Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Hydrogen Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Related Links on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

2

External Links | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

External Links Budget Budget Home About Budget by Program GAO Audit Reports External Links Contact Information Budget U.S. Department of Energy SC-41Germantown Building 1000...

3

Widget:ExternalLinkButton | Open Energy Information  

Open Energy Info (EERE)

Widget Widget Edit History Facebook icon Twitter icon » Widget:ExternalLinkButton Jump to: navigation, search Bootstrap styled button for launching links in a new browser tab (_blank) Use Widget:LinkButton for launching a link in the same target/browser tab. Parameters Include: action - url to link to value - button text class - add additional css classes, separate multiple classes with spaces (i.e.- btn-primary) style - add style elements, cannot change button color with this (optional) Examples Default Button Visit FWA {{#Widget:ExternalLinkButton | action=http://www.thefwa.com | value=Visit FWA}} Primary Button Visit FWA {{#Widget:ExternalLinkButton | action=http://www.thefwa.com | value=Visit FWA | class=btn-primary}} Retrieved from "http://en.openei.org/w/index.php?title=Widget:ExternalLinkButton&oldid=696084"

4

DOE Hydrogen and Fuel Cells Program: External Coordination  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > External Coordination Printable Version External Coordination The DOE Hydrogen and Fuel Cells Program leverages the vast capabilities and experience of its stakeholders through cooperative partnerships. Coordination of these activities will be one of the keys to achieving national hydrogen and fuel cell technology program goals. Federal Agencies/Interagency Task Force A number of federal agencies support hydrogen and fuel cell research, development, demonstration, and deployment activities. There are two interagency bodies that coordinate this work: The Hydrogen and Fuel Cell Interagency Working Group (IWG) is a

5

DOE Hydrogen and Fuel Cells Program: Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Plans, Roadmaps, and Vision Documents Program Plans, Roadmaps, and Vision Documents Program Records Annual Progress Reports Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of Energy Search help Home > Library > Related Links Printable Version Related Links Visit these websites to learn about federal agencies, national laboratories, international agencies, and partnerships that are working to advance hydrogen and fuel cell technologies. Federal Agency Sites DOE Hydrogen and Fuel Cells Program Offices Office of Energy Efficiency and Renewable Energy Office of Fossil Energy Office of Nuclear Energy Office of Science Alternative Fuels Data Center: Fuel Cell Vehicles - The Alternative Fuels Data Center provides information on alternative fuel and vehicle

6

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

7

Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Dedicated links pages are available for the following topics: Diesel Vehicles and Fuels Electric Vehicles Fuel Cell Vehicles Hybrids Plug-in Hybrids Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Auto Manufacturers Acura Aston Martin Audi Bentley BMW Bugatti Buick Cadillac Chevrolet Chrysler Dodge Ferrari Fiat Ford GMC Honda Hyundai Infiniti Jaguar Jeep Kia Lamborghini Land Rover Lexus Lincoln Lotus Maserati Maybach Mazda McLaren Automotive Mercedes-Benz MINI Mitsubishi Nissan Porsche Ram Rolls Royce Roush Performance Scion smart Spyker Subaru Suzuki Toyota Volkswagen Volvo VPG Buying Guides ACEEE's Green Book Aol Autos

8

Effect of external and phase hardening on the hydrogen penetration rate in ferrite  

Science Journals Connector (OSTI)

1. The plastic deformation of nickel ferrite (6.24% Ni) increases the activation energy of hydrogen permeation. ...

V. A. Gol'tsov; P. V. Gel'd; M. M. Steinberg

1965-04-01T23:59:59.000Z

9

Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Public Outreach Clint Sprott's Wonders of Physics from University of Wisconsin, Madison Clint Sprott's Physics Demo Manual Phun Physics shows from University of Virginia Physics Van from Universitiy of Illinois, Urbana-Champaign How Does A Thing Like That Work from University of Pittsburgh Physics on the Road from Purdue University The Mad Science Group University Catalogues of Demonstrations Boston Univeristy's physics demonstrations University of Victoria physics demonstrations Wesleyan University physics demonstrations University of Minnesota, The Origin of the DCS Physics Demonstrations at the University of Texas at Austin University of Maryland University of Wisconsin University of Guelph University of Oregon Brown Physics Lecture Demonstrations University of California, Berkeley

10

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Todays energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

11

Integrated External Aerodynamic and Underhood Thermal Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles 2012 DOE Hydrogen and Fuel...

12

|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|  

E-Print Network [OSTI]

Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Gulliver's fuel cell travels

Lovley, Derek

13

|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|  

E-Print Network [OSTI]

Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Fuel cell power Publication Date

Lovley, Derek

14

Comparative PCET Study of a Donor?Acceptor Pair Linked by Ionized and Nonionized Asymmetric Hydrogen-Bonded Interfaces  

E-Print Network [OSTI]

A Zn(II) amidinium porphyrin is the excited-state electron donor (D) to a naphthalene diimide acceptor (A) appended with either a carboxylate or sulfonate functionality. The two-point hydrogen bond ([H[superscript +

Young, Elizabeth R.

15

Soft-linking energy systems and GIS models to investigate spatial hydrogen infrastructure development in a low-carbon UK energy system  

Science Journals Connector (OSTI)

This paper describes an innovative modelling approach focusing on linking spatial (GIS) modelling of hydrogen (H2) supply, demands and infrastructures, anchored within a economy-wide energy systems model (MARKAL). The UK government is legislating a groundbreaking climate change mitigation target for a 60% CO2 reduction by 2050, and has identified H2 infrastructures and technologies as potentially playing a major role, notably in the transport sector. An exploratory set of linked GISMARKAL model scenarios generate a range of nuanced insights including spatial matching of supply and demand for optimal zero-carbon H2 deployment, a crucial finding on successive clustering of demand centres to enable economies of scale in H2 supply and distribution, the competitiveness of imported liquid H2 and of liquid H2 distribution, and sectoral competition for coal with carbon sequestration between electricity and H2 production under economy-wide CO2 constraints.

