Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen: Helpful Links & Contacts  

Science Conference Proceedings (OSTI)

Helpful Links & Contacts. Helpful Links. Hydrogen Information, Website. ... Contacts for Commercial Hydrogen Measurement. ...

2013-07-31T23:59:59.000Z

2

Alternative Fuels Data Center: Hydrogen Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Related Links on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

3

External Links | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Scientific and Technical Information Honors & Awards Jobs Contact Us You are here: SC Home About Organization Support Offices Budget Home External Links...

4

Widget:ExternalLinkButton | Open Energy Information  

Open Energy Info (EERE)

Widget Widget Edit History Facebook icon Twitter icon » Widget:ExternalLinkButton Jump to: navigation, search Bootstrap styled button for launching links in a new browser tab (_blank) Use Widget:LinkButton for launching a link in the same target/browser tab. Parameters Include: action - url to link to value - button text class - add additional css classes, separate multiple classes with spaces (i.e.- btn-primary) style - add style elements, cannot change button color with this (optional) Examples Default Button Visit FWA {{#Widget:ExternalLinkButton | action=http://www.thefwa.com | value=Visit FWA}} Primary Button Visit FWA {{#Widget:ExternalLinkButton | action=http://www.thefwa.com | value=Visit FWA | class=btn-primary}} Retrieved from "http://en.openei.org/w/index.php?title=Widget:ExternalLinkButton&oldid=696084"

5

Pages that link to "Hydrogen Energy Data Book" | Open Energy...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Pages that link to "Hydrogen Energy Data Book" Hydrogen Energy Data Book Jump to: navigation, search What links here Page:...

6

Molecular Cell Hydrogen Sulfide-Linked Sulfhydration  

E-Print Network (OSTI)

Molecular Cell Article Hydrogen Sulfide-Linked Sulfhydration of NF-kB Mediates Its Antiapoptotic@jhmi.edu DOI 10.1016/j.molcel.2011.10.021 SUMMARY Nuclear factor kB (NF-kB) is an antiapoptotic tran- scription factor. We show that the antiapoptotic actions of NF-kB are mediated by hydrogen sulfide (H2S

Dong, Xinzhong

7

DOE Hydrogen and Fuel Cells Program: External Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > External Coordination Printable Version External Coordination The DOE Hydrogen and Fuel Cells Program leverages the vast capabilities and experience of its stakeholders through cooperative partnerships. Coordination of these activities will be one of the keys to achieving national hydrogen and fuel cell technology program goals. Federal Agencies/Interagency Task Force A number of federal agencies support hydrogen and fuel cell research, development, demonstration, and deployment activities. There are two interagency bodies that coordinate this work: The Hydrogen and Fuel Cell Interagency Working Group (IWG) is a

8

DOE Hydrogen and Fuel Cells Program: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Plans, Roadmaps, and Vision Documents Program Plans, Roadmaps, and Vision Documents Program Records Annual Progress Reports Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of Energy Search help Home > Library > Related Links Printable Version Related Links Visit these websites to learn about federal agencies, national laboratories, international agencies, and partnerships that are working to advance hydrogen and fuel cell technologies. Federal Agency Sites DOE Hydrogen and Fuel Cells Program Offices Office of Energy Efficiency and Renewable Energy Office of Fossil Energy Office of Nuclear Energy Office of Science Alternative Fuels Data Center: Fuel Cell Vehicles - The Alternative Fuels Data Center provides information on alternative fuel and vehicle

9

Microsoft Word - FE_Hydrogen_Program_Plan_2003_External_FINAL...  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF FOSSIL ENERGY - HYDROGEN PROGRAM PLAN HYDROGEN COORDINATION GROUP JUNE 2003 Hydrogen from Natural Gas and Coal: The Road to a Sustainable Energy Future HYDROGEN FROM...

10

Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Dedicated links pages are available for the following topics: Diesel Vehicles and Fuels Electric Vehicles Fuel Cell Vehicles Hybrids Plug-in Hybrids Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Auto Manufacturers Acura Aston Martin Audi Bentley BMW Bugatti Buick Cadillac Chevrolet Chrysler Dodge Ferrari Fiat Ford GMC Honda Hyundai Infiniti Jaguar Jeep Kia Lamborghini Land Rover Lexus Lincoln Lotus Maserati Maybach Mazda McLaren Automotive Mercedes-Benz MINI Mitsubishi Nissan Porsche Ram Rolls Royce Roush Performance Scion smart Spyker Subaru Suzuki Toyota Volkswagen Volvo VPG Buying Guides ACEEE's Green Book Aol Autos

11

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

12

Study of a hydrogen-bombardment process for molecular cross-linking within thin films  

SciTech Connect

A low-energy hydrogen bombardment method, without using any chemical additives, has been designed for fine tuning both physical and chemical properties of molecular thin films through selectively cleaving C-H bonds and keeping other bonds intact. In the hydrogen bombardment process, carbon radicals are generated during collisions between C-H bonds and hydrogen molecules carrying {approx}10 eV kinetic energy. These carbon radicals induce cross-linking of neighboring molecular chains. In this work, we focus on the effect of hydrogen bombardment on dotriacontane (C{sub 32}H{sub 66}) thin films as growing on native SiO{sub 2} surfaces. After the hydrogen bombardment, XPS results indirectly explain that cross-linking has occurred among C{sub 32}H{sub 66} molecules, where the major chemical elements have been preserved even though the bombarded thin film is washed by organic solution such as hexane. AFM results show the height of the perpendicular phase in the thin film decreases due to the bombardment. Intriguingly, Young's modulus of the bombarded thin films can be increased up to {approx}6.5 GPa, about five times of elasticity of the virgin films. The surface roughness of the thin films can be kept as smooth as the virgin film surface after thorough bombardment. Therefore, the hydrogen bombardment method shows a great potential in the modification of morphological, mechanical, and tribological properties of organic thin films for a broad range of applications, especially in an aggressive environment.

Liu, Y.; Yang, J. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario (Canada); Yang, D. Q.; Nie, H.-Y.; Lau, W. M. [Surface Science Western, University of Western Ontario, London, Ontario (Canada)

2011-02-21T23:59:59.000Z

13

Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links: Anderson County Government Emergency Management Anderson County Local Emergency Planning Committee (LEPC) City of Oak Ridge Fire Department Knoxville-Knox County Emergency...

14

Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Public Outreach Clint Sprott's Wonders of Physics from University of Wisconsin, Madison Clint Sprott's Physics Demo Manual Phun Physics shows from University of Virginia Physics Van from Universitiy of Illinois, Urbana-Champaign How Does A Thing Like That Work from University of Pittsburgh Physics on the Road from Purdue University The Mad Science Group University Catalogues of Demonstrations Boston Univeristy's physics demonstrations University of Victoria physics demonstrations Wesleyan University physics demonstrations University of Minnesota, The Origin of the DCS Physics Demonstrations at the University of Texas at Austin University of Maryland University of Wisconsin University of Guelph University of Oregon Brown Physics Lecture Demonstrations University of California, Berkeley

15

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

16

Hydrogen  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Hydrogen production ...

17

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network (OSTI)

incentives for Avoided electricity costs due to self- fuel cell installation/operation or generation hydrogen dispensing Avoided natural gas

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

18

Fuel Cell Technologies Office: Strategic Directions for Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

19

All-Electric Vehicle Links  

NLE Websites -- All DOE Office Websites (Extended Search)

All-Electric Vehicle Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov website. We offer these external links for your convenience in...

20

Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

reduce carbon emissions through low-carbon hydrogen fuel for electricity generation and carbon sequestration technologies. References Hydrogen Energy1 LinkedIn Connections...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Diesel Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Diesel Vehicles and Manufacturers Audi A3 (TDI models) A6 (TDI models) A7 (TDI models) A8 L (TDI model) Q5 (TDI models) Q7 (TDI models) BMW 328d Sedan 328d xDrive Sedan 328d xDrive Sports Wagon 535d Sedan 535d xDrive Sedan Chevrolet Cruze Turbo Diesel Jeep Grand Cherokee EcoDiesel Mercedes-Benz E250 BlueTEC GL350 BlueTEC GLK250 BlueTEC ML350 BlueTEC Porsche Cayenne Diesel Volkswagen Beetle (TDI models) Beetle Convertible (TDI models) Golf (TDI models) Jetta (TDI models) Jetta Sportwagen (TDI models) Passat (TDI models) Touareg (TDI models) Diesel-Related Information

22

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

23

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

24

ARM - External Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The...

25

FCT Hydrogen Production: Hydrogen Production R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

26

Identifying a Host DOE Laboratory | U.S. DOE Office of Science...  

Office of Science (SC) Website

thermal systems External link , hydrogen External link , fuel cells External link , geothermal External link , distributed energy resources External link , measurement and testing...

27

Fuel Cell Technologies Office: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

28

Fuel Cell Technologies Office: Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

29

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

30

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

31

Help:Links | Open Energy Information  

Open Energy Info (EERE)

Links Links Jump to: navigation, search There are four sorts of links in MediaWiki: internal links to other pages in the wiki external links to other websites interwiki links to other websites registered to the wiki in advance Interlanguage links to other websites registered as other language versions of the wiki Contents 1 Internal links 2 External links 2.1 How to avoid auto-links 3 Interwiki links 3.1 Interlanguage links 4 See also Internal links To add an internal link, enclose the name of the page you want to link to in double square brackets. When you save the page, you'll see the new link pointing to your page. If the page exists already it is displayed in blue, if it does not, in red. Selflinks to the current page are not transformed in URLs but displayed in bold. (If you really want to link to the current

32

Alternative Fuels Data Center: Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Hydrogen is a potentially emissions-free alternative fuel that can be produced from diverse domestic energy sources. Research is under way to make hydrogen vehicles practical for widespread use.

33

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

34

Hydrogen Sorbent Measurement Qualification and Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assist materials-research groups to characterize and * qualify their samples for hydrogen-storage properties: Measure external samples at NREL to compare - results with source...

35

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

36

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

37

|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|  

E-Print Network (OSTI)

on large fuel cells to generate electricity and power vehicles. If the feat in miniaturization Lilliputian bedeviled scientists at MIT and other energy-research laboratories. The first generation of fuel cell|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel

Lovley, Derek

38

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

benefits. Visibly Link Hydrogen Production and Clean Energy Technologies: Wind,benefits. Visibly Link Hydrogen Production and Clean Energy Technologies: Wind,

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

39

DOE Hydrogen and Fuel Cells Program: About the Hydrogen and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

External Coordination U.S. Department of Energy Search help Home > About the Hydrogen and Fuel Cells Program Printable Version About the Hydrogen and Fuel Cells Program The U.S....

40

DOE Hydrogen and Fuel Cells Program: Hydrogen and Fuel Cell Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings National Research Council External Coordination U.S. Department of Energy Search help Home > About > Advisory Panels > Hydrogen and Fuel Cell Technical Advisory Committee...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cell Technologies Office: Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Pipeline Working Group to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen...

42

Integrated Renewable Hydrogen Utility System  

DOE Green Energy (OSTI)

Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power supply and associated electronics as well as improving efficiency, implementing a circuit board to replace the discreet electrical components in the unit, and evaluating the system issues when operating the unit with a variety of renewable inputs. On the mechanical side of the system the targets involved creative use of manifolds to reduce components and plumbing, overall fitting reduction through layout simplification and welded tube assemblies, and the development of an inexpensive gas drying methodology to remove moisture and improve gas purity. Lastly, activities surrounding the electrolysis cell stack focused on lower cost stack compression approaches and cost reduction of critical components. The last year of this project focused on validating the cost reductions mentioned above and advancing these cost reductions forward into a larger hydrogen generator. This larger hydrogen generator is a 60kW, 380 scfh, HOGEN hydrogen generator. Most of these efforts were in the control board and manifold development areas. The results achieved over the life of this program are in line with the goals of the Department of Energy. Proton projects that the current design of the 40 scfh generator projected to a volume of 10,000 units per year would be in the range of $1,500 per kilowatt. Furthermore, continuing efforts on materials substitution and design enhancements over the next few years should bring the cost of the system to the $1,000 per kilowatt goal for a system of this size. This report provides the technical details behind the cost reduction efforts undertaken during the Phase II portion of the program.

Proton Energy Systems

2003-04-01T23:59:59.000Z

43

Integrated Renewable Hydrogen Utility System  

SciTech Connect

Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power supply and associated electronics as well as improving efficiency, implementing a circuit board to replace the discreet electrical components in the unit, and evaluating the system issues when operating the unit with a variety of renewable inputs. On the mechanical side of the system the targets involved creative use of manifolds to reduce components and plumbing, overall fitting reduction through layout simplification and welded tube assemblies, and the development of an inexpensive gas drying methodology to remove moisture and improve gas purity. Lastly, activities surrounding the electrolysis cell stack focused on lower cost stack compression approaches and cost reduction of critical components. The last year of this project focused on validating the cost reductions mentioned above and advancing these cost reductions forward into a larger hydrogen generator. This larger hydrogen generator is a 60kW, 380 scfh, HOGEN hydrogen generator. Most of these efforts were in the control board and manifold development areas. The results achieved over the life of this program are in line with the goals of the Department of Energy. Proton projects that the current design of the 40 scfh generator projected to a volume of 10,000 units per year would be in the range of $1,500 per kilowatt. Furthermore, continuing efforts on materials substitution and design enhancements over the next few years should bring the cost of the system to the $1,000 per kilowatt goal for a system of this size. This report provides the technical details behind the cost reduction efforts undertaken during the Phase II portion of the program.

Proton Energy Systems

2003-04-01T23:59:59.000Z

44

Hydrogen Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces...

45

Hybrid Vehicle Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Links Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Hybrid Vehicles and Manufacturers Acura ILX Hybrid Audi Q5 Hybrid BMW ActiveHybrid 3 ActiveHybrid 5 ActiveHybrid 7 Buick LaCrosse eAssist* Regal eAssist* Chevrolet Malibu Eco* Impala eAssist* Ford Fusion Hybrid Honda Accord Hybrid Civic Hybrid Honda CR-Z Honda Insight Hyundai Sonata Hybrid Infiniti M Hybrid Q50 Hybrid Q50 S Hybrid QX60 Hybrid Kia Optima Hybrid Lexus CT 200h Lexus ES 300h GS 450h LS 600h L RX 450h Lincoln MKZ Hybrid Mercedes-Benz Mercedes E400 Hybrid Nissan Pathfinder Hybrid Porsche Cayenne S Hybrid Subaru XV Crosstrek Hybrid Toyota Avalon Hybrid

46

Ligand iron catalysts for selective hydrogenation  

SciTech Connect

Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

Casey, Charles P. (Madison, WI); Guan, Hairong (Cincinnati, OH)

2010-11-16T23:59:59.000Z

47

Hydrogen Publications  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. ... These articles, of interest to the hydrogen community, can be viewed by clicking on the title. ...

48

Properties Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. PROPERTIES, ... For information on a PC database that includes hydrogen property information click here. ...

49

External Dose Estimates from  

E-Print Network (OSTI)

Appendix G External Dose Estimates from Global Fallout G-1 #12;External Radiation Exposure from the fallout from all of these tests was about 0.7 mSv, about equivalent to 2-3 years of external radiation exposure from natural background. In contrast to the fallout from tests at the Nevada Test site

50

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Chicago team. On-board hydrogen storage is critical to the development of future high energy efficiency transportation technologies, such as hydrogen-powered fuel...

51

FCT Hydrogen Delivery: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

52

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

53

Florida Hydrogen Initiative Inc | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Initiative Inc Hydrogen Initiative Inc Jump to: navigation, search Name Florida Hydrogen Initiative Inc Place Florida Sector Hydro, Hydrogen Product Provides grants to aid the development of the hydrogen industry in Florida. References Florida Hydrogen Initiative Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Hydrogen Initiative Inc is a company located in Florida . References ↑ "Florida Hydrogen Initiative Inc" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Hydrogen_Initiative_Inc&oldid=345422" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

54

Fuel Cell Technologies Office: Hydrogen Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

55

DOE Hydrogen and Fuel Cells Program: Advisory Panels  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Background Budget Timeline Program Activities Advisory Panels Hydrogen and Fuel Cell Technical Advisory Committee National Research Council External Coordination U.S....

56

Control of External Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Control of External Documents Process 11_0304 Page 1 of 5 2 Control of External Documents Process 11_0304 Page 1 of 5 EOTA - Business Process Document Title: Control of External Documents Process Document Number P-002 Rev 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): REG-002, External Document Register P-002 Control of External Documents Process 11_0304 Page 2 of 5 Revision History: Rev. Description of Change A Initial Release 11_0304 Changed revision format from alpha character to numbers; modified process to include a step directing addition to REG-002 External Document Register and changed verbiage to clarify and more accurately reflect current process.

57

PETSc: External Software  

NLE Websites -- All DOE Office Websites (Extended Search)

External Software External Software Home Download Features Documentation Applications/Publications Miscellaneous External Software Developers Site PETSc interfaces to the following optional external software (installing packages) (manual pages): ADIFOR - automatic differentiation for the computation of sparse Jacobians. AMD - Approximate minimum degree orderings. AnaMod - a library of matrix analysis modules; part of the Salsa project. BLAS and LAPACK Chaco - a graph partitioning package. ESSL - IBM's math library for fast sparse direct LU factorization. Euclid - parallel ILU(k) developed by David Hysom, accessed through the Hypre interface. FFTW - Fastest Fourier Transform in the West, developed at MIT by Matteo Frigo and Steven G. Johnson. Hypre - the LLNL preconditioner library.

