines how the latest advances in hydrogen vehicles are expressed in these ...

  20. Hydrogen Knowledge and Opinions Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Knowledge and Opinions Assessment Hydrogen Knowledge and Opinions Assessment 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer ...

  1. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India International Hydrogen Fuel ...

  2. Development of Hydrogen Education Programs for Government Officials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Education Programs for Government Officials Development of Hydrogen Education Programs for Government Officials 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  3. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking - Level 1 | Department of Energy Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced technology vehicle lab benchmarking. PDF icon vss030_stutenberg_2014_o.pdf More Documents

  4. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Through Tire Design, Materials, and Reduced Weight | Department of Energy Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel

  5. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. PDF icon vsst_overview_amr_2014_061114.pdf More Documents

  6. Fuel Cell and Battery Electric Vehicles Compared | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Battery Electric Vehicles Compared Fuel Cell and Battery Electric Vehicles Compared Presented by Sandy Thomas at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon thomas_fcev_vs_battery_evs.pdf More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons Fuel Cell and Battery Electric Vehicles Compared INFOGRAPHIC: The Fuel Cell Electric Vehicle Asia/ITS

  7. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  8. Hydrogen Education Curriculum Path at Michigan Technological...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Curriculum Path at Michigan Technological University Hydrogen Education Curriculum Path at Michigan Technological University 2009 DOE Hydrogen Program and Vehicle Technologies ...

  9. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a ... for the full platform of light-duty automotive vehicles using fuel cell power plants. ...

  10. Vehicle Technologies Office Merit Review 2015: High-Throughput...

    Office of Environmental Management (EM)

    Vehicle Technologies Office Merit Review 2015: High-Throughp... 2015 DOE Hydrogen and Fuel Cells Program and Vehicle ... Development for Fuel Efficient Small Car Integrated ...

  11. ANSI Electric Vehicle Standards Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap ANSI Electric Vehicle Standards Roadmap 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ...

  12. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  13. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells ...

  14. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  15. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  16. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle...

  17. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  18. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  19. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009

    Broader source: Energy.gov [DOE]

    These notes provide information about the Compressed Natural Gas and Hydrogen Fuels workshop in December 2009.

  20. Medium- and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. U.S. Department of Energy Vehicle Technologies Program Overview

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

  2. Overview of Vehicle and Systems Simulation and Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Overview of Vehicle and Systems Simulation and Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Overview of Vehicle and Systems Simulation and Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Plug-In Electric Vehicle Integration with Renewables

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Vehicle Technologies Office Merit Review 2013: KIVA Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Thermoelectric HVAC for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Updating and Enhancing the MA3T Vehicle Choice Model

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Testing and Validation of Vehicle to Grid Communication Standards

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Low Cost Carbon Fiber Composites for Lightweight Vehicle Parts

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Vehicle Systems Integration (VSI) Research Laboratory at ORNL

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Relationships between Vehicle Mass, Footprint, and Societal Risk

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Advanced Electric Drive Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt039_ti_schwendeman_2011_p.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology Integration

  10. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  11. Hydrogen Education for Code Officials

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  12. Hydrogen Safety: First Responder Education

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Hydrogen & Fuel Cells Program Overview

    Broader source: Energy.gov [DOE]

    Plenary presentation at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Tanadgusix (TDX) Foundation Hydrogen Project

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  15. Electrolysis - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Fuels Vehicles and Fuels Find More Like This Return to Search Electrolysis - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing...

  16. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculation | Department of Energy DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$), which represents the cost at which hydrogen fuel cell electric vehicles are projected to become competitive on a cost per mile basis with the competing vehicles (gasoline in

  17. Plug-In Electric Vehicle Handbook for Public Charging Station...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Gasoline- and diesel-powered ICE vehicles ended up ... the nation's first zero emission vehicle mandate, putting the ... about 10 to 40-plus miles for current light-duty models. ...

