Sample records for hydrogen fueling system

  1. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  2. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19T23:59:59.000Z

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  5. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Office of Environmental Management (EM)

    and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models...

  6. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

  7. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Energy Savers [EERE]

    DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014...

  8. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  9. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    SciTech Connect (OSTI)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19T23:59:59.000Z

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  10. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  11. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall Business Vouchers Documents SmallSmall

  12. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04T23:59:59.000Z

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  13. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems – Projected Performance and Cost Parameters

    Broader source: Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

  14. Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System

    SciTech Connect (OSTI)

    Eric J. Carlson

    2004-10-20T23:59:59.000Z

    PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

  15. Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System

    E-Print Network [OSTI]

    Victoria, University of

    Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

  16. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31T23:59:59.000Z

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  17. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  18. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  19. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30T23:59:59.000Z

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  20. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen

  1. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    of refueling today's gasoline vehicles. Using currently available high-pressure tank storage technology that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen

  2. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is...

  3. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01T23:59:59.000Z

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  4. Experimental investigation of onboard storage and refueling systems for liquid-hydrogen-fueled vehicles

    SciTech Connect (OSTI)

    Stewart, W.F.

    1982-09-01T23:59:59.000Z

    A 2-1/2-year baseline experimental hydrogen-fueled automotive vehicle project was conducted to evaluate and document state-of-the-art capabilities in engine conversion for hydrogen operation, liquid-hydrogen onboard storage, and liquid-hydrogen refueling. The engine conversion, onboard liquid-hydrogen storage tank, and liquid-hydrogen refueling system used in the project represented readily available equipment or technology when the project began. The project information documented herein can serve as a basis of comparison with which to evaluate future vehicles that are powered by hydrogen or other alternative fuels, with different engines, and different fuel-storage methods. The results of the project indicate that liquid-hydrogen storage observed an operating vehicle and routine refueling of the vehicle can be accomplished over an extended period without any major difficulty. Two different liquid-hydrogen vehicle onboard storage tanks designed for vehicular applications were tested in actual road operation: the first was an aluminum dewar with a liquid-hydrogen capacity of 110 l; the second was a Dewar with an aluminum outer vessel, two copper, vapor-cooled thermal-radiation shields, and a stainless-steel inner vessel with a liquid-hydrogen capacity of 155 l. The car was refueled with liquid hydrogen at least 65 times involving more than 8.1 kl of liquid hydrogen during the 17 months that the car was operated on liquid hydrogen. The vehicle, a 1979 Buick Century sedan with a 3.8-l-displacement turbocharged V6 engine, was driven for 3633 km over the road on hydrogen. The vehicle had a range without refueling of about 274 km with the first liquid-hydrogen tank and about 362 km with the second tank. The vehicle achieved 2.4 km/l of liquid hydrogen which corresponds to 9.4 km/l gasoline on an equivalent energy basis.

  5. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L. [Pacific Northwest National Laboratory, Richland, WA; San Marchi, Christopher W.

    2013-10-01T23:59:59.000Z

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  6. Journal of Power Sources 135 (2004) 184191 A solid oxide fuel cell system fed with hydrogen sulfide

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Journal of Power Sources 135 (2004) 184­191 A solid oxide fuel cell system fed with hydrogen for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide

  7. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17T23:59:59.000Z

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  8. Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System

    SciTech Connect (OSTI)

    Melendez, M.; Theis, K.; Johnson, C.

    2007-08-01T23:59:59.000Z

    Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

  9. Development of a Natural Gas-to-Hydrogen Fueling System

    E-Print Network [OSTI]

    -life compressors ­ Accurate dispensing ­ Capital outlay & return on investment #12;3 Goals and Objectives > Goals-pressure compressors and fuel purification systems > Commercialization pathway ­ ANGI International > In-kind support 2/20052/20048/2002Compressor 7/20042/20048/2002Dispenser 2/20038/2002Fast Fill Testing 2

  10. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  11. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  12. NREL: Hydrogen and Fuel Cells Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData andEvaluationResearchSuccess

  13. Small Fuel Cell Systems with Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready, Set, NASCAREnergyProjects

  14. Hydrogen-Fueled Vehicle Safety Systems Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent TechnologyEvaluationWebinar

  15. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergyCorrectiveHydrodynamicPortal

  16. NREL: Energy Systems Integration - ESIF Fueling Robot Automates Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletterAcademyCapabilities Photo of a

  17. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  18. Hydrogen Fuel Cell Engines and Related Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Hydrogen Fuel Cell Engines and Related Technologies This course covers hydrogen properties, use and safety, fuel cell technology and its systems, fuel cell...

  19. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation...

  20. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

  1. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected...

  2. Meeting U.S. Liquid Transport Fuel Needs with a Nuclear Hydrogen Biomass System

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL

    2007-01-01T23:59:59.000Z

    The two major energy challenges for the United States are replacing crude oil in our transportation system and eliminating greenhouse gas emissions. A domestic-source greenhouse-gas-neutral nuclear hydrogen biomass system to replace oil in the transportation sector is described. Some parts of the transportation system can be electrified with electricity supplied by nuclear energy sources that do not emit significant quantities of greenhouse gases. Other components of the transportation system require liquid fuels. Biomass can be converted to greenhouse-gas-neutral liquid fuels; however, the conversion of biomass-to-liquid fuels is energy intensive. There is insufficient biomass to meet U.S. liquid fuel demands and provide the energy required to process the biomass-to-liquid fuels. With the use of nuclear energy to provide heat, electricity, and hydrogen for the processing of biomass-to-liquid fuels, the liquid fuel production per unit of biomass is dramatically increased, and the available biomass could meet U.S. liquid fuel requirements.

  3. Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

  4. Operating experience with a liquid-hydrogen fueled Buick and refueling system

    SciTech Connect (OSTI)

    Stewart, W.F.

    1982-01-01T23:59:59.000Z

    An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8-L displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/L of liquid hydrogen or 8.9 km/L of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/L of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen . Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle: the first was an aluminum Dewar with a liquid-hydrogen capacity of 110 L; the second was a Dewar with an aluminum outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 155 L. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kL of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of nine minutes was achieved, and liquid hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.

  5. Hydrogen,Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    ;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

  6. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect (OSTI)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)

    1996-12-31T23:59:59.000Z

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  7. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  8. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  9. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    be powered by hydrogen, and pollution-free." "Join me in this important innovation to make our air for the foreseeable future. Even with the significant energy efficiency benefits that gasoline- electric hybrid - fossil fuels like natural gas and coal; renewable energy sources such as solar radiation, wind

  10. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01T23:59:59.000Z

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  11. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  12. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

  13. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 FuelModel | Department of Energy

  14. DOE Hydrogen & Fuel Cell Overview

    Broader source: Energy.gov (indexed) [DOE]

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  15. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCR | Department

  16. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartmentWorkshop |20242014 |

  17. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    E-Print Network [OSTI]

    and storage (CCS) Brazilian sugarcane ethanol Corn to butanol Soybeans to renewable diesel via hydrogenation Coal/biomass co-feeding for FT diesel production Various corn ethanol plant types with different and electric forklifts FC distributed power generation vs. conventional distributed power generation

  18. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  19. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Below is...

  20. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

  1. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  2. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

  3. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B 2010Department2014 |

  4. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Hydrogen andfor Transportation

  5. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01T23:59:59.000Z

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  6. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01T23:59:59.000Z

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  7. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    response of the fuel cell system under a series of stepresponse of the fuel cell system under a series of step

  8. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    also novel new on-site hydrogen storage systems. In relationfor fuel cells and hydrogen storage), fuel cell durability,firms) on vehicle hydrogen storage pressure and station

  9. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  10. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  11. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  12. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    SciTech Connect (OSTI)

    Luczak, F.