58

Training Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminiars Software Accounts & Allocations Policies Data Analytics & Visualization Science Gateways User Surveys...

59

OFFICE OF EXTERNAL AFFAIRS  

NLE Websites -- All DOE Office Websites (Extended Search)

on joint R&D projects in such areas as photovoltaics (solar cells), wind energy, biomass, hydrogen, geothermal, ocean energy, and industrial energy efficiency. Golden also...

60

Hydrogen Highways  

E-Print Network (OSTI)

Joan Ogden, The Hope for Hydrogen, Issues in Science andand James S. Cannon. The Hydrogen Energy Transition: MovingHydrogen Highways BY TIMOTHY LIPMAN H 2 T H E S TAT E O F C

Lipman, Timothy

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

External Leadership Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

External Leadership Resources External Leadership Resources External Leadership Resources Here we provide specific links to resources, including training, guidance, blogs, newsletters, etc., for leadership development. Brainpickings - Brain Pickings is a human-powered discovery engine for interestingness, a subjective lens on what matters in the world and why, bringing you things you didn't know you were interested in - until are you. Department of Commerce- DOC has developed a succession strategy to: 1) Implement a leadership succession pipeline that links to the Department's mission critical occupations; 2) Manage a graduated series of competitive programs that identifies, selects and develops emerging leaders in engaging learning experiences; 3) Create a continuous learning environment that builds skills and enhances competencies throughtout the

62

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

63

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

64

External Dose Estimates from  

E-Print Network (OSTI)

Appendix E External Dose Estimates from NTS Fallout E-1 #12;External Radiation Exposure as the dependence on fallout time of arrival. The most exposed individuals were outdoor workers; the least exposed was about a factor of 20 less than that from "global fallout" from high- yield weapons tests carried out

65

AFRD - Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Home Organization Diversity Research Highlights Safety Links Intramural Links Accelerators are built, operated, and used by a large and diverse worldwide community. These links will take you to pages elsewhere that are related to AFRD’ work. The U.S. Department of Energy, Office of Science, is the principal supporter of our activities (and many other R&D endeavors). For information on the Joint Accelerator Conferences go to JACoW. The International Committee for Future Accelerators and the American Physical Society’ Division of Physics of Beams are among the organizations that advance, encourage, and communicate accelerator and beam science. The Laboratory's 50th Anniversary magazine gives an overview of the early and middle history of LBNL. Two of its authors later published the

66

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

67

Alternative Fuels Data Center: Hydrogen Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations

68

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

69

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

70

EMSL: External Peer Reviewers  

NLE Websites -- All DOE Office Websites (Extended Search)

EXTERNAL PEER REVIEWERS EXTERNAL PEER REVIEWERS Additional Information User Portal 2014 Call for Proposals 2014 Proposal Guidance 2014 Proposal Review Criteria Guidance for Letters of Intent to JGI-EMSL Collaborative Science Call Guidance for Full Proposals to JGI-EMSL Collaborative Science Call (Invited Only) 2014 Proposal Planning 2014 Proposal Summary/Extension Previous Calls External Peer Reviewers Fellowships and Awards Nufo, logo External peer reviewers are valuable contributors to EMSL's user proposals process. They provide objective evaluations of the quality of the proposals according to established review criteria, and participate on Review Panels that calibrate the proposals into a ranked order. EMSL is truly grateful to the researchers who donated their time and efforts in fiscal year 2012 to

71

External Technical Review Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

External Technical Review Report External Technical Review Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t External Technical Review (ETR) Process Guide September 2008 U.S. DOE Office of Environmental Management September 2008 External Technical Review Process Guide Page 2 of 37 TABLE OF CONTENTS 1.0 INTRODUCTION ....................................................................................................................... 3 1.1 Purpose of Process ............................................................................................................ 3 1.2 Background .........................................................................................................................

72

External Technical Review Report  

Energy.gov (U.S. Department of Energy (DOE))

This document has been developed to guide individuals and teams who will be involved in External Technical Reviews (ETR) of U.S. Department of Energys Office of Environmental Management (DOE-EM)...

73

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

74

External Science Review Report of the External Science  

E-Print Network (OSTI)

1 External Science Review Report of the External Science Review Committee The Nature Conservancy and Design: Lee Meinicke Jonathan Adams Design and Layout: Naomi Nickerson #12;3 External Science Review............................................................................................................................... 10 The Challenge of Changing Conservation and Changing Science

Power, Mary Eleanor

75

MIDC: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Other Data Collection Activities Baseline Surface Radiation Network (BSRN) Clear Sky Forcast for NREL/SRRL (or other locations) Colorado Dept. of Public Health & Environment: Air Quality Index (AQI) Reporting System Colorado State University: USDA UV-B Monitoring and Research Program European Skynet Radiometers network (ESR) Jefferson County, Colorado: Jeffco Weather Station NOAA: Climate Monitoring & Diagnostics Laboratory (CMDL) NREL OTF: Reference Meteorological and Irradiance System (RMIS) NREL RReDC: Cooperative Networks for Renewable Resource Measurements (CONFRRM) NREL RReDC: NASA Remote Sensing Validation Data: Saudi Arabia Rocky Mountain Arsenal (RMA): National Wildlife Refuge Sandia National Laboratories: Photovoltaic Systems Evaluation

76

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Working With Argonne Contact TTRDC Thermochemical Cycles for Hydrogen Production Argonne researchers are studying thermochemical cycles to determine their potential...

77

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

78

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

79

Hydrogen Radialysis  

INL scientists have invented a process of forming chemical compositions, such as a hydrides which can provide a source of hydrogen. The process exposes the chemical composition decaying radio-nuclides which provide the energy to with a hydrogen source ...

80

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen wishes  

Science Conference Proceedings (OSTI)

Hydrogen Wishes, presented at MIT's Center for Advanced Visual Studies, explores the themes of wishes and peace. It dramatizes the intimacy and power of transforming one's breath and vocalized wishes into a floating sphere, a bubble charged with hydrogen. ...

Winslow Burleson; Paul Nemirovsky; Dan Overholt

2003-07-01T23:59:59.000Z

82

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

83

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

84

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

85

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Companies Hydrogen Companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":1,"width":"380px","height":"250px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

86

CTP Hydrogen | Open Energy Information  

Open Energy Info (EERE)

CTP Hydrogen CTP Hydrogen Jump to: navigation, search Name CTP Hydrogen Place Westborough, Massachusetts Zip 1581 Sector Hydro, Hydrogen Product CTP Hydrogen is an early stage company developing a single-step reforming process for portable and distributed hydrogen generation. Coordinates 42.283096°, -71.600318° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.283096,"lon":-71.600318,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

External vs. body temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

External vs. body temperature External vs. body temperature Name: jacqui Location: N/A Country: N/A Date: N/A Question: If one's internal body temperature is approximately 98.6, WHY when the external temperature is 98.6 do we feel hot? Since both temperatures are "balanced", shouldn't we feel comfortable? I am assuming here that humidity levels are controlled, and play no factor in the external temperature. Replies: First of all, skin temperature is lower than 98.6F; 98.6F is internal body temperature, so air at 98.6F is hotter than skin. But more important, it is the nervous system, and the cells in your skin that your brain uses to detect temperature that determine whether you "feel" hot or not, not whether the air is hotter than your skin. These are set so that you feel hot when the air is actually colder than your skin. Why? They are probably set to make you feel hot whenever the air is warm enough so that your body has some trouble getting rid of the excess heat it produces through metabolism. This insures that you take some actions to help your body cool off. Like drinking cool water, or reducing exercise

88

External Memory Algorithms  

Science Conference Proceedings (OSTI)

Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/ output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance ...

Jeffrey Scott Vitter

1998-08-01T23:59:59.000Z

89

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C.L.; Russell, L.H.

1981-06-23T23:59:59.000Z

90

Alternative Fuels Data Center: Hydrogen Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Basics Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a

91

Plug-in Hybrid Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

92

Alternative Fuels Data Center: Hydrogen Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Research and Research and Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Research and Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Research and Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Research and Development on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Research and Development on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Research and Development

93

DOE Hydrogen Analysis Repository: Economic Analysis of Hydrogen Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Analysis of Hydrogen Energy Station Concepts Economic Analysis of Hydrogen Energy Station Concepts Project Summary Full Title: Economic Analysis of Hydrogen Energy Station Concepts: Are 'H2E-Stations' a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? Project ID: 244 Principal Investigator: Timothy Lipman Brief Description: This project expands on a previously conducted, preliminary H2E-Station analysis in a number of important directions. Purpose This analysis, based on an integrated Excel/MATLAB/Simulink fuel cell system cost and performance model called CETEEM, includes the following: several energy station designs based on different sizes of fuel cell systems and hydrogen storage and delivery systems for service station and office building settings; characterization of a typical year of operation

94

Hydrogen Safety  

Science Conference Proceedings (OSTI)

... ASHRAE 62.1, 7 air changes per hour, 100 ... I, Division II, Group B: testing and research laboratory; ... Planning Guidance for Hydrogen Projects as a ...

2012-10-09T23:59:59.000Z

95

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

96

Hydrogen Ventures | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Ventures Hydrogen Ventures Name Hydrogen Ventures Address 1219 N. Studabaker Road Place Long Beach, California Zip 90811 Region Southern CA Area Product Venture fund focusing on hydrogen technology Phone number (562) 618-8641 Website http://www.hydrogen.la/ Coordinates 33.781788°, -118.103155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.781788,"lon":-118.103155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Reference Links | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Reference Links Reference Links Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Compilation of Systems of Records Energy Employees Occupational Illness Compensation Program Act (EEOICPA) How to Submit a Privacy Act Request Reference Links Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Privacy Act Reference Links Print Text Size: A A A RSS Feeds FeedbackShare Page Privacy Act of 1974 and Amendments, 5 USC 552a External link DOE Implementing Regulations, 10 CFR 1008 External link DOE Privacy Act Compilation External link

98

External split field generator  

DOE Patents (OSTI)

A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

2012-02-21T23:59:59.000Z

99

Hydrogen production  

SciTech Connect

The production of hydrogen by reacting an ash containing material with water and at least one halogen selected from the group consisting of chlorine, bromine and iodine to form reaction products including carbon dioxide and a corresponding hydrogen halide is claimed. The hydrogen halide is decomposed to separately release the hydrogen and the halogen. The halogen is recovered for reaction with additional carbonaceous materials and water, and the hydrogen is recovered as a salable product. In a preferred embodiment the carbonaceous material, water and halogen are reacted at an elevated temperature. In accordance with another embodiment, a continuous method for the production of hydrogen is provided wherein the carbonaceous material, water and at least one selected halogen are reacted in one zone, and the hydrogen halide produced from the reaction is decomposed in a second zone, preferably by electrolytic decomposition, to release the hydrogen for recovery and the halogen for recycle to the first zone. There also is provided a method for recovering any halogen which reacts with or is retained in the ash constituents of the carbonaceous material.

Darnell, A.J.; Parkins, W.E.

1978-08-08T23:59:59.000Z

100

Hydrogen Bibliography  

DOE Green Energy (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Widget:LinkButton | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Widget Edit History Facebook icon Twitter icon » Widget:LinkButton Jump to: navigation, search Basic button for links, opens in the same browser tab. Use Widget:ExternalLinkButton for launching link in a new browser tab (_blank). Parameters Include: action - url to link to value - button text class - add additional css classes, separate multiple classes with spaces (i.e.- btn-primary) style - add style elements, cannot change button color with this (optional) id - element id Examples Default Button Visit FWA {{#Widget:LinkButton | action=http://www.thefwa.com | value=Visit FWA}} Primary Button Visit FWA {{#Widget:LinkButton | action=http://www.thefwa.com | value=Visit FWA | class=btn-primary}}

102

Green Energy: Advancing Bio-Hydrogen (Presentation)  

DOE Green Energy (OSTI)

Developing a model of metabolism linked to H2 production in green algae. Develop tools for parameter discovery and optimization at organism level and advance knowledge of hydrogen-producting photosynthetic organisms.

Alber, D.

2007-07-01T23:59:59.000Z

103

Hanford External Dosimetry Program  

Science Conference Proceedings (OSTI)

This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

Fix, J.J.

1990-10-01T23:59:59.000Z

104

Alternative Fuels Data Center: Hydrogen Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Production and Distribution on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

105

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

106

Spanish Hydrogen Association AeH | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Association AeH Hydrogen Association AeH Jump to: navigation, search Name Spanish Hydrogen Association (AeH) Place Madrid, Spain Zip 28760 Sector Hydro, Hydrogen Product Spanish conference organiser and industry association for the hydrogen and fuel cell sectors. References Spanish Hydrogen Association (AeH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spanish Hydrogen Association (AeH) is a company located in Madrid, Spain . References ↑ "Spanish Hydrogen Association (AeH)" Retrieved from "http://en.openei.org/w/index.php?title=Spanish_Hydrogen_Association_AeH&oldid=351599" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

107

Help:External searches | Open Energy Information  

Open Energy Info (EERE)

searches searches Jump to: navigation, search 50px Move proposal : It has been suggested that this page be moved to a new name : '(new name to be decided)'. Use the talk page to discuss this action. It is possible to create an external searches of a topic using key words using a template. For example, this is something that would work for Google: [[Image:GoogleIcon.PNG]] [http://www.google.com/search?hl=en&safe=off&q={{{1|Wiki}}}&btnG=Search&meta= {{{1|Google}}}] ==Usage== Allows to establish a link to a search query at the Google search engine: {{Google|Term1+Term2+Term3}}

108

Hydrogen ICE  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Silverado 1500HD Hydrogen ICE 1 Conversion Vehicle Specifications Engine: 6.0 L V8 Fuel Capacity: 10.5 GGE Nominal Tank Pressure: 5,000 psi Seatbelt Positions: Five...

109

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

110

Hydrogen separation membranes - annual report for FY 2007.  

DOE Green Energy (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry.

Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-01-31T23:59:59.000Z

111

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

112

Storing Hydrogen  

DOE Green Energy (OSTI)

Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

2010-05-31T23:59:59.000Z

113

Alternative Fuels Data Center: Hydrogen Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen » Laws & Incentives Hydrogen » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Hydrogen Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Laws and Incentives on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives

114

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations

115

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

116

Hydrogen Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

117

Technical Review of Externalities Issues  

Science Conference Proceedings (OSTI)

Externalities, once a term known only to students of economics, has become the catchword for a major experiment in electric utility regulation. It is very important for utilities and policy makers to understand the technical issues and arguments driving the externality experiment. This experiment has important implications for utility costs, competitive positions, environmental quality, and future regulations.

1995-01-28T23:59:59.000Z

118

Hydrogen Technologies Group  

DOE Green Energy (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

119

FCT Hydrogen Production: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Production: Contacts on Facebook Tweet about FCT Hydrogen Production: Contacts on Twitter Bookmark FCT Hydrogen Production:...

120

The Transition to Hydrogen  

E-Print Network (OSTI)

Prospects for Building a Hydrogen Energy Infrastructure,and James S. Cannon. The Hydrogen Energy Transition: Movingof Energy, National Hydrogen Energy Roadmap, November 2002.

Ogden, Joan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrogen SRNL Connection  

hydrogen storage. Why is Savannah River National Laboratory conducting hydrogen research and development? ... Both the Department of Energys hydrogen ...

122

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

123

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap...

124

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen...

125

Hydrogen Transition Infrastructure Analysis  

DOE Green Energy (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-05-01T23:59:59.000Z

126

BNL | ARM External Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

External Data Center External Data Center The ARM External Data Center (XDC) identifies sources and acquires data, called "external data", to augment the data generated within the program. The scientific need and the priorities for acquiring, processing and archiving the external data-streams are established by the science working groups and considers such factors as: Availability and accessibility in other archives Acquisition cost Ease of use of the native data-format If this analysis determines that significant value to the ARM data users will be added, the XDC will develop an automated process to acquire the data from the data provider, and reformat the data as necessary into an ARM-compatible data format. The processed data and the native format data are sent to the ARM permanent archive at ORNL.

127

Hydrogen separation membranes annual report for FY 2008.  

DOE Green Energy (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes progress that was made during Fy 2008 on the development of HTM materials.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-17T23:59:59.000Z

128

Hydrogen separation membranes annual report for FY 2009.  

SciTech Connect

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2009.

Balachandran, U.; Dorris, S. E.; Lu, Y.; Emerson, J. E.; Park, C. Y.; Lee, T. H.; Picciolo, J. J.; Energy Systems

2010-04-16T23:59:59.000Z

129

Hydrogen separation membranes annual report for FY 2010.  

DOE Green Energy (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

130

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

131

Hydrogen Power Inc formerly Hydrogen Power International and Equitex Inc |  

Open Energy Info (EERE)

Power Inc formerly Hydrogen Power International and Equitex Inc Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.) Place Englewood, Colorado Zip 80111 Sector Hydro, Hydrogen Product Holding company operating through its majority owned subsidiaries, Hydrogen Power International, FastFunds Financial Corp and Denaris Corp. Coordinates 35.425805°, -84.487497° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.425805,"lon":-84.487497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

National Hydrogen Association | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Association Hydrogen Association Jump to: navigation, search Name National Hydrogen Association Place Washington, Washington, DC Zip 20036 Sector Hydro, Hydrogen Product The source for information in the US on hydrogen and hydrogen technologies since 1989. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Air Liquide Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Energy Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name Air Liquide Hydrogen Energy Address 6, Rue Cognacq-Jay Place Paris, France Zip 75321 Sector Hydrogen Year founded 2009 Website http://www.airliquide-hydrogen Coordinates 48.8617579°, 2.3047757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.8617579,"lon":2.3047757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

government interests, a variety of vendors, and numerous utilities. Keywords: Hydrogen production, natural gas, costs Purpose Assess progress toward the 2005 DOE Hydrogen...