  18. NREL: Learning - Fuel Cell Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Photo showing a silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was displayed at a recent conference of the National Hydrogen Association. Credit: Keith Wipke Researchers are developing fuel cells that can be used in vehicles to provide electricity for propulsion as well as for a car's electric and electronic equipment.

  19. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Multi-Material Lightweight Vehicles Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles. PDF icon lm072_skszek_2014_o.pdf More Documents & Publications Multi-Material Lightweight Prototype Vehicle Vehicle Technologies Office Merit

  1. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  2. Power & Energyfrom an Army Ground Vehicle Perspective

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Ultra Large Castings For Lightweight Vehicle Structures

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C

  5. Electric Vehicle Service Personnel Training Program

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. Heavy Duty Vehicle Modeling and Simulation

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Vehicle and Systems Simulation and Testing

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Vehicle and Systems Simulation and Testing

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Advanced Technology Vehicle Benchmark and Assessment

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Renewable Fuel Vehicle Modeling and Analysis

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Co-Optimization of Fuels and Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Fuels and Vehicles Jim Anderson, Ford Motor Company Bioenergy 2015 June ... LDV Pathways Source: DOE Hydrogen and Fuel Cells Program Record 14006, http:...

  15. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  16. Vehicle Technologies Office Merit Review 2014: Understanding...

    Energy Savers [EERE]

    Automotive Applications Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and...

  17. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt067vssbazzi2011o.pdf More Documents & ...

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  19. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  20. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    SciTech Connect (OSTI)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.

  1. Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle 2011 DOE Hydrogen and Fuel Cells Program, ...

  2. Federal Perspective on Opportunities for Hydrogen and Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Mark S. Smith Vehicle Technologies Office Clean Cities Team ...

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066_vss_karner_2012

  4. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066_vss_karner_2011

  5. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  6. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Hydrogen Fueling ...

  7. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned ...

  8. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence Hydrogen Education Curriculum Path at Michigan Technological University GATE Center for ...

  9. Overview of Indian Hydrogen Program and Key Safety Issues of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Workshop Notes from ... Workshop, December 10-11, 2009 Hydrogen Vehicles and Refueling Infrastructure in India

  10. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Paper Analysis of the Hydrogen NRELCP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and...

  11. Discrete Choice Analysis: Hydrogen FCV Demand Potential | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Hydrogen Policy and Analyzing the Transition Status and Prospects of the ...

  12. Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles.

  13. Vehicle Technologies Office Merit Review 2015: E-drive Vehicle Sales Analyses

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about E-drive Vehicle...

  14. Hydrogen Futures Simulation Model Elsevier Edition 2.2

    Energy Science and Technology Software Center (OSTI)

    2006-03-09

    Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production. storage, transport andmore » end use options in the year 2020. Based on the model’s default assumptions, estimated hydrogen production costs range from 0.68 $!kg for coal gasification to as high as 5.64$! kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust: for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options when electricity drops below 1 cent/ kWhr. Delivered 2020 hydrogen costs are likely to be double the estimated production costs due to the inherent difficulties associated with storing, transporting, and dispensing hydrogen due to its low volumetric density. H2Sim estimates distribution costs ranging from 1.37 5/kg (low distance, low production) to 3.23 s/kg (long distance, high production volumes, carbon sequestration). Distributed hydrogen production options, such as on site natural gas, would avoid some of these costs. H2Sim compares the expected 2020 per mile driving costs (fuel, capital, maintenance, license, and registration) of current technology internal combustion engine (ICE) vehicles (0.55$/mile), hybrids (0.56 S/mile), and electric vehicles (0.82-0.84 5/mile) with 2020 fuel cell vehicles (FCV5) (0.64-0.66 s/mile), fuel cell vehicles with onboard gasoline reformation (FCVOB) (0.70 S/mile), and direct combustion hydrogen hybrid vehicles (H2Hybrid) (0.55-0.59 s/mile). The results suggests that while the H2Hybrid vehicle may be competitive with ICE vehicles, it will be difficult for the FCV to compete without significant increases in gasoline prices, reduced predicted vehicle costs, stringent carbon policies, or unless they can offer the consumer something existing vehicles can not, such as on demand power, lower emissions, or better performance.« less

  15. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  16. Advanced Vehicle Testing & Evaluation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss029_karner_2012_o.pdf More Documents & Publications Advanced Vehicle Testing & Evaluation Advanced Vehicle Testing & Evaluation Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

  17. Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  18. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  19. Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about development of...