Neil Strachan; Nazmiye Balta-Ozkan; David Joffe; Kate McGeevor; Nick Hughes

2009-01-01T23:59:59.000Z

16

Light-Driven Hydrogen Production by Hydrogenases and a Ru-Complex inside a Nanoporous Glass Plate under Aerobic External Conditions  

Science Journals Connector (OSTI)

In recent years, the scientific community has shown an enormous interest in finding a method to efficiently produce sustainable and renewable hydrogen via light-driven water-splitting reactions, similar to those of natural photosynthesis. ... Experimental methods, table of hydrogen production activity, and figures displaying the characterization of RMH-PGP50s and time evolution of H2 production by RMH-PGP50 with/without irradiation. ... This work further establishes strategies for constructing functional, inexpensive, earth-abundant solar fuel-producing PSI hybrids that use light to rapidly produce hydrogen directly from water. ...

Tomoyasu Noji; Masaharu Kondo; Tetsuro Jin; Tetsuo Yazawa; Hisao Osuka; Yoshiki Higuchi; Mamoru Nango; Shigeru Itoh; Takehisa Dewa

2014-06-06T23:59:59.000Z

17

Diesel Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Diesel Vehicles and Manufacturers Audi A3 (TDI models) A6 (TDI models) A7 (TDI models) A8 L (TDI model) Q5 (TDI models) Q7 (TDI models) BMW 328d Sedan 328d xDrive Sedan 328d xDrive Sports Wagon 535d Sedan 535d xDrive Sedan Chevrolet Cruze Turbo Diesel Jeep Grand Cherokee EcoDiesel Mercedes-Benz E250 BlueTEC GL350 BlueTEC GLK250 BlueTEC ML350 BlueTEC Porsche Cayenne Diesel Volkswagen Beetle (TDI models) Beetle Convertible (TDI models) Golf (TDI models) Jetta (TDI models) Jetta Sportwagen (TDI models) Passat (TDI models) Touareg (TDI models) Diesel-Related Information

18

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

19

Energy Education Links | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

For Students and Educators Energy Education Links Energy Education Links These Web sites offer educational information about hydrogen and fuel cell technologies. American...

20

FCT Hydrogen Production: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FCT Hydrogen Production: Hydrogen Production R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

22

FCT Hydrogen Production: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

23

Help:Links | Open Energy Information  

Open Energy Info (EERE)

Links Links Jump to: navigation, search There are four sorts of links in MediaWiki: internal links to other pages in the wiki external links to other websites interwiki links to other websites registered to the wiki in advance Interlanguage links to other websites registered as other language versions of the wiki Contents 1 Internal links 2 External links 2.1 How to avoid auto-links 3 Interwiki links 3.1 Interlanguage links 4 See also Internal links To add an internal link, enclose the name of the page you want to link to in double square brackets. When you save the page, you'll see the new link pointing to your page. If the page exists already it is displayed in blue, if it does not, in red. Selflinks to the current page are not transformed in URLs but displayed in bold. (If you really want to link to the current

24

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

Natural gas provider Hydrogen production/supply Frequencyan oil company Hydrogen production/ dispensing equipmentCO 2 emissions from hydrogen production The external costs

Collantes, Gustavo Oscar

2008-01-01T23:59:59.000Z

25

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Zttel

2007-03-01T23:59:59.000Z

26

Alternative Fuels Data Center: Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Hydrogen is a potentially emissions-free alternative fuel that can be produced from diverse domestic energy sources. Research is under way to make hydrogen vehicles practical for widespread use.

27

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

28

FCT Hydrogen Storage: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

29

A Fracture Criterion for the Notch Strength of High Strength Steels in the Presence of Hydrogen  

E-Print Network [OSTI]

that the presence of lattice hydrogen increases the susceptibility to hydrogen embrittlement whereas trapped. Keywords: Hydrogen embrittlement, Hydrogen trapping, Weakest link statistics. 1. Introduction Steels, when failure. Consequently, the adverse effects of hydrogen embrittlement must be included in engineer- ing

Fleck, Norman A.

30

Fuel Cell Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

31

Externality of Consumption  

Science Journals Connector (OSTI)

Externalities of consumption exist if one individual's consumption of agood or service has positive... utility of another person. Apositive externality increases ...

2008-01-01T23:59:59.000Z

32

Contracting with Externalities  

E-Print Network [OSTI]

available on-line 97-259* "Contracting with Externalities."Paper N o . 97-259 Contracting with Externalities Ilya Segaltakeovers, vertical contracting, Coase theorem, mechanism

Segal, Ilya

1997-01-01T23:59:59.000Z

33

Hydrogen Highways  

E-Print Network [OSTI]

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

34

External Dose Estimates from  

E-Print Network [OSTI]

Appendix E External Dose Estimates from NTS Fallout E-1 #12;External Radiation Exposure. 1, 1999) E-2 #12;Abstract This report provides estimates of the external radiation exposure of this report to: "Prepare crude estimates of the doses from external irradiation received by the American

35

FCT Hydrogen Delivery: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

36

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network [OSTI]