    1998-03-01T23:59:59.000Z

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  13. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure.5Hydrogen, Fuel Cells & Infrastructure Technologies Program (EERE) President's Office of Science Berkeley, California #12;President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1

  14. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01T23:59:59.000Z

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  15. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  17. California National Guard Sustainability Planning, Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Guard Sustainability Planning, Hydrogen Fuel Goals California National Guard Sustainability Planning, Hydrogen Fuel Goals Overview of California Guard Army Facilities, ANG...

  18. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  19. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  20. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  1. Alternative Fuels Data Center: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies |Hydrogen Printable VersionHydrogen

  2. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24T23:59:59.000Z

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  3. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    California, June (1986). General Electric, Direct Energy Conversion Programs, Feasibility Study ofSPE Fuel Cell Power Plants

  4. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Energy Savers [EERE]

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel...

  5. President's Hydrogen Fuel Mark Paster

    E-Print Network [OSTI]

    or diesel fuel. #12;Emissions from Fossil Fuel Combustion Vehicles and power plants are significant powered vehicle, and be able to refuel it near their homes and places of work, by 2020." - Secretary Strategy Produce hydrogen from renewable, nuclear, and coal with technologies that will all yield virtually

  6. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  7. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

    E-Print Network [OSTI]

    to the rate of refueling today's gasoline vehicles. Using currently available high-pressure tank storage that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost

  8. Hydrogen fuel closer to reality because of storage advances

    E-Print Network [OSTI]

    - 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward attractive fuel for vehicles or other transportation modes. Researchers revealed the new single-stage method as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

  9. Sandia National Laboratories: hydrogen fuel cell and infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced hydrogen storage systems that will enable longer driving ranges and help make fuel-cell systems competitive for different platforms and vehicle sizes. These advances in...

  10. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    system, the power consumption of the hydrogen EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicleelectric vehicles, uninterruptible power sources, distributed power generation systems,

  11. SYSTEMS MODELING OF AMMONIA BORANE BEAD REACTOR FOR OFF-BOARD REGENERABLE HYDROGEN STORAGE IN PEM FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; King, Dale A.; Herling, Darrell R.

    2010-06-01T23:59:59.000Z

    Out of the materials available for chemical hydrogen storage in PEM fuel cell applications, ammonia borane (AB, NH3BH3) has a high hydrogen storage capacity (upto 19.6% by weight for the release of three hydrogen molecules). Therefore, AB was chosen in our chemical hydride simulation studies. A model for the AB bead reactor system was developed to study the system performance and determine the energy, mass and volume requirements for off-board regenerable hydrogen storage. The system includes hot and cold augers, ballast tank and reactor, product tank, H2 burner and a radiator. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure in the reactor system. Control signals to various components are governed by a control system which is modeled as an independent subsystem. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate accurate trends in the reactor system dynamics.

  12. Direct-hydrogen-fueled proton-exchange-membrane (PEM) fuel cell system for transportation applications. Quarterly technical progress report No. 4, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Oei, D.

    1995-08-03T23:59:59.000Z

    This is the fourth Technical Progress Report for DOE Contract No. DE-AC02-94CE50389 awarded to Ford Motor Company on July 1, 1994. The overall objective of this contract is to advance the Proton-Exchange-Membrane (PEM) fuel cell technology for automotive applications. Specifically, the objectives resulting from this contract are to: (1) Develop and demonstrate on a laboratory propulsion system within 2-1/2 years a fully functional PEM Fuel Cell Power System (including fuel cell peripherals, peak power augmentation and controls). This propulsion system will achieve, or will be shown to have the growth potential to achieve, the weights, volumes, and production costs which are competitive with those same attributes of equivalently performing internal combustion engine propulsion systems; (2) Select and demonstrate a baseline onboard hydrogen storage method with acceptable weight, volume, cost, and safety features and analyze future alternatives; and (3) Analyze the hydrogen infrastructure components to ensure that hydrogen can be safely supplied to vehicles at geographically widespread convenient sites and at prices which are less than current gasoline prices per vehicle-mile; (4) Identify any future R&D needs for a fully integrated vehicle and for achieving the system cost and performance goals.

  13. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Broader source: Energy.gov (indexed) [DOE]

    for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

  14. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership...

  15. Overview of Hydrogen and Fuel Cell Activities: February 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel...

  16. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  17. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    PNNL, ANL, and LANL * system modeling & analyses * physical and chemical sensors * turbo compressor expander * compact humidifiers heat exchangers * auxiliary power in...

  18. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Environmental Management (EM)

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure...

  19. Office of Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    . Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Reduction #12;Major Fuel Cell Decisions FuelOffice of Hydrogen, Fuel Cells & Infrastructure Technologies (proposed) Steve Chalk May 6, 2002 #12 DAS Associate DASIndustrial Technologies Implementation A Director Solar Energy Technologies Director

  20. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June...

  1. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan Technological University...

  2. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  3. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    vehicle component costs (for fuel cells and hydrogenand cost issues for hydrogen and fuel cell vehicles, andFuel economy: • Fuel cell system cost: % of DOE 2015 Target

  4. Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of...

  5. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

  6. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  7. Overview of Hydrogen and Fuel Cell Activities: February 2011...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February...

  8. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Energy Savers [EERE]

    DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

  9. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Energy Savers [EERE]

    6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo This presentation by DOE's Sunita...

  10. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    : Facilitate the creation and adoption of model building codes and equipment standards for hydrogen systems of hydrogen building codes for NFPA's hearing cycle. Facilitate in the adoption of the ICC codes in three key for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen

  11. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through July 1999.

  12. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

  13. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-12-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  14. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

  15. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  16. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

  17. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-02-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

  18. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-01-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  19. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

  20. DOE HydrogenDOE Hydrogen Fuel CellsFuel Cells

    E-Print Network [OSTI]

    efficiency of stationary fuel cell systems (natural gas) $45/kW by 2010$250/kWG. Reduce cost - vehicle fuel to taking these cars from laboratory to showroom so that the first car driven by a child born today could

  1. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell...

  2. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

  3. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Gasoline Feedstock activities Fuel production Fuel storage,gasoline vehicle ORNL Fuel cell vehicle DOE fuel cell target: $45/kW by 2015, $30/kW by 2020 (onboard H2 storagegasoline vehicle (Table 3) Component – manufacturing cost Electric Powertrain (Motor + controller + transmission) Fuel cell system (stack + BOP) Hydrogen storage

  4. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    derived from a basic diagnostic fuel cell model [3] was usedExperimental Diagnostics in Polymer Electrolyte Fuel Cells,

  5. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Broader source: Energy.gov (indexed) [DOE]

    vehicles) in 2020. This record from the U.S. Department of Energy Hydrogen and Fuel Cells Program documents the methodology and assumptions used to calculate that...

  6. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage

    E-Print Network [OSTI]

    of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted as an automotive fuel. However, the lack of convenient and cost-effective hydrogen storage, particularly for an on market for cost-effective and efficient high-pressure hydrogen storage systems. The world's premier

  7. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop...

  8. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Energy Savers [EERE]

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  9. National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure

    E-Print Network [OSTI]

    National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis to address the nation's energy and environmental goals. · The NREL Hydrogen Analysis Group provides

  10. Alternative Fuels Is US Investment in Hydrogen,

    E-Print Network [OSTI]

    Bowen, James D.

    · In the early 1960's NASA used fuel cells in both Gemini and Apollo · Fuel cell powered vehicles first hit similar to a battery #12;How the Fuel Cell Works #12;Advantages · Offers a vehicle range similar to carsAlternative Fuels Is US Investment in Hydrogen, Electric Vehicles, and BioFuels Worth It?BioFuels

  11. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES 2009 DOE Hydrogen Program...