  20. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  1. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  2. Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  3. Vehicle Technologies Office Merit Review 2014: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  4. Vehicle Technologies Office Merit Review 2014: Trip Prediction and Route-Based Vehicle Energy Management

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about trip prediction...

  5. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt053tibolton2011p...

  6. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt053tibolton2012o...

  7. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Vehicle Technologies Office Merit Review 2015: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Idaho National...

  9. Vehicle Technologies Office Merit Review 2015: Wireless Charging of Electric Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless...

  10. New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Vehicle Technologies Office Merit Review 2015: Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  12. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  13. Vehicle Technologies Office Merit Review 2014: Pennsylvania Partnership for Promoting Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Delaware Valley Regional Planning Commission at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

  15. Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

  16. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  17. Vehicle Technologies Office Merit Review 2014: Relationships between Vehicle Mass, Footprint, and Societal Risk

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  18. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4: Perform research on the Proton Exchange membrane

  19. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles: Mach II Design | Department of Energy Multi-Material Lightweight Vehicles: Mach II Design Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles: Mach II design. PDF icon lm088_skszek_2014_o.pdf More Documents & Publications Vehicle

  20. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Lessons and Challenges for Early Hydrogen Refueling Infrastructure

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  2. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. 2009 DOE Vehicle Technologies Office Annual Merit Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Technologies Office Annual Merit Review 2009 DOE Vehicle Technologies Office Annual Merit Review The 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting was held May 18-22, 2009 in Arlington, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Office: a total of 304 individual activities were reviewed for Vehicle Technologies, by a total of 142 reviewers. A total of

  4. 2010 DOE Vehicle Technologies Office Annual Merit Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DOE Vehicle Technologies Office Annual Merit Review 2010 DOE Vehicle Technologies Office Annual Merit Review The 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting was held June 7-11, 2010 in Washington, DC. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Office: a total of 271 individual activities were reviewed for Vehicle Technologies, by a total of 110 reviewers. A total of

  5. 2011 DOE Vehicle Technologies Office Annual Merit Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Technologies Office Annual Merit Review 2011 DOE Vehicle Technologies Office Annual Merit Review The 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting was held May 9-13, 2011 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Office: a total of 298 individual activities were reviewed for Vehicle Technologies, by a total of 115 reviewers. A total of

  6. 2012 DOE Vehicle Technologies Office Annual Merit Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DOE Vehicle Technologies Office Annual Merit Review 2012 DOE Vehicle Technologies Office Annual Merit Review The 2012 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Office: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total

  7. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  8. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  9. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  10. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  11. vehicles | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    vehicles Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at Berkeley Lab's Advanced Light Source facility, is leading the Hydrogen Materials - Advanced Research Consortium (HyMARC) to advance solid-state materials for onboard hydrogen storage. Sandia National Laboratories will lead a new tri... Nevada National Security Site operator recognized for green fleet The management and operating

  12. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  13. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  14. Hydrogen Transition (HyTRANS) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition (HyTRANS) Model (Oak Ridge National Laboratory) Objectives Dynamically simulate the transition to hydrogen powered light-duty vehicles in the U.S. to 2050, representing the simultaneous interaction of (1) hydrogen production and delivery, (2) hydrogen fuel cell vehicle production, and (3) consumers' choices among alternative vehicle technologies. Determine a market equilibrium solution by multi-period optimization of an objective function that reflects private costs and benefits. Key

  15. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  16. Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, and Plug-in Hybrid Electric Vehicles | Department of Energy Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon alt_trans_study.pdf More Documents & Publications An Energy

  17. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  18. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen ...