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

37

Florida Hydrogen Initiative Inc | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Initiative Inc Hydrogen Initiative Inc Jump to: navigation, search Name Florida Hydrogen Initiative Inc Place Florida Sector Hydro, Hydrogen Product Provides grants to aid the development of the hydrogen industry in Florida. References Florida Hydrogen Initiative Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Hydrogen Initiative Inc is a company located in Florida . References ↑ "Florida Hydrogen Initiative Inc" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Hydrogen_Initiative_Inc&oldid=345422" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

38

Hybrid Vehicle Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Links Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Hybrid Vehicles and Manufacturers Acura ILX Hybrid Audi Q5 Hybrid BMW ActiveHybrid 3 ActiveHybrid 5 ActiveHybrid 7 Buick LaCrosse eAssist* Regal eAssist* Chevrolet Malibu Eco* Impala eAssist* Ford Fusion Hybrid Honda Accord Hybrid Civic Hybrid Honda CR-Z Honda Insight Hyundai Sonata Hybrid Infiniti M Hybrid Q50 Hybrid Q50 S Hybrid QX60 Hybrid Kia Optima Hybrid Lexus CT 200h Lexus ES 300h GS 450h LS 600h L RX 450h Lincoln MKZ Hybrid Mercedes-Benz Mercedes E400 Hybrid Nissan Pathfinder Hybrid Porsche Cayenne S Hybrid Subaru XV Crosstrek Hybrid Toyota Avalon Hybrid

39

Fuel Cell Technologies Office: Hydrogen Technical Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

40

Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

External Dose Estimates from  

E-Print Network [OSTI]

Appendix G External Dose Estimates from Global Fallout G-1 #12;External Radiation Exposure-MQ-003539 March 15, 2000 G-2 #12;Abstract This report provides estimates of the external radiation-62. Estimates are given on a county by county basis for each month from 1953-1972. The average population dose

42

Hydrogens Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

43

Resources & Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Smart grid fact sheet Department of...

44

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

45

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

46

Alternative Fuels Data Center: Hydrogen Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations

47

External Leadership Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

External Leadership Resources External Leadership Resources External Leadership Resources Here we provide specific links to resources, including training, guidance, blogs, newsletters, etc., for leadership development. Brainpickings - Brain Pickings is a human-powered discovery engine for interestingness, a subjective lens on what matters in the world and why, bringing you things you didn't know you were interested in - until are you. Department of Commerce- DOC has developed a succession strategy to: 1) Implement a leadership succession pipeline that links to the Department's mission critical occupations; 2) Manage a graduated series of competitive programs that identifies, selects and develops emerging leaders in engaging learning experiences; 3) Create a continuous learning environment that builds skills and enhances competencies throughtout the

48

Control of External Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Control of External Documents Process 11_0304 Page 1 of 5 2 Control of External Documents Process 11_0304 Page 1 of 5 EOTA - Business Process Document Title: Control of External Documents Process Document Number P-002 Rev 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): REG-002, External Document Register P-002 Control of External Documents Process 11_0304 Page 2 of 5 Revision History: Rev. Description of Change A Initial Release 11_0304 Changed revision format from alpha character to numbers; modified process to include a step directing addition to REG-002 External Document Register and changed verbiage to clarify and more accurately reflect current process.

49

Fuel Cell Technologies Office: Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

50

PETSc: External Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

External Software External Software Home Download Features Documentation Applications/Publications Miscellaneous External Software Developers Site PETSc interfaces to the following optional external software (installing packages) (manual pages): ADIFOR - automatic differentiation for the computation of sparse Jacobians. AMD - Approximate minimum degree orderings. AnaMod - a library of matrix analysis modules; part of the Salsa project. BLAS and LAPACK Chaco - a graph partitioning package. ESSL - IBM's math library for fast sparse direct LU factorization. Euclid - parallel ILU(k) developed by David Hysom, accessed through the Hypre interface. FFTW - Fastest Fourier Transform in the West, developed at MIT by Matteo Frigo and Steven G. Johnson. Hypre - the LLNL preconditioner library.

51

NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Xcel Energy, NREL's wind-to-hydrogen (Wind2H2) demonstration project links wind turbines and photovoltaic (PV) arrays to electrolyzer stacks, which pass the generated...

52

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

53

AFRD - Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Home Organization Diversity Research Highlights Safety Links Intramural Links Accelerators are built, operated, and used by a large and diverse worldwide community. These links will take you to pages elsewhere that are related to AFRD’ work. The U.S. Department of Energy, Office of Science, is the principal supporter of our activities (and many other R&D endeavors). For information on the Joint Accelerator Conferences go to JACoW. The International Committee for Future Accelerators and the American Physical Society’ Division of Physics of Beams are among the organizations that advance, encourage, and communicate accelerator and beam science. The Laboratory's 50th Anniversary magazine gives an overview of the early and middle history of LBNL. Two of its authors later published the

54

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

55

EMSL: External Peer Reviewers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EXTERNAL PEER REVIEWERS EXTERNAL PEER REVIEWERS Additional Information User Portal 2014 Call for Proposals 2014 Proposal Guidance 2014 Proposal Review Criteria Guidance for Letters of Intent to JGI-EMSL Collaborative Science Call Guidance for Full Proposals to JGI-EMSL Collaborative Science Call (Invited Only) 2014 Proposal Planning 2014 Proposal Summary/Extension Previous Calls External Peer Reviewers Fellowships and Awards Nufo, logo External peer reviewers are valuable contributors to EMSL's user proposals process. They provide objective evaluations of the quality of the proposals according to established review criteria, and participate on Review Panels that calibrate the proposals into a ranked order. EMSL is truly grateful to the researchers who donated their time and efforts in fiscal year 2012 to

56

External Technical Review Report  

Broader source: Energy.gov (indexed) [DOE]

External Technical Review Report External Technical Review Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t External Technical Review (ETR) Process Guide September 2008 U.S. DOE Office of Environmental Management September 2008 External Technical Review Process Guide Page 2 of 37 TABLE OF CONTENTS 1.0 INTRODUCTION ....................................................................................................................... 3 1.1 Purpose of Process ............................................................................................................ 3 1.2 Background .........................................................................................................................

