National Library of Energy BETA

Sample records for hydrogen fuel pilot

  1. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  2. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Energy Savers [EERE]

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to...

  3. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  4. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  5. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFort Collins,47328CP15F10)Energy From

  6. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  7. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  8. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  9. Hydrogen: Fueling the Future

    SciTech Connect (OSTI)

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

  10. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  11. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The...

  12. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  13. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  14. NREL SBV Pilot Fuel Cells Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists, engineers, and analysts, as well as world-class facilities in fuel cells; hydrogen production, delivery, and infrastructure technology; hydrogen storage; safety,...

  15. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    1096 (1990). S. Furuhama, "Hydrogen Engine Systems for LandGelse, "The Mercedes-Benz Hydrogen Engine for Application inI do assume that the hydrogen engines would run ultra lean,

  16. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  17. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  18. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

  19. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  20. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  1. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  2. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generator currently used to provide power for refrigerated containers on land and on transport barges. Hydrogenics Corp. is designing and manufacturing a containerized...

  3. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Reforming for Molten Carbonate Fuel Cells," Berichte derVan Dijkum, "The Molten Carbonate Fuel Cell Programme in thealkaline, molten carbonate, and solid oxide. (Fuel cells

  4. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Fuel Cell Seminar and Exposition on October 19, 2010. Hydrogen and Fuel Cell Technologies Update More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011...

  5. Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage - Storage of hydrogen (or its chemical precursors) within the distribution system Fuel Cells - Conversion of hydrogen to electrical power; use of hydrogen to power...

  6. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipmentp Hydrogen Fuel for

  7. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places toEthanolVehiclesHydrogen

  8. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    264. DeLuchi M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re-or regulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA.Solar-Hydrogen Fuel-Cell Mark Ao DeLuchi Joan M. Ogden

  9. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  10. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  11. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  12. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  13. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    California, June (1986). General Electric, Direct Energy Conversion Programs, Feasibility Study ofSPE Fuel Cell Power Plants

  14. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Membrane Fuel Cells and Electrolyzers," Journal of PowerAdvanced Alkaline Electrolyzer for Solar Operation,"requirements are for electrolyzer feedwater. T h e high-

  15. Hydrogen & Fuel Cells Program Overview

    E-Print Network [OSTI]

    and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell: > 300-mile range for vehicles--without compromising interior space or performance #12;Balance of Plant estimate" for 2008 http://hydrogendoedev.nrel.gov/peer_reviews.html Progress ­ Fuel Cell R&D 2010 2007 6

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    to produce a unit of bio-energy than is required to producecompared the amount of bio-energy (45 eJ) that could besource (electricity or bio-energy) or the end-use fuel (

  17. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    freezing and about a hundred freeze-thaw cycles, there is no change in fuel cellfuel cell is operating, it generates more than enough heat to prevent water and moisture from freezingfuel cell system, because in the present design the flow fields and manifolds would be damaged by the freezing-

  18. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    - fossil fuels like natural gas and coal; renewable energy sources such as solar radiation, wind them. This initiative was chosen not only because of the energy security benefits associated environmental benefits in both transportation and stationary markets. Energy Security America's transportation

  19. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  20. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  2. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

  3. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership...

  4. ClearFuels-Rentech Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  5. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    Video recording and text version of the Fuel Cell Technologies Office webinar titled "Introduction to SAE Hydrogen Fueling Standardization," originally presented on September 11, 2014.

  6. Reference Designs for Hydrogen Fueling Stations Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  7. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Hydrogen Fuels Workshop Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...

  8. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    hybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & theof battery electric, hydrogen fuel cell and hybrid vehicles

  9. Prospecting the Future for Hydrogen Fuel Cell Vehicle Markets

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas S.; Heffner, Reid R.; Congleton, Christopher

    2003-01-01

    Progress Report for Hydrogen, Fuel Cells, and Infrastructurewould anyone buy a hydrogen fuel cell vehicle? We addressThus we will shorten “hydrogen fuel cell vehicle” to the

  10. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Broader source: Energy.gov (indexed) [DOE]

    vehicles) in 2020. This record from the U.S. Department of Energy Hydrogen and Fuel Cells Program documents the methodology and assumptions used to calculate that...

  11. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D Workshop Renaissance Hotel, Washington, DC August 11-12, 2011 Small Fuel Cell Systems with Hydrogen Storage Ned T. Stetson, Ph.D. Team Lead, Hydrogen Storage...

  12. Hydrogen and Fuel Cell Technical Advisory Committee

    SciTech Connect (OSTI)

    2012-03-21

    The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under Section 807 of the Energy Policy Act of 2005 to provide technical and programmatic advice to the Energy Secretary on DOE's hydrogen research, development, and demonstration efforts.

  13. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  14. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger...

  15. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  16. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

  17. Hydrogen storage and integrated fuel cell assembly

    DOE Patents [OSTI]

    Gross, Karl J. (Fremont, CA)

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  18. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  19. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  20. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  1. Hydrogen Fuel Cells Providing Critical Backup Power

    Broader source: Energy.gov [DOE]

    ReliOn, Inc., specializes in hydrogen fuel-cell backups for businesses have to stay functional during power outages -- companies like your wireless provider.

  2. Basic Research for the Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    PEM Fuel Cells Carnegie Mellon University Rapid Ab Initio Screening of Ternary Alloys for Hydrogen Production Rensselaer Polytechnic Institute Sol-Gel Based Polybenzimidazole...

  3. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  4. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  5. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely...

  6. Future Smart Energy -Fuel Cell and Hydrogen Summer School 2014, Aalborg, Denmark

    E-Print Network [OSTI]

    Berning, Torsten

    storage Hydrogen safety Hydrogen distribution Applications Transportation Stationary Portable Concluding Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen storage Hydrogen History Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen storage

  7. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

  8. DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated...

    Energy Savers [EERE]

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles, Net Metering for Tribes, and More DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated...

  9. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

  10. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogen PrintableFueling

  11. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  12. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pmaterialsveenstra.pdf More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization CNG and Hydrogen Tank Safety, R&D, and Testing Hydrogen Tank Testing R&D...

  13. National Fuel Cell and Hydrogen Energy Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites KDFNational Fuel Cell and Hydrogen Energy Overview

  14. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipmentp Hydrogen Fuel

  15. Hydrogen and Fuel Cells Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContractingManagement »Hydrogen and Fuel Cell

  16. Liquid hydrogen - An alternative aviation fuel

    SciTech Connect (OSTI)

    Price, R.O.

    1991-02-01

    This paper examines the past and current activities concerning the development of liquid hydrogen as an alternative turbine engine aviation fuel, and also provides a look at the technical and market requirements that determine the viability of substitutes for conventional jet fuel. Alternative aviation fuels must address the following issues: availability, distribution, energy density, compatibility, economics, safety, handling, and quality control. Preliminary hardware demonstrations and analyses have shown that liquid hydrogen seems to be technically feasible, and may be eventually superior to petroleum-based jet fuel. Disadvantages include low ignition energy and a high flame velocity. From the environmental standpoint, hydrogen combustion in aircraft turbine engines can be expected to eliminate smoke emissions, hydrocarbon, and carbon monoxide. As to the marketing perspective, liquid hydrogen has broad applicability as a fuel in other transportation sectors that could allow multiindustry involvement in its development and commercialization.

  17. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

  18. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  19. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers toStationNaturalSchoolsHydrogen

  20. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

  1. Hydrogen and Fuel Cell Manufacturing R&D Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Manufacturing R&D Workshop Hydrogen and Fuel Cell Manufacturing R&D Workshop The National Renewable Energy Laboratory (NREL) hosted a Hydrogen and Fuel Cell...