135

DOE Hydrogen Analysis Repository: Hydrogen Futures Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen scenarios will affect carbon and other environmental effluents and U.S. oil import requirements Outputs: Delivered hydrogen costs (cost per gallon of gas...

136

DOE Hydrogen Analysis Repository: Hydrogen Refueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Refueling Infrastructure Cost Analysis Project Summary Full Title: Hydrogen Refueling Infrastructure Cost Analysis Project ID: 273 Principal Investigator: Marc Melaina...

137

DOE Hydrogen Analysis Repository: Hydrogen Infrastructure Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Infrastructure Market Readiness Analysis Project Summary Full Title: Hydrogen Infrastructure Market Readiness Analysis Project ID: 268 Principal Investigator: Marc Melaina...

138

DOE Hydrogen Analysis Repository: Electrolytic Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

by Principal Investigator Projects by Date U.S. Department of Energy Electrolytic Hydrogen Production Project Summary Full Title: Summary of Electrolytic Hydrogen Production:...

139

Hydrogen Analysis Group  

DOE Green Energy (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

140

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NEWTON's Weather Links  

NLE Websites -- All DOE Office Websites (Extended Search)

References Do you have a great weather reference link? Please click our Ideas page. Featured Reference Links: NOAA Teachers Support Page NOAA Teachers Support Page for Weather and...

142

Fiber optic hydrogen sensor  

DOE Patents (OSTI)

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

143

India National Hydrogen Energy Board NHEB | Open Energy Information  

Open Energy Info (EERE)

National Hydrogen Energy Board NHEB National Hydrogen Energy Board NHEB Jump to: navigation, search Name India National Hydrogen Energy Board (NHEB) Place New Delhi, India Zip 110 003 Sector Hydro, Hydrogen Product Set up to provide guidance in the preparation and implementation of a National Hydrogen Energy Road Map and programme in India. References India National Hydrogen Energy Board (NHEB)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. India National Hydrogen Energy Board (NHEB) is a company located in New Delhi, India . References ↑ "India National Hydrogen Energy Board (NHEB)" Retrieved from "http://en.openei.org/w/index.php?title=India_National_Hydrogen_Energy_Board_NHEB&oldid=346845"

144

Marine Hydrogen and Fuel Cell Association MHFCA | Open Energy Information  

Open Energy Info (EERE)

Hydrogen and Fuel Cell Association MHFCA Hydrogen and Fuel Cell Association MHFCA Jump to: navigation, search Name Marine Hydrogen and Fuel Cell Association (MHFCA) Place Leipzig, Germany Zip D-04318 Sector Hydro, Hydrogen Product Non-profit organisation set up to actively support the integration of hydrogen as an energy carrier into marine systems. References Marine Hydrogen and Fuel Cell Association (MHFCA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Marine Hydrogen and Fuel Cell Association (MHFCA) is a company located in Leipzig, Germany . References ↑ "Marine Hydrogen and Fuel Cell Association (MHFCA)" Retrieved from "http://en.openei.org/w/index.php?title=Marine_Hydrogen_and_Fuel_Cell_Association_MHFCA&oldid=348641

145

American Wind Power Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name American Wind Power & Hydrogen LLC Place New York, New York Zip 10022 Sector Hydro, Hydrogen, Vehicles Product AWP&H is a hydrogen transportation system integrator focused on hydrogen infrastructure, electrolysis, and hydrogen fueled internal combustion engine vehicles. References American Wind Power & Hydrogen LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Wind Power & Hydrogen LLC is a company located in New York, New York . References ↑ "American Wind Power & Hydrogen LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Wind_Power_Hydrogen_LLC&oldid=342137"

146

Aiken County Center for Hydrogen Research | Open Energy Information  

Open Energy Info (EERE)

County Center for Hydrogen Research County Center for Hydrogen Research Jump to: navigation, search Name Aiken County Center for Hydrogen Research Place South Carolina Zip 29803 Sector Hydro, Hydrogen Product Aiken County Center for Hydrogen Reseach will launch its activities in 2005, involving with industrial and academic stakeholders. References Aiken County Center for Hydrogen Research[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Aiken County Center for Hydrogen Research is a company located in South Carolina . References ↑ "Aiken County Center for Hydrogen Research" Retrieved from "http://en.openei.org/w/index.php?title=Aiken_County_Center_for_Hydrogen_Research&oldid=341931"

147

EERC National Center for Hydrogen Technology | Open Energy Information  

Open Energy Info (EERE)

National Center for Hydrogen Technology National Center for Hydrogen Technology Jump to: navigation, search Name EERC National Center for Hydrogen Technology Place Grand Forks, North Dakota Zip 58203 Sector Hydro, Hydrogen Product The EERC is integrating technologies for the production and use of hydrogen as a practical fuel. References EERC National Center for Hydrogen Technology[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. EERC National Center for Hydrogen Technology is a company located in Grand Forks, North Dakota . References ↑ "EERC National Center for Hydrogen Technology" Retrieved from "http://en.openei.org/w/index.php?title=EERC_National_Center_for_Hydrogen_Technology&oldid=34455

148

Links | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Links Print Text Size: A A A RSS Feeds FeedbackShare Page Related Websites Agencies and Institutions American Physical Society - Division of Nuclear Physics External link American Institute of Physics - FYI, Science Policy Briefs External link

149

Reference Links | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Links Reference Links Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Advisory Exemptions How to Submit a FOIA Request Fee Waiver and Reduction Criteria Electronic Reading Room ISC Conventional Reading Rooms Reference Links Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Freedom of Information Act (FOIA) Reference Links Print Text Size: A A A RSS Feeds FeedbackShare Page FOIA, 5 U.S.C. Sec. 552, As Amended by Public Law No. 104-231, 110 Stat. 2422 External link DOE Implementing Regulations, 10 CFR 1004 External link

150

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

151

Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

Not Available

2008-11-01T23:59:59.000Z

152

Alternative Fuels Data Center: Idle Reduction Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Idle Reduction Related Links to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Related Links on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Related Links on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Related Links on Google Bookmark Alternative Fuels Data Center: Idle Reduction Related Links on Delicious Rank Alternative Fuels Data Center: Idle Reduction Related Links on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Related Links on AddThis.com... More in this section... Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Emerging Fuels Fuel Prices Idle Reduction Related Links

153

Hydrogen as a fuel  

SciTech Connect

A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

1979-01-01T23:59:59.000Z

154

DOE Hydrogen and Fuel Cells Program: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search help Home > Hydrogen Storage Printable Version Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power...

155

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

156

Pages that link to "Property:UNRegion" | Open Energy Information  

Open Energy Info (EERE)

( links) Mauritius ( links) Bahrain ( links) Moldova ( links) Thailand ( links) Portugal ( links) Sudan ( links) View (previous 50 |...

157

Pages that link to "Form:Tool" | Open Energy Information  

Open Energy Info (EERE)

( links) Mauritius ( links) Bahrain ( links) Moldova ( links) Thailand ( links) Portugal ( links) Sudan ( links) Senegal (...

158

Pages that link to "Form:Research Institution" | Open Energy...  

Open Energy Info (EERE)

( links) Mauritius ( links) Bahrain ( links) Moldova ( links) Thailand ( links) Portugal ( links) Sudan ( links) Senegal (...

159

Pages that link to "Form:Program" | Open Energy Information  

Open Energy Info (EERE)

( links) Mauritius ( links) Bahrain ( links) Moldova ( links) Thailand ( links) Portugal ( links) Sudan ( links) Senegal (...

160

Pages that link to "Form:Company" | Open Energy Information  

Open Energy Info (EERE)

( links) Mauritius ( links) Bahrain ( links) Moldova ( links) Thailand ( links) Portugal ( links) Sudan ( links) View (previous 50 |...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Methods of valuing environmental externalities  

SciTech Connect

Estimating a monetary value for environmental externalities provides an approximation of the societal value of reducing impacts on human health and the environment from electrical energy supply. This method can be used for comparison of resources, including utility and nonutility generation, demand-side management and off-system power purchases. A dollar estimate of the full societal cost of the supply option is established by placing a value on its air, water and terrestrial effects and adding these costs to the option's capital, operating and maintenance costs. This article provides a rationale for monetizing externalities and addresses the strengths and weaknesses of four techniques for monetizing, with examples of the application of each method. The authors preferred technique for incorporating externalities into utility planning in the near term - implied valuation through the estimation of the marginal cost of abatement - is discussed in detail. 2 tabs.

Chernick, P.; Caverhill, E. (Resource Insight, Boston, MA (USA))

1991-03-01T23:59:59.000Z

162

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

163

Introduction to hydrogen energy  

SciTech Connect

The book comprises the following papers: primary energy sources suitable for hydrogen production, thermochemical and electrolytic production of hydrogen from water, hydrogen storage and transmission methods, hydrogen-oxygen utilization devices, residential and industrial utilization of energy, industrial utilization of hydrogen, use of hydrogen as a fuel for transportation, an assessment of hydrogen-fueled navy ships, mechanisms and strategies of market penetration for hydrogen, and fossil/hydrogen energy mix and population control. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA). (LK)

Veziroglu, T.N. (ed.)

1975-01-01T23:59:59.000Z

164

Transportation External Coordination Working Group:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

External Coordination External Coordination Working Group: Background and Process Judith Holm National Transportation Program Albuquerque, New Mexico April 21, 2004 TEC History * DOE's Office of Environmental Management (EM) and Office of Civilian Radioactive Waste Management (OCRWM) formed TEC in 1992 * EM & RW developed MOU and TEC charter in 1992 - Other DOE program offices joined in 1993-94 * Other agencies (DOT, FRA, NRC, EPA) have been active participants Meeting Locations 1992-present Some Founding Principles * TEC concept centered on unique stakeholder accountability principles - Participation by key responsible parties in technical/policy issue discussion and resolution results in increased confidence and more efficient business decisions * Ultimate goal: develop multi-year set of

165

Mechanochemical hydrogenation of coal  

DOE Patents (OSTI)

Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

1981-01-01T23:59:59.000Z

166

Safe Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen LLC Hydrogen LLC Jump to: navigation, search Name Safe Hydrogen LLC Place Lexington, Massachusetts Sector Hydro, Hydrogen Product Focused on hydrogen storage, through a 'slurry' of magnesium hydride, and generation technology. Coordinates 37.785485°, -79.441469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.785485,"lon":-79.441469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

American Hydrogen Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Jump to: navigation, search Name American Hydrogen Corporation Address OU Innovation Center, 340 W State St. Unit 40 Place Athens, Ohio Zip 45701 Sector Renewable Energy, Services Product String representation "a Houston-based ... nd efficiently." is too long. Website http://www.americanhydrogencor References American Hydrogen Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Hydrogen Corporation is a company based in Athens, Ohio. References ↑ "American Hydrogen Corporation" Retrieved from "http://en.openei.org/w/index.php?title=American_Hydrogen_Corporation&oldid=365845" Categories: Companies

168

Highline Hydrogen Hybrids | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Hybrids Hydrogen Hybrids Jump to: navigation, search Name Highline Hydrogen Hybrids Place farmington, Arkansas Zip 72730-1500 Sector Hydro, Hydrogen, Vehicles Product US-based manufacturer of hydrogen conversion systems for gasoline and diesel-powered vehicles. Coordinates 43.533982°, -88.093717° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.533982,"lon":-88.093717,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Google Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Delicious Rank Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Digg

170

HydroGen Corporation formerly Chiste Corp | Open Energy Information  

Open Energy Info (EERE)

HydroGen Corporation formerly Chiste Corp HydroGen Corporation formerly Chiste Corp Jump to: navigation, search Name HydroGen Corporation (formerly Chiste Corp) Place Jefferson Hills, Pennsylvania Zip 15025 Sector Hydro, Hydrogen Product HydroGen Corporation is a manufacturer of multi-megawatt fuel cell systems utilizing its proprietary 400-kilowatt phosphoric acid fuel cell (PAFC) technology References HydroGen Corporation (formerly Chiste Corp)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HydroGen Corporation (formerly Chiste Corp) is a company located in Jefferson Hills, Pennsylvania . References ↑ "HydroGen Corporation (formerly Chiste Corp)" Retrieved from "http://en.openei.org/w/index.php?title=HydroGen_Corporation_formerly_Chiste_Corp&oldid=346722"

171

DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network

172

Overlap Fermion in External Gravity  

E-Print Network (OSTI)

On a lattice, we construct an overlap Dirac operator which describes the propagation of a Dirac fermion in external gravity. The local Lorentz symmetry is manifestly realized as a lattice gauge symmetry, while the general coordinate invariance is expected to be restored only in the continuum limit. The lattice index density in the presence of a gravitational field is calculated.

Hiroto So; Masashi Hayakawa; Hiroshi Suzuki

2006-10-04T23:59:59.000Z

173

Standard-Related Links  

Science Conference Proceedings (OSTI)

... Standard-Related Links. ... Association for Clinical Chemistry ACS - American Chemical Society ANSI - American National Standards Institute AOAC ...

2013-06-28T23:59:59.000Z

174

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

175

NREL: Learning - Hydrogen Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

176

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

177

The Hype About Hydrogen  

E-Print Network (OSTI)

Review: The Hype About Hydrogen By Joseph J. Romm ReviewedJ. Romm. The Hype About Hydrogen. Washington, DC: IslandEmissions. The Hype About Hydrogen describes in detail what

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

178

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

179

Hydrogen (H2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen (H2) Hydrogen (H2) Historical Records from Ice Cores Deuterium Record from Dome C, Antarctica Continuous Measurements Advanced Global Atmospheric Gases Experiment (AGAGE,...

180

Hydrogen Program Overview  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: Why Hydrogen?

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen and Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

182

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network (OSTI)

- Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use #12;3 OAK embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline behavior as function of pressure and temperature - Effects of steel composition, microstructure

183

www.hydrogenics.com Hydrogenics Corporation  

E-Print Network (OSTI)

integration capabilities · Control and load profile software Hydrogen Energy Storage and Power Systems · Off Power ...Powering Change #12;www.hydrogenics.com Hydrogenics Profile Designer and manufacturer-grid renewable power · On-grid community or residential power · Grid incentives for load control · Renewable

184

Energy Links Page - EIA  

U.S. Energy Information Administration (EIA) Indexed Site

Publications & Reports > Energy Links Page Publications & Reports > Energy Links Page Related Energy Links Energy Companies Coal & Other Electricity Foreign Integrated Natural Gas Transmission, Distribution, and Marketing News Services and Periodicals Oil & Gas Exploration and Production Petroleum Refining, Marketing, and Transportation State Owned U.S. Integrated Government Agencies Other DOE National Laboratories Federal Energy States Universities Trade Associations & Other Trade Associations Other Associations International Statistics Energy Services Other Energy Sites EIA Links Disclaimer These pages contain hypertext links to information created and maintained by other public and private organizations. These links provide additional information that may be useful or interesting and are being provided consistent with the intended purpose of the EIA Web site. EIA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this outside information. EIA does not endorse the organizations sponsoring linked websites and we do not endorse the views they express or the products/services they offer.

185

FCT Hydrogen Delivery: Hydrogen Delivery R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Delivery R&D Activities to someone by E-mail Share FCT Hydrogen Delivery: Hydrogen Delivery R&D Activities on Facebook Tweet about FCT Hydrogen Delivery: Hydrogen Delivery...

186

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

187

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

188

DOE Hydrogen and Fuel Cells Program: 2008 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 Annual Merit Review Proceedings 2008 Annual Merit Review Proceedings Printable Version 2008 Annual Merit Review Proceedings Graphic of the White House with text that refers to the DOE Hydrogen Program Annual Merit Review and Peer Evaluation, Washington, DC, June 9 - 13, 2008. Principal investigators presented the status and results of their hydrogen and fuel cell projects at the DOE Hydrogen Program's Annual Merit Review on June 9-13 in Arlington, Virginia. Links to their presentations and posters are provided below. Plenary Session Presentations Hydrogen Production and Delivery Presentations Production & Delivery Distributed BILI Production Electrolysis High-Temperature Thermochemical Hydrogen Delivery Nuclear Hydrogen Initiative Biomass Gasification Biological Photoelectrochemical Hydrogen From Coal

189

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

190

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

191

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The initiators examined include cyclic and linear silico-organic compounds, the effects of which on the hydrogenation process are studied. The substances not only localize the active radicals before these are stabilised by hydrogen, but actually activate the destruction reaction of the coal substance and in this way generate atomic hydrogen: radical polymerization inhibitors thus convert to activators and hydrogen transfer. (8 refs.)

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

192

Facilities/Staff Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. FACILITIES and STAFF. The Thermophysical Properties Division is the Nation's ...