  12. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn Earth-Friendly Wind Vision

  13. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

  14. DOE's Hydrogen and Fuel Cells Technologies Manufacturing

    E-Print Network [OSTI]

    · Advanced fuel cell testing & diagnostics Wet Direct coated Anode #1 Direct coated Anode #2 Control Anode #3DOE's Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base

  15. A smooth transition to hydrogen transportation fuel

    SciTech Connect (OSTI)

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14T23:59:59.000Z

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  16. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31T23:59:59.000Z

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  17. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01T23:59:59.000Z

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  18. Hydrogen storage and integrated fuel cell assembly

    DOE Patents [OSTI]

    Gross, Karl J. (Fremont, CA)

    2010-08-24T23:59:59.000Z

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  19. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  20. Sandia National Laboratories: Hydrogen Fueling Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Station Technology Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research and Innovation (CIRI), Energy,...

  1. Sandia National Laboratories: hydrogen fuel expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expertise Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  2. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  3. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  4. Sandia National Laboratories: hydrogen fueling station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    station Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  5. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 Photoelectrochemical Hydrogen Production Eric L. Miller (Primary Contact), Daniela Paluselli, Bjorn Marsen, Richard HPEs based on best available materials systems. · Demonstrate 7.5% solar-to-hydrogen (STH) efficiency

  6. Method and System for Hydrogen Evolution and Storage

    DOE Patents [OSTI]

    Thorn, David L. (Los Alamos, NM); Tumas, William (Los Alamos, NM); Hay, P. Jeffrey (Los Alamos, NM); Schwarz, Daniel E. (Los Alamos, NM); Cameron, Thomas M. (Los Alamos, NM)

    2008-10-21T23:59:59.000Z

    A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  7. Method and system for hydrogen evolution and storage

    DOE Patents [OSTI]

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11T23:59:59.000Z

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  8. Validation of an Integrated System for a Hydrogen-Fueled Power Park

    E-Print Network [OSTI]

    simulation ­ Efficiency ­ Waste heat availability Develop cost of operation models ­ Capital ­ Fuel costs reformer with equal loads All waste heat can be utilized 3-5 kW commercially available PEM fuel cells

  9. January 2009 Hydrogen and Fuel Cell Activities,

    E-Print Network [OSTI]

    of primary industry (or a related industry) to a fully commercialized hydrogen economy; (3) any change made a Related Industry) to a Fully Commercialized Hydrogen Economy [response to EPACT section 811(a)(2January 2009 Hydrogen and Fuel Cell Activities, Progress, and Plans Report to Congress #12;Preface

  10. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1 Table of ContentsAntheDepartment ofPage1

  11. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1 Table of ContentsAntheDepartment

  12. Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWindBuildingOffice28-98 - May2012

  13. Hydrogen Fueling Infrastructure Research and Station Technology

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  14. Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference...

  15. Overview of Hydrogen and Fuel Cell Activities: 2010 Military...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and...

  16. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

  17. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

  18. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell...

  19. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  20. Sandia National Laboratories: Ovonic Hydrogen Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ovonic Hydrogen Systems ECIS, Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile Lighting Applications On March 29, 2013, in Capabilities, CRF, Energy, Energy Efficiency,...

  1. Hydrogen and Fuel Cell Activities

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National...

  2. HYDROGEN FUEL CELL BUS EVALUATION

    Broader source: Energy.gov [DOE]

    This paper describes the prototype fuel cell bus, fueling infrastructure, and maintenance facility for an early technology adopter.

  3. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview: 2015 Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons, and Bioproduct...

  4. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasicsFueling Stations

  5. Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

    2005-05-01T23:59:59.000Z

    Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

  6. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  7. FreedomCAR and Fuel Cells: Toward the Hydrogen Economy?

    E-Print Network [OSTI]

    Sperling, Daniel

    2003-01-01T23:59:59.000Z

    best to deliver hydrogen to the fuel cell on the vehicle.to simply deliver hydrogen to a fuel cell via another typefor selling fuel cell vehicles and hydrogen, and consumers

  8. Prospecting the Future for Hydrogen Fuel Cell Vehicle Markets

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas S.; Heffner, Reid R.; Congleton, Christopher

    2003-01-01T23:59:59.000Z

    as those for hydrogen and fuel cell vehicles (FCVs). 1 Wein the market if hydrogen and fuel cells are the best energypaper we argue that hydrogen and fuel cells will effectively

  9. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

  10. Hydrogen and Fuel Cells Success Stories

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen and Fuel71 Hydrogen and

  11. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogen EnergyHydrogen &

  12. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogen EnergyHydrogen

  13. Alternative Fuels Data Center: Hydrogen Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStationTrucksRidesHydrogenHydrogen

  14. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation: Hubs+ ReportDepartmentofDepartmentHydrogen

  15. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01T23:59:59.000Z

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  16. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Technical paper...

  17. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation...

  18. Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Presentation by...

  19. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by...

  20. DOE Announces Webinars on Integrating Hydrogen and Fuel Cell...

    Energy Savers [EERE]

    Integrating Hydrogen and Fuel Cell Technologies, a Site Selection Tool for Utility-Scale PV, and More DOE Announces Webinars on Integrating Hydrogen and Fuel Cell Technologies, a...

  1. Energy Department Applauds World's First Fuel Cell and Hydrogen...

    Office of Environmental Management (EM)

    World's First Fuel Cell and Hydrogen Energy Station in Orange County Energy Department Applauds World's First Fuel Cell and Hydrogen Energy Station in Orange County August 16, 2011...

  2. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Environmental Management (EM)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  3. Sandia National Laboratories: hydrogen fuel cell electric vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen fuel cell electric vehicle New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for...

  4. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Energy Savers [EERE]

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations March 3, 2015 - 2:33pm...

  5. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Energy Savers [EERE]

    DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using...

  6. New Training Resource Prepares Rescuers for Hydrogen and Fuel...

    Office of Environmental Management (EM)

    Training Resource Prepares Rescuers for Hydrogen and Fuel Cell Emergencies New Training Resource Prepares Rescuers for Hydrogen and Fuel Cell Emergencies April 21, 2015 - 11:26am...

  7. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Environmental Management (EM)

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  8. New Mexico Hydrogen Fuels Challenge Program Description The New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

  9. Sandia National Laboratories: Hydrogen and Fuel Cells Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyProtected: Hydrogen and Fuel Cells Program Hydrogen and Fuel Cells Program hydrogenslide01 hydrogenslide02 hydrogenslide03 hydrogenslide04 hydrogenslide08 hydrogenslide10...

  10. Sandia National Laboratories: Hydrogen and Fuel Cells Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Hydrogen and Fuel Cells Program hydrogenslide01 hydrogenslide02 hydrogenslide03 hydrogenslide04 hydrogenslide08 hydrogenslide10 Hydrogen and Fuel Cells Program Materials...

  11. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles...

  12. Bachelor of Science Engineering Technology Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education...

  13. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Environmental Management (EM)

    2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online...

  14. Hydrogen & Fuel Cells: Review of National Research and Development...

    Open Energy Info (EERE)

    Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of...

  15. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure...

  16. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  17. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

  18. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Hydrogen Fuel Cell Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual Photo of...

  19. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned...

  20. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role...

  1. Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout...

    Energy Savers [EERE]

    FY 2014 Budget Request Rollout to Stakeholders Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to Stakeholders Presentation slides from the Hydrogen and Fuel...

  2. Hydrogen and Fuel Cell Technical Advisory Committee Biennial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary...

  3. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer...

  4. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer...