  2. Hydrogen & Fuel Cells -Program Overview -

    E-Print Network [OSTI]

    Analysis Fuel Cells Solid oxide fuel cell (kW-scale) R&D led to 75% weight reduction and >80% volume,000 35,000 2008 2009 2010 2011 2012P (SystemsShipped) Fuel Cell Systems Shipped by Application, World Research Market Growth Fuel cell markets continue to grow 48% increase in global MWs shipped 62% increase

  3. The President's Hydrogen Fuel Initiative Workshop on

    E-Print Network [OSTI]

    : Gasification of biomass Reforming of renewable liquids Photoelectrochemical Photobiological Thermochemical criteria and greenhouse gas emissions. Coal Only with carbon capture & sequestration Gasification process Biomass *Transition only #12;Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated

  4. Hydrogen and Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartmentDatabase Demonstration HydrogenCleanand

  5. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipment CertificationHydrogen

  6. Hydrogen and Fuel Cell Technologies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity Hydrogen

  7. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContractingManagement » Human ResourceHydrogen

  8. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-Compatible Cumulative Damage FrameworkPilotPilot

  9. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  10. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  11. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected...

  12. DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting...

  13. Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review and Peer...

  14. Progress and Accomplishments in Hydrogen and Fuel Cells | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress and Accomplishments in Hydrogen and Fuel Cells Progress and Accomplishments in Hydrogen and Fuel Cells This fact sheet describes how the U.S. Department of Energy's...

  15. Hydrogen and Fuel Cells Webinar Series Kickoff | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Webinar Series Kickoff Hydrogen and Fuel Cells Webinar Series Kickoff Presented at the State and Regional Initiatives Informational Call and Meeting Series...

  16. Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer...

  17. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer...

  18. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation...

  19. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online...

  20. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    Hydrogen Fuel Cell Vehicles & the Potential Hydrogen Energyfuel vehicles as potential solutions to problems such as energypotential but generally requires more energy,” and a portfolio of various fuels

  1. Bachelor of Science Engineering Technology Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education...

  2. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  3. New Mexico Hydrogen Fuels Challenge Program Description The New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

  4. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation...

  5. Overview of Hydrogen and Fuel Cells: National Academy of Sciences...

    Office of Environmental Management (EM)

    Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Presentation by Sunita...

  6. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  7. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Proceedings from the forum, which took place in...

  8. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned...

  9. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by Sunita...

  10. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology, Energy Efficiency and Conservation Loan Program, and More DOE Announces Webinars on Hydrogen Fueling...

  11. Energy Department Applauds World's First Fuel Cell and Hydrogen...

    Energy Savers [EERE]

    World's First Fuel Cell and Hydrogen Energy Station in Orange County Energy Department Applauds World's First Fuel Cell and Hydrogen Energy Station in Orange County August 16, 2011...

  12. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory...

  13. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOEPRODUCTIONMEnergy FCV5/2011

  14. Pilot fuel ignited stratified charge rotary combustion engine and fuel injector therefor

    SciTech Connect (OSTI)

    Loyd, R. W.

    1980-02-12

    For a pilot fuel ignited stratified charge rotary, internal combustion engine, the fuel injection system and a fuel injector therefor comprises a fuel injector having plural discharge ports with at least one of the discharge ports located to emit a ''pilot'' fuel charge (relatively rich fuel-air mixture) into a passage in the engine housing, which passage communicates with the engine combustion chambers. An ignition element is located in the passage to ignite the ''pilot'' fuel (a relatively rich fuel-air mixture) flowing through the passage. At least one other discharge port of the fuel injector is in substantially direct communication with the combustion chambers of the engine to emit a main fuel charge into the latter. The ignited ''pilot'' fuelair mixture, when ignited, flashes into the combustion chambers to ignite the main, relatively lean, fuel-air mixture which is in the combustion chambers.

  15. NREL: Hydrogen and Fuel Cells Research - Hydrogen and Fuel Cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adam Phillips, whose study was on membrane electrode assembly defect detection in PEM fuel cells. Phillips said that Ulsh and Bender helped him acclimate not only to NREL but...

  16. U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and...

  17. Hydrogen & Fuel Cells -Program Overview -

    E-Print Network [OSTI]

    and Peer Evaluation Meeting May 14, 2012 #12;Petroleum 37% Natural Gas 25% Coal 21% Nuclear Energy 9% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Others. For 2008-2011 All Others Germany South Korea Japan United States Fuel Cell Market Overview

  18. Careers in Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Careers in Hydrogen and Fuel Cells Careers in Hydrogen and Fuel Cells The resources below link to job boards and listings on fuel cell company Web sites. Fuel Cell Employment...

  19. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Harrison, K.

    2014-01-01

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  20. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  1. NREL: Hydrogen and Fuel Cells Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking withHydrogen and Fuel

  2. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  3. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity Hydrogen andDepartment of

  4. NREL: Hydrogen and Fuel Cells Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking withHydrogen and

  5. NREL: Hydrogen and Fuel Cells Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking withHydrogen

  6. Hydrogen Fuel Cell Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcomingcanGridDoesHydrogen is a versatile energy

  7. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  8. DOE Hydrogen and Fuel Cells Program Budget

    SciTech Connect (OSTI)

    DOE

    2012-03-16

    Budget information for hydrogen and fuel cell research, development, and other activities at the U.S. Department of Energy (DOE) is provided here. Included are budgets for DOE's Offices of Energy Efficiency and Renewable Energy, Fossil Energy, Nuclear Energy, and Science.

  9. Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

  10. Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Energy Policy Act of 2005 (EPACT). The Department's Hydrogen Program addresses the full range of barriers facing the development and deployment of hydrogen and fuel cell...

  11. Technical Forum Participants at the International Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications R&D of Large Stationary HydrogenCNGHCNG Storage Vessels Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum Bonfire Tests of...

  12. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles R&D of Large Stationary HydrogenCNGHCNG Storage Vessels...

  13. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  14. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

  15. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells...

  16. Overview of Hydrogen and Fuel Cell Activities: 2010 Military...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Military Energy and Alternative Fuels Conference Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference This presentation by DOE's...

  17. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with Usthe Hydrogen

  18. Pilot Application to Nuclear Fuel Cycle Options | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codesPhiladelhia GasDepartment of EnergyPilot

  19. A smooth transition to hydrogen transportation fuel

    SciTech Connect (OSTI)

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  20. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01

    the Acceptance of Hydrogen Fuel. International Journal oftechnologies, such as hydrogen fuel cell vehicles (FCVs) andof an exploratory F-Cell hydrogen fuel vehicle fleet study,

  1. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    SciTech Connect (OSTI)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  2. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006

    Office of Energy Efficiency and Renewable Energy (EERE)

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

  3. Hydrogen fuel closer to reality because of storage advances

    E-Print Network [OSTI]

    - 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward hydrogen vehicles just got shorter A significant advance in hydrogen storage could make hydrogen a more for recharging the hydrogen storage compound ammonia borane. The LANL technology focuses on using ammonia borane

  4. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station...

    Energy Savers [EERE]

    World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station April 18, 2013 - 12:00am Addthis EERE...

  5. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Environmental Management (EM)

    Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from...

  6. Hydrogen and Fuel Cells Program Presents Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards June 19, 2014 - 11:02am Addthis The U.S....

  7. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report...

  8. Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards

    Broader source: Energy.gov [DOE]

    The USDOE's Hydrogen and Fuel Cells Program presented its annual awards at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting on June 17.

  9. Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program presented its annual awards at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, known as the AMR, on June 9.