193

Universal Ownership: Why Environmental Externalities Matter to  

Open Energy Info (EERE)

Universal Ownership: Why Environmental Externalities Matter to Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Jump to: navigation, search Tool Summary Name: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Agency/Company /Organization: UNEP-Financing Initiative Focus Area: Industry Topics: Co-benefits assessment Resource Type: Lessons learned/best practices Website: www.unepfi.org/fileadmin/documents/universal_ownership.pdf Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Screenshot References: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors[1] Logo: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Summary "This study assesses the financial implications of unsustainable natural

194

Composition for absorbing hydrogen  

DOE Patents (OSTI)

A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Enz, Glenn L. (N. Augusta, SC)

1995-01-01T23:59:59.000Z

195

Composition for absorbing hydrogen  

DOE Patents (OSTI)

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

196

US National Institute of Hydrogen Fuel Cell Commercialization | Open Energy  

Open Energy Info (EERE)

Institute of Hydrogen Fuel Cell Commercialization Institute of Hydrogen Fuel Cell Commercialization Jump to: navigation, search Name US National Institute of Hydrogen Fuel Cell Commercialization Place Columbia, South Carolina Zip 29250-0768 Sector Hydro, Hydrogen Product The National Institute of Hydrogen Fuel Cell Commercialization, a nonprofit organization, will work to find commercial opportunities for USC and other state research institutions doing fuel cell research. References US National Institute of Hydrogen Fuel Cell Commercialization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US National Institute of Hydrogen Fuel Cell Commercialization is a company located in Columbia, South Carolina . References

197

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

198

Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Delicious Rank Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Digg Find More places to share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol

199

Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Facebook Tweet about Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Twitter Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Google Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Delicious Rank Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Digg Find More places to share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on AddThis.com... Publications Program Publications Technical Publications Educational Publications

200

Hythane project by Hydrogen China Ltd and China Railway Construction  

Open Energy Info (EERE)

project by Hydrogen China Ltd and China Railway Construction project by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name Hythane project by Hydrogen China Ltd and China Railway Construction Corporation Place Beijing Municipality, China Sector Hydro, Hydrogen Product China-based, joint venture between Hydrogen China and China Railway Construction Corporation for the purpose of demonstrating, marketing and making available Hythane hybrid fuel. References Hythane project by Hydrogen China Ltd and China Railway Construction Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hythane project by Hydrogen China Ltd and China Railway Construction Corporation is a company located in Beijing Municipality, China .

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Efficiency Links  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Efficiency Organizations Energy Efficiency Organizations Release Date: October 1999 Last Updated: Septembert 2009 EIA Links Disclaimer: These pages contain hypertext links to information created and maintained by other public and private organizations. These links provide additional information that may be useful or interesting and are being provided consistent with the intended purpose of the EIA website. EIA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this outside information. EIA does not endorse the organizations sponsoring linked websites, the views they express, or the products and services they offer. U.S. Federal Government / Regional / U.S. Nonprofit / International U.S. Federal Government and Related Agencies

202

NREL: News - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Feature News News Releases Events Awards Research Support Facility Energy Systems Integration Facility Related Links NREL is a national laboratory of the U.S....

203

Geothermal: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

204

Hydrology Group - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

links to relevant web pages within the Pacific Northwest National Laboratory and the Hanford Site. . Battelle Environmental Molecular Sciences Laboratory (EMSL) Energy and...

205

ZeptoOS // Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links ZeptoOS-specific resources: Subversion repository Kernel GIT repository Bug tracking system Blue Gene resources: ALCF: Argonne Leadership Computing Facility Blue Gene...

206

Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint  

DOE Green Energy (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

2012-06-01T23:59:59.000Z

207

Hydrogen Macro System Model User Guide, Version 1.2.1  

DOE Green Energy (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

2009-07-01T23:59:59.000Z

208

Externalities and electric power: an integrated assessment approach  

Science Conference Proceedings (OSTI)

This paper describes an integrated assessment approach for considering the options that electric utilities have to meet the anticipated demand for their power. The objective that this paper considers is one of meeting the demand for power, with an acceptable degree of reliability, at minimum cost. The total cost is the sum of the private cost of producing the electric power plus the external costs that result from its production. These external costs, or externalities, are effects on the well-being of third parties that producers and consumers of electric power do not take into account in their decisions. The external costs include many different types of effects such as illness, ecosystem damage, and road damage. The solution to the problem of minimizing total cost is addressed in two steps. The first step uses damage function methods to establish a common metric for the weights of the different objectives (i.e., external costs). The damage function analysis also reduces the dimensionality of the analysis in the second step, and identifies criteria to include in that analysis. The second step uses multi-criteria decision methods. This analysis includes the most important externalities that the damage function analysis identifies and, in addition, potentially important factors that can not be quantified reliably using damage function methods. An example of the latter are the damages from global climate change. The two-step method that this paper describes addresses many of the limitations of the damage function method and multi-criteria methods, that arise when they are used separately. This linked method can be used by electric utilities for their integrated resource planning. It can also be adapted to other applications.

Lee, R.

1995-12-31T23:59:59.000Z

209

Hydrogen Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Hydrogen Solar Ltd Place Guildford, United Kingdom Zip GU2 7YG Sector Hydro, Hydrogen, Solar Product Hydrogen Solar Ltd is developing innovative technology to convert sunlight directly into hydrogen fuel for vehicle refueling and other applications. Coordinates 51.237086°, -0.570516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.237086,"lon":-0.570516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

German Hydrogen Association DWV | Open Energy Information  

Open Energy Info (EERE)

German Hydrogen Association DWV German Hydrogen Association DWV Jump to: navigation, search Name German Hydrogen Association (DWV) Place Berlin, Germany Zip 12205 Sector Hydro, Hydrogen Product String representation "The German Hydr ... our existence." is too long. Coordinates 52.516074°, 13.376987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.516074,"lon":13.376987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Widget:HydrogenSunburst | Open Energy Information  

Open Energy Info (EERE)

HydrogenSunburst HydrogenSunburst Jump to: navigation, search This widget embeds the Hydrogen Sunburst visualization into a wiki page. Parameters width' - The width of the embedded object, as a css rule. (px,em,pt,%) Defaults to '100%'. height - The height of the embedded object, as a css rule. (px,em,pt,%) Defaults to '200px'. Usage To use this widget, copy the following code and paste it into your wiki page. {{#Widget:HydrogenSunburst|width=100%|height=250px}} Example Ret Left click to go straight to a CDP. Right click to find more information. The interactive graphic on this page links to all of the Composite Data Products, organized by topic. You can find this complete listing on the Composite Data Products by Topic Web page. If you need additional assistance finding a Composite Data Product, please email us.

212

Transportation External Coordination Working Group:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplishments and Future Accomplishments and Future Transportation External Coordination Working Group Meeting Phoenix, AZ Judith A. Holm, Office of National Transportation Office of Civilian Radioactive Waste Management April 4, 2005 TEC MEMBER ORGANIZATIONS American College of Emergency Physicians (ACEP) American Nuclear Society (ANS) Association of American Railroads (AAR) Brotherhood of Locomotive Engineers and Trainmen (BLET) Commercial Vehicle Safety Alliance (CVSA) Conference of Radiation Control Program Directors, Inc. (CRCPD) Council of Energy Resource Tribes (CERT) Council of State Governments-Eastern Regional Conference (CSG-ERC) Council of State Governments-Midwestern Office (CSG-MW) Council on Radionuclides and Radiopharmaceuticals (CORAR) Dangerous Goods Advisory Council (DGAC)

213

Electricity Generation and Environmental Externalities: Case Studies  

Reports and Publications (EIA)

Provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

Information Center

1995-09-01T23:59:59.000Z

214

Electrochemical Hydrogen Sensor for Safety Monitoring  

DOE Green Energy (OSTI)

A hydrogen safety sensor is presented which provides high sensitivity and fast response time when operated in air. The target application for the sensor is external deployment near systems using or producing high concentrations of hydrogen. The sensor is composed of a catalytically active metal-oxide sensing electrode and a noble metal reference electrode attached to an yttria-stabilized zirconia (YSZ) electrolyte. The sensing approach is based on the difference in oxidation rate of hydrogen on the different electrode materials. Results will be presented for a sensor using a sensing electrode of tin-doped indium oxide (ITO). Response to H{sub 2}, and cross-sensitivity to hydrocarbon and H{sub 2}O are discussed.

Martin, L P; Pham, A-Q; Glass, R S

2003-04-25T23:59:59.000Z

215

Diversity Links; Diversity Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Disclaimer: Links and/or hyperlinks on this page may contain information gathered from public sources outside Brookhaven National Laboratory. This information is for reference purposes only and, as such, there is no endorsement of products or services therein, nor is BNL responsible for any content inaccuracies. By clicking any of the aforementioned links and/or hyperlinks, you acknowledge your understanding and agreement with this statement. Source Disclaimer: Links and/or hyperlinks on this page may contain information gathered from public sources outside Brookhaven National Laboratory. This information is for reference purposes only and, as such, there is no endorsement of products or services therein, nor is BNL responsible for any content inaccuracies. By clicking any of the aforementioned links and/or hyperlinks, you acknowledge your understanding and agreement with this statement. Diversity Links BNL & DOE Diversity Links Minority Recruitment Links BNL & DOE Diversity Links Brookhaven National Laboratory (BNL) Brookhaven Advocacy Council (BAC) Brookhaven Employees Recreation Association (BERA) | BERA Clubs U.S. DOE Office of Civil Rights and Diversity U.S. DOE Office of Civil Rights and Diversity - Homepage

216

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

217

Microsoft Word - Additional links  

Office of Legacy Management (LM)

Links: Links: Link to annual groundwater reports on LM website: http://www.lm.doe.gov/Monticello/Documents.aspx#gwreports Links to peer-reviewed papers referenced in the Program Status and Analytical Update (Note: Due to copyright restrictions, links to these papers, rather than reproductions, are provided): a. Harding, Lee E. "Non-linear uptake and hormesis effects of selenium in red- winged blackbirds (Agelaius phoeniceus)". Science of the Total Environment 389 (2008) 350-366. Available through sciencedirect at: http://www.sciencedirect.com/science/article/pii/S0048969707010029 b. King, Kirke A. and Thomas W. Custer. "Reproductive Success of Barn Swallows Nesting Near a Selenium-Contaminated Lake in East Texas, USA". Environmental Pollution 84 (1994) 53-58. Available through sciencedirect at:

218

The role of hydrogen in the hydrogenation and hydrogenolysis of aniline on the nickel single crystal surfaces: Its implication on the mechanisms of HDN reactions  

SciTech Connect

The selectivity of hydrogenation and hydrogenolysis reactions for organonitrogen compounds on transition metal surfaces depends heavily on the availability of surface hydrogen surface under reaction conditions. The surface hydrogen produced during dehydrogenation of adsorbed aniline upon thermal activation does not significantly modify hydrogenolysis reactions because it desorbs below the reaction temperatures. A series of experiments which use external hydrogen to control the concentration of surface hydrogen at reaction temperatures are reported here. In situ kinetic measurements in the presence of reactive hydrogen environments have been used to probe the details of the adsorbed species and reaction mechanisms. Nickel single crystals have been used as well defined model catalysts for hydrodenitrogenation (HDN) reactions. Previously, the effect of external hydrogen on aniline hydrogenolysis on the Pt(111) surface has been reported. On Pt(111), C-N bond activation is substantially enhanced in the presence of hydrogen. The increased C-N bond cleavage is facilitated by hydrogen which maintains a parallel adsorption of the aromatic derivative of aniline. In the absence of surface hydrogen, the adsorbed intermediate tilts away from surface because of partial dehydrogenation with increasing temperature at about 400 K. This paper will discuss a recent study of aniline reactions on the Ni(100) and Ni(111) surfaces both in the presence and absence of hydrogen. Reactivity comparisons will also be made for these two nickel surfaces towards adsorbed aniline.

Huang, S.X.; Gland, J.L. [Univ. of Michigan, Ann Arbor, MI (United States); Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

1995-02-01T23:59:59.000Z

219

Hydrogen Program Contacts; DOE Hydrogen Program FY 2008 Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 FY 2008 Annual Progress Report DOE Hydrogen Program JoAnn Milliken, DOE Hydrogen Program Manager and Chief Engineer Office of Hydrogen, Fuel Cells and Infrastructure Technologies...

220

DOE Hydrogen Analysis Repository: Hydrogen Production from Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the 1998 DOE Hydrogen Program Review. Keywords: Technoeconomic analysis; hydrogen production; costs; hydrogen storage; renewable Purpose To determine technical and economic...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Compression techniques for fast external sorting  

Science Conference Proceedings (OSTI)

External sorting of large files of records involves use of disk space to store temporary files, processing time for sorting, and transfer time between CPU, cache, memory, and disk. Compression can reduce disk and transfer costs, and, in the case of external ... Keywords: External sorting, Query evaluation, Semi-static compression, Sorting

John Yiannis; Justin Zobel

2007-04-01T23:59:59.000Z

222

Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve  

Science Conference Proceedings (OSTI)

Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

Forsberg, C.W.

2005-01-20T23:59:59.000Z

223

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects by Date U.S. Department of Energy Distributed Hydrogen Production via Steam Methane Reforming Project Summary Full Title: Well-to-Wheels Case Study: Distributed...

224

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification with Sequestration Project Summary Full Title: Well-to-Wheels Case Study: Centralized Hydrogen Production from Coal Gasification with Sequestration Project ID:...

225

DOE Hydrogen Analysis Repository: Hydrogen Pathways Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2020 ProductsDeliverables Description: FY 2012 Progress Report Publication Title: FY 2012 DOE Hydrogen Program Annual Progress Report ArticleAbstract Title: Effects of...

226

DOE Hydrogen Analysis Repository: Hydrogen Deployment System...  

NLE Websites -- All DOE Office Websites (Extended Search)

routine to determine the layout of a least-cost infrastructure. Keywords: Hydrogen production; electrolysis; costs; fuel cells Purpose Initially, electrolytic H2 production...

227

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass feedstock price Units: million Btu Supporting Information: LHV Description: Electricity price Units: kWh Description: Hydrogen fill pressure Units: psi Description:...

228

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Transition to Hydrogen Fuel Cell Vehicles Biofuels in Light-Duty Vehicles Biogas Resources Characterization Biomass Integrated Gasification Combined-Cycle Power...

229

DOE Hydrogen Analysis Repository: Hydrogen Transition Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Period of Performance Start: June 2005 End: May 2008 Project Description Type of Project: Model Category: Hydrogen Fuel Pathways Objectives: Use agent-based modeling to provide...

230

DOE Hydrogen Analysis Repository: Hydrogen Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Costs Project Summary Full Title: Fuel Choice for Fuel Cell Vehicles: Hydrogen Infrastructure Costs Previous Title(s): Guidance for Transportation Technologies: Fuel...

231

DOE Hydrogen Analysis Repository: Hydrogen Vehicle Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas. ProductsDeliverables Description: Report Publication Title:...

232

DOE Hydrogen Analysis Repository: Hydrogen Passenger Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers,...

233

DOE Hydrogen Analysis Repository: Hydrogen Technology Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process Project ID: 121 Principal...

234

Help:External SPARQL integration | Open Energy Information  

Open Energy Info (EERE)

External SPARQL integration External SPARQL integration Jump to: navigation, search Integrating with Reegle logo.png OpenEI is engaged in an ongoing linked open data collaboration with Reegle[1]. This page serves to document a few of the initial integration techniques. For the purposes of this demonstration, we'll be working with the country of Brazil. The following SPARQL query was used to detect if a country within OpenEI had a corresponding country profiles: {{#sparql: PREFIX reegle: PREFIX country: PREFIX geonames: SELECT ?countryName ?profile WHERE { SERVICE { country:{{#var:Iso3166Alpha2}} geonames:name ?countryName . country:{{#var:Iso3166Alpha2}} reegle:profile ?profile .

235

Void trapping of hydrogen in sintered iron  

DOE Green Energy (OSTI)

The effect of void trapping of hydrogen in iron was studied using the gas-phase permeation technique. Iron membranes of controlled void density, varying from 92% to 98% were prepared by press and sintering of electrolytic iron powder. The presence of internal voids showed no effect on the steady state flux of hydrogen through the membrane. The effective diffusivity, obtained by the time lag method, increased with the increase of input hydrogen partial pressure. This disagreement with the prediction of the theory in literature was explained by the existence of hydrogen in both the diatomic gaseous form and as adsorbed hydrogen. This explanation was further confirmed by examining the dependence of trapped hydrogen concentration with pressure. The linear dependence of trapped hydrogen concentration in voids with external hydrogen partial pressure for samples of 96%, 94% and 92% dense were given respectively by C/sub g/ = (1.5 +- 0.2) x 10/sup 15/ P + (3.2 +- 0.5) x 10/sup 14/ atoms of H/c.c. C/sub g/ = (2.1 +- 0.6) x 10/sup 15/ P + (1.7 +- 0.5) x 10/sup 15/ atoms of H/c.c. C/sub g/ = (4.5 +- 0.3) x 10/sup 15/ P + (6.5 +- 0.2) x 10/sup 15/ atoms of H/c.c. The discrepancy between the reported values and the values predicted by theory was explained by the poisoning of some of the voids by surface oxides.

Wong, K.C.

1976-09-01T23:59:59.000Z

236

Hydrogen in semiconductors and insulators  

E-Print Network (OSTI)

the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

237

Liquid Hydrogen Absorber for MICE  

E-Print Network (OSTI)

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

238

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

hydrogen with compressed natural gas before dispensing theindustry. Both compressed natural gas, CNG, and hydrogen arenatural gas reformers or water electrolysers. The hydrogen must be compressed

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

239

Bursty traffic over bursty links  

Science Conference Proceedings (OSTI)

Accurate estimation of link quality is the key to enable efficient routing in wireless sensor networks. Current link estimators focus mainly on identifying long-term stable links for routing. They leave out a potentially large set of intermediate links ... Keywords: bursty links, link estimation, routing

Muhammad Hamad Alizai; Olaf Landsiedel; J gila Bitsch Link; Stefan Gtz; Klaus Wehrle

2009-11-01T23:59:59.000Z

240

External Resources | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

External Resources | National Nuclear Security Administration External Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog External Resources Home > content > External Resources External Resources National security is not achieved by one government agency alone, but through the joint effort of multiple agencies with extraordinarily talented

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

External Resources | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

External Resources | National Nuclear Security Administration External Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog External Resources Home > content > External Resources External Resources National security is not achieved by one government agency alone, but through the joint effort of multiple agencies with extraordinarily talented

242

Off-diagonal geometric phase of atom-electron coupling in hydrogen atom  

E-Print Network (OSTI)

In this paper, the off-diagonal geometric phase of thermal state in hydrogen atom under the effects of external magnetic field is considered. Increasing temperature tends to suppress the off-diagonal geometric phase, including 1-order and 2-order cases. On the other hand, the relationship between the geometric phase and external magnetic field is discussed.