57

Master external pressure charts  

SciTech Connect (OSTI)

This paper presents a method to develop master external pressure charts from which individual external pressure charts for each material specification may be derived. The master external charts can represent a grouping of materials with similar chemical composition, similar stress-strain curves but produced to different strength levels. External pressure charts are used by various Sections of the ASME Boiler and Pressure Vessel and Piping Codes to design various components such as cylinders, sphered, formed heads, tubes, piping, rings and other components, subjected to external pressure or axial compression loads. These charts are pseudo stress-strain curves for groups of materials with similar stress-strain shapes. The traditional approach was originally developed in the 1940`s and is a graphical approach where slopes to the strain curves are drawn graphically from which pseudo-strain levels are calculated. The new method presented in this paper develops mathematical relationships for the material stress-strain curves and the external pressure charts. The method has the ability to calculate stress-strain curves from existing external pressure charts. The relationships are a function of temperature, the modulus of elasticity, yield strength, and two empirical material constants. In this approach, conservative assumptions used to assign materials to lower bound external pressure charts can be removed. This increases the buckling strength capability of many materials in the Code, providing economic benefits while maintaining the margin of safety specified by the Code criteria. The method can also reduce the number of material charts needed in the Code and provides for the capability to extend the existing pressure charts to higher design temperatures. The new method is shown to contain a number of improvements over the traditional approach and is presently under consideration by appropriate ASME Code committees.

Michalopoulos, E. [Hartford Steam Boiler Inspection and Insurance Co., CT (United States). Codes and Standards Dept.

1996-12-01T23:59:59.000Z

58

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Companies Hydrogen Companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":1,"width":"380px","height":"250px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

59

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

60

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

62

CTP Hydrogen | Open Energy Information  

Open Energy Info (EERE)

CTP Hydrogen CTP Hydrogen Jump to: navigation, search Name CTP Hydrogen Place Westborough, Massachusetts Zip 1581 Sector Hydro, Hydrogen Product CTP Hydrogen is an early stage company developing a single-step reforming process for portable and distributed hydrogen generation. Coordinates 42.283096°, -71.600318° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.283096,"lon":-71.600318,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Hydrogen Cryomagnetics  

E-Print Network [OSTI]

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4 Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

64

Alternative Fuels Data Center: Hydrogen Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Basics Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a

65

MIDC: Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Other Data Collection Activities Baseline Surface Radiation Network (BSRN) Clear Sky Forcast for NREL/SRRL (or other locations) Colorado Dept. of Public Health & Environment: Air Quality Index (AQI) Reporting System Colorado State University: USDA UV-B Monitoring and Research Program European Skynet Radiometers network (ESR) Jefferson County, Colorado: Jeffco Weather Station NOAA: Climate Monitoring & Diagnostics Laboratory (CMDL) NREL OTF: Reference Meteorological and Irradiance System (RMIS) NREL RReDC: Cooperative Networks for Renewable Resource Measurements (CONFRRM) NREL RReDC: NASA Remote Sensing Validation Data: Saudi Arabia Rocky Mountain Arsenal (RMA): National Wildlife Refuge Sandia National Laboratories: Photovoltaic Systems Evaluation

66

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

67

Alternative Fuels Data Center: Hydrogen Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Research and Research and Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Research and Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Research and Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Research and Development on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Research and Development on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Research and Development

68

Plug-in Hybrid Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

69

DOE Hydrogen Analysis Repository: Economic Analysis of Hydrogen Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic Analysis of Hydrogen Energy Station Concepts Economic Analysis of Hydrogen Energy Station Concepts Project Summary Full Title: Economic Analysis of Hydrogen Energy Station Concepts: Are 'H2E-Stations' a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? Project ID: 244 Principal Investigator: Timothy Lipman Brief Description: This project expands on a previously conducted, preliminary H2E-Station analysis in a number of important directions. Purpose This analysis, based on an integrated Excel/MATLAB/Simulink fuel cell system cost and performance model called CETEEM, includes the following: several energy station designs based on different sizes of fuel cell systems and hydrogen storage and delivery systems for service station and office building settings; characterization of a typical year of operation

70

External vs. body temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

External vs. body temperature External vs. body temperature Name: jacqui Location: N/A Country: N/A Date: N/A Question: If one's internal body temperature is approximately 98.6, WHY when the external temperature is 98.6 do we feel hot? Since both temperatures are "balanced", shouldn't we feel comfortable? I am assuming here that humidity levels are controlled, and play no factor in the external temperature. Replies: First of all, skin temperature is lower than 98.6F; 98.6F is internal body temperature, so air at 98.6F is hotter than skin. But more important, it is the nervous system, and the cells in your skin that your brain uses to detect temperature that determine whether you "feel" hot or not, not whether the air is hotter than your skin. These are set so that you feel hot when the air is actually colder than your skin. Why? They are probably set to make you feel hot whenever the air is warm enough so that your body has some trouble getting rid of the excess heat it produces through metabolism. This insures that you take some actions to help your body cool off. Like drinking cool water, or reducing exercise

71

Realisierung externer kryptographischer Funktionen  

E-Print Network [OSTI]

Realisierung externer kryptographischer Funktionen für Arduino Bachelorarbeit von René Julian Neff;Zusammenfassung In dieser Bachelorarbeit wird der Entwurf und die Implementierung von zwei auf der Arduino in dieser Arbeit realisiertes Koprozessorsystem, das ebenfalls mit einem weite- ren Arduino Mikrocontroller

Eckmiller, Rolf

72

Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts  

Science Journals Connector (OSTI)

Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts ... Several semiconductor nanowire systems, synthesized by different methods, have been investigated by photoelectrochemistry. ... power available from the hydrogen produced and the power supplied by an external source. ...