  10. NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-05-01

    The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

  11. Hydrogen and Fuel Cells Program Presents Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards June 11, 2015 - 9:19am Addthis The U.S....

  12. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. ANALYSIS OF POWER BALANCING WITH FUEL CELLS & HYDROGEN

    E-Print Network [OSTI]

    ANALYSIS OF POWER BALANCING WITH FUEL CELLS & HYDROGEN PRODUCTION PLANTS IN DENMARK Support program;"Analysis of power balancing with fuel cells & hydrogen production plants in Denmark" ­ March 2009 ­ Project ........................................................................................................................104 #12;"Analysis of power balancing with fuel cells & hydrogen production plants in Denmark" ­ March

  14. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" held on August 19,...

  15. Hydrogen as a Supplemental Fuel in Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research...

  16. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  17. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer and Composite Materials Meetings Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop Fuel Cell Technologies Program Overview: 2012...

  18. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Broader source: Energy.gov (indexed) [DOE]

    November 18: Live Webinar on Hydrogen Fueling Infrastructure Research and Station Technology Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a...

  19. DOE Announces Webinars on Sandia Modeling Tool, Hydrogen Fueling...

    Broader source: Energy.gov (indexed) [DOE]

    Register to attend the webinar. September 11: Live Webinar on Introduction to SAE Hydrogen Fueling Standardization Webinar Sponsors: Fuel Cell Technologies Office The...

  20. Hydrogen Fuel Cells and Electric Forklift Trucks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Fuel Cell-Powered Material Handling Equipment Development of Hydrogen Education Programs for Government Officials Full Fuel-Cycle Comparison of Forklift Propulsion Systems...

  1. Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation slides from the Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout webinar presented by Fuel Cell Technologies Office Director Sunita Satyapal on April...

  2. Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Presentation by Sunita Satyapal at a...

  3. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and...

  4. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    SciTech Connect (OSTI)

    U.S. Department of Energy Fuel Cell Technologies Program

    2010-04-01

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  5. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

  6. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Environmental Management (EM)

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Hydrogen and Fuel Cell Technologies Research, Development, and...

  7. DOE Announces Webinars on Integrating Hydrogen and Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    : Live Webinar on Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a...

  8. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    safety standard as a regulation. 30 1Q, 2004With industry and code officials, develop templates and NFPA to develop first-order continuing education for code officials. 3 Date (FY Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

  9. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01

    bus demonstration and hydrogen fuel. Energy Policy 19.on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.

  10. Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2008-01-01

    the Accep- tance of Hydrogen Fuel. International Journal oftechnolo- gies, such as hydrogen fuel-cell vehicles (FCVs)because of learning. Hydrogen fuel-cell vehicles (FCVs)

  11. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  12. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01

    uncertain commitment to hydrogen fuel cell vehicles by U.S.Cell Vehicles and Hydrogen Fuel Stations,” West Sacramento,Cell Partnership, “Hydrogen Fuel Cell Vehicle and Station

  13. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  14. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

  15. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  16. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  17. Application of Hydrogen Storage Technologies for Use in Fueling

    E-Print Network [OSTI]

    Application of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles This report describes the design, commissioning, and operation of a mobile hydrogen delivery and storage of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity Delivery

  18. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen produc

  19. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab R&D Review, May 6-10, 2002, Golden, Colorado. Process Analysis Work for the DOE Hydrogen Program - 2001 Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop...

  20. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Office of Environmental Management (EM)

    2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record...

  1. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth

    2011-07-31

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  2. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth; Chen, Fanglin; Popov, Branko; Chao, Yuh; Xue, Xingjian

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  3. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE...

  4. Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...

    Broader source: Energy.gov (indexed) [DOE]

    Gordon Research Conference on Fuel Cells on August 1, 2010. Overview of DOE Hydrogen and Fuel Cell Activities More Documents & Publications PEMFC R&D at the DOE Fuel Cell...

  5. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels;Cluster Strategy => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (

  6. Decontamination and decommissioning of a fuel reprocessing pilot plant

    SciTech Connect (OSTI)

    Heine, W.F.; Speer, D.R.

    1988-01-01

    SYNOPSIS The strontium Semiworks Pilot Fuel Reprocessing Plant at the Hanford Site in Washington State was decommissioned by a combination of dismantlement and entombment. The facility contained 9600 Ci of Sr-90 and 10 Ci of plutonium. Process cells were entombed in place. The above-grade portion of one cell with 1.5-m- (5-ft-) thick walls and ceilings was demolished by means of expanding grout. A contaminated stack was remotely sandblasted and felled by explosives. The entombed structures were covered with a 4.6-m- (15-ft-) thick engineered earthen barrier. 5 figs., 2 tabs.

  7. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Presentation...

  8. Connecticut Company to Advance Hydrogen Infrastructure and Fueling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil, the Department today announced a 1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations...

  9. NREL: Hydrogen and Fuel Cells Research - NREL Staff Recognized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program and to recognize achievements in specific areas. This year, the Hydrogen and Fuel Cells Program honored four National Renewable Energy Laboratory (NREL) staff for their...

  10. Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  11. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2012-12-01

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  12. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  13. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    diesel, ethanol, hydrogen and grid electricity ICE, hybrid, plug-in hybrid, battery, fuel cell Feedstocks Crude oil, NG, coal, wind,

  14. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations March 3, 2015 - 2:33pm Addthis Funding: Up...

  15. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells. View the Overview Fact Sheet and Individual Summaries Overview Fact...

  16. Hydrogen and Fuel Cell Activities, Progress, and Plans: August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Activities, Progress, and Plans: August 2007 to August 2010 Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 The Department of Energy (DOE)...

  17. NREL: News - NREL, Sandia Team to Improve Hydrogen Fueling Infrastruct...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    714 NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia...

  18. Hydrogen and Fuel Cell Activities, Progress, and Plans: August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2007 to August 2010 Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 The Department of Energy (DOE) is conducting a comprehensive program...

  19. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation by Sunita Satyapal to the...

  20. Cryotank for storage of hydrogen as a vehicle fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more energy per pound than any other fuel 3 Lawrence Livermore National Laboratory Hydrogen at low temperature and high pressure reduces weight, volume and cost of storage...

  1. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual This course manual features technical information on the use of...

  2. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons...

    Broader source: Energy.gov (indexed) [DOE]

    Introductory presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Office Director, at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from...

  3. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by DOE's Patrick Davis at a meeting on new fuel cell projects on March 13, 2007. newfcdavisdoe.pdf More Documents & Publications Federal Support for Hydrogen and...

  4. Hydrogen and Fuel Cell Technical Advisory Committee Biennial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Advisory Committee Biennial Report to the Secretary of Energy Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy HTAC review...

  5. Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  6. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  7. Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  8. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  9. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station Based on GEGR SCPO Technology (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in...

  10. Alternative Fuels Is US Investment in Hydrogen,

    E-Print Network [OSTI]

    Bowen, James D.

    the road in 1993 #12;How it works · Two ways to use Hydrogen ­ Hydrogen Internal Combustion Engine · Works ($2 million each) · At the pump costs equivalent to about $3/gal before taxes$3/gal before taxes

  11. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

  12. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  13. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    Satyapal, Sunita

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  14. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  15. International Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China

    E-Print Network [OSTI]

    challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNG-up on technical topics and issues identified during a previous international workshop on hydrogen and CNG fuels information and data on testing and certification of storage tanks for compressed hydrogen, CNG, and HCNG

  16. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  17. Cost and Performance Comparison Of Stationary Hydrogen Fueling Appliances

    E-Print Network [OSTI]

    Cost and Performance Comparison Of Stationary Hydrogen Fueling Appliances Duane B. Myers, Gregory D.directedtechnologies.com/ pubs/DTI_Task2_Report.html. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610 vehicles (FCV's) and the cost of hydrogen produced by these HFA's. In previous studies we evaluated

  18. Hearing on the Use of Hydrogen Fuel Cell Technology in the National Park Service

    E-Print Network [OSTI]

    Eggert, Anthony

    2004-01-01

    HEARING ON THE USE OF HYDROGEN FUEL CELL TECHNOLOGY IN THEHEARING ON THE USE OF HYDROGEN FUEL CELL TECHNOLOGY IN THEon hydrogen and hydrogen fuel cell vehicle technologies and

  19. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  20. Webinar: Hydrogen Fueling for Current and Anticipated FCEVs

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles" on Tuesday, June 24, from 12:00 p.m. to 1:00 p.m. Eastern...