Guo-Qiang Zhu

2009-07-10T23:59:59.000Z

243

Lighting Group: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Links Organizations Illuminating Engineering Society of North America (IESNA) International Commission on Illumination (CIE) International Association of Lighting Designers (IALD) International Association of Energy-Efficient Lighting Lightfair International Energy Agency - Task 21: Daylight in Buildings: Design Tools and Performance Analysis International Energy Agency - Task 31: Daylighting Buildings in 21st Century National Association on Qualifications for the Lighting Professions (NCQLP) National Association of Independent Lighting Distributors (NAILD) International Association of Lighting Management Companies (NALMCO) Research Centers California Lighting Technology Center Lighting Research Center Lighting Research at Canada Institute for Research in Construction

244

Using HyPro to Evaluate Competing Hydrogen Pathways, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

89 89 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives Develop understanding of how a hydrogen production infrastructure for H 2 fuel cell (FC)/ internal combustion engine (ICE) vehicles might develop in the U.S. Quantify production methods under consistent cost and state-of-technology assumptions. Analyze infrastructure development under dynamic conditions over time. Determine factors that will drive infrastructure development. Define role of externalities such as policy and technology advancement. Develop a computational model to aid in the analysis. Technical Barriers This project addresses the following technical barriers from the Systems Analysis section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and

245

Hydrogen separation membranes annual report for FY 2006.  

Science Conference Proceedings (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. This goal of this project is to develop two types of dense ceramic membrane for producing hydrogen nongalvanically, i.e., without electrodes or external power supply, at commercially significant fluxes under industrially relevant operating conditions. The first type of membrane, hydrogen transport membranes (HTMs), will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. The second type of membrane, oxygen transport membranes (OTMs), will produce hydrogen by nongalvanically removing oxygen that is generated when water dissociates at elevated temperatures. This report describes progress that was made during FY 2006 on the development of OTM and HTM materials.

Balachandran, U.; Chen, L.; Ciocco, M.; Doctor, R. D.; Dorris, S.E.; Emerson, J. E.; Fisher, B.; Lee, T. H.; Killmeyer, R. P.; Morreale,B.; Picciolo, J. J.; Siriwardane, R. V.; Song, S. J.

2007-02-05T23:59:59.000Z

246

Sector 30 - useful links  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Links Sector 30 Sector Orientation Form HERIX experiment header for lab book MERIX experiment header for lab book Printing from your laptop at the beamline Other IXS sectors...

247

Links of Interest  

NLE Websites -- All DOE Office Websites (Extended Search)

Links of Interest: EM FY 2014 Budget Priorities EM Site Specific Advisory Board Site Treatment Plan for Mixed Wastes Stewardship URS | CH2M Oak Ridge, LLC (UCOR)* Wastren...

248

Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage  

SciTech Connect

GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than todays lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

2010-10-01T23:59:59.000Z

249

BP and Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

250

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

commercialization decision in 2015 leads to beginning of mass-produced hydrogen fuel cell cars by 2020. FY2006 Hydrogen Fuel Initiative Budget Request 13% 28% 12% 15% 22% 3% 6% 1%...

251

Hydrogen Posture Plan  

Fuel Cell Technologies Publication and Product Library (EERE)

The Hydrogen Posture Plan, published in December 2006, outlines a coordinated plan for activities under the Hydrogen Fuel Initiative, both at the Department of Energy and the Department of Transportat

252

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

253

Hydrogen Fuel Quality (Presentation)  

DOE Green Energy (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

254

Degeneracy Breaking of Hydrogen Atom  

E-Print Network (OSTI)

The three dimensional rotation group, SO(3), is a symmetry group of the normal hydrogen atom. Each reducible representation of this group can be associated with a degenerate energy level. If this atom is placed in an external magnetic field, the interaction between the orbital magnetic moment with this field will lead to a symmetry breaking where the symmetry group of the atom is a new group distinct from the SO(3) group. This phenomenon describes the normal Zeeman effect, where a degenerate energy level splits into several new energy levels. It is explicitly shown that each of the new energy levels can be associated with an irreducible representation of the new symmetry group.

Agung Trisetyarso; Pantur Silaban

2008-12-22T23:59:59.000Z

255

Geometrical phase of thermal state in hydrogen atom  

E-Print Network (OSTI)

In this paper, the geometric phase of thermal state in hydrogen atom under the effects of external magnetic field is considered. Especially the effects of the temperature upon the geometric phase is discussed. Also we discuss the time evolution of entanglement of the system. They show some similar behaviors.

Guo-Qiang Zhu

2006-05-08T23:59:59.000Z

256

Corrosion and Hydrogen Damage  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Advanced Materials and Reservoir Engineering for Extreme Oil & Gas Environments: Corrosion and Hydrogen Damage Sponsored by: TMS...

257

Hydrogen Assisted Cracking  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking (EAC): Laboratory Research and Field Experiences: Hydrogen Assisted Cracking Program Organizers: Suresh Divi, TIMET

258

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

hydrogen (which would not have to be stored, and which would be distributed locady only). Filling station

Delucchi, Mark

1992-01-01T23:59:59.000Z

259

Flash hydrogenation of coal  

DOE Patents (OSTI)

A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

Manowitz, Bernard (Brightwaters, NY); Steinberg, Meyer (Huntington Station, NY); Sheehan, Thomas V. (Hampton Bays, NY); Winsche, Warren E. (Bellport, NY); Raseman, Chad J. (Setauket, NY)

1976-01-01T23:59:59.000Z

260

Purification of Hydrogen  

DOE Patents (OSTI)

Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

Newton, A.S.

1950-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Liquid metal hydrogen barriers  

DOE Patents (OSTI)

Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

Grover, George M. (Los Alamos, NM); Frank, Thurman G. (Los Alamos, NM); Keddy, Edward S. (Los Alamos, NM)

1976-01-01T23:59:59.000Z

262

Sensitive hydrogen leak detector  

DOE Patents (OSTI)

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

263

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

264

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

battery- powered electric vehicles, approaches the breadth and magnitude of hydrogens public good benefits. What History

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

265

Atomic Data for Hydrogen (H )  

Science Conference Proceedings (OSTI)

... Hydrogen (H) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Hydrogen (H). ...

266

Strong Lines of Hydrogen ( H )  

Science Conference Proceedings (OSTI)

... Hydrogen (H) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Strong Lines of Hydrogen ( H ). ...

267

Hydrogen energy assessment  

SciTech Connect

The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

Salzano, F J; Braun, C [eds.

1977-09-01T23:59:59.000Z

268

BCDA Machine Status Link  

NLE Websites -- All DOE Office Websites (Extended Search)

Machine Status Link Machine Status Link Version 1.33 (December 2005) David M. Kline. The Machine Status Link (MSL) is responsible for distributing the digitized beam current, injection status, P0 clock, and other statuses over a single fiber to several locations around the Storage Ring. The MRD100 is a VME-based module that is part of the MSL and was specifically designed for the APS. It receives and interprets information from the XMS100 module by means of copper or fiber. Signals from the XMS100 module are sent at a P0 rate (3.667 microseconds). It sends two registers every cycle and all in about 12 cycles. Refer to the ASD website for additional information regarding the MSL. The focus of this page is to provide information of how to configure the MRD100 for a beamline IOC and to discuss the sample IOC

269

Global Climate Change Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Climate Change Links Global Climate Change Links This page provides links to web pages that we at CDIAC feel do a responsible job of presenting information and discussion pertinent to the science behind the global climate change ("global warming") debate. These sites include those on both sides of the debate; some asserting that global warming is a clear and present danger, and others that might be labeled global warming "skeptics." Some of these sites don't take a position per se; they exist to offer the public objective scientific information and results on our present understanding of the climate system. The list is not intended to be comprehensive, by any means. We hope it will be especially helpful for those who may be just beginning their research into global

270

New Mexico Hydrogen Technology Partners HyTep | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Technology Partners HyTep Hydrogen Technology Partners HyTep Jump to: navigation, search Name New Mexico Hydrogen Technology Partners (HyTep) Place New Mexico Sector Hydro, Hydrogen Product An alliance of industry, academia and government leaders cooperating to encourage the development and implementation of hydrogen technology in New Mexico. References New Mexico Hydrogen Technology Partners (HyTep)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Mexico Hydrogen Technology Partners (HyTep) is a company located in New Mexico . References ↑ "New Mexico Hydrogen Technology Partners (HyTep)" Retrieved from "http://en.openei.org/w/index.php?title=New_Mexico_Hydrogen_Technology_Partners_HyTep&oldid=349173"

271

Hydrogen Use and Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

272

External costs of intercity truck freight transportation  

E-Print Network (OSTI)

From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2 % of private costs and user fees would need to be increased about

David J. Forkenbrock

1999-01-01T23:59:59.000Z

273

PNNL: About PNNL: Communications & External Relations  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications & External Relations At Pacific Northwest National Laboratory (PNNL), scientific breakthroughs happen everyday. So does being a good neighbor. From cultivating...

274

External Independent Review (EIR) Standard Operating Procedure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Operating Procedure (SOP) External Independent Review (EIR) Standard Operating Procedure (SOP) EIR SOP.pdf More Documents & Publications ICR-ICE Standard Operating...

275

DOE Hydrogen Analysis Repository: Hydrogen Production by  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

276

DOE Hydrogen Analysis Repository: Hydrogen Fueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

considered.) 4. Gaseous hydrogen generated at the refueling station from natural gas by steam methane reforming, stored as a compressed gas at 5000 psi and dispensed to the vehicle...

277

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Early Market Transition of Fuel Cell Vehicles Macro-System Model Stranded Biogas Decision Tool for Fuel Cell Co-Production Water for Hydrogen Pathways 2010 A Portfolio...

278

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

& RELIABILITY ZERONEAR ZERO ZERONEAR ZERO EMISSIONS EMISSIONS Why Hydrogen? Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil S e q u e s t r a t i o n Biomass Hydro Wind...

279

Oil Prices, External Income, and Growth: Lessons from Jordan  

E-Print Network (OSTI)

This paper extends the long-run growth model of Esfahani et al. (2012a) to a labour exporting country that receives large inows of external income the sum of remittances, FDI and general government transfers from major oil exporting economies. The theoretical model predicts real oil prices to be one of the main long-run drivers of real output. Using quarterly data between 1979 and 2009 on core macroeconomic variables for Jordan and a number of key foreign variables, we identify two long-run relationships: an output equation as predicted by theory and an equation linking foreign and domestic ination rates. It is shown that real output in the long run is shaped by (i) oil prices through their impact on external income and in turn on capital accumulation, and (ii) technological transfers through foreign output. The empirical analysis of the paper conrms the hypothesis that a large share of Jordans output volatility can be associated with uctuations in net income received from abroad (arising from oil price shocks). External factors, however, cannot be relied upon to provide similar growth stimuli in the future, and therefore it will be important to diversify the sources of growth in order to achieve a high and sustained level of income.

Kamiar Mohaddes A; Mehdi Raissi B

2013-01-01T23:59:59.000Z

280

Hydrogen Engine Center HEC | Open Energy Information  

Open Energy Info (EERE)

Engine Center HEC Engine Center HEC Jump to: navigation, search Name Hydrogen Engine Center (HEC) Place Algona, Iowa Zip IA 50511 Sector Hydro, Hydrogen Product The Hydrogen Engine Center (HEC) manufactures and modifies ultra-low emissions engines for industrial use. Coordinates 47.278335°, -122.248554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.278335,"lon":-122.248554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

282

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

283

Links | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Chapter Albuquerque, NM > Links Links "Promoting Equal Opportunity and Cultural Diversity for APAs in Government" FAPAC, Washington DC Printer-friendly version...

284

Department of Energy Idaho - Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links DOE - HQ Headquarters - Washington, DC DOE - NE Office of Nuclear Energy DOE - EM Office of Environmental Management DOE Field Offices Radiological and Environmental...

285

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

286

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

287

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

288

Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

289

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

290

Hydrogen Based Bacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Based Bacteria Hydrogen Based Bacteria Name: Ellen Location: N/A Country: N/A Date: N/A Question: i was in my Biology class and a very respectable someone mentioned something about the discovery of a hydrogen based bacteria. my teacher wasnt aware of this study, and assigned me to find out about it. so i thought i would Email you and see if you people knew anything about it. Awaiting your repsonse Replies: I'm not quite sure what you mean by hydrogen based bacteria but I will take a stab that you mean bacteria that use hydrogen for energy. Some bacteria are chemolithotrophs which mean that they are autrophs but don't use the sun as their energy source; they get their energy from chemical sources. There are bacteria that use hydrogen as their energy source. They are diverse as a group and are all facultative. The overall chemical reaction looks like this:

291

Hydrogenation of carbonaceous materials  

DOE Patents (OSTI)

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

292

Hydrogen Permeation Resistant Coatings  

DOE Green Energy (OSTI)

As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

2005-06-15T23:59:59.000Z

293

DOE Hydrogen and Fuel Cells Program: Background  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background U.S. DRIVE Partnership Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > Background Printable Version Background In the early 1970s, concern over our growing dependence on imported petroleum, coupled with concerns about our deteriorating air quality due to emissions from combustion of fossil fuels, spurred the Federal government to act. The timeline below provides policy and programmatic highlights for federally supported hydrogen and fuel cell R&D over the last three decades. Federal Support for Hydrogen and Fuel Cell R&D Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader.

294

HYDROGEN ISOTOPE TARGETS  

DOE Patents (OSTI)

The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

Ashley, R.W.

1958-08-12T23:59:59.000Z

295

Pages that link to "Rockies Area" | Open Energy Information  

Open Energy Info (EERE)

( links) Simply Efficient ( links) Solix Biofuels ( links) Sun Dog Energy ( links) Techsolas LLC ( links) Toltec Energy ( links) Tri...

296

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

297

Hydrogen and Fuel Cells R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids --Hydrogen Storage Materials --Hydrogen Storage Systems Modeling and Analysis --Thermochemical Hydrogen * Fuel Cells --Polymer Electrolyte --Modeling & Analysis --Fuel...

298

California Hydrogen Infrastructure Project | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Infrastructure Project Jump to: navigation, search Name California Hydrogen Infrastructure Project Place California Sector Hydro, Hydrogen Product String representation...

299

The Universe Adventure - Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Cosmology and Space Cosmic Journey A site chronicling the history of scientific cosmology, presented by the American Institute of Physics. Hubble Ultra-Deep Field Skywalker Lets you explore the famous Hubble Deep Field photo, which is the deepest view (in the visible spectrum) into the sky to date. QuietBay Constellation Tutorial A fun and easy tutorial to familiarize yourself with the night sky. Astronomy Picture of the Day Astronomy Picture of the Day features a new image from the universe every day, with short explanations written by professional astronomers. The Solar System NASA site that includes images and profiles of the planets (plus Pluto). Earth Guide An Earth planetary science site created by the Japan Science and Technology Agency describing many of the features of Earth and its place in the

300

Antiprotonic hydrogen in static electric field  

E-Print Network (OSTI)

Effects of the static electric field on the splitting and annihilation widths of the levels of antiprotonic hydrogen with a large principal quantum number (n=30) are studied. Non-trivial aspects of the consideration is related with instability of (p\\bar{p})^*-atom in ns and np-states due to coupling of these states with the annihilation channels. Properties of the mixed nl-levels are investigated depending on the value of external static electric field. Specific resonance-like dependence of effective annihilation widths on the strength of the field is revealed.

G. Ya. Korenman; S. N. Yudin

2005-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

302

Hydrogen Generation by Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

303

OpenEI - hydrogen  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

304

Thin film hydrogen sensor  

DOE Green Energy (OSTI)

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

305

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

306

Enabling the Hydrogen Economy  

Science Conference Proceedings (OSTI)

... Act of 2002 to develop research and standards for gas pipeline integrity, safety ... for materials used in hydrogen systems (eg, pipelines) developed in ...

2010-10-05T23:59:59.000Z

307

FCT Hydrogen Delivery: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

distributed production facilities have relatively low delivery costs, but the hydrogen production costs are likely to be higher-lower volume production means higher equipment...

308

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

materials data related to hydrogen embrittlement - Modeled after existing metals handbooks - Data culled from open literature * Peer-reviewed scientific articles * Public...

309

Hydrogen MOS Quality Boulder  

Science Conference Proceedings (OSTI)

... b. The recommendations of the FSS based on its December 2008 review of the proposed method of sale for hydrogen engine fuel are: ...

2011-10-24T23:59:59.000Z

310

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The results are given of an investigation of the influence of additions of certain organosilicon compounds of cyclic and linear nature on the coal hydrogenation process.

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

311

The Transition to Hydrogen  

E-Print Network (OSTI)

optimistic hydrogen-demand scenarios, natural gas use woulddemand Model Presidents H 2 initiative (100% of ?eet) (50% of ?eet) (21% of ?eet) Natural gas

Ogden, Joan

2005-01-01T23:59:59.000Z

312

HYDROGEN SEPARATION MEMBRANES  

DOE Green Energy (OSTI)

A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C, probably with the reduction to metallic zinc with the evolution of hydrogen sulfide. The work has shown that ZnS is not a viable candidate for a high-temperature hydrogen separation membrane.