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

  6. Synergies in Natural Gas and Hydrogen Fuels

    Broader source: Energy.gov (indexed) [DOE]

    F presentation slides: synergies in Natural Gas and hydrogen Fuels Brian Bonner, Air Products and Chemicals, Inc. 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary...

  7. Webinar: Introduction to SAE Hydrogen Fueling Standardization...

    Broader source: Energy.gov (indexed) [DOE]

    to the new SAE J2601 and J2799 standard related to public refueling of hydrogen fuel cell electric vehicles. So as Alli also mentioned, I'm going to be moderating today's...

  8. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuel Cellsp

  9. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15T23:59:59.000Z

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  10. alternative fuel hydrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 Hydrogen Fuel Cell Vehicles University of...

  11. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...

    Energy Savers [EERE]

    1 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the IPHE Stationary Fuel...

  12. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    in fuel consumption, compared to a conventional vehicle with a gasoline internal combustion engine times the efficiency of traditional combustion technologies. A conventional combustion-based power plant at efficiencies up to 60% (and even higher with cogeneration). The gasoline engine in a conventional car is less

  13. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  14. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |PanelEnergy5/2011

  15. Hydrogen and Fuel Cell Technologies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation » ForFuelHydrogen

  16. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be key to "fast magnetic

  17. ANALYSIS OF POWER BALANCING WITH FUEL CELLS & HYDROGEN

    E-Print Network [OSTI]

    ANALYSIS OF POWER BALANCING WITH FUEL CELLS & HYDROGEN PRODUCTION PLANTS IN DENMARK Support program;"Analysis of power balancing with fuel cells & hydrogen production plants in Denmark" ­ March 2009 ­ Project-TO-TANK..........................................................................................................26 C.1 Hydrogen production from electrolysis

  18. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Harrison, K.

    2014-01-01T23:59:59.000Z

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  19. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  20. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation » ForFuel Cells Hydrogen

  1. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergyHydrogen Storage

  2. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

    2007-10-02T23:59:59.000Z

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  3. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  4. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  5. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    R. H. Williams, Solar hydrogen: moving beyond fossil fuels.J. S. Cannon, Harnessing Hydrogen: The Key to Sustainablefuel cell power systems hydrogen vs. methanol: a comparative

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

  8. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergyfor(FCEVs) |

  9. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStationTrucksRidesHydrogen

  10. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Energy Savers [EERE]

    Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells...

  11. Overview of Hydrogen and Fuel Cell Activities: 2010 Military...

    Energy Savers [EERE]

    0 Military Energy and Alternative Fuels Conference Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference This presentation by DOE's...

  12. Hydrogen and Fuel Cells | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department of Energy InternetHydrogen Turbines Theis the

  13. Hydrogen & Fuel Cells Program Overview

    E-Print Network [OSTI]

    such as residential CHP systems, auxiliary power units, fleets and buses · Long-term markets including mainstream

  14. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Environmental Management (EM)

    and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

  15. Sandia National Laboratories: clean hydrogen-powered fuel cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen-powered fuel cell electric vehicles Storing Hydrogen Underground Could Boost Transportation, Energy Security On February 26, 2015, in Capabilities, Center for...

  16. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29T23:59:59.000Z

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  17. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28T23:59:59.000Z

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  18. Hydrogen as a near-term transportation fuel

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29T23:59:59.000Z

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  19. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15T23:59:59.000Z

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  20. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasics toHydrogen

  1. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  2. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station...

    Energy Savers [EERE]

    World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station April 18, 2013 - 12:00am Addthis EERE...

  3. Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has

    E-Print Network [OSTI]

    -neutral fuels, in terms of both technology and infrastructure. Hydrogen could link the power system used for natural gas. Existing fuel cells can convert hydrogen efficiently into electric power devices and small power units, which do not require a large hydrogen infrastructure. Applications like

  4. Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage

    E-Print Network [OSTI]

    of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted as an automotive fuel. However, the lack of convenient and cost-effective hydrogen storage, particularly for an onHydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage

  5. U.S. DOE FE Fuel Cell Program DOE Hydrogen and Fuel Cells

    E-Print Network [OSTI]

    Vision 21 fuel cell /turbine hybrids and V21 zero emissions concepts; and conduct system studies material Total, FE 51,274 56,678 60,603 44,500 Fuel Cell and Hydrogen Crosscut (dollars in thousands Electrical Efficiency (LHV) 3000 hrs.3000 hrs.Maintenance Interval turbine)

  6. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006

    Broader source: Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

  7. NREL: Hydrogen and Fuel Cells Research - Hydrogen and Fuel Cell Mentors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergyHydrogen

  8. DOE Hydrogen, Fuel Cells, and Infrastructure Technologies

    E-Print Network [OSTI]

    : Economic Analysis of Stationary PEM Fuel Cell Systems · Harry Stone, Economist and Principal Investigator. #12;8 Skill Set ­ Models (Battelle) Battelle Team: Economic Analysis of Stationary PEM Fuel Cell Systems Economic analysis of stationary fuel cells and their associated markets to understand the cost

  9. QER - Comment of Canadian Hydrogen and Fuel Cell Association...

    Office of Environmental Management (EM)

    Canadian Hydrogen and Fuel Cell Association QER - Comment of Canadian Hydrogen and Fuel Cell Association From: Carolyn Bailey cbailey@chfca.ca Sent: Friday, October 10, 2014 2:21...

  10. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings...

    Office of Environmental Management (EM)

    H2USA Workshop: Hydrogen Fueling Station Component Listings Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings April 21, 2015 - 1:04pm Addthis H2USA will host an...

  11. Interested in Hydrogen and Fuel Cell Technologies? Help Shape...

    Broader source: Energy.gov (indexed) [DOE]

    Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize...

  12. Hydrogen and Fuel Cells Program Presents Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards June 19, 2014 - 11:02am Addthis The U.S....

  13. NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-05-01T23:59:59.000Z

    The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

  14. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Energy Savers [EERE]

    3 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report...

  15. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  16. Hydrogen storage of energy for small power supply systems

    E-Print Network [OSTI]

    Monaghan, Rory F. D. (Rory Francis Desmond)

    2005-01-01T23:59:59.000Z

    Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

  17. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. NREL: News Feature - NREL Driving Research on Hydrogen Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center. Toyota, Hyundai, and Honda all have committed to putting fuel cell vehicles on the market by 2015. Photo by Dennis Schroeder, NREL Hydrogen fuel...

  19. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Broader source: Energy.gov (indexed) [DOE]

    program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks. 13008industrylifttruckdeployments.pdf More Documents &...

  20. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen is increasingly becoming a fuel for clean, reliable power and is helping reduce the nation's overall carbon footprint. In fact, U.S. shipments of fuel cells'...

  1. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  2. Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar...

    Energy Savers [EERE]

    Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Presentation by Sunita Satyapal at a...

  3. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and...