  1. Hydrogen fuel cells could power ships at port

    SciTech Connect (OSTI)

    Pratt, Joe

    2013-06-27

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  2. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

  3. DOE Hydrogen and Fuel Cells Program Annual Progress Report

    SciTech Connect (OSTI)

    2012-04-11

    These progress reports summarize the year's hydrogen and fuel cell R&D and analysis activities and accomplishments. This work was conducted by industry, academia, and national laboratories for the DOE Hydrogen and Fuel Cells Program and the offices of Energy Efficiency and Renewable Energy (EERE), Fossil Energy, Nuclear Energy, and Science.

  4. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  5. Hydrogen fuel cells could power ships at port

    ScienceCinema (OSTI)

    Pratt, Joe

    2013-11-22

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  6. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  7. Reference Designs for Hydrogen Fueling Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and piping & instrumentation diagrams * Ancillary Results - Near-term FCEV rollout scenario analysis year-by-year - Near-term hydrogen station rollout analysis year-by-year...

  8. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  9. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01

    of hydrogen, methanol and gasoline as fuels for fuel cellon Environmental Quality (TCEQ). Gasoline Vapor Recovery (Quality Impacts of Hydrogen and Gasoline Transportation Fuel

  10. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

    2008-01-01

    A. Weiss. 2006. Future Fuel Cell and Internal CombustionPress. Hydrogen and Fuel Cell Technical Advisory Committee.September 10. Hydrogen and Fuel Cell Technical Advisory

  11. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01

    2004. Fuel economy of hydrogen fuel cell vehicles. Journal2005. Switching to a U.S. hydrogen fuel cell vehicle fleet:Improving Health with Hydrogen Fuel-Cell Vehicles. SCIENCE

  12. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | DepartmentMeeting AgendaReadiness Workshop |

  13. Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipment

  14. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  15. Converting chemical energy of hydrogenated fuels into electricity

    E-Print Network [OSTI]

    - 1 - Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult

  16. Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

  17. Gaseous fueled vehicles: A role for natural gas and hydrogen

    SciTech Connect (OSTI)

    Blazek, C.F.; Jasionowski, W.J.

    1991-01-01

    The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

  18. Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2002-01-01

    Chronicles the progress of hydrogen energy from a vision torange of information about hydrogen energy issues. This bookReview: Tomorrow's Energy: Hydrogen, Fuel Cells, and the

  19. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake Paiute ReservationResourcesMarch2 DOE Hydrogen

  20. Hydrogen and Fuel Cell Technologies Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContractingManagement »Hydrogen and Fuel Cell Technologies

  1. Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers toStation LocationsEthanolHydrogen

  2. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  3. Hydrogen Pilot Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologies JumpEngine Center HECPilot

  4. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  5. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with UstheCells Photo

  6. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with UstheCells

  7. On the Piloted Ignition of Solid Fuels in Spacecraft Environments

    E-Print Network [OSTI]

    Fereres-Rapoport, Sonya M.

    2011-01-01

    Describing the Steady-State Gasification of Bubble-FormingEffects on the Endothermic Gasification and Piloted Ignitionon Nonflaming Transient Gasification of PMMA and PE During

  8. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers

  9. Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S.Job VacanciesGeothermalGoldenHomes

  10. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the EERE Fuel Cell Technologies Office about: Natural gas reforming Coal gasification Biomass gasification Reforming of renewable liquid fuels. Electrolytic Processes Water can...

  11. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

    2008-01-01

    as soon as possible. Hydrogen fuel cell vehicles (H2-FCVs),the timely commercialization of hydrogen fuel cell vehicles.a federal tax credit for hydrogen fuel sales that could help

  12. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    fuel cells are being developed: proton-exchange membrane (PEM), phosphoric acid, alkaline, molten carbonate

  13. Fuel Cell Vehicles and Hydrogen in Preparing for market launch

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

  14. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    SciTech Connect (OSTI)

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  15. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

  16. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Hydrogen and Fuel Cell Manufacturing R&D activities (N. Garland, DOE) 9:20 DOE's Industrial Technologies Program Manufacturing Activities (L. Christodoulou, DOE) 9:30...

  17. QER- Comment of Fuel Cell and Hydrogen Energy Association

    Office of Energy Efficiency and Renewable Energy (EERE)

    To whom it may concern: Please find attached comments from the Fuel Cell and Hydrogen Energy Association on the Quadrennial Energy Review. If you have any questions or concerns, please feel free to contact me.

  18. Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2009 Hydrogen and Fuel Cell Activities, Progress, and Plans Report to Congress Preface This Department of Energy report addresses subsection 811(a) of Public Law 109-58,...

  19. Progress and Accomplishments in Hydrogen and Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    produced, delivered, and dispensed for 700 bar fueling), for a wide range of natural gas prices - a cost competitive with gasoline. 6 Reduced the cost of producing hydrogen from...

  20. Webinar October 13: Reference Designs for Hydrogen Fueling Stations...

    Broader source: Energy.gov (indexed) [DOE]

    titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT). The goal of the H2FIRST Reference Station Design...

  1. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. National Fuel Cell and Hydrogen Energy Overview More Documents & Publications U.S. Department of...

  2. Hydrogen and Fuel Cell Mentors Honored as Outstanding | Awards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Mentors Honored as Outstanding June 5, 2015 Photo of two women and one man posing for a photo in front of a scientific poster. (Left to Right) Huyen Dinh,...

  3. DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    6 1:00PM EDT to June 10, 2016 12:00PM EDT The DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting will be held on June 6-10, 2016, in...

  4. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program has posted the 2015 Annual Merit Review and Peer Evaluation Report. Each year at the Annual Merit Review and Peer...

  5. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment ofJanuaryAnalysisHydrogen Energy

  6. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONAL CHAIRSEnergy January 29,CleanDepartment

  7. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONAL CHAIRSEnergy January

  8. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram |

  9. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCTCriticalEnergy DayaPhotosynthesis for

  10. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | DepartmentMeeting Agenda |Overview

  11. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | DepartmentMeeting Agenda |Overview24/2011

  12. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | DepartmentMeeting Agenda

  13. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity Hydrogenthe

  14. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  15. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure

    E-Print Network [OSTI]

    Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

    2008-01-01

    on the attitude towards hydrogen fuel cell buses in the CUTEbus demonstration and hydrogen fuel. ” Energy Policy, Vol.BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  16. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1 Table of Contents NumberSolutionsAnIntroduction to SAE

  17. Fuel Cells: Making Power from Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea: PADD 1 toCells Fuel Cells A fuel

  18. Alternative Fuels Data Center: Hydrogen Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDC PrintableHybridBasics to

  19. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDC

  20. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogen Printable Version

  1. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogen Printable

  2. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternativeASTM BiodieselAlternative

  3. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  4. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  5. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure...