Donald P. McCollor; John P. Kay

1999-08-01T23:59:59.000Z

313

Hydrogen Compatible Materials Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop November 3 rd , 2010 Research, Engineering, and Applications Center for Hydrogen Sandia National Laboratory, Livermore, CA Introduction: On November 3 rd , 2010, Sandia...

314

Optimized hydrogen piston engines  

DOE Green Energy (OSTI)

Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

Smith, J.R.

1994-05-10T23:59:59.000Z

315

Renewable Hydrogen (Presentation)  

DOE Green Energy (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

316

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

317

Hydrogen Safety Knowledge Tools  

Science Conference Proceedings (OSTI)

With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

Fassbender, Linda L.

2011-01-31T23:59:59.000Z

318

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

319

The Transition to Hydrogen  

E-Print Network (OSTI)

energy costs, energy alternatives, and the role of hydrogenenergy in profound ways. But hydrogen also poses the greatest challenges of any alternative

Ogden, Joan M

2005-01-01T23:59:59.000Z

320

Sustainable hydrogen production  

SciTech Connect

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

322

Use of Automated External Defibrillators  

SciTech Connect

In an effort to improve survival from cardiac arrest, the American Heart Association (AHA) has promoted the Chain of Survival concept, describing a sequence of prehospital steps that result in improved survival after sudden cardiac arrest. These interventions include immediate deployment of emergency medical services, prompt cardiopulmonary resuscitation, early defibrillation when indicated, and early initiation of advanced medical care. Early defibrillation has emerged as the most important intervention with survival decreasing by 10% with each minute of delay in defibrillation. Ventricular Fibrillation (VF) is a condition in which there is uncoordinated contraction of the heart cardiac muscle of the ventricles in the heart, making them tremble rather than contract properly. VF is a medical emergency and if the arrhythmia continues for more than a few seconds, blood circulation will cease, and death can occur in a matter of minutes. During VF, contractions of the heart are not synchronized, blood flow ceases, organs begin to fail from oxygen deprivation and within 10 minutes, death will occur. When VF occurs, the victim must be defibrillated in order to establish the hearts normal rhythm. On average, the wait for an ambulance in populated areas of the United States is about 11 minutes. In view of these facts, the EFCOG Electrical Safety Task Group initiated this review to evaluate the potential value of deployment and use of automated external defibrillators (AEDs) for treatment of SCA victims. This evaluation indicates the long term survival benefit to victims of SCA is high if treated with CPR plus defibrillation within the first 3-5 minutes after collapse. According to the American Heart Association (AHA), survival rates as high as 74% are possible if treatment and defibrillation is performed in the first 3 minutes. In contrast survival rates are only 5% where no AED programs have been established to provide prompt CPR and defibrillation. ["CPR statistics" American Heart Association] Early intervention with both CPR and defibrillation can result in high long-term survival rates for SCA, as demonstrated by a study investigating the beneficial effects of AED devices at Chicagos OHare and Midway airports. The American Medical Association (AMA) advocates the widespread placement of AEDs [AMA Res. 413, A-02; Res. 424, A-04]; supports increasing government and industry funding for the purchase of AED devices; and encourages the American public to become trained in CPR and the use of AEDs. Some states, including Maryland, have enacted legislation requiring AED devices and a certified responder be available at high school and school-sponsored athletic events due the risk of SCA to athletes (the most common cause of death in young athletes). Ensuring AED availability at Department of Energy (DOE) sites would serve as a means of preventative intervention for over 14,000 DOE employees and 193,000 contract workers. It is estimated 1 per 1,000 adults 35 years of age and older will experience SCA in a given year.

Gregory K Christensen

2009-02-01T23:59:59.000Z

323

Massachusetts Hydrogen Coalition | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Hydrogen Coalition Massachusetts Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name Massachusetts Hydrogen Coalition Address 100 Cummings Center Place Beverly, Massachusetts Zip 01915 Region Greater Boston Area Website http://www.massh2.org/ Notes Membership based non-profit, focused on expanding hydrogen, fuel cell and related industries in Massachusetts Coordinates 42.559013°, -70.8870313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.559013,"lon":-70.8870313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

E. Hydrogen Supply: Cost Estimate for Hydrogen Pathways -costs are compared with cost estimates of similar stationsHydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

325

Hydrogen Car Co | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Hydrogen Car Co Place Los Angeles, California Zip 90036 Sector Hydro, Hydrogen Product The Hydrogen Car Company produces hydrogen internal combustion...

326

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

An Integrated Hydrogen Vision for California White Paper/High Efficiency Generation Of Hydrogen Fuels Using NuclearU.S. Department of Energy Hydrogen Fuel Cells and Hydrogen

2004-01-01T23:59:59.000Z

327

Hydrogen refueling station costs in Shanghai  

E-Print Network (OSTI)

of Hydrogen Energy 32 (2007) 4089 4100 Table 4 Storage andHydrogen Energy 32 (2007) 4089 4100 Hydrogen tube-trailer Compressed hydrogen storage

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

328

Combination moisture and hydrogen getter  

DOE Patents (OSTI)

A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

Harrah, Larry A. (Albuquerque, NM); Mead, Keith E. (Peralta, NM); Smith, Henry M. (Overland Park, KS)

1983-01-01T23:59:59.000Z

329

Enhancing hydrogen spillover and storage  

DOE Patents (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

2011-05-31T23:59:59.000Z

330

Enhancing hydrogen spillover and storage  

DOE Patents (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

2013-02-12T23:59:59.000Z

331

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

332

Infinity Fuel Cell and Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Infinity Fuel Cell and Hydrogen Infinity Fuel Cell and Hydrogen Jump to: navigation, search Name Infinity Fuel Cell and Hydrogen Place Suffield, Connecticut Zip 6078 Sector Hydro, Hydrogen Product A team of fuel cell, hydrogen and business professionals both developing their own products and providing consulting and project management to others. Coordinates 41.983729°, -72.66° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.983729,"lon":-72.66,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

EIA Energy Kids - Related Links  

U.S. Energy Information Administration (EIA)

Using & Saving Energy ... Project. A national network of ... electricity, magnets, and hydrogen are available and often sponsored.Workshops and conferences for ...

334

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

335

Process for exchanging hydrogen isotopes between gaseous hydrogen and water  

DOE Patents (OSTI)

A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

1980-08-12T23:59:59.000Z

336

On Color Superconductivity in External Magnetic Field  

E-Print Network (OSTI)

We study color superconductivity in external magnetic field. We discuss the reason why the mixing angles in color-flavor locked (CFL) and two-flavor superconductivity (2SC) phases are different despite the fact that the CFL gap goes to the 2SC gap for $m_s \\to \\infty$. Although flavor symmetry is explicitly broken in external magnetic field, we show that all values of gaps in their coset spaces of possible solutions in the CFL phase are equivalent in external magnetic field.

E. V. Gorbar

2000-01-20T23:59:59.000Z

337

Using Hydrogen Safety Best Practices and Learning from Safety Events  

DOE Green Energy (OSTI)

A best practice is a technique or methodology that has reliably led to a desired result. A wealth of experience regarding the safe use and handling of hydrogen exists as a result of an extensive history in a wide variety of industrial and aerospace settings. Hydrogen Safety Best Practices (www.h2bestpractices.org) captures this vast knowledge base and makes it publically available to those working with hydrogen and related systems, including those just starting to work with hydrogen. This online manual is organized under a number of hierarchical technical content categories. References, including publications and other online links, that deal with the safety aspects of hydrogen are compiled for easy access. This paper discusses the development of Hydrogen Safety Best Practices as a safety knowledge tool, the nature of its technical content, and the steps taken to enhance its value and usefulness. Specific safety event examples are provided to illustrate the link between technical content in the online best practices manual and a companion safety knowledge tool, Hydrogen Incident Reporting and Lessons Learned (www.h2incidents.org), which encourages the sharing of lessons learned and other safety event information.

Weiner, Steven C.; Fassbender, Linda L.; Quick, Kathleen A.

2011-02-28T23:59:59.000Z

338

Balanced link for dry coal extrusion pumps  

Science Conference Proceedings (OSTI)

A link which defines a link body that includes a multiple of link plates integral with a link body, the link body disposed at least partially forward of a forward edge of the multiple of link plates.

Bebejian, Maral

2013-10-22T23:59:59.000Z

339

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

DOE Green Energy (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

340

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

DOE Green Energy (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tests for Hydrogen Cyanide and Hydrogen Sulfide  

SciTech Connect

A potential source of dangerous concentrations of hydrogen cyanide exists in the plating room of the Machine Shop where open plating baths containing cyanide salts are maintained and where solid cyanide salts are stored. Also the use of hydrogen sulfide in certain steps of the waste disposal process has lead to noticeable and sometimes objectionable concentrations of this gas in the air of the "WD" Building. In view of the toxic properties of these two gases, it was desirable to set up suitable tests to determine the actual concentrations present in the air of the respective working areas.

Joy, E. F.

1949-08-24T23:59:59.000Z

342

Education Links | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Education Links Education Links Workforce Development for Teachers and Scientists (WDTS) WDTS Home About Organization Chart .pdf file (24KB) Education Links WDTS Budget WDTS Committees of Visitors Jobs Science Undergraduate Laboratory Internships (SULI) Community College Internships (CCI) DOE Office of Science Graduate Fellowship (SCGF) Program External link Albert Einstein Distinguished Educator Fellowship (AEF) Program Visiting Faculty Program (VFP) at DOE Laboratories DOE National Science Bowl® (NSB) Laboratory Equipment Donation Program (LEDP) Outreach Contact Information Workforce Development for Teachers and Scientists U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-8842 F: (202) 586-0019 E: sc.wdts@science.doe.gov

343

Related Links | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources ASCR Discovery Monthly News Roundup News Archives ASCR Program Documents ASCR Workshops and Conferences ASCR Presentations 100Gbps Science Network Related Links Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » News & Resources Related Links Print Text Size: A A A RSS Feeds FeedbackShare Page The White House External link U.S. Department of Energy Office of Science

344

Thick film hydrogen sensor  

DOE Green Energy (OSTI)

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

345

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network (OSTI)

and replaced by coal gasification with carbon sequestration and, to a lesser extent, by biomass gasification. By 2050, biomass and wind, combined, provide 35% of hydrogen supplies. Hydrogen production from nuclear.energy.gov/hydrogenandfuelcells/posture_plan04.html. sequestration sites opt for more coal gasification while those with ample wind or biomass

346

Hydrogen Conference: Workshop Proceedings  

Science Conference Proceedings (OSTI)

Hydrogen is currently a major chemical/fuel with long-term energy system benefits that may impact the industry's physical and economic well-being. EPRI's recent hydrogen conference concluded that to be competitive, the production cost must take into account environmental and end-use efficiency benefits.

1989-10-20T23:59:59.000Z

347

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

#12;#12;Hydrogen Fuel Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS CONTENTS 11.1 GLOSSARY Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS OBJECTIVES This module is for reference only. Hydrogen MODULE 11: GLOSSARY AND CONVERSIONS PAGE 11-1 11.1 Glossary This glossary covers words, phrases

348

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

349

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

350

DOE Hydrogen Analysis Repository: Impact of Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Energy Markets Project ID: 99 Principal Investigator: Harry Vidas Keywords: Hydrogen production; hydrogen supply; infrastructure; costs Purpose This project addresses the...

351

Controlled Hydrogen Fleet and Infrastructure Analysis - DOE Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

conditions, using multiple sites, varying climates, and a variety of hydrogen sources. Analyze detailed fuel cell and hydrogen data from * vehicles and infrastructure to...

352

DOE Hydrogen Analysis Repository: Production of Hydrogen byPhotovolta...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Project ID: 132 Principal Investigator: DL Block Purpose Compare the cost of hydrogen produced using photo electric chemical systems to the cost of hydrogen...

353

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pilot Plant and Hydrogen ICE Vehicle Testing Jim Francfort (INEEL) Don Karner (ETA) 2004 Fuel Cell Seminar - San Antonio Session 5B - Hydrogen DOE - Advanced Vehicle Testing...

354

Hydrogen Embrittlement in Vanadium-based Hydrogen Separation ...  

Science Conference Proceedings (OSTI)

One of the important materials that face a challenge to overcome the hydrogen embrittlement is vanadium-based hydrogen separation membranes for an...

355

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary,...

356

DOE Hydrogen Analysis Repository: The Hydrogen Economy: Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the potential penetration of hydrogen into the economy and associated impacts on oil imports and CO2 gas emissions; Address the problem of how hydrogen might be...

357

DOE Hydrogen Analysis Repository: Hydrogen from Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Renewable Energy Project Summary Full Title: H2 Production Infrastructure Analysis - Task 3: Hydrogen From Renewable Energy Sources: Pathway to 10 Quads for...

358

DOE Hydrogen Program Record 5030: Hydrogen Baseline Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

kg of hydrogen) .56 Production unit energy efficiency 70% Compression electricity consumption (kWhrkg of hydrogen) 2.9 Total system energy efficiency 65% Feedstock and Utility...

359

NMR Studies of Molecular Hydrogen in Hydrogenated Amorphous Silicon  

DOE Green Energy (OSTI)

Using NMR, the concentrations of molecular hydrogen have been measured directly in hydrogenated amorphous silicon made by the hot wire chemical vapor deposition (HWCVD) technique.

Su, T.; Chen, S.; Taylor, P. C.; Crandall, R. S.; Mahan, A. H.

2000-01-01T23:59:59.000Z

360

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy Laboratory 1617...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pages that link to "EU-UNDP Low Emission Capacity Building Programme...  

Open Energy Info (EERE)

( links) Argentina ( links) Egypt ( links) Moldova ( links) Thailand ( links) Colombia ( links) Peru ( links) Malaysia (...

362

Hydrogen Delivery Liquefaction and Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

to Praxair Hydrogen Liquefaction Hydrogen Compression 3 Praxair at a Glance The largest industrial gas company in North and South America Only U.S. Hydrogen Supplier in All Sizes...

363

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

It appears to us that hydrogen is a highly promising option0616 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

364

Renewable Resources for Hydrogen (Presentation)  

Science Conference Proceedings (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

365

Proceedings: National conference on environmental externalities  

Science Conference Proceedings (OSTI)

This report is the proceedings of the National Conference on Environmental Externalities. A environmental externality is the environmental impact of a process or a plant that society must endure. It is a social cost and is paid, but not by the company who produced it or the company`s customers who endure it. The main purpose of this report is to gather the many designs and ideas of how and why to internalize the externalities into the pricing systems of the public utility commissions, especially that of the electric utilities. Economic and sociological aspects of the internalization of these externalities are given in these proceedings. Individual papers are processed separately for databases. (MB)

Not Available

1990-12-31T23:59:59.000Z

366

Transportation External Coordination Working Group (TEC)  

Energy.gov (U.S. Department of Energy (DOE))

TEC was formed in 1992 to improve coordination between the U.S. Department of Energy (DOE) and external groups interested in the Department's transportation activities. TEC is co-chaired by DOE's...

367

The ??? Amplitude in an External Homogeneous Electromagnetic  

E-Print Network (OSTI)

Neutrino-photon interactions in the presence of an external homogeneous constant electromagnetic field are studied. The ??? amplitude is calculated in an electromagnetic field of the general type, when the two field invariants are nonzero.

R. Shaisultanov

2000-01-01T23:59:59.000Z

368

External Program Review University of Idaho  

E-Print Network (OSTI)

7/20/2012 External Program Review University of Idaho Overview 1 Program review, as it is widely that the University of Idaho "exercise the leadership and coordination necessary for periodic program review

Kyte, Michael

369

External Technical Reviews | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management » Tank Waste and Waste Processing » Waste Management » Tank Waste and Waste Processing » External Technical Reviews External Technical Reviews Documents Available for Download September 1, 2011 Peer Review of the ASCEM Program 2010 Full Document and Summary Versions are available for download September 1, 2011 Compilation of ETR Summaries ETR Summaries from 2011 February 15, 2011 External Technical Review Report for Small Column Ion Exchange Technology at Savannah River Site Full Document and Summary Versions are available for download September 30, 2009 External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process Full Document and Summary Versions are available for download June 30, 2009 Evaluation of System Level Modeling and Simulation Tools in Support of

370

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

371

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

372

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

373

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

374

Hydrogen Purity Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

375

Hydrogen in compound semiconductors  

DOE Green Energy (OSTI)

Progress in the understanding of hydrogen and its interactions in III/V and II/VI compound semiconductors is reviewed. Donor, acceptor and deep level passivation is well established in III/V compounds based on electrical measurements and on spectroscopic studies. The hydrogen donor levels in GaAs and GaP are estimated to lie near E{sub v}+0.5 eV and E{sub v}+0.3 eV, respectively. Arsenic acceptors have been passivated by hydrogen in CdTe and the very first nitrogen-hydrogen local vibrational model spectra in ZnSe have been reported. This long awaited result may lead to an explanation for the poor activation of nitrogen acceptors in ZnSe grown by techniques which involve high concentrations of hydrogen.

Haller, E.E.