  4. Hydrogen and Fuel Cells - Refining the Message Initiating a National Dialogue and Educational Agenda

    E-Print Network [OSTI]

    Eggert, Anthony; Kurani, Kenneth S; Turrentine, Tom; Ogden, Joan M; Sperling, Dan; Winston, Emily

    2005-01-01T23:59:59.000Z

    April 1, 2005 Hydrogen and Fuel Cells – Refining the MessageHydrogen and Fuel Cells – Refining the Message Initiating athe communication problem. Hydrogen and fuel cells have now

  5. Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    Tomorrow's Energy: Hydrogen, Fuel Cells, and the ProspectsTomorrow's Energy: Hydrogen, Fuel Cells, and the Prospectsthe utilization of hydrogen in fuel cells as well as its

  6. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  7. Hearing on the Use of Hydrogen Fuel Cell Technology in the National Park Service

    E-Print Network [OSTI]

    Eggert, Anthony

    2004-01-01T23:59:59.000Z

    surrounding hydrogen and fuel cell vehicle research,as renewable power, hydrogen and fuel cells. Further, theSpecifically, hydrogen and fuel cell vehicle demonstrations

  8. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  9. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

  10. Analysis of Fuel Cell Systems Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Analysis of Fuel Cell Systems Rangan Banerjee Energy Systems Engineering IIT Bombay Lecture in CEP Course on `Fuel Cell' at IIT 14th November 2007 #12;Overview of Talk Energy Crisis ­ Motivation for fuel biological Hydrogen Gasification Fermentation Cracking + Shift Reaction Fuel Cell #12;ENERGY FLOW DIAGRAM

  11. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Andris R.Abele. Quantum Hydrogen Storage Systems, PresentedTIAX LLC, Analyses of Hydrogen Storage Materials and On-plant (BOP), but not the hydrogen storage system. This study

  12. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Alan C. Cooper

    2012-05-02T23:59:59.000Z

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  13. Hydrogen energy systems studies. Final technical report

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13T23:59:59.000Z

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  14. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect (OSTI)

    Bromberg, L

    2000-08-20T23:59:59.000Z

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  15. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01T23:59:59.000Z

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  16. Steam reforming of fuel to hydrogen in fuel cell

    DOE Patents [OSTI]

    Young, J.E.; Fraioli, A.V.

    1983-07-13T23:59:59.000Z

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  17. Steam reforming of fuel to hydrogen in fuel cells

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

    1984-01-01T23:59:59.000Z

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  18. PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW

    E-Print Network [OSTI]

    In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogen–air mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

  19. DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION

    E-Print Network [OSTI]

    from central production plants; however, the next phase to fostering the hydrogen economy will likely of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. In order to demonstrateDEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION David E. Guro Air Products

  20. Application of Hydrogen Storage Technologies for Use in Fueling

    E-Print Network [OSTI]

    of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity DeliveryApplication of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles technologies to support hydrogen dispensing stations Submitted by Hawai`i Natural Energy Institute School

  1. Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...

    Broader source: Energy.gov (indexed) [DOE]

    Gordon Research Conference on Fuel Cells on August 1, 2010. Overview of DOE Hydrogen and Fuel Cell Activities More Documents & Publications PEMFC R&D at the DOE Fuel Cell...

  2. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Energy Savers [EERE]

    Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the...

  3. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University;Cluster Strategy => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (Vehicles Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels

  4. DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010

    E-Print Network [OSTI]

    necessary to store the hydrogen (compressors, pumps, filters, etc.), as well as mounting hardware1 DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems ­ Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned

  5. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  6. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth

    2011-07-31T23:59:59.000Z

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  7. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth [University of South Carolina; Chen, Fanglin [University of South Carolina; Popov, Branko [University of South Carolina; Chao, Yuh [University of South Carolina; Xue, Xingjian [University of South Carolina

    2012-09-15T23:59:59.000Z

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  8. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    s future commitment to hydrogen and fuel cell vehicles haselimination of the U.S. DOE hydrogen production, deliveryhas recently re-instated hydrogen and fuel cell vehicle

  9. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06T23:59:59.000Z

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  10. Combustion characteristics of hydrogen - carbon monoxide-based gaseous fuels

    SciTech Connect (OSTI)

    White, D.J.; Kubasco, A.J.; Lecren, R.T.; Notardonato, J.J.

    1983-01-01T23:59:59.000Z

    An experimental rig program has been conducted with the objective of evaluating the combustion performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Bluewater gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an ''optimum'' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit low NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  12. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

  13. Sandia National Laboratories: hydrogen fueling infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Washington DC, Sandian's Christopher San Marchi (manager of Sandia's Hydrogen and Metallurgy Science Dept.) and Brian Somerday (also in the Hydrogen and Metallurgy Science...

  14. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31T23:59:59.000Z

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  15. NREL: Hydrogen and Fuel Cells Research - Watch Energy Secretary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or Secretary Moniz's Twitter to see what driving an FCEV looks like. Printable Version Hydrogen & Fuel Cells Research Home Projects Success Stories Research Staff Facilities...

  16. Sandia National Laboratories: Portable Hydrogen Fuel-Cell Unit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green, Sustainable Power to Honolulu Port Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Solar Glare Hazard Analysis Tool Available for...

  17. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  18. Hydrogen and Fuel Cell Activities, Progress, and Plans: August...

    Energy Savers [EERE]

    Cell Activities, Progress, and Plans: August 2007 to August 2010 Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 The Department of Energy (DOE)...

  19. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by DOE's Patrick Davis at a meeting on new fuel cell projects on March 13, 2007. newfcdavisdoe.pdf More Documents & Publications Federal Support for Hydrogen and...

  20. Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...

    Broader source: Energy.gov (indexed) [DOE]

    the full range of barriers facing the development and deployment of hydrogen and fuel cell technologies. This is the first in a series of reports required by section...

  1. Progress and Accomplishments in Hydrogen and Fuel Cells

    Energy Savers [EERE]

    Department of Energy's (DOE's) efforts have advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming key chal- lenges to...

  2. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...

    Broader source: Energy.gov (indexed) [DOE]

    ihfpvproceedings.pdf More Documents & Publications Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles""...

  3. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from...

  4. Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  5. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  6. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting...

  7. NREL: Hydrogen and Fuel Cells Research - Webinar May 12: Overview...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    financial inputs such as station capital cost, operating cost, and financing mechanisms. Register for the webinar. Printable Version Hydrogen & Fuel Cells Research Home Projects...

  8. Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  9. NREL: Hydrogen and Fuel Cells Research - Energy Department Announces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Department Announces New Tools for Hydrogen Fueling Infrastructure Deployment April 21, 2015 The Energy Department has announced two new tools and the release of two reports...

  10. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's Polymer and Composite Materials Meeting,...

  11. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Broader source: Energy.gov (indexed) [DOE]

    Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" held on March...

  12. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual This course manual features technical information on the use of...

  13. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum...

    Energy Savers [EERE]

    January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation by Sunita Satyapal to the...

  14. Overview of Hydrogen and Fuel Cells: National Academy of Sciences...

    Energy Savers [EERE]

    Cells: National Academy of Sciences March 2011 Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Presentation by Sunita Satyapal to the National Academy...

  15. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Energy Savers [EERE]

    Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by Sunita Satyapal at the 2010...

  16. Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting

    E-Print Network [OSTI]

    Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting Rod Borup, Michael Inbody, Jose in Fuel Cell Reformers #12;Fuel Cell Program Technical Objectives: Examine Fuel Effects on Fuel Processor) · Fuel Pr. Start-up/Transient (fuel effect on light-off) · Cost. (Barrier N) (effect on catalyst loading

  17. Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank

    E-Print Network [OSTI]

    Bowen, James D.

    Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient of ethanol? A flex-fuel SUV has a 25 gallon tank. Its sustainably-minded owner has decided to use E85 ethanol? 1 yr/person/450pounds of corn * 461 pounds of corn = 1.02 yrs #12;Electric Vehicle Problems 1

  18. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    None

    2010-07-15T23:59:59.000Z

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  19. Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4Alternative Fuels

  20. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01T23:59:59.000Z

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

  1. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  2. International Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China

    E-Print Network [OSTI]

    challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNGInternational Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China September 27-29, 2010 Background The China Association for Hydrogen Energy, the Engineering Research Center of High Pressure

  3. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01T23:59:59.000Z

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  4. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28T23:59:59.000Z

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  5. Webinar: Hydrogen Fueling for Current and Anticipated FCEVs

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles" on Tuesday, June 24, from 12:00 p.m. to 1:00 p.m. Eastern...