  6. Comments on: Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N

  7. 2015 Hydrogen Student Design Contest Challenges Students to Develop Innovative Hydrogen Fueling Station Business and Financing Models

    Broader source: Energy.gov [DOE]

    The Hydrogen Education Foundation announced the 11th annual Hydrogen Student Design Contest, which will challenge student teams to develop business and financing models for hydrogen fueling stations. Registration for the Contest is open until January 16, 2015.

  8. Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2

    SciTech Connect (OSTI)

    Klosky, M.K.

    1996-09-01

    EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

  9. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario AnalysisFuel CellFuel for(FCEVs) |

  10. Overview of Hydrogen & Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram | Department Source:

  11. Overview of Hydrogen Fuel Cell Budget

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram | Department

  12. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram |& Deputy Program

  13. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram |& Deputy

  14. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram |& DeputyRichard

  15. Overview of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram |&

  16. Hydrogen Fuel Initiative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologies JumpEngine Center HEC

  17. Hydrogen & Fuel Cells - Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., A High Pressure CompanyProgram

  18. Hydrogen & Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., A High Pressure CompanyProgram2013

  19. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity Hydrogenthe U.S.the

  20. Hydrogen and Fuel Cells Program Plenary Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity HydrogentheU.S. Department

  1. Hydrogen and Fuel Cells Webinar Series Kickoff

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity HydrogentheU.S.

  2. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power& SF-BREEZE Home TransportationFuel

  3. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys oElectrical EnergyDOE Webinar

  4. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy TestTestingTesting,Department

  5. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  6. Hydrogen as a near-term transportation fuel

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  7. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  8. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with Us NREL

  9. NREL: Hydrogen and Fuel Cells Research - Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with Us NRELContaminants

  10. NREL: Hydrogen and Fuel Cells Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorkingResearchWebmaster To

  11. Hydrogen & Fuel Cells | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumps AnAboutCoordination Sites | Center for

  12. Welcome to Hydrogen and Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProject AssessmentWeWeird quantumCareer ONEWelcomeTA

  13. Hydrogen Fuel Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil HusseinH2FAST National RenewableVehicles &

  14. Say hello to cheaper hydrogen fuel cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics:DefenseNuclearAiken,MoneyDepartmentSay

  15. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe25, 2015LegaltheDepartmentfrom

  16. Hydrogen & Fuel Cell Activity USFCC -Matching Federal Government Needs

    E-Print Network [OSTI]

    to military applications Portable Gen-sets DDX Micro-grids Energy Storage Fuel Cell Benefit to DOD #12;FuelIndustry Commercial Industrial Base Historical DOD Technology Transition COMBATT APU UAV UUV Soldier Power ·Increased&D Program: ­ Solid Hydrogen Storage Science and Technology Projects ­ Manufacturing Improvements for Man

  17. Water Transport Exploratory Studies Office of Hydrogen, Fuel Cells, and

    E-Print Network [OSTI]

    - transportation) · Develop a better understanding of the effects of freeze/thaw cycles and operation ­ Help guideWater Transport Exploratory Studies Office of Hydrogen, Fuel Cells, and Infrastructure understanding of water transport in PEM Fuel Cells (non-design-specific) · Evaluate structural and surface

  18. Small Fuel Cell Systems with Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »DigitalanDepartment of EnergySmall Fuel Cell Systems

  19. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipmentp Hydrogen FuelDepartment

  20. Hydrogen and Fuel Cell Activity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity Hydrogen and Fuel Cell

  1. Hydrogen and Fuel Cell Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity Hydrogen and Fuel

  2. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us|of EnergySmall- Report toDirectivesHydrogen

  3. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01

    also novel new on-site hydrogen storage systems. In relationfunding for R&D on hydrogen storage, production and deliveryfor fuel cells and hydrogen storage), fuel cell durability,

  4. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with UstheCells Photo of

  5. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with

  6. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  7. Steam reforming of fuel to hydrogen in fuel cells

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  8. Steam reforming of fuel to hydrogen in fuel cell

    DOE Patents [OSTI]

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  9. 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 NRELDOE HYDROGEN AND FUEL CELL MANUFACTURING R&D WORKSHOP REPORT Contents 1 Introduction ......

  10. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  11. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  12. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect (OSTI)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  13. Introduction to SAE Hydrogen Fueling Standardization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergy Introduction SCADA Security forSAE Hydrogen

  14. Overview of DOE Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOE Hydrogen ProgramDOE

  15. Overview of DOE Hydrogen and Fuel Cells Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOE Hydrogen

  16. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71 Hydrogen and Fuel Cells Success Stories en

  17. Infinity Fuel Cell and Hydrogen Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAnd CentralWorld BankTermsInfiniRelHydrogen

  18. Hydrogen Fuel Cell Demonstration Project at Port of Honolulu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil Hussein KhalilStatisticalHydrogen Fuel Cell

  19. Method for making hydrogen rich gas from hydrocarbon fuel

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  20. Method for making hydrogen rich gas from hydrocarbon fuel

    DOE Patents [OSTI]

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  1. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    SciTech Connect (OSTI)

    APOLONIO DEL TORO

    2008-05-27

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  2. Fuel processor and method for generating hydrogen for fuel cells

    DOE Patents [OSTI]

    Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL); Carter, John David (Bolingbrook, IL); Krumpelt, Michael (Naperville, IL); Myers, Deborah J. (Lisle, IL)

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  3. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipmentp Hydrogen

  4. NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking withHydrogenRenewable

  5. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect (OSTI)

    Bromberg, L

    2000-08-20

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  6. QER- Comment of Fuel Cell and Hydrogen Energy Association

    Office of Energy Efficiency and Renewable Energy (EERE)

    To whom it may concern: Please find attached comments from the Fuel Cell and Hydrogen Energy Association on the Quadrennial Energy Review public meeting held in Washington, DC on April 11. If you have any questions or concerns, please feel free to contact me.

  7. EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Energy Savers [EERE]

    EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FOA EERE Announces Notice of Intent to Issue Hydrogen and...

  8. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01

    on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.of Driver Preferences for Fuel Cell Taxis. Energy Policy

  9. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

  10. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01

    commitment to hydrogen and fuel cell vehicles has beenand storage R&D and fuel cell vehicle program, whilepower applications of fuel cells. Congress has recently re-

  11. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  12. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01

    A KEY LINK TO A HYDROGEN FUEL CELL VEHICLE INFRASTRUCTURE?"a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?is assessed based on neat hydrogen fuel input rather than

  13. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  14. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    SciTech Connect (OSTI)

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  15. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    to altitude. The hydrogen engines were better able to15% O2] Early Radial Hydrogen engine must be fuel staged. Asof NO produced in the hydrogen engine is 2.3 times higher

  16. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect (OSTI)

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  17. Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartmentDatabase DemonstrationExpositionEvaluation

  18. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  19. Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has

    E-Print Network [OSTI]

    2 Risø Energy Report 3 Interest in the hydrogen economy and in fuel cells has increased used for natural gas. Existing fuel cells can convert hydrogen efficiently into electric power. Emerging fuel cell technologies can do the same for other hydrogen-rich fuels, while generating little

  20. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T.

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  2. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  3. Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance StarAlteBenefit Tool |

  4. ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    and design of on board hydrogen storage systems. Hydrogen generation and distribution technologies Press) 5. Hydrogen Fuel: Production, Transport, and Storage (R. Gupta, CRC Press) 6. Mobility 2030ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou

  5. QER- Comment of Canadian Hydrogen and Fuel Cell Association

    Broader source: Energy.gov [DOE]

    Dear Sir/Madam, The Canadian Hydrogen and Fuel Cell Association (CHFCA) was pleased to participate in the September 18, 2014 special dialogue on the Quadrennial Energy Review (QER) that was held in Ottawa, Ontario, Canada. At this time, we understand the QER is seeking to provide a multiyear roadmap that focuses on energy infrastructure with specific attention on the transmission, storage and distribution (TS&D) systems that make up North America’s oil, gas and electricity infrastructure.