1993-05-01T23:59:59.000Z

376

Hydrogen Fuel Quality  

DOE Green Energy (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

377

External Costs of Energy Technologies Position Statement  

E-Print Network (OSTI)

The American Nuclear Society believes that decisions concerning national energy policy should appropriately take external costs into account. In some energy options, external costs are not included in the cost of the energy produced; instead, they are borne by parties not involved in the original transaction, generally without consent or due compensation. External costs 1 may be related to many factors, including impacts on public health, environmental impacts, degradation of quality of life, degradation of agricultural land, depletion of natural resources, and reduction in security. These costs are incurred at various stages of the life cycle of an energy technology. While some energy technologies may appear to have smaller environmental impacts than others, their external costs may be significant when the complete life cycle costs are taken into account. Particularly, an energy source that is inherently intermittent will require, for applications demanding reliable performance, either a backup energy supply or an energy storage facility, whose external costs are not negligible. On the other hand, practically all the costs to make nuclear power technology safe and secure, including the costs of waste management and disposal, are already incorporated into the cost of electricity generation. 2 Appropriately accounting for external costs should be an essential element in energy policy since in doing so, the final product is compared based on a consistent set of parameters for all technologies, and the resulting mix of energy sources will more appropriately balance the competing economic, environmental, and social needs from energy production and consumption.

unknown authors

2010-01-01T23:59:59.000Z

378

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer (OSTI)

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

379

Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project Review Meeting to someone by E-mail Share Fuel Cell Technologies Office:...

380

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

of a Hydrogen Enriched CNG Production Engine Conversion,from Hydrogen Enriched CNG Production Engines, SAE 02FFL-dynamometer ...13 Figure 2. CNG Brake Thermal Efficiency (

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen and Fuel Cell Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is the simplest element on Earth. A hydrogen atom consists of only one proton and one electron. It is also the most plentiful element in the universe.

382

Improving Schema Matching with Linked Data  

E-Print Network (OSTI)

With today's public data sets containing billions of data items, more and more companies are looking to integrate external data with their traditional enterprise data to improve business intelligence analysis. These distributed data sources however exhibit heterogeneous data formats and terminologies and may contain noisy data. In this paper, we present a novel framework that enables business users to semi-automatically perform data integration on potentially noisy tabular data. This framework offers an extension to Google Refine with novel schema matching algorithms leveraging Freebase rich types. First experiments show that using Linked Data to map cell values with instances and column headers with types improves significantly the quality of the matching results and therefore should lead to more informed decisions.

Assaf, Ahmad; Senart, Aline; Follenfant, Corentin; Troncy, Raphal; Trastour, David

2012-01-01T23:59:59.000Z

383

Two-photon approximation in the theory of electron recombination in hydrogen  

Science Conference Proceedings (OSTI)

A rigorous quantum electrodynamics theory of the multiphoton decay of excited states in a hydrogen atom is presented. The ''two-photon'' approximation is formulated which is limited by the one- and two-photon transitions including cascade transitions with two-photon links. This may be helpful for the strict description of the recombination process in a hydrogen atom and, in principle, for the history of hydrogen recombination in the early universe.

Solovyev, D. [V. A. Fock Institute of Physics, St. Petersburg State University, Petrodvorets, Oulianovskaya 1, 198504 St. Petersburg (Russian Federation); Labzowsky, L. [V. A. Fock Institute of Physics, St. Petersburg State University, Petrodvorets, Oulianovskaya 1, 198504 St. Petersburg (Russian Federation); Petersburg Nuclear Physics Institute, Gatchina, 188300 St. Petersburg (Russian Federation)

2010-06-15T23:59:59.000Z

384

Fermilab | About FermiLINK  

NLE Websites -- All DOE Office Websites (Extended Search)

About FermiLINK About FermiLINK Fermilab Today September 28, 2009 Mentors wanted for Diversity Office's FermiLINK program Fermilab Today October 5, 2009 Mentors wanted for Diversity Office's FermiLINK program Fermilab Today October 13, 2009 FermiLINK Q&A session Fermilab Today November 9, 2009 FermiLINK calls for mentees FermiLINK is Fermilab’s mentorship system designed to create an organizational network of leaders by providing opportunities for professional development and career management. This support structure creates access to the counsel and institutional knowledge of successful Fermilab professionals independent of the immediate supervisory hierarchy. FermiLINK provides web-based access to a host of mentors for issue-specific work-related challenges and opportunities. The network supports email,

385

Flammability Limits of Hydrogen-Air Mixtures  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners

H. Cheikhravat; N. Chaumeix; A. Bentaib; C.-E. Paillard

386

Hydrogen Production: Overview of Technology Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents Producing Hydrogen...1 Hydrogen Production Technologies ...3 Challenges and Research Needs...4 Technology...

387

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

388

The EU's external energy security policy : A comparative analysis of the EU's external energy relations.  

E-Print Network (OSTI)

??This thesis analyses the EUs external energy security policy through a comparative analysis of the energy relations between the EU and important producers of natural (more)

Cook, Hanne

2011-01-01T23:59:59.000Z

389

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736

390

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network (OSTI)

energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V fueled vehicle hydrogen dispensing system. Demonstrate hydrogen as an energy carrier. Investigate Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2

391

Development of proton-conducting membranes for separating hydrogen from gas mixtures  

DOE Green Energy (OSTI)

Dense ceramic membranes made from mixed protonic/electronic conductors are permeable only to hydrogen, and in principle, provide a simple efficient means of separating hydrogen from gas mixtures. At a time when world demand for hydrogen is growing, such proton- conducting membranes have the potential to significantly alter the economics of hydrogen separation and purification processes and thus improve the economic viability of processes that utilize hydrogen, such as some refinery operations and direct and indirect coal liquefaction. This paper describes a recently initiated program to develop materials and fabrication processes to separate hydrogen with dense ceramic membranes in a non-Galvanic mode of operation (i.e., without electrodes or external power supply).

Dorris, S.E.; Balachandran

1996-06-01T23:59:59.000Z

392

Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons  

SciTech Connect

A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

Muradov, Nazim Z. (Melbourne, FL)

2011-08-23T23:59:59.000Z

393

hydrogen | OpenEI  

Open Energy Info (EERE)

hydrogen hydrogen Dataset Summary Description Technical Reference for Hydrogen Compatibility of Materials Source Sandia National Laboratories Date Released June 03rd, 2010 (4 years ago) Date Updated September 27th, 2012 (2 years ago) Keywords Compatibility of Materials hydrogen NREL Sandia Technical Database Technical Reference Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_cia85_ten_fra_fat.xlsx (xlsx, 60.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10_fra_fat.xlsx (xlsx, 58.5 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10b_fra_fat.xlsx (xlsx, 59.4 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san11_fra_fat.xlsx (xlsx, 48.4 KiB)

394

Fiber optic hydrogen sensor  

DOE Green Energy (OSTI)

This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

Butler, M.A.; Sanchez, R.; Dulleck, G.R.

1996-05-01T23:59:59.000Z

395

X. Hydrogen Program Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

C. Lowell Miller, Director Office of Sequestration, Hydrogen and Clean Coal Fuels DOE Office of Fossil Energy Phone: 301-903-9453 Email: Lowell.Miller@hq.doe.gov...

396

Hydrogen in titanium alloys  

DOE Green Energy (OSTI)

The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

Wille, G.W.; Davis, J.W.

1981-04-01T23:59:59.000Z

397

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

398

Hydrogen & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it...

399

SRD 134 Hydrogen  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. HYDROGEN. MW [1]. 2.0159. NBP [1]. 20.390 K. TP [1]. 13.957 K. H 2. Pc [1]. 1.3150 MPa ...

2012-07-27T23:59:59.000Z

400

SRD 134 Hydrogen Sulfide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. HYDROGEN SULFIDE. MW [1]. 34.082. NBP [1]. 212.88 K. TP [1]. 187.7 K. H 2 S. Pc [1 ...

2012-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

National Hydrogen Energy Roadmap  

Fuel Cell Technologies Publication and Product Library (EERE)

This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

402

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

403

Renewable Hydrogen (Presentation)  

SciTech Connect

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

404

NREL: Learning - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

405

Hydrogen and Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it...

406

External Costs of Transport in the U.S.  

E-Print Network (OSTI)

European External Cost Estimates, Transportation Researchin the external-cost estimates reviewed here. Althoughtruck shipment in 1991 (low-cost estimate from Table 1-A5 of

Delucchi, Mark A.; McCubbin, Donald R.

2010-01-01T23:59:59.000Z

407

Building Technologies Office: Battery Chargers and External Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies...

408

Meeting on Battery Chargers and External Power Supplies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Meeting on Battery Chargers and External Power Supplies Meeting on Battery Chargers and External Power...

409

The London Hydrogen Partnership | Open Energy Information  

Open Energy Info (EERE)

Partnership Partnership Jump to: navigation, search Name The London Hydrogen Partnership Place London, United Kingdom Zip SE1 2AA Sector Hydro, Hydrogen Product The London Hydrogen Partnership is striving to promote the use of hydrogen as an alternative fuel in the capital to improve air quality, reduce greenhouse gases and noise, improve energy security and support Londonâ€(tm)s green economy. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Hydrogen recovery process  

DOE Patents (OSTI)

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

411

Purdue Hydrogen Systems Laboratory  

DOE Green Energy (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

412

Hydrogen from Coal Edward Schmetz  

E-Print Network (OSTI)

gasification technology assumes advanced E-gas gasification. · RD&D is estimated to reduce the cost of hydrogenGenFutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells-production plant · Hydrogen from Coal Program will coordinate with associated DOE programs in Gasification, Fuel

413

MEASUREMENT OF CARBONYL FLUORIDE, HYDROGEN ...  

Science Conference Proceedings (OSTI)

Page 1. MEASUREMENT OF CARBONYL FLUORIDE, HYDROGEN FLUORIDE, AND OTHER COMBUSTION BYPRODUCTS DURING FIRE ...

2011-11-15T23:59:59.000Z

414

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

415

Transportation External Coordination Working Group (TEC)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation External Coordination Working Group (TEC) Transportation External Coordination Working Group (TEC) July 17-19, 2001 Cincinnati, Ohio Meeting Summary The Transportation External Coordination Working Group (TEC) held its 19 th semi-annual meeting July 17-19, 2001, in Cincinnati, Ohio. One hundred fifteen people attended (see Appendix A for listing of participants). Jim Carlson, U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) and TEC co-chair, welcomed participants to the meeting. He then introduced Robert Owen of the Ohio Department of Health, and Jim Richter of the Cincinnati/Hamilton County Emergency Management Agency, who also made some welcoming remarks. Topic Group Meetings Tribal Issues Topic Group Issues discussed during this meeting included the Federal Railroad Administration (FRA) rail safety pilot

416

External Technical Reviews | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » External Technical Reviews External Technical Reviews Documents Available for Download March 17, 2006 Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download previous 1 2 next Miscellaneous Supporting Information January 9, 2007 Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review August 10, 2006 Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review August 10, 2006 Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review

417

20130221WebCastLinks | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ready Talk -- slides and audio. You will need to register to view these: Ready Talk -- slides and audio. You will need to register to view these: Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings Ready Talk -- slides and audio. You will need to register to view these: Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting February 21, 2013 - Session 1 - http://cc.readytalk.com/play?id=1bsrre External link BERAC Meeting February 21, 2013 - Session 2 - http://cc.readytalk.com/play?id=11ojq2 External link BERAC Meeting February 21, 2013 - Session 3 - http://cc.readytalk.com/play?id=5tm3ax External link (phone connection lost for about 20 minutes of BERAC charge discussion)

418

Metallic hydrogen research  

DOE Green Energy (OSTI)

Theoretical studies predict that molecular hydrogen can be converted to the metallic phase at very high density and pressure. These conditions were achieved by subjecting liquid hydrogen to isentropic compression in a magnetic-flux compression device. Hydrogen became electrically conducting at a density of about 1.06 g/cm/sup 3/ and a calculated pressure of about 2 Mbar. In the experimental device, a cylindrical liner, on implosion by high explosive, compresses a magnetic flux which in turn isentropically compresses a hydrogen sample; coaxial conical anvils prevent escape of the sample during compression. One anvil contains a coaxial cable that uses alumina ceramic as an insulator; this probe allows continuous measurement of the electrical conductivity of the hydrogen. A flash x-ray radiograph exposed during the experiment records the location of the sample-tube boundaries and permits calculation of the sample density. The theoretical underpinnings of the metallic transition of hydrogen are briefly summarized, and the experimental apparatus and technique, analytical methods, and results are described. 9 figures.

Burgess, T.J.; Hawke, R.S.

1978-11-16T23:59:59.000Z

419

The Sustainable Hydrogen Economy  

DOE Green Energy (OSTI)

Identifying and building a sustainable energy system is perhaps one of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions and energy security. The hydrogen economy then is the production of hydrogen, its distribution and utilization as an energy carrier. A key piece of this hydrogen economy is the fuel cell. A fuel cell converts the chemical energy in a fuel into low-voltage dc electricity and when using hydrogen as the fuel, the only emission is water vapor. While the basic understanding of fuel cell technology has been known since 1839, it has only been recently that fuel cells have shown their potential as an energy conversion device for both transportation and stationary applications. This talk will introduce the sustainable hydrogen economy and address some of the issues and barriers relating to its deployment as part of a sustainable energy system.

Turner, John (NREL)

2005-07-06T23:59:59.000Z

420

Examining hydrogen transitions.  

DOE Green Energy (OSTI)

This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

Plotkin, S. E.; Energy Systems

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pages that link to "London, England, United Kingdom" | Open Energy...  

Open Energy Info (EERE)

Limited ( links) UPC Renewables ( links) Uramin Inc ( links) VANE Uranium One JV ( links) Whitefox Technologies Ltd ( links) View (previous 50 |...

422

Pages that link to "Columbus, Ohio" | Open Energy Information  

Open Energy Info (EERE)

( links) Plug Smart ( links) The Ruhlin Company ( links) Edison Welding Institute ( links) Design Group, Inc. ( links) Clean Fuels Ohio ...

423

H2 Hydrogen Hungary Ltd aka Integral Energy | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Hungary Ltd aka Integral Energy Hydrogen Hungary Ltd aka Integral Energy Jump to: navigation, search Name H2 Hydrogen Hungary Ltd (aka Integral Energy) Place Ipoly u 1/A, Hungary Zip H-6000 Sector Solar Product Owns an empty factory in Hungary, which it plans to use to make heat pumps and assemble solar panels. References H2 Hydrogen Hungary Ltd (aka Integral Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. H2 Hydrogen Hungary Ltd (aka Integral Energy) is a company located in Ipoly u 1/A, Hungary . References ↑ "[ H2 Hydrogen Hungary Ltd (aka Integral Energy)]" Retrieved from "http://en.openei.org/w/index.php?title=H2_Hydrogen_Hungary_Ltd_aka_Integral_Energy&oldid=346329

424

DOE Hydrogen and Fuel Cells Program: 2007 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Annual Merit Review Proceedings 2007 Annual Merit Review Proceedings Printable Version 2007 Annual Merit Review Proceedings Logo for the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation, May 15-18, Washington, D.C. Principal investigators presented the status and results of their hydrogen and fuel cell projects at the DOE Hydrogen Program's Annual Merit Review on May 15-18, 2007 in Washington, D.C. Links to their presentations and posters are provided below. Plenary Session Presentations Hydrogen Production and Delivery Presentations Distributed Production Biological Production Separations Electrolysis Photoelectrochemical Production Hi-Temp Thermochemical Hydrogen Delivery Hydrogen from Coal Nuclear Hydrogen Initiative Posters Central Biomass Biological Production Compressed/Liquid Tanks

425

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV | Open  

Open Energy Info (EERE)

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Jump to: navigation, search Name Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV Place New York Zip 12110 Sector Hydro, Hydrogen Product Plug Power has entered a JV with Exxon Mobil Corporation, QuestAir Technologies and Ben Gurion University. It plans to commercialize an on-vehicle hydrogen production system for use in a fuel cell-powered lift truck application. References Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV is

426

Hydrogen fueling station development and demonstration  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

427

List of Companies in Hydrogen Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Hydrogen Sector Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-190) Map of Hydrogen companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

428

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

429

Optimal Pricing in Networks with Externalities  

Science Conference Proceedings (OSTI)

We study the optimal pricing strategies of a monopolist selling a divisible good (service) to consumers who are embedded in a social network. A key feature of our model is that consumers experience a (positive) local network effect. In particular, ... Keywords: externalities, optimal pricing, social networks

Ozan Candogan; Kostas Bimpikis; Asuman Ozdaglar

2012-07-01T23:59:59.000Z

430

Hard thermal loops in static external fields  

E-Print Network (OSTI)

We study, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop at zero external energies and momenta.

Frenkel, J; Takahashi, N

2009-01-01T23:59:59.000Z

431

Algorithms and data structures for external memory  

Science Conference Proceedings (OSTI)

Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance ...

Jeffrey Scott Vitter

2008-01-01T23:59:59.000Z

432

External and mental referencing of multiple representations  

Science Conference Proceedings (OSTI)

This article reports on two experimental studies that investigate the impact of integration and external activity on an instructional support method that encourages learners to systematically and interactively integrate multiple representations in the ... Keywords: Cognitive load, Coherence formation, Multimedia, Multiple representations, Structure mapping, Visualizations

Daniel Bodemer; Uwe Faust

2006-01-01T23:59:59.000Z

433

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

434

External Costs Associated to Electricity Generation Options in Brazil  

SciTech Connect

This presentation discusses external costs associated with electricity generation options in Brazil.

Jacomino, V.M.F.; Arrone, I.D.; Albo, J.; Grynberg, S.; Spadaro, J.