  20. Validation of an Integrated Hydrogen Energy Station

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Hydrogen Codes and Standards and Permitting

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Sandia Optical Hydrogen-fueled Engine

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  3. Sandia Optical Hydrogen-fueled Engine

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on ...

  5. Safe Detector System for Hydrogen Leaks

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. National Hydrogen and Fuel Cell Day

    Broader source: Energy.gov [DOE]

    Join us on Thursday, October 8, in celebrating the first National Hydrogen and Fuel Cell Day! In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization...

  7. American Wind Power Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Power Hydrogen LLC Jump to: navigation, search Name: American Wind Power & Hydrogen LLC Place: New York, New York Zip: 10022 Sector: Hydro, Hydrogen, Vehicles Product: AWP&H is a...

  8. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  11. Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Supertruck- Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Analysis of In-Motion Power Transfer for Multiple Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram that focuses on developing advanced ICE technologies for all highway transportation vehicles.

  2. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  4. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20% postconsumer waste iii Executive Summary As ... cell H 2 hydrogen ICE internal combustion engine IGCC integrated ... gas turbines, 2 heat recovery steam generators, ...

  5. Hydrogen Storage Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » Increase Your H2IQ » Hydrogen Storage Basics Hydrogen Storage Basics Developing safe, reliable, compact, and cost-effective hydrogen storage technologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 miles between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to

  6. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program ...

  7. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  8. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  9. Vehicle Technologies Office Merit Review 2015: Engine Friction Reduction Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about engine friction...

  10. Medium and Heavy Duty Vehicle and Engine Testing

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Reduced Emissions in Engines Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  12. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel ...

  13. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel ...

  14. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  15. Vehicle Technologies Office Merit Review 2015: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  16. Vehicle Technologies Office Merit Review 2015: High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and ...

  17. Vehicle Technologies Office Merit Review 2015: Use of Low Cetane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Combustion Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Sandia Optical Hydrogen-fueled Engine

  18. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Vehicle Technologies Office Merit Review 2014: Model Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis of Clean & Efficient Engine Combustion ... 2014 DOE Hydrogen and Fuel Cells Program and Vehicle ... Efficient Modeling of High-Efficiency Clean Combustion ...

  20. Vehicle Technologies Office Merit Review 2015: Class 8 Truck...

    Broader source: Energy.gov (indexed) [DOE]

    DTNA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about class 8 truck freight efficiency improvement...

  1. Vehicle Technologies Office Merit Review 2014: Class 8 Truck...

    Broader source: Energy.gov (indexed) [DOE]

    Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck Freight...

  2. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  3. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  4. Thermoelectric HVAC for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Vehicle Technologies Office Merit Review 2015: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  6. U.S. Department of Energy Vehicle Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. Vehicle Technologies Office Merit Review 2015: Unconventional Hydrocarbon Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  8. Vehicle Technologies Office Merit Review 2014: A Combined Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined ...

  9. Vehicle Technologies Office Merit Review 2015: Overview of VTO...

    Energy Savers [EERE]

    Overview of VTO Propulsion Material Technologies Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual...

  10. Vehicle Technologies Office Merit Review 2015: Overview of VTO...

    Energy Savers [EERE]

    2015: Overview of VTO Material Technologies Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual...

  11. Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

  13. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  14. Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office Merit Review 2015: Idaho National...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  16. Light-Duty Lean GDI Vehicle Technology Benchmark

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Vehicle Technologies Office Merit Review 2015: Battery Safety Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  18. Vehicle Technologies Office Merit Review 2014: Reliability of Electrical Interconnects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2014: Abuse Tolerance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about abuse tolerance...

  20. Low Cost Carbon Fiber Composites for Lightweight Vehicle Parts | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm047_stike_2012