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  7. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-10-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

  8. Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10-11, 2009 Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the...

  9. Hydrogen Fuel Infrastructure PON-11-609 Attachment F Local Health Impacts Information

    E-Print Network [OSTI]

    Hydrogen Fuel Infrastructure PON-11-609 Attachment F ­ Local Health Impacts Information Air Quality Percentage of population under 5 years and over 65 years of age #12;Hydrogen Fuel Infrastructure PON-11

  10. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell...

  11. 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRELDOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report 2011 NRELDOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Proceedings from the August 11-12, 2011,...

  12. DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage...

  13. Hydrogen fuel-cell cars designed and built in student competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students build hydrogen fuel-cell cars Hydrogen fuel-cell cars designed and built in student competition Middle and elementary school teams from around New Mexico participated in...

  14. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL)

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  15. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect (OSTI)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  16. NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with Usthe

  17. New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64 2.251 2.211 2.196 2.172 2.155NewgainsNewNew

  18. 93FY 2006 Annual Progress Report DOE Hydrogen Program Produce ultra-pure hydrogen fuel, at 99.999% purity.

    E-Print Network [OSTI]

    Pennycook, Steve

    will include separation of both clean shifted syngas and raw shifted syngas, both coal-derived. To prepare of hydrogen from coal, due to its low cost and abundance in the U.S. A critical part of this process is to separate the hydrogen from carbon dioxide, resulting in a pure clean fuel (hydrogen) stream, and a separate

  19. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  20. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  1. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-09-29

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  2. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  3. Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study

    E-Print Network [OSTI]

    Walter, M.Todd

    Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study Julian Deissa potential of lead (Pb) and diesel range organics (DRO) in palustrine slope wetlands near Juneau, AK; Lead (Pb); Diesel range organic (DRO); Macropore; Rifle range; Wetland 0169-7722/$ - see front matter D

  4. Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System

    E-Print Network [OSTI]

    Victoria, University of

    Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

  5. Industrial clusters and regional innovation based on hydrogen and fuel cell technologies

    E-Print Network [OSTI]

    Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

  6. Assessment of a hot hydrogen nuclear propulsion fuel test facility

    SciTech Connect (OSTI)

    Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

    1991-01-01

    Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

  7. DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-05-12

    Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

  8. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    A HYDROGEN FUELED GAS TURBINE ENGINE Peter Therkelsen, Tavisnatural gas fueled gas turbine engine was operated ongas. INTRODUCTION Gas turbine engines designed to operate on

  9. FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION

    E-Print Network [OSTI]

    Collantes, Gustavo

    2005-01-01

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  10. Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2005-01-01

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  11. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

    2002-04-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

  12. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  13. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    SciTech Connect (OSTI)

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide evidence that the leading points model can provide useful predictions of turbulent flame speed over a wide range of operating conditions and flow geometries.

  14. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

    2001-04-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

  15. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-01-30

    Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

  16. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01

    Producing Electricity and Hydrogen Fuel" UCRL- ID- 117334,IFE) Plants Producing Hydrogen Fuel," Lawrence LivermoreCost Electricity and Hydrogen Fuel Production from Multi-

  17. Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report

    E-Print Network [OSTI]

    Lipman, Tim; Shah, Nihar

    2007-01-01

    ISO 14687: Hydrogen fuel -- Product Specification, 2007.Storage Medium for Hydrogen Fuel Cells: Scientific andStorage Medium for Hydrogen Fuel Cells: Scientific and

  18. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  19. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    McGraw, Jennifer

    2013-05-28

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  20. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    SciTech Connect (OSTI)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  1. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  2. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  3. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  4. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2013-10-01

    This report summarizes comments from the Peer Review Panel at the 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 13-17, 2013, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  5. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  6. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2015-10-01

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  7. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    Andris R.Abele. Quantum Hydrogen Storage Systems, PresentedTIAX LLC, Analyses of Hydrogen Storage Materials and On-plant (BOP), but not the hydrogen storage system. This study

  8. Thematic note to substantiate Ris's strategy impact on society Fuel cells and hydrogen

    E-Print Network [OSTI]

    Thematic note to substantiate Risø's strategy ­ impact on society Fuel cells and hydrogen Impact's efforts within the area of fuel cells and hydrogen is to contribute to establishing the necessary platform in synergy ­ electricity, wind energy, solar energy and fuel cells. Sub-themes Fuel cells The market

  9. Pressure-Compensated Hydrogen Fuel Cell WiSys Prototype Development Fund

    E-Print Network [OSTI]

    Wu, Mingshen

    Pressure-Compensated Hydrogen Fuel Cell WiSys Prototype Development Fund Final Report Principal Description The purpose of this project was to reduce-to-practice the pressure-compensated hydrogen fuel cell the performance of the new fuel cell innovation against proven strategies. The pressure-compensated fuel cell

  10. Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    . Keywords: Energy, Biofuels, Hydrogen, Alternative fuels, Diesel, Fisher ­ Tropsch 1 Corresponding author alternative fuel, the availability and low cost of fossil fuels has slowed down their development (Cole, 20071 Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the Use

  11. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  12. Hydrogen : what fuel cell vehicles and advanced nuclear reactors have in common

    E-Print Network [OSTI]

    Demirdöven, Nurettin, 1974-

    2005-01-01

    This thesis reports on two technology and policy issues directly related to hydrogen economy. The first issue concentrates on the end-use application of hydrogen as a transportation fuel, and deals with the following ...

  13. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Test in a Small Gas Turbine,” International Journal ofof Hydrogen in a Small Gas Turbine Combustor,” InternationalL. , 2005, “Using Hydrogen as Gas Turbine Fuel” J. Engr. Gas

  14. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  15. Robust Solution to Difficult Hydrogen Issues When Shipping Transuranic Waste to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Countiss, S. S.; Basabilvazo, G. T.; Moody, D. C. III; Lott, S. A.; Pickerell, M.; Baca, T.; CH2M Hill; Tujague, S.; Svetlik, H.; Hannah, T.

    2003-02-27

    The Waste Isolation Pilot Plant (WIPP) has been open, receiving, and disposing of transuranic (TRU) waste since March 26, 1999. The majority of the waste has a path forward for shipment to and disposal at the WIPP, but there are about two percent (2%) or approximately 3,020 cubic meters (m{sup 3}) of the volume of TRU waste (high wattage TRU waste) that is not shippable because of gas generation limits set by the U.S. Nuclear Regulatory Commission (NRC). This waste includes plutonium-238 waste, solidified organic waste, and other high plutonium-239 wastes. Flammable gases are potentially generated during transport of TRU waste by the radiolysis of hydrogenous materials and therefore, the concentration at the end of the shipping period must be predicted. Two options are currently available to TRU waste sites for solving this problem: (1) gas generation testing on each drum, and (2) waste form modification by repackaging and/or treatment. Repackaging some of the high wattage waste may require up to 20:1 drum increase to meet the gas generation limits of less than five percent (5%) hydrogen in the inner most layer of confinement (the layer closest to the waste). (This is the limit set by the NRC.) These options increase waste handling and transportation risks and there are high costs and potential worker exposure associated with repackaging this high-wattage TRU waste. The U.S. Department of Energy (DOE)'s Carlsbad Field Office (CBFO) is pursuing a twofold approach to develop a shipping path for these wastes. They are: regulatory change and technology development. For the regulatory change, a more detailed knowledge of the high wattage waste (e.g., void volumes, gas generation potential of specific chemical constituents) may allow refinement of the current assumptions in the gas generation model for Safety Analysis Reports for Packaging for Contact-Handled (CH) TRU waste. For technology development, one of the options being pursued is the use of a robust container, the ARROW-PAK{trademark} System. (1) The ARROW-PAK{trademark} is a macroencapsulation treatment technology, developed by Boh Environmental, LLC, New Orleans, Louisiana. This technology has been designed to withstand any unexpected hydrogen deflagration (i.e. no consequence) and other benefits such as criticality control.