  6. Hydrogen Fuel Cells Providing Critical Backup Power | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells Providing Critical Backup Power Hydrogen Fuel Cells Providing Critical Backup Power April 9, 2010 - 3:43pm Addthis Customers of AT&T Wireless and Pacific Gas & Electric...

  7. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    E-Print Network [OSTI]

    Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01T23:59:59.000Z

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

  8. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    2004. Fuel economy of hydrogen fuel cell vehicles. JournalSwitching to a U.S. hydrogen fuel cell vehicle fleet: TheImproving Health with Hydrogen Fuel-Cell Vehicles. SCIENCE

  9. Hydrogen fuel cells could power ships at port

    SciTech Connect (OSTI)

    Pratt, Joe

    2013-06-27T23:59:59.000Z

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  10. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

  11. Hydrogen fuel cells could power ships at port

    ScienceCinema (OSTI)

    Pratt, Joe

    2013-11-22T23:59:59.000Z

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  12. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect (OSTI)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12T23:59:59.000Z

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  13. Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

  14. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect (OSTI)

    Air Products and Chemicals

    2008-09-30T23:59:59.000Z

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  15. A Near-Term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01T23:59:59.000Z

    Photovoltaic System Additional Equipment $/yr Installation Costs Contingency Electricity Fixed Operating Costs Total Annual Cost ($/yr) Hydrogen Price (

  16. A Near-term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01T23:59:59.000Z

    Photovoltaic System Additional Equipment $/yr Installation Costs Contingency Electricity Fixed Operating Costs Total Annual Cost ($/yr) Hydrogen Price (

  17. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  18. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31T23:59:59.000Z

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  19. Catalytically Enhanced Hydrogen Storage Systems

    E-Print Network [OSTI]

    with the Freedom CAR hydrogen storage system targets (Key parameters: cost, specific energy, and energy density). #12;Objectives I. Determination of the chemical nature of the titanium species responsible that are compatible with the Freedom CAR hydrogen storage system targets. Key parameters: cost, specific energy

  20. Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen

    E-Print Network [OSTI]

    Package Unit: Fuel Processing Based On Autothermal Cyclic Reforming #12;Solicitation Status Solicitation

  1. Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuel Cells

  2. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  3. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  4. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE INTERNATIONAL Worldwide hydrogen Infrastructure Developments Status 2014 8 Europe: Germany * Demo-project Clean Energy Partnership 15 public stations + 35 in process in 2016 *...

  5. Introduction to SAE Hydrogen Fueling Standardization Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and for our domestic economy, including reduced greenhouse gas emissions, reduced oil consumption, expanded use of renewable power (through use of hydrogen for energy...

  6. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    SMR production with gaseous hydrogen pipeline delivery, andhydrogen: gaseous hydrogen pipeline vs. liquid hydrogenproduction with gaseous hydrogen pipeline delivery systems;

  7. Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    Chronicles the progress of hydrogen energy from a vision torange of information about hydrogen energy issues. This bookReview: Tomorrow's Energy: Hydrogen, Fuel Cells, and the

  8. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    of a fossil fuel-based hydrogen infrastructure with carbonnatural gas based hydrogen infrastructure – optimizingan energy carrier, hydrogen infrastructure strategies, and

  9. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect (OSTI)

    Veziroglu, T.N.

    1996-12-31T23:59:59.000Z

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  10. Future Smart Energy -Fuel Cell and Hydrogen Summer School 2014, Aalborg, Denmark

    E-Print Network [OSTI]

    Berning, Torsten

    Future Smart Energy - Fuel Cell and Hydrogen Technology Summer School 2014, Aalborg, Denmark August #12;31 Future Smart Energy - Fuel Cell and Hydrogen Technology Samuel Simon Araya Introduction to fuel cells History Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen

  11. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Broader source: Energy.gov (indexed) [DOE]

    document establishes the California Fuel Cell Partnership's current consensus vision of next steps for vehicles and hydrogen stations in California. 200707completevisiondeployme...

  12. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01T23:59:59.000Z

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  13. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    recently re-instated hydrogen and fuel cell vehicle researchTM_2007_094.pdf 6. Hydrogen and Fuel Cell Technical AdvisoryCommittee (HTAC), “Hydrogen and Fuel Cell Technical Advisory

  14. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

    2008-01-01T23:59:59.000Z

    Academies Press. Hydrogen and Fuel Cell Technical AdvisorySeptember 10. Hydrogen and Fuel Cell Technical AdvisoryUCD-ITS-RR-08-06 Why Hydrogen and Fuel Cells are Needed to

  15. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure

    E-Print Network [OSTI]

    Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

    2008-01-01T23:59:59.000Z

    on the attitude towards hydrogen fuel cell buses in the CUTEBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES ANDBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  16. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofApplication on Direct Hydrogen Fuel Cell Vehicles, 2008. Acsystem for direct hydrogen fuel cell vehicles Fig. 3 Driver

  17. Hydrogen Fuel Cell Engines and Related Technologies Course | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergy Hydrogen

  18. Hydrogen Fuel Cell Demonstration Project at Port of Honolulu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell HydrogenHydrodynamic

  19. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergy

  20. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.D Electrolytic Processes

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 125 II.D Electrolytic Processes II.D.1 Photoelectrochemical Systems for Hydrogen Production Ken Varner, Scott Warren, J.A. Turner of the identified semiconductor materials as required. · Determine if existing photovoltaic (PV) device structures

  1. V1FY 2013 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jean St-Pierre (Primary Contact), Yunfeng Zhai,

    E-Print Network [OSTI]

    V­1FY 2013 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jean St-Pierre (Primary applications, 80-kWe (net) integrated transportation fuel cell power systems operating on direct hydrogen-Pierre ­ Hawaii Natural Energy InstituteV.E Fuel Cells / Impurities V­2DOE Hydrogen and Fuel Cells Program FY 2013

  2. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment

  3. Fuel Cell Vehicles and Hydrogen in Preparing for market launch

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

  4. Hydrogen Operated Internal Combustion Engines – A New Generation Fuel

    E-Print Network [OSTI]

    B. Rajendra Prasath; E. Leelakrishnan; N. Lokesh; H. Suriyan; E. Guru Prakash; K. Omur; Mustaq Ahmed

    Abstract- The present scenario of the automotive and agricultural sectors is fairly scared with the depletion of fossil fuel. The researchers are working towards to find out the best replacement for the fossil fuel; if not at least to offset the total fuel demand. In regards to emission, the fuel in the form of gaseous state is much than liquid fuel. By considering the various aspects of fuel, hydrogen is expected as a best option when consider as a gaseous state fuel. It is identified as a best alternate fuel for internal combustion engines as well as power generation application, which can be produced easily by means of various processes. The hydrogen in the form of gas can be used in the both spark ignition and compression ignition engines for propelling the vehicles. The selected fuel is much cleaner and fuel efficient than conventional fuel. The present study focusing the various aspects and usage of hydrogen fuel in S.I engine and C.I engine. Keywords- Hydrogen, Spark ignition engine, compression ignition engine, performance, Emission I.

  5. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    nosulfur. fA methanol/fuel-cell vehicle wouldhaveno tailpipeanalysis of fuel cell vehicles using methanol and hy- drogenused fuel-cell vehicles and (d) biomass-derived methanol

  6. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Fuel-cell system cost estimate Fuel cell performance andsignificantly affect the cost of fuel cell stack. In aTo estimate how the costs of fuel-cell system components

  7. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  8. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    L. C. Cadwallader; J. S. Herring

    1999-09-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  9. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01T23:59:59.000Z

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  10. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Energy Savers [EERE]

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to...

  11. Technical Forum Participants at the International Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Pressure Vessel Forum, which was held on September 27-29, 2010, in Beijing, China. ihfpvgrouplarge.pdf More Documents & Publications R&D of Large Stationary Hydrogen...