2004-10-03T23:59:59.000Z

435

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1997-07-29T23:59:59.000Z

436

Hot Hydrogen Test Facility  

DOE Green Energy (OSTI)

The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellants absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

W. David Swank

2007-02-01T23:59:59.000Z

437

Hydrogen-Selective Membrane  

SciTech Connect

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1995-09-19T23:59:59.000Z

438

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1997-01-01T23:59:59.000Z

439

Magnetic liquefier for hydrogen  

DOE Green Energy (OSTI)

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31T23:59:59.000Z

440

Hydrogen Optical Fiber Sensors  

DOE Green Energy (OSTI)

Optically-based hydrogen sensors promise to deliver an added level of safety as hydrogen and fuel cell technologies enter the mainstream. More importantly, they offer reduced power consumption and lower cost, which are desirable for mass production applications such as automobiles and consumer appliances. This program addressed two of the major challenges previously identified in porous optrode-based optical hydrogen sensors: sensitivity to moisture (ambient humidity), and interference from the oxygen in air. Polymer coatings to inhibit moisture and oxygen were developed in conjunction with newer and novel hydrogen sensing chemistries. The results showed that it is possible to achieve sensitive hydrogen detection and rapid response with minimal interference from oxygen and humidity. As a result of this work, a new and more exciting avenue of investigation was developed: the elimination of the porous optrode and deposition of the sensor chemistry directly into the polymer film. Initial results have been promising, and open up a wider range of potential applications from extended optical fiber sensing networks, to simple plastic "stickers" for use around the home and office.

Lieberman, Robert A.; Beshay, Manal; Cordero, Steven R.

2008-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen in semiconductors  

DOE Green Energy (OSTI)

After an incubation'' period in the 1970's and early 80's, during which the first hydrogen related centers were discovered and characterized in ultra-pure germanium, a sharp increase of research activity occurred after the discovery of shallow acceptor passivation in crystalline silicon. The aim of this review is to convey an insight into the rich, multifaceted physics and materials science which has emerged from the vast variety of experimental and theoretical studies of hydrogen in semiconductors. In order to arrive at the current understanding of hydrogen related phenomena in a logical way, each chapter will start with a brief review of the major experimental and theoretical advances of the past few years. Those who are interested to learn more about this fascinating area of semiconductor research are referred to reviews, to a number of conference proceedings volumes, and to an upcoming book which will contain authoritative chapters on most aspects of hydrogen in crystalline semiconductors. Some of the early art of semiconductor device processing can finally be put on a scientific foundation and new ways of arriving at advanced device structures begin to use what we have learned from the basic studies of hydrogen in semiconductors. 92 refs., 8 figs.

Haller, E.E. (California Univ., Berkeley, CA (USA) Lawrence Berkeley Lab., CA (USA))

1990-06-01T23:59:59.000Z

442

Water's Hydrogen Bond Strength  

E-Print Network (OSTI)

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

443

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

444

Argonne TDC: Intellectual Property Links  

Intellectual Property Links. Patent Law ? U.S. Patent and Trademark Office: Includes information on the patent and trademark process as well as a ...

445

EIA Energy Kids - Related Links  

U.S. Energy Information Administration (EIA)

Find free or low-cost resources with our database of Energy Education Resources: K-12th grade. Plus, find links to other helpful energy sites.

446

Microsoft Word - FE_Hydrogen_Program_Plan_2003_External_FINAL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Mitretek (4) 8 Natural Gas Steam Methane Reforming (SMR)PSA 83 5.54 Includes export steam No Sequestration Current Parsons (3) 9 Natural Gas Steam Methane Reforming...

447

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

448

Hydrogen recycling: fundamental processes  

DOE Green Energy (OSTI)

The recycling of hydrogen at the interior surfaces of plasma devices is an important and largely uncontrolled process at present. There remain important questions concerning the fundamental processes involved in recycling phenomena and the material dependence of these pocesses. A primary aim of the fundamental studies should be to develop sufficient understanding of the influence of materials properties on hydrogen recycling so that the materials and machine operating conditions can be selected to give maximum control of hydrogen recycling. In addition, realistic models of the wall behavior under recycling conditions need to be developed. Such modeling goes hand-in-hand with both fundamental process studies and in situ measurements, and may provide sufficient overall understanding of the influence of recycling on machine operation to impact design decisions effecting such important processes as impurity control, plasma, fueling, and pulse length.

Picraux, S.T.

1979-01-01T23:59:59.000Z

449

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

450

Energy Education and Workforce Development: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links to someone by E-mail Share Energy Education and Workforce Development: Related Links on Facebook Tweet about Energy Education and Workforce Development: Related Links...

451

Externally launched ion Berstein wave in the ACT-1 toroidal device  

DOE Green Energy (OSTI)

In a hydrogen plasma (T/sub e/ = 2.5 eV, T/sub i/ = 1.5 eV), excitation of ion Bernstein waves by an externally placed electrostatic antenna has been investigated for ..omega.. approx. = 2 ..cap omega../sub i/. Mode transformation of the electron plasma wave at ..omega.. approx. = ..omega../sub pi/ without observable reflection was observed, followed by strong excitation of the ion Bernstein wave. Detailed measurements of k/sub perpendicular to/(..omega..,k/sub parallel/) and of the wave packet trajectory show excellent agreement with theory.

Ono, M.; Wong, K.L.

1980-06-01T23:59:59.000Z

452

Hydrogen production from microbial strains  

SciTech Connect

The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

Harwood, Caroline S; Rey, Federico E

2012-09-18T23:59:59.000Z

453

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

454

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen and Fuel Cell Technologies Photo of a woman scientist using a machine that is purifying biological catalysts for hydrogen production. Hydrogen is the...

455

Fuel Cell Technologies Office: Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Storage Search Search Help Hydrogen Storage EERE Fuel Cell Technologies Office Hydrogen Storage Printable Version Share this resource Send...

456

Fuel Cell Technologies Office: Hydrogen Delivery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Delivery Search Search Help Hydrogen Delivery EERE Fuel Cell Technologies Office Hydrogen Delivery Printable Version Share this resource...

457

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects NREL's hydrogen and fuel cell research projects focus on developing, integrating, and demonstrating advanced hydrogen production, hydrogen storage, and fuel cell...

458

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen and Fuel Cell...

459

Hunterston Hydrogen Ltd | Open Energy Information  

Open Energy Info (EERE)

Hunterston Hydrogen Ltd Jump to: navigation, search Name Hunterston Hydrogen Ltd Place Anglesey, United Kingdom Zip LL65 4RJ Sector Hydro, Hydrogen, Wind energy Product Developing...

460

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

wind energy electrolytic hydrogen fueling station. ProposalandTheir SuitabilityforHydrogenProductionintheAreaSeptember 2004,HydrogenandFuelCellsConference

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

Hydrogen Production, National Renewable Energy Laboratory,new renewable energy development for hydrogen production,of renewable sources of energy for hydrogen production;

Lipman, Timothy; Kammen, Daniel; Ogden, Joan; Sperling, Dan

2004-01-01T23:59:59.000Z

462

The Market Potential for Electrolytic Hydrogen  

Science Conference Proceedings (OSTI)

Analyzes the small-user hydrogen market. Improvements in current electrolyzer technology may make electrolytic hydrogen competitive with purchased (merchant) hydrogen for many specialty users.

1979-08-01T23:59:59.000Z

463

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

464

The hydrogen hybrid option  

SciTech Connect

The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

Smith, J.R.

1993-10-15T23:59:59.000Z

465

DETECTOR FOR RADIOACTIVE HYDROGEN  

SciTech Connect

A device of the Geiger-Mueller type is designed for detecting radioactive hydrogen in the presence of other radioactive substances. The device comprises an envelope with thin (1 to 5 mil thick) Ni or Pd windows at the ends, an anode and a cathode spaced apart in the envelope, and a counting gas within the envelope. In operation, the suspect atmosphere is blown against one of the windows, whereby only the hydrogen diffuses into the envelope for counting. Means is provided for heating the windows to the desired temperatures. (D.L.C.)

Christianson, C.; Gilman, M.; Maggio, R.C.

1963-12-10T23:59:59.000Z

466

Thin film hydrogen sensor  

DOE Patents (OSTI)

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

467

Process for producing hydrogen  

SciTech Connect

A process for producing hydrogen by an electrolysis of water with an aqueous solution of an alkali hydroxide is provided. It is to use an electrolytic cell prepared by bonding a gas and liquid permeable anode on one surface of a cation-exchange membrane of a fluorinated polymer and a gas and liquid permeable cathode on the other surface of the membrane. An economical metal can be used as the substance for the electrolytic cell. Hydrogen can be produced at a low voltage in stable for a long time.

Oda, Y.; Morimoto, T.; Suzuki, K.

1984-08-14T23:59:59.000Z

468

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

469

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

470

DOE Hydrogen and Fuel Cells Program: Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards May 21, 2013 The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program presented its annual awards...

471

Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting  

DOE Green Energy (OSTI)

Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

Melendez, M.; Milbrandt, A.

2008-04-01T23:59:59.000Z

472

Hydrogen Storage Sub-Program Overview - DOE Hydrogen and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Hydrogen Storage sub-program supports research and development (R&D) of materials and...

473

How deep are your links?  

Science Conference Proceedings (OSTI)

"If you operate a Web site and wish to link to this Site, you may link only to the home page of the Site and not to any other page or sub-domain of us."-- The Dallas Morning News,www.dallasnews.com/registration/termsofservice.html

Aaron Weiss

2002-09-01T23:59:59.000Z

474

Cobordisms to weakly splittable links  

E-Print Network (OSTI)

We show that if a link L with non-zero Alexander polynomial admits a locally flat cobordism to a `weakly m-split link', then the cobordism must have genus at least (m-1)/2. This generalises a recent result of J. Pardon.

Friedl, Stefan

2011-01-01T23:59:59.000Z

475

Catalyst for Recombination of Hydrogen and Oxygen in Confined Spaces Under High Concentrations of Hydrogen  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners

V. Shepelin; D. Koshmanov; E. Chepelin

476

Educational Global Climate Change Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Global Climate Change Links Educational Global Climate Change Links Evidence of the importance of global climate change to the future generation is reflected in the increasing number of queries CDIAC receives from students and educators, from a range of educational levels. We have compiled a listing of some sites that we hope will be of interest and of use to those looking for information, fun, ideas, and ways that they can make a difference. These links were chosen because we have found them useful in responding to those with inquiring minds. These links will take the user outside of CDIAC, and are by no means comprehensive. We are not responsible for the content or intent of these outside links. Tools you can use! NOAA's Global Climate Dashboard - The Global Climate Dashboard is

477

FINAL Transportation External Coordination Working Group (TEC)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation External Coordination Working Group (TEC) January 28-30, 2002 New Orleans, Louisiana Meeting Summary The Transportation External Coordination Working Group (TEC) held its 20 th semi-annual meeting January 28-30, 2002, in New Orleans, Louisiana. This was the tenth anniversary of TEC, and 102 attendees from national, State, Tribal, and local government organizations; industry and professional groups and other interested parties in the U.S. Department of Energy (DOE) programs, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved

478

Transportation External Coordination Working Group (TEC)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland, Oregon - February 6-7, 2001 Portland, Oregon - February 6-7, 2001 Transportation External Coordination Working Group (TEC) February 6-7, 2001 Portland, Oregon Meeting Summary The Transportation External Coordination Working Group (TEC) held its 18 th semi-annual meeting February 6-7, 2001, in Portland, Oregon. Attending were 125 representatives from national, State, Tribal and local government organizations, industry and professional groups and other interested parties/DOE programs who meet to address a variety of issues related to DOE's radioactive materials transportation activities and provide continuing and improved coordination between DOE, other levels of government, and outside organizations with DOE transportation-related responsibilities. PLENARY I - TRANSCOM 2000 PRESENTATION (February 6)

479

Cold neutrons trapped in external fields  

E-Print Network (OSTI)

The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.

S. Gandolfi; J. Carlson; Steven C. Pieper

2010-10-21T23:59:59.000Z

480

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network (OSTI)

Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Columbus, Ohio (After-service pipeline materials) Ms. M. A. Quintana of Lincoln Electric Company, Cleveland

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H2 Pipeline Standard (in

482

Peer Review of the Hydrogen Program Hydrogen Briefing  

E-Print Network (OSTI)

) Program Transferred from NSF to DOE Energy Storage Program in 1978 Hydrogen R&D Program becomes budget. Hydrogen storage system that can provide 6% by weight hydrogen and 250 ­ 400 miles of range. Validate-fossil sources. 3. Initiated a number of collaborations with Wind, CSP and DER programs using energy storage. 4

483

Hydrogen Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural...

484

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

485

Copper Palladium Hydrogen Separation Membranes  

This patent-pending technology, Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance, consists of copper-palladium alloy compositions for hydrogen separation membranes that use less palladium and have a ...

486

Process for thermochemically producing hydrogen  

DOE Patents (OSTI)

Hydrogen is produced by the reaction of water with chromium sesquioxide and strontium oxide. The hydrogen producing reaction is combined with other reactions to produce a closed chemical cycle for the thermal decomposition of water.

Bamberger, Carlos E. (Oak Ridge, TN); Richardson, Donald M. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

487

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

488

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

the batteries, and to power accessories like the air condi- tioner and heater. Hybrid electric cars can exceed#12;#12;Hydrogen Fuel Cell Engines MODULE 8: FUEL CELL HYBRID ELECTRIC VEHICLES CONTENTS 8.1 HYBRID ELECTRIC VEHICLES .................................................................................. 8-1 8

489

HYDROGEN FROM COAL  

NLE Websites -- All DOE Office Websites (Extended Search)

MT R 20 0 2- 31 M itr et ek T ec h n ic a l Pap e r HYDROGEN FROM COAL November 2001 D. Gray G. Tomlinson JULY 2002 ii Customer: U.S. DOE NETL Contract No.: DE-AM26-99FT40465 Dept....

490

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

about $0.50/gJ to the price of biomass-derived hydrogen (biomass (Larson and Katofsky, 1992). The fuel retati pricebiomass instead of from solar power, the production cost would be much lower (Table 5), and the breakeven gasoline price

Delucchi, Mark

1992-01-01T23:59:59.000Z

491

Hydrogen isotope separation  

DOE Patents (OSTI)

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

492

Electrolysis High Temperature Hydrogen  

INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility ...

493

Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents  

DOE Green Energy (OSTI)

Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the clad-ding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; "Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents."

Siefken, Larry James

1999-02-01T23:59:59.000Z

494

The Influence of Dissolved hydrogen on Nickel Alloy SCC: A Window to Fundamental Insight  

DOE Green Energy (OSTI)

Prior stress corrosion crack growth rate (SCCGR) testing of nickel alloys as a function of the aqueous hydrogen concentration (i.e., the concentration of hydrogen dissolved in the water) has identified different functionalities at 338 and 360 C. These SCCGR dependencies have been uniquely explained in terms of the stability of nickel oxide. The present work evaluates whether the influence of aqueous hydrogen concentration on SCCGR is fundamentally due to effects on hydrogen absorption and/or corrosion kinetics. Hydrogen permeation tests were conducted to measure hydrogen pickup in and transport through the metal. Repassivation tests were performed in an attempt to quantify the corrosion kinetics. The aqueous hydrogen concentration dependency of these fundamental parameters (hydrogen permeation, repassivation) has been used to qualitatively evaluate the film-rupture/oxidation (FRO) and hydrogen assisted cracking (HAC) SCC mechanisms. This paper discusses the conditions that must be imposed upon these mechanisms to describe the known nickel alloy SCCGR aqueous hydrogen concentration functionality. Specifically, the buildup of hydrogen within Alloy 600 (measured through permeability) does not exhibit the same functionality as SCC with respect to the aqueous hydrogen concentration. This result implies that if HAC is the dominant SCC mechanism, then corrosion at isolated active path regions (i.e., surface initiation sites or cracks) must be the source of localized elevated detrimental hydrogen. Repassivation tests showed little temperature sensitivity over the range of 204 to 360 C. This result implies that for either the FRO or the HAC mechanism, corrosion processes (e.g., at a crack tip, in the crack wake, or on surfaces external to the crack) cannot by themselves explain the strong temperature dependence of nickel alloy SCC.

D.S. Morton; S.A. Attanasio; G.A. Young; P.L. Andresen; T.M. Angeliu

2000-10-12T23:59:59.000Z

495

California Hydrogen Infrastructure Project  

Science Conference Proceedings (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

496

Detroit Commuter Hydrogen Project  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

Brooks, Jerry; Prebo, Brendan

2010-07-31T23:59:59.000Z

497

Linking Resources and Structures: Increasing the Effectiveness...  

NLE Websites -- All DOE Office Websites (Extended Search)

Linking Resources and Structures: Increasing the Effectiveness of Energy Efficient Government Procurement Programs Title Linking Resources and Structures: Increasing the...

498

Modeling Dislocation Mediated Hydrogen Transport  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Multiscale Approaches to Hydrogen-assisted Degradation of Metals.

499

Spin-Polarized Hydrogen publications  

Science Conference Proceedings (OSTI)

For more information about my work on spin-polarized atomic hydrogen, consult the following papers: Godfried, HP, Eliel ...

500

Market potential for electrolytic hydrogen  

SciTech Connect

By the year 2000, the potential market for advanced-technology electrolytic hydrogen among specialty users is projected to be about half of what the merchant hydrogen market would be in the absence of electrolytic hydrogen. This potential market, representing an annual demand of about 16 billion SCF of hydrogen, will develop from market penetrations of electrolyzers assumed to begin in the early 1980s. 6 refs.

Fein, E.

1981-01-01T23:59:59.000Z