  16. DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011. DOE Hydrogen and Fuel Cell Overview...

  17. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  18. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VII. Conversion Devices

    E-Print Network [OSTI]

    and fluid dynamics and evaluated fuel/air mixing. (Collaboration with NASA Glenn.) · Formed collaborationHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 603 Section VII. Conversion Devices #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 604 #12

  19. A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

  20. Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells Erik Kjeang,a,c,

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells Erik Kjeang,a,c, * Alexandre G. Brolo, Victoria, British Columbia, Canada V8W 3P6 We demonstrate a microfluidic fuel cell incorporating hydrogen and exhibits a high standard reduction potential. It also enables fuel cell operation where natural convection

  1. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  2. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  3. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Geothermal Wind Water Transportation Transportation Home Vehicles Bioenergy Hydrogen & Fuel Cells About Us About Us Home News & Blog News & Blog Home News News Home...

  4. Sandia Energy - Portable Hydrogen Fuel-Cell Unit to Provide Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Home Infrastructure Security Energy Surety Energy Transportation Energy Facilities Partnership...

  5. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis...

  6. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis...

  7. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

  8. DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Hydrogen...

  9. Garbage In, Power Out: South Carolina BMW Plant Converts Landfill Gas to Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    The largest fuel cell forklift fleet in the world is now being powered with hydrogen produced on-site from biomethane gas at a nearby landfill.

  10. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delive

  11. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delive

  12. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delive

  13. A Near-Term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01

    Photovoltaic System Additional Equipment $/yr Installation Costs Contingency Electricity Fixed Operating Costs Total Annual Cost ($/yr) Hydrogen Price (

  14. A Near-term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01

    Photovoltaic System Additional Equipment $/yr Installation Costs Contingency Electricity Fixed Operating Costs Total Annual Cost ($/yr) Hydrogen Price (

  15. HYDROGEN SULFIDE KINETICS ON PEM FUEL CELL ELECTRODES V. A. Sethuramana

    E-Print Network [OSTI]

    Sethuraman, Vijay A.

    HYDROGEN SULFIDE KINETICS ON PEM FUEL CELL ELECTRODES V. A. Sethuramana , L. A. Wiseb , S for the poisoning kinetics of hydrogen sulfide (H2S) on composite solid polymer electrolyte Pt (SPE-Pt) electrode, total recovery with neat hydrogen was not possible and a partial recovery was possible by a potential

  16. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY

    E-Print Network [OSTI]

    -van employ compressed hydrogen gas storage. Although the energy density of compressedhydrogen gasis lower,less costly and more energy efficient, refueling canbe accomplished rapidly, and hydrogen canbe produced from~--- - ~ .. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY Joan

  17. Water Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes on the Hydrogen Bond Network

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes emissions energy source is hydrogen. Hydrogen powered vehicles using polymer electrolyte membrane fuel cells and hydrophilic aggregates.1-4 Hydrogen fuel cells operate through the oxidation of hydrogen gas at the anode

  18. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure

    E-Print Network [OSTI]

    Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

    2008-01-01

    on the attitude towards hydrogen fuel cell buses in the CUTEDriver Preferences for Fuel Cell Taxis. Energy Policy, vol.RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND REFUELING: A

  19. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  20. An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    SciTech Connect (OSTI)

    Zhicheng Wang

    2007-03-15

    The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

  1. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect (OSTI)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: (1) Substantially lower intake temperature needed for stable HCCI combustion; (2) Inconclusive impact on engine BMEP and power produced; (3) Small reduction in the thermal efficiency of the engine; (4) Moderate reduction in the unburned hydrocarbons in the exhaust; (5) Slight increase in NOx emissions in the exhaust; (6) Slight reduction in CO2 in the exhaust; and (7) Increased knocking at rich stoichiometry. The major accomplishments and findings from the project can be summarized as follows: (1) A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. (2) A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen. (3) The benefits of using hydrogen to extend, up to a limit, the stable operating window for HCCI combustion of natural gas at higher intake pressures, leaner air to fuel ratios or lower inlet temperatures was documented.

  2. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  3. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  4. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  5. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    SciTech Connect (OSTI)

    Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

    2014-03-24

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  6. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Recording and text version of the Fuel Cell Technologies Office webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications," originally presented on October 21, 2014.

  7. US DOE Hydrogen and Fuel Cell Technology - Composites in H2 Storage...

    Broader source: Energy.gov (indexed) [DOE]

    PhD Representing: U.S. Department of Energy Fuel Cell Technologies Office 4 Hydrogen and Fuel Cells Program Overview Mission: Enable widespread commercialization of a portfolio of...

  8. DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va.

  9. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    etc. , Control of Fuel Cell Power Systems, Springer, 2004. [transient power. The fuel cell power command is calculatedavoiding low fuel cell output power region. Keywords: fuel

  10. DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss

    E-Print Network [OSTI]

    for compressed natural gas vehicles. The integrated natural gas-to-hydrogen system includes a high efficiency on leveraging of developments in the stationary PEM fuel cell and compressed natural gas vehicle market sectorsDEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss P: 847-768-0753; E: william

  11. SAVE THIS | EMAIL THIS | Close Microbial Fuel Cell Generates Hydrogen, Cleans

    E-Print Network [OSTI]

    Powered by SAVE THIS | EMAIL THIS | Close Microbial Fuel Cell Generates Hydrogen, Cleans Wastewater Apr 27, 2005 4:04 PM Using a new electrically assisted microbial fuel cell (MFC) that does not require insufficient waste biomass to sustain a global hydrogen economy, this form of renewable energy production may

  12. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  13. Hydrogen & Fuel Cells: Review of National Research and Development...

    Open Energy Info (EERE)

    and Development (R&D) Programs Focus Area: Hydrogen Topics: Policy Impacts Website: www.iea.orgTextbasenpsumhydrogenSUM.pdf Equivalent URI: cleanenergysolutions.orgcontent...

  14. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Office of Environmental Management (EM)

    and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. Through H2USA, industry and government partners will...

  15. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage

    E-Print Network [OSTI]

    verification and validation tests based on NGV2- 2000, modified for high pressure hydrogen · Supply fully system under NGV 3.1 standards · Designed and developed industry's first hydrogen 10,000 psi (700 bar) in

  16. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect (OSTI)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: • Substantially lower intake temperature needed for stable HCCI combustion • Inconclusive impact on engine BMEP and power produced, • Small reduction in the thermal efficiency of the engine, • Moderate reduction in the unburned hydrocarbons in the exhaust, • Slight increase in NOx emissions in the exhaust, • Slight reduction in CO2 in the exhaust. • Increased knocking at rich stoichiometry The major accomplishments and findings from the project can be summarized as follows: 1. A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. 2. A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen.