Lu Gao; Yingchao Cui; Jia Wang; Alessandro Cavalli; Anthony Standing; Thuy T. T. Vu; Marcel A. Verheijen; Jos E. M. Haverkort; Erik P. A. M. Bakkers; Peter H. L. Notten

2014-05-29T23:59:59.000Z

73

Optimization of an External Cavity Quantum Cascade Laser for Chemical Sensing Applications  

SciTech Connect (OSTI)

We describe and characterize an external cavity quantum cascade laser designed for detection of multiple airborne chemicals, and used with a compact astigmatic Herriott cell for sensing of acetone and hydrogen peroxide.

Phillips, Mark C.; Bernacki, Bruce E.; Taubman, Matthew S.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

2010-03-01T23:59:59.000Z

74

Thermal Performance Characteristics of a Combined External Insulation System under Simulated Space Vehicle Operating Conditions  

Science Journals Connector (OSTI)

The main purpose of this investigation was to determine the long-term thermal performance characteristics, with liquid hydrogen, of an externally applied combined foam/multilayer insulation system under simulated...

F. J. Muller; P. L. Klevatt

1995-01-01T23:59:59.000Z

75

Hydrogen Ventures | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Ventures Hydrogen Ventures Name Hydrogen Ventures Address 1219 N. Studabaker Road Place Long Beach, California Zip 90811 Region Southern CA Area Product Venture fund focusing on hydrogen technology Phone number (562) 618-8641 Website http://www.hydrogen.la/ Coordinates 33.781788°, -118.103155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.781788,"lon":-118.103155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Reference Links | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Reference Links Reference Links Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Compilation of Systems of Records Energy Employees Occupational Illness Compensation Program Act (EEOICPA) How to Submit a Privacy Act Request Reference Links Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Privacy Act Reference Links Print Text Size: A A A RSS Feeds FeedbackShare Page Privacy Act of 1974 and Amendments, 5 USC 552a External link DOE Implementing Regulations, 10 CFR 1008 External link DOE Privacy Act Compilation External link

77

One-Step Purification of 3,4-Dihydroxyphenyllactic Acid, Salvianolic Acid B, and Protocatechualdehyde from Salvia miltiorrhiza Bunge by Isocratic Stepwise Hydrogen Bond Adsorption Chromatography on Cross-Linked 12% Agarose  

Science Journals Connector (OSTI)

......with ethanol. This method is still popular for...standard separation method (7). However, the...either of these two methods is not satisfactory...product. However, the production cost is very high and...by Isocratic Stepwise Hydrogen Bond Adsorption Chromatography......

M. Gu; Z.-G. Su; J.-C. Janson

2008-02-01T23:59:59.000Z

78

Alternative Fuels Data Center: Hydrogen Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Production Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Production and Distribution on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

79

Widget:LinkButton | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Widget Edit History Facebook icon Twitter icon » Widget:LinkButton Jump to: navigation, search Basic button for links, opens in the same browser tab. Use Widget:ExternalLinkButton for launching link in a new browser tab (_blank). Parameters Include: action - url to link to value - button text class - add additional css classes, separate multiple classes with spaces (i.e.- btn-primary) style - add style elements, cannot change button color with this (optional) id - element id Examples Default Button Visit FWA {{#Widget:LinkButton | action=http://www.thefwa.com | value=Visit FWA}} Primary Button Visit FWA {{#Widget:LinkButton | action=http://www.thefwa.com | value=Visit FWA | class=btn-primary}}

80

Spanish Hydrogen Association AeH | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Association AeH Hydrogen Association AeH Jump to: navigation, search Name Spanish Hydrogen Association (AeH) Place Madrid, Spain Zip 28760 Sector Hydro, Hydrogen Product Spanish conference organiser and industry association for the hydrogen and fuel cell sectors. References Spanish Hydrogen Association (AeH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spanish Hydrogen Association (AeH) is a company located in Madrid, Spain . References ↑ "Spanish Hydrogen Association (AeH)" Retrieved from "http://en.openei.org/w/index.php?title=Spanish_Hydrogen_Association_AeH&oldid=351599" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

82

Proceedings NATIONAL HYDROGEN VISION MEETING  

E-Print Network [OSTI]

.3 Storage, Alan Niedzwiecki, Quantum Technologies, Inc. 6.4 Fuel Cells, William Miller, International Fuel Cells 6.5 End-Use, Byron McCormick, General Motors; Arthur Smith, NiSource, Inc. 7.0 Links to Presentations: The Future of Hydrogen Energy Development..... 23 7.1 The Honorable Robert Walker, The Wexler

83

Final Independent External Peer Review Report Independent External Peer Review (IEPR),  

E-Print Network [OSTI]

Final Independent External Peer Review Report Independent External Peer Review (IEPR), Delta Independent External Peer Review Report Independent External Peer Review (IEPR), Delta Islands and Levees External Peer Review Report Independent External Peer Review (IEPR), Delta Islands and Levees Feasibility

US Army Corps of Engineers

84

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

85

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

86

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

87

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

88

Hydrogen separation membranes - annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry.

Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-01-31T23:59:59.000Z

89

Help:External searches | Open Energy Information  

Open Energy Info (EERE)

searches searches Jump to: navigation, search 50px Move proposal : It has been suggested that this page be moved to a new name : '(new name to be decided)'. Use the talk page to discuss this action. It is possible to create an external searches of a topic using key words using a template. For example, this is something that would work for Google: [[Image:GoogleIcon.PNG]] [http://www.google.com/search?hl=en&safe=off&q={{{1|Wiki}}}&btnG=Search&meta= {{{1|Google}}}] ==Usage== Allows to establish a link to a search query at the Google search engine: {{Google|Term1+Term2+Term3}}

90

Foresty offsets in emissions trading systems: a link between systems?  

Science Journals Connector (OSTI)

An important aspect in the linking of different emissions trading schemes is the degree to which these ... ban) external offset project categories. The EU Emission Trading Scheme (EU ETS) currently allows the ......

C. Streck; A. Tuerk; B. Schlamadinger

2009-06-01T23:59:59.000Z

91

Alternative Fuels Data Center: Hydrogen Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen » Laws & Incentives Hydrogen » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Hydrogen Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Laws and Incentives on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives

92

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations

93

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

94

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

95

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

96

Hydrogen Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

97

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

98

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from "http:en.openei.orgwindex.php?titleHydrogen&oldid271963...

99

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

100

Hydrogen separation membranes annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Physisorption of molecular hydrogen on carbon nanotube with vacant defects  

SciTech Connect (OSTI)

Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei, E-mail: limei.xu@pku.edu.cn [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Tangpanitanon, Jirawat [University of Cambridge, Cambridge, Cambridgeshire CB2 1TP (United Kingdom); Wen, Bo [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Beijing Computational Science Research Center, Heqing Street, Haidian District, Beijing 100084 (China); Xue, Jianming [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

2014-05-28T23:59:59.000Z

102

Secondary emission electron gun using external primaries  

DOE Patents [OSTI]

An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

Srinivasan-Rao, Triveni (Shoreham, NY); Ben-Zvi, Ilan (Setauket, NY); Kewisch, Jorg (Wading River, NY); Chang, Xiangyun (Middle Island, NY)

2007-06-05T23:59:59.000Z

103

Secondary emission electron gun using external primaries  

DOE Patents [OSTI]

An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

Srinivasan-Rao, Triveni (Shoreham, NY); Ben-Zvi, Ilan (Setauket, NY)

2009-10-13T23:59:59.000Z

104

Intergovernmental & External Affairs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Intergovernmental & External Affairs More about Alice Madden Tara Trujillo Senior Advisor, Intergovernmental & External Affairs More about Tara Trujillo More leadership...

105

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

106

Hydrogen Power Inc formerly Hydrogen Power International and Equitex Inc |  

Open Energy Info (EERE)

Power Inc formerly Hydrogen Power International and Equitex Inc Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.) Place Englewood, Colorado Zip 80111 Sector Hydro, Hydrogen Product Holding company operating through its majority owned subsidiaries, Hydrogen Power International, FastFunds Financial Corp and Denaris Corp. Coordinates 35.425805°, -84.487497° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.425805,"lon":-84.487497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

A nanocontainer for the storage of hydrogen , X. Gu a,b  

E-Print Network [OSTI]

A nanocontainer for the storage of hydrogen X. Ye a,b , X. Gu a,b , X.G. Gong b , Tony K.M. Shing than the typical pressure of a few hundred bar currently employed for hydrogen storage. At 2.5 GPa. Introduction Storage of hydrogen is a crucial link between hydrogen production and its use as a clean fuel

Gong, Xingao

108

National Hydrogen Association | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Association Hydrogen Association Jump to: navigation, search Name National Hydrogen Association Place Washington, Washington, DC Zip 20036 Sector Hydro, Hydrogen Product The source for information in the US on hydrogen and hydrogen technologies since 1989. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Air Liquide Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Energy Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name Air Liquide Hydrogen Energy Address 6, Rue Cognacq-Jay Place Paris, France Zip 75321 Sector Hydrogen Year founded 2009 Website http://www.airliquide-hydrogen Coordinates 48.8617579°, 2.3047757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.8617579,"lon":2.3047757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

External (Self-Reported) Training Training Services, Organizational Effectiveness/OHR 612-626-1373 ULearn  

E-Print Network [OSTI]

External (Self-Reported) Training Training Services, Organizational Effectiveness/OHR · 612. · ThelinkcanbeaccessedfromtheHome page or the Learning page. 2. On the transcript, click the link. #12;Training Services, Organizational Effectiveness/OHR · 612

Minnesota, University of

111

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

112

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

113

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Broader source: Energy.gov [DOE]

Overview of the U.S. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program, including technical targets and research and development needs for hydrogen storage and delivery.

114

Experimental Investigation in Optimizing the Hydrogen Fuel on a Hydrogen Diesel Dual-Fuel Engine  

Science Journals Connector (OSTI)

Lee et al.(8) studied the performance of a dual-injection hydrogen-fueled engine by using solenoid in-cylinder injection and an external fuel injection technique. ... Zuohua, H.; Jinhua, W.; Bing, L.; Ke, Z.; Jinrong, Y.; Deming, J. Combustion Characteristics of a Direct-Injection Engine Fueled with Natural Gas-Hydrogen Mixtures Energy Fuels 2006, 20 ( 2) 540 546 ... Timed manifold injection (TMI) has the potential of being the most appropriate fueling strategy. ...