  12. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...

    Broader source: Energy.gov (indexed) [DOE]

    U. S. Department of Transportation and U.S. Department of Energy Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 10-11,...

  13. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

  14. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Report Posted 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted October 31, 2014 - 12:31pm Addthis The U.S....

  15. Hydrogen and Fuel Cells Program Presents Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Program Presents Annual Merit Review Awards Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards June 11, 2015 - 9:19am Addthis The U.S. Department of Energy...

  16. QER- Comment of Fuel Cell and Hydrogen Energy Association

    Broader source: Energy.gov [DOE]

    To whom it may concern: Please find attached comments from the Fuel Cell and Hydrogen Energy Association on the Quadrennial Energy Review. If you have any questions or concerns, please feel free to contact me.

  17. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuel

  18. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram |

  19. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation: Hubs+

  20. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  1. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

    1999-11-16T23:59:59.000Z

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  2. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Leonard, Gary L. (Schenctady, NY)

    1988-01-01T23:59:59.000Z

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  3. Fuel cell systems for personal and portable power applications

    SciTech Connect (OSTI)

    Fateen, S. A. (Shaheerah A.)

    2001-01-01T23:59:59.000Z

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  4. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  5. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  6. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergy

  7. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation » ForFuelHydrogenthe2011

  8. Fuel Cells: Making Power from Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrinceton PlasmaEnergyFuel CellFuel

  9. National Fuel Cell and Hydrogen Energy Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum | DepartmentDepartment of Energy FuelNational

  10. Hydrogen and Fuel Cells | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    since 2002, while doubling their durability. DOE has also validated more than 180 fuel cell electric vehicles on the road, logging more than 3.6 million miles. Fuel Cell...

  11. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Enhancing Engine System Efficiency A MultiAir MultiFuel Approach to Enhancing Engine System Efficiency 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  12. NREL: Hydrogen and Fuel Cells Research - Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and Resources

  13. 2015 Hydrogen Student Design Contest Challenges Students to Develop Innovative Hydrogen Fueling Station Business and Financing Models

    Broader source: Energy.gov [DOE]

    The Hydrogen Education Foundation announced the 11th annual Hydrogen Student Design Contest, which will challenge student teams to develop business and financing models for hydrogen fueling stations. Registration for the Contest is open until January 16, 2015.

  14. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  15. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment January

  16. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment January24/2011

  17. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment January24/2011Energy

  18. Overview of Hydrogen & Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram | Department Source: US

  19. Overview of Hydrogen Fuel Cell Budget

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram | Department Source:

  20. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram | DepartmentActivities

  1. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram |and Deputy Program

  2. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram |and Deputy

  3. Overview of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram |and DeputyAlternativegov

  4. Hydrogen & Fuel Cells - Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergySandy-Nor'easterHybrid WindMission

  5. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPavingPerryEnergy ScoutingPhotosynthesis for

  6. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance | DepartmentAnDow.comunderIntroduction to

  7. Hydrogen & Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e pShadeHybridInstituteHDEnergy2013

  8. Hydrogen and Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation » For

  9. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation »

  10. Hydrogen and Fuel Cells Program Plenary Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation »EvaluationU.S.

  11. Hydrogen and Fuel Cells Webinar Series Kickoff

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation

  12. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation » ForFuel Cells

  13. DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation...

  14. Biological Systems for Hydrogen Photoproduction (Presentation)

    SciTech Connect (OSTI)

    Ghirardi, M. L.

    2012-05-01T23:59:59.000Z

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  15. Novel, Ceramic Membrane System For Hydrogen Separation

    SciTech Connect (OSTI)

    Elangovan, S.

    2012-12-31T23:59:59.000Z

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  16. International Hydrogen Fuel and Pressure Vessel Forum | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergy Hydrogen Fuel

  17. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartmentDigging IntoEnforcementDispensing Hydrogen Fuel to

  18. Hydrogen and Fuel Cells Webinar Series Kickoff | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen and Fuel Cells

  19. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22T23:59:59.000Z

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  20. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S. DOEDOE

  1. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLiekovii

  2. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData andEvaluation Center National Fuel

  3. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site2009 DOETechnology Showcase |

  4. The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

    E-Print Network [OSTI]

    The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

  5. Sandia National Laboratories: hydrogen fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell More Efficient Fuel Cells under Development by Engineers On July 10, 2014, in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage, Energy Storage...

  6. Sandia National Laboratories: hydrogen powered fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    powered fuel cell ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  7. Hydrogen Fuel Cell Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department of Energy Internet

  8. Hydrogen & Fuel Cells | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy yearsCoordination Sites |

  9. Hydrogen Fuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring, Protection |purposeTheFactis

  10. Hydrogen Fuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring, Protection

  11. Say hello to cheaper hydrogen fuel cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave Energy onof EnergyLowerSay

  12. Hydrogen Fuel Initiative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectPrograms | Open EnergySurrey,Contents 1

  13. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and Resources TheResearchWorking

  14. NREL: Hydrogen and Fuel Cells Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData andEvaluation Center National

  15. NREL: Hydrogen and Fuel Cells Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData andEvaluation Center

  16. NREL: Hydrogen and Fuel Cells Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData andEvaluation CenterPublications

  17. NREL: Hydrogen and Fuel Cells Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData andEvaluationResearchSuccessWebmaster

  18. Alternative Fuels Data Center: Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasics to someone by

  19. Welcome to Hydrogen and Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly Reports 2014CCSTA BLE OF CON TEN TS

  20. U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010, in Beijing, China. U.S. DOE Hydrogen and Fuel Cell Activities More Documents & Publications DOE Hydrogen...

  1. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  2. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01T23:59:59.000Z

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  3. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  4. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities

    Broader source: Energy.gov [DOE]

    Presentation covers stationary fuel cells and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  5. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergy Analysis and

  6. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergy AnalysisCells

  7. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimental VehicleNaturalPropane

  8. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasics to

  9. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasics

  10. PNNL Advances Hydrogen-Fueled Vehicle Technologies | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergyOutreachPNNL Advances Hydrogen-Fueled

  11. Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE HydrogenPlans |Former WorkerFortDepartment

  12. Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen and Fuel

  13. Prospects for Hydrogen and Fuel Cells (Presentation) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutions JumpInformation for Hydrogen and Fuel

  14. Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogen

  15. Hydrogen Fuel Cells and Electric Forklift Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergy

  16. Hydrogen Fuel for Material Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergyfor Material

  17. Hydrogen Fueling Infrastructure Research and Station Technology Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergyfor

  18. Hydrogen and Fuel Cell Technologies Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent Technology »Clean HYDROGEN AND

  19. Hydrogen and Fuel Cell Technologies Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent Technology »Clean HYDROGEN

  20. Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGasStorageNREL is aCELL

  1. Hydrogen fuel closer to reality because of storage advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGasStorageNREL isCoal

  2. Hydrogen and Fuel Cell Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |PanelEnergy5/2011Hydrogen and

  3. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen andReview and Peer

  4. Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen andReview and

  5. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to PublicHydrogen Energy

  6. Fuel Flexible Turbine System (FFTS) Program

    SciTech Connect (OSTI)

    None

    2012-12-31T23:59:59.000Z

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

  7. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

    2010-02-23T23:59:59.000Z

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  8. Fuel Cell Systems AnalysisFuel Cell Systems Analysis R. K. Ahluwalia, X. Wang, and R. Kumar

    E-Print Network [OSTI]

    Fuel Cell System Demister Electric Motor Hydrogen Tank Humidifier Heater PEFC Stack Compressor/Motor/Expander Air Exhaust Radiator & Condenser Water Tank Process Water Humidified Air Humidified Hydrogen Coolant. H2 Purification/CO Cleanup M. Fuel Processor System Integration and Efficiency R. Thermal and Water

  9. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    None

    2010-07-12T23:59:59.000Z

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  10. Low Cost Reversible fuel cell systems

    SciTech Connect (OSTI)

    Technology Management Inc.