  17. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

    2002-07-30

    Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

  19. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  20. National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure

    E-Print Network [OSTI]

    · Technoeconomic Analysis ­ Hydrogen from biomass via gasification and pyrolysis: 1994, 1997, 2000, 2004 ­ Hydrogen ­ Life cycle assessment of wind/electrolysis: 2001, 2004 ­ Life cycle assessment of biomass gasification assessment (now in Biomass Program) ­ Keith Wipke: ADVISOR (now leading tech validation project) · Current

  1. Process for forming hydrogen and other fuels utilizing magma

    DOE Patents [OSTI]

    Galt, John K. (Albuquerque, NM); Gerlach, Terrence M. (Albuquerque, NM); Modreski, Peter J. (Albuquerque, NM); Northrup, Jr., Clyde J. M. (Albuquerque, NM)

    1978-01-01

    The disclosure relates to a method for extracting hydrogen from magma and water by injecting water from above the earth's surface into a pocket of magma and extracting hydrogen produced by the water-magma reaction from the vicinity of the magma.

  2. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  3. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    etc. , PEM Fuel Cell System Optimization, Proceedings of thesystem, hybrid fuel cell vehicle, optimization, dynamic,a scalable fuel cell system optimization model [14

  4. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    for fuel cell systems for vehicle applications, Journal ofand Fuel Cell Electric Vehicle Symposium applications. Thesewhich limits its application in fuel cell vehicles. The

  5. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle Symposiumcycles. Vehicles with the fuel cell operating in the optimum

  6. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  7. Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel is a critical path for the use of jet fuels in powering the commercial growth of fuel cell systems for air the fuel through adsorptive methods is not practical for long term operations. The current work describes

  8. |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|

    E-Print Network [OSTI]

    Lovley, Derek

    |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Gulliver's fuel cell travels

  9. |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|

    E-Print Network [OSTI]

    Lovley, Derek

    . These "metal-reducing" bacteria are ideal for fuel cells, said microbiologist Derek Lovley of the University|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free

  10. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-01-28

    During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

  11. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-04-30

    During this quarter long term and high pressure hydrogen separation experiments were performed on Eltron's composite layered membranes. Membranes were tested at 400 C and a 300 psig feed stream with 40% hydrogen for up to 400 continuous hours. In addition membranes were tested up to 1000 psig as demonstration of the ability for this technology to meet DOE goals. Progress was made in the development of new hydrogen separation cermets containing high permeability metals. A sulfur tolerant catalyst deposition technique was optimized and engineering work on mechanical and process & control reports was continued.

  12. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    Exchange Membrane fuel cell (PEMFC) technology is one of theExchange Membrane fuel cell ( PEMFC) technology for use in

  13. Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels

    SciTech Connect (OSTI)

    McDonell, Vincent; Hill, Scott; Akbari, Amin; McDonell, Vincent

    2011-09-30

    As simulation capability improves exponentially with increasingly more cost effective CPUs and hardware, it can be used ?routinely? for engineering applications. Many commercial products are available and they are marketed as increasingly powerful and easy to use. The question remains as to the overall accuracy of results obtained. To support the validation of the CFD, a hierarchical experiment was established in which the type of fuel injection (radial, axial) as well as level of swirl (non-swirling, swirling) could be systematically varied. The effort was limited to time efficient approaches (i.e., generally RANS approaches) although limited assessment of time resolved methods (i.e., unsteady RANS and LES) were considered. Careful measurements of the flowfield velocity and fuel concentration were made using both intrusive and non-intrusive methods. This database was then used as the basis for the assessment of the CFD approach. The numerical studies were carried out with a statistically based matrix. As a result, the effect of turbulence model, fuel type, axial plane, turbulent Schmidt number, and injection type could be studied using analysis of variance. The results for the non-swirling cases could be analyzed as planned, and demonstrate that turbulence model selection, turbulence Schmidt number, and the type of injection will strongly influence the agreement with measured values. Interestingly, the type of fuel used (either hydrogen or methane) has no influence on the accuracy of the simulations. For axial injection, the selection of proper turbulence Schmidt number is important, whereas for radial injection, the results are relatively insensitive to this parameter. In general, it was found that the nature of the flowfield influences the performance of the predictions. This result implies that it is difficult to establish a priori the ?best? simulation approach to use. However, the insights from the relative orientation of the jet and flow do offer some guidance for which approach to take. Overall, the results underscore the importance of model ?anchoring? (i.e., ?tuning? the model to provide ?reasonable? agreement with a well characterized geometry/flow). Finally, the results obtained have been carefully compiled into a standalone database following a standard format that is contained in an Appendix. This database is thus available for use by others for CFD modeling evaluations.

  14. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    Stephen Herring

    2010-01-08

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, lab

  15. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Broader source: Energy.gov (indexed) [DOE]

    Photo of hydrogen-powered bus. Produced by College of the Desert and SunLine Transit Agency with funding from the U.S. Federal Transit Administration, this course manual features...

  16. Bush Hydrogen Vision "Fueled" By California Station Opening ...

    Office of Environmental Management (EM)

    the 21st century. If we develop hydrogen power to its full potential, we can reduce our demand for oil by over 11 million barrels per day by the year 2040. That would be a...

  17. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    CNG, diesel, FT50, methanol, H2 Powertrains ICE, hybrid,diesel, ethanol, hydrogen and grid electricity ICE, hybrid,diesel, DME, CH2/LH2 Gasoline, electricity, H2 Powertrains ICE, hybrid,

  18. Cryogenic, compressed, and liquid hydrogen fuel storage in vehicles

    E-Print Network [OSTI]

    Reyes, Allan B

    2007-01-01

    Hydrogen is the viable energy carrier of future energy and transportation systems due to its clean emissions, light weight, and abundance. Its extremely low volumetric density, however, presents significant challenges to ...

  19. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  20. Hydrogen and Fuel Cell Manufacturing R&D Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartmentDatabase Demonstration HydrogenCleanand Fuel Cell

  1. Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartmentDatabase Demonstration HydrogenCleanand Fuel

  2. Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartmentDatabase Demonstration HydrogenCleanand Fuel

  3. Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Cell

  4. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump DispensersEmerging Fuels Printable Version

  5. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect (OSTI)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  6. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    E-Print Network [OSTI]

    Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

  7. Technical Breakthrough Points and Opportunities in Transition Scenarios for Hydrogen as Vehicular Fuel

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; James, B.; Perez, J.; Spisak, A.

    2011-12-01

    This technical reports is about investigating a generic case of hydrogen production/delivery/dispensing pathway evolution in a large population city, assuming that hydrogen fuel cell electric vehicles (FCEV) will capture a major share of the vehicle market by the year 2050. The range of questions that are considered includes (i) what is the typical succession of hydrogen pathways that minimizes consumer cost? (ii) what are the major factors that will likely influence this sequence?

  8. Projecting full build-out environmental impacts and roll-out strategies associated with viable hydrogen fueling

    E-Print Network [OSTI]

    Dabdub, Donald

    of biomethane in the California South Coast Air Basin can provide up to 30% of the hydrogen fueling demand

  9. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  10. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    gas emissions over the full fuel cycle and vehicle lifetime.are estimated over the full fuel cycle and entire vehicleoperation and maintenance, full fuel-cycle air-pollutant and

  11. Hydrogen Fuel Cells and Electric Forklift Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario AnalysisFuel Cell

  12. Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize:4Fuel Cell

  13. Overview of Hydrogen and Fuel Cell Activities: September 2010 Mountain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits theCommittee Charter OperatingSemprius Confidential 1ofand Fuel Cell Expo

  14. Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy and Forest Service Consider$

  15. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015

  16. Hydrogen and Fuel Cell Technologies Research, Development, and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdate WebinarProductionStorage

  17. Alternative Fuels Data Center: Hydrogen Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogen

  18. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogenProduction and

  19. Alternative Fuels Data Center: Hydrogen Research and Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogenProduction

  20. Financial Incentives for Hydrogen and Fuel Cell Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center