N. Saravanan; G. Nagarajan

2009-04-10T23:59:59.000Z

115

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

116

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

117

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

118

BNL | ARM External Data Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

External Data Center External Data Center The ARM External Data Center (XDC) identifies sources and acquires data, called "external data", to augment the data generated within the program. The scientific need and the priorities for acquiring, processing and archiving the external data-streams are established by the science working groups and considers such factors as: Availability and accessibility in other archives Acquisition cost Ease of use of the native data-format If this analysis determines that significant value to the ARM data users will be added, the XDC will develop an automated process to acquire the data from the data provider, and reformat the data as necessary into an ARM-compatible data format. The processed data and the native format data are sent to the ARM permanent archive at ORNL.

119

India National Hydrogen Energy Board NHEB | Open Energy Information  

Open Energy Info (EERE)

National Hydrogen Energy Board NHEB National Hydrogen Energy Board NHEB Jump to: navigation, search Name India National Hydrogen Energy Board (NHEB) Place New Delhi, India Zip 110 003 Sector Hydro, Hydrogen Product Set up to provide guidance in the preparation and implementation of a National Hydrogen Energy Road Map and programme in India. References India National Hydrogen Energy Board (NHEB)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. India National Hydrogen Energy Board (NHEB) is a company located in New Delhi, India . References ↑ "India National Hydrogen Energy Board (NHEB)" Retrieved from "http://en.openei.org/w/index.php?title=India_National_Hydrogen_Energy_Board_NHEB&oldid=346845"

120

Marine Hydrogen and Fuel Cell Association MHFCA | Open Energy Information  

Open Energy Info (EERE)

Hydrogen and Fuel Cell Association MHFCA Hydrogen and Fuel Cell Association MHFCA Jump to: navigation, search Name Marine Hydrogen and Fuel Cell Association (MHFCA) Place Leipzig, Germany Zip D-04318 Sector Hydro, Hydrogen Product Non-profit organisation set up to actively support the integration of hydrogen as an energy carrier into marine systems. References Marine Hydrogen and Fuel Cell Association (MHFCA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Marine Hydrogen and Fuel Cell Association (MHFCA) is a company located in Leipzig, Germany . References ↑ "Marine Hydrogen and Fuel Cell Association (MHFCA)" Retrieved from "http://en.openei.org/w/index.php?title=Marine_Hydrogen_and_Fuel_Cell_Association_MHFCA&oldid=348641

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

American Wind Power Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name American Wind Power & Hydrogen LLC Place New York, New York Zip 10022 Sector Hydro, Hydrogen, Vehicles Product AWP&H is a hydrogen transportation system integrator focused on hydrogen infrastructure, electrolysis, and hydrogen fueled internal combustion engine vehicles. References American Wind Power & Hydrogen LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Wind Power & Hydrogen LLC is a company located in New York, New York . References ↑ "American Wind Power & Hydrogen LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Wind_Power_Hydrogen_LLC&oldid=342137"

122

Aiken County Center for Hydrogen Research | Open Energy Information  

Open Energy Info (EERE)

County Center for Hydrogen Research County Center for Hydrogen Research Jump to: navigation, search Name Aiken County Center for Hydrogen Research Place South Carolina Zip 29803 Sector Hydro, Hydrogen Product Aiken County Center for Hydrogen Reseach will launch its activities in 2005, involving with industrial and academic stakeholders. References Aiken County Center for Hydrogen Research[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Aiken County Center for Hydrogen Research is a company located in South Carolina . References ↑ "Aiken County Center for Hydrogen Research" Retrieved from "http://en.openei.org/w/index.php?title=Aiken_County_Center_for_Hydrogen_Research&oldid=341931"

123

EERC National Center for Hydrogen Technology | Open Energy Information  

Open Energy Info (EERE)

National Center for Hydrogen Technology National Center for Hydrogen Technology Jump to: navigation, search Name EERC National Center for Hydrogen Technology Place Grand Forks, North Dakota Zip 58203 Sector Hydro, Hydrogen Product The EERC is integrating technologies for the production and use of hydrogen as a practical fuel. References EERC National Center for Hydrogen Technology[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. EERC National Center for Hydrogen Technology is a company located in Grand Forks, North Dakota . References ↑ "EERC National Center for Hydrogen Technology" Retrieved from "http://en.openei.org/w/index.php?title=EERC_National_Center_for_Hydrogen_Technology&oldid=34455

124

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

125

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

126

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

Buchanan, B.R.; Prather, W.S.

1992-10-06T23:59:59.000Z

127

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

128

Nuclear Hydrogen Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

129

Links | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Links Print Text Size: A A A RSS Feeds FeedbackShare Page Related Websites Agencies and Institutions American Physical Society - Division of Nuclear Physics External link American Institute of Physics - FYI, Science Policy Briefs External link

130

Reference Links | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Links Reference Links Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Advisory Exemptions How to Submit a FOIA Request Fee Waiver and Reduction Criteria Electronic Reading Room ISC Conventional Reading Rooms Reference Links Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Freedom of Information Act (FOIA) Reference Links Print Text Size: A A A RSS Feeds FeedbackShare Page FOIA, 5 U.S.C. Sec. 552, As Amended by Public Law No. 104-231, 110 Stat. 2422 External link DOE Implementing Regulations, 10 CFR 1004 External link

131

Alternative Fuels Data Center: Idle Reduction Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Idle Reduction Related Links to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Related Links on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Related Links on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Related Links on Google Bookmark Alternative Fuels Data Center: Idle Reduction Related Links on Delicious Rank Alternative Fuels Data Center: Idle Reduction Related Links on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Related Links on AddThis.com... More in this section... Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Emerging Fuels Fuel Prices Idle Reduction Related Links