    2003-12-30T23:59:59.000Z

    This final report summarizes a 3-phase program performed from March 2000 through September 2003 with a particular focus on Phase III. The overall program studied TMI's reversible solid oxide stack, system concepts, and potential applications. The TMI reversible (fuel cell-electrolyzer) system employs a stack of high temperature solid-oxide electrochemical cells to produce either electricity (from a fuel and air or oxygen) or hydrogen (from water and supplied electricity). An atmospheric pressure fuel cell system operates on natural gas (or other carbon-containing fuel) and air. A high-pressure reversible electrolyzer system is used to make high-pressure hydrogen and oxygen from water and when desired, operates in reverse to generate electricity from these gases.

  11. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    SciTech Connect (OSTI)

    APOLONIO DEL TORO

    2008-05-27T23:59:59.000Z

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  12. Hydrogen Refueling System Based on Autothermal Cyclic Reforming Ravi V. Kumar, George N. Kastanas, Shawn Barge,

    E-Print Network [OSTI]

    for the production of hydrogen or syngas from many fuels, including natural gas, diesel fuel, coal, and renewable hydrogen generating and dispensing system is shown in Figure 2. The hydrogen-rich syngas generated the water. The syngas is purified in a Pressure Swing Adsorption (PSA) system. The PSA delivers high purity

  13. Standard-C hydrogen monitoring system, system design description

    SciTech Connect (OSTI)

    Schneider, T.C., Westinghouse Hanford

    1996-08-29T23:59:59.000Z

    Standard-C cabinet arrangement system design description for the Standard Hydrogen Monitoring System.

  14. Method for generating hydrogen for fuel cells

    DOE Patents [OSTI]

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael

    2004-03-30T23:59:59.000Z

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  15. Sandia National Laboratories: Hydrogen and Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Publications Events News Renewable Systems The Renewable Systems program area works to reduce the risks of transformative energy solutions that will enhance the...

  16. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    commitment to hydrogen and fuel cell vehicles has beenand storage R&D and fuel cell vehicle program, whilepower applications of fuel cells. Congress has recently re-

  17. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect (OSTI)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05T23:59:59.000Z

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

  18. Hydrogen and Fuel Cell Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in Carbon Nanotubes Through

  19. Hydrogen and Fuel Cell Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in Carbon Nanotubes ThroughTechnology

  20. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in Carbon Nanotubes

  1. Explore Careers in Hydrogen and Fuel Cells | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon Generation Company, LLCBioenergyHydrogen and

  2. Infinity Fuel Cell and Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogen Jump to: navigation, search Name:

  3. NREL: Hydrogen and Fuel Cells Research - Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergyHydrogenMarket

  4. Systems analysis of hydrogen supplementation in natural gas pipelines

    SciTech Connect (OSTI)

    Hermelee, A.; Beller, M.; D'Acierno, J.

    1981-11-01T23:59:59.000Z

    The potential for hydrogen supplementation in natural gas pipelines is analyzed for a specific site from both mid-term (1985) and long-term perspectives. The concept of supplementing natural gas with the addition of hydrogen in the existing gas pipeline system serves to provide a transport and storage medium for hydrogen while eliminating the high investment costs associated with constructing separate hydrogen pipelines. This paper examines incentives and barriers to the implementation of this concept. The analysis is performed with the assumption that current developmental programs will achieve a process for cost-effectively separating pure hydrogen from natural gas/hydrogen mixtures to produce a separable and versatile chemical and fuel commodity. The energy systems formulation used to evaluate the role of hydrogen in the energy infrastructure is the Reference Energy System (RES). The RES is a network diagram that provides an analytic framework for incorporating all resources, technologies, and uses of energy in a uniform manner. A major aspect of the study is to perform a market analysis of traditional uses of resources in the various consuming sectors and the potential for hydrogen substitution in these sectors. The market analysis will focus on areas of industry where hydrogen is used as a feedstock rather than for its fuel-use opportunities to replace oil and natural gas. The sectors of industry where hydrogen is currently used and where its use can be expanded or substituted for other resources include petroleum refining, chemicals, iron and steel, and other minor uses.

  5. PHOTOELECTROCHEMICAL SYSTEMS FOR HYDROGEN PRODUCTION

    E-Print Network [OSTI]

    to allow the overlap of the bandedges with the water redox potentials in the dark. Charge transfer analysis A photoelectrochemical (PEC) system combines the harvesting of solar energy with the electrolysis of water. When, the energy can be sufficient to split water into hydrogen and oxygen. Depending on the type of semiconductor

  6. Fuel processor and method for generating hydrogen for fuel cells

    DOE Patents [OSTI]

    Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL); Carter, John David (Bolingbrook, IL); Krumpelt, Michael (Naperville, IL); Myers, Deborah J. (Lisle, IL)

    2009-07-21T23:59:59.000Z

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  7. Dynamic simulation of nuclear hydrogen production systems

    E-Print Network [OSTI]

    Ramírez Muńoz, Patricio D. (Patricio Dario)

    2011-01-01T23:59:59.000Z

    Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

  8. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01T23:59:59.000Z

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  9. EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Energy Savers [EERE]

    EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FOA EERE Announces Notice of Intent to Issue Hydrogen and...

  10. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20T23:59:59.000Z

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  11. DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    June 8, 2015 1:00PM EDT to June 12, 2015 12:00PM EDT The DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting will be held on June 8-12, 2015,...

  12. QER- Comment of Fuel Cell and Hydrogen Energy Association

    Broader source: Energy.gov [DOE]

    To whom it may concern: Please find attached comments from the Fuel Cell and Hydrogen Energy Association on the Quadrennial Energy Review public meeting held in Washington, DC on April 11. If you have any questions or concerns, please feel free to contact me.

  13. Cost Analysis of Fuel Cell Systems for Transportation

    E-Print Network [OSTI]

    Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge Estimates Task 3: Identify Opportunities for System Cost Reduction Tasks 4, 5, 6 & 7: Annual Updates Develop

  14. Cryogenic, compressed, and liquid hydrogen fuel storage in vehicles

    E-Print Network [OSTI]

    Reyes, Allan B

    2007-01-01T23:59:59.000Z

    Hydrogen is the viable energy carrier of future energy and transportation systems due to its clean emissions, light weight, and abundance. Its extremely low volumetric density, however, presents significant challenges to ...

  15. CATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE

    E-Print Network [OSTI]

    to the conversion of the world to a "hydrogen economy" is the problem of onboard hydrogen storage. Despite decadesCATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE Craig M. Jensen, Dalin Sun, Sesha Sai RamanH/Al and the reverse hydrogenation reactions have been determined through kinetic studies of 2 mol % Ti and Zr doped

  16. Cost Analysis of Hydrogen Storage Systems

    Broader source: Energy.gov (indexed) [DOE]

    Cost Analysis of Hydrogen Cost Analysis of Hydrogen Storage Systems Storage Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-5000 Fax 617-498-7200...

  17. Fuel cell system

    DOE Patents [OSTI]

    Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

    1982-01-01T23:59:59.000Z

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  18. Fuel Quality Issues in Stationary Fuel Cell Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality Issues in Stationary Fuel Cell Systems Fuel Quality Issues in Stationary Fuel Cell Systems This report, prepared by Argonne National Laboratory, looks at impurities...

  19. DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

  20. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19T23:59:59.000Z

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.