133

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

134

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

135

Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

136

Safe Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen LLC Hydrogen LLC Jump to: navigation, search Name Safe Hydrogen LLC Place Lexington, Massachusetts Sector Hydro, Hydrogen Product Focused on hydrogen storage, through a 'slurry' of magnesium hydride, and generation technology. Coordinates 37.785485°, -79.441469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.785485,"lon":-79.441469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

American Hydrogen Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Jump to: navigation, search Name American Hydrogen Corporation Address OU Innovation Center, 340 W State St. Unit 40 Place Athens, Ohio Zip 45701 Sector Renewable Energy, Services Product String representation "a Houston-based ... nd efficiently." is too long. Website http://www.americanhydrogencor References American Hydrogen Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Hydrogen Corporation is a company based in Athens, Ohio. References ↑ "American Hydrogen Corporation" Retrieved from "http://en.openei.org/w/index.php?title=American_Hydrogen_Corporation&oldid=365845" Categories: Companies

138

Highline Hydrogen Hybrids | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Hybrids Hydrogen Hybrids Jump to: navigation, search Name Highline Hydrogen Hybrids Place farmington, Arkansas Zip 72730-1500 Sector Hydro, Hydrogen, Vehicles Product US-based manufacturer of hydrogen conversion systems for gasoline and diesel-powered vehicles. Coordinates 43.533982°, -88.093717° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.533982,"lon":-88.093717,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

140

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

142

Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Google Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Delicious Rank Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Digg

143

DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network

144

HydroGen Corporation formerly Chiste Corp | Open Energy Information  

Open Energy Info (EERE)

HydroGen Corporation formerly Chiste Corp HydroGen Corporation formerly Chiste Corp Jump to: navigation, search Name HydroGen Corporation (formerly Chiste Corp) Place Jefferson Hills, Pennsylvania Zip 15025 Sector Hydro, Hydrogen Product HydroGen Corporation is a manufacturer of multi-megawatt fuel cell systems utilizing its proprietary 400-kilowatt phosphoric acid fuel cell (PAFC) technology References HydroGen Corporation (formerly Chiste Corp)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HydroGen Corporation (formerly Chiste Corp) is a company located in Jefferson Hills, Pennsylvania . References ↑ "HydroGen Corporation (formerly Chiste Corp)" Retrieved from "http://en.openei.org/w/index.php?title=HydroGen_Corporation_formerly_Chiste_Corp&oldid=346722"

145

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure Technologies Program Review was produced from water in a linked cyanobacterial- hydrogenase hybrid system Isolated mutants and cloned 2

146

Intergovernmental & External Affairs Contacts | Department of...  

Office of Environmental Management (EM)

Intergovernmental & External Affairs More about Alice Madden Tara Trujillo Senior Advisor, Intergovernmental & External Affairs More about Tara Trujillo Heidi VanGenderen...

147

The Transition to Hydrogen  

E-Print Network [OSTI]

above, not all hydrogen production methods are equal inrealize hydrogens bene- ?ts fully, production methods thathydrogen vary depending on which primary source produces it and which production method

Ogden, Joan M

2005-01-01T23:59:59.000Z

148

The Hydrogen Economy  

Science Journals Connector (OSTI)

The hydrogen economy is a vision for a future in which hydrogen replaces fossil fuels. There are a variety ... of methods for generating, storing and delivering hydrogen since no single method has yet proven supe...

2009-01-01T23:59:59.000Z

149

Hydrogen storage methods  

Science Journals Connector (OSTI)

Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of todays ...

Andreas Zttel

2004-04-01T23:59:59.000Z

150

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

151

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

152

Mobility and trapping of hydrogen in high-strength steel Vucko Flavien, Aoufi Asdin, Bosch Cdric, Delafosse David,  

E-Print Network [OSTI]

detrimental to the mechanical properties of steels [1,2]. The sensitivity to hydrogen embrittlement increases are due to the presence of hydrogen. Hydrogen embrittlement mechanisms are closely linked to the mobilityMobility and trapping of hydrogen in high-strength steel Vucko Flavien, Aoufi Asdin, Bosch Cédric

Paris-Sud XI, Université de

153

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

154

Technology: Hydrogen and hydrates  

Science Journals Connector (OSTI)

... . 22492258 (2004). US Department of Energy Hydrogen Posture Plan http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_posture_plan.pdf Kuhs, W. F. , Genov, ...

Ferdi Schth

2005-04-06T23:59:59.000Z

155

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

156

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

157

Transportation External Coordination Working Group:  

Broader source: Energy.gov (indexed) [DOE]

External Coordination External Coordination Working Group: Background and Process Judith Holm National Transportation Program Albuquerque, New Mexico April 21, 2004 TEC History * DOE's Office of Environmental Management (EM) and Office of Civilian Radioactive Waste Management (OCRWM) formed TEC in 1992 * EM & RW developed MOU and TEC charter in 1992 - Other DOE program offices joined in 1993-94 * Other agencies (DOT, FRA, NRC, EPA) have been active participants Meeting Locations 1992-present Some Founding Principles * TEC concept centered on unique stakeholder accountability principles - Participation by key responsible parties in technical/policy issue discussion and resolution results in increased confidence and more efficient business decisions * Ultimate goal: develop multi-year set of

158

DOE Hydrogen and Fuel Cells Program: 2008 Annual Merit Review Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2008 Annual Merit Review Proceedings 2008 Annual Merit Review Proceedings Printable Version 2008 Annual Merit Review Proceedings Graphic of the White House with text that refers to the DOE Hydrogen Program Annual Merit Review and Peer Evaluation, Washington, DC, June 9 - 13, 2008. Principal investigators presented the status and results of their hydrogen and fuel cell projects at the DOE Hydrogen Program's Annual Merit Review on June 9-13 in Arlington, Virginia. Links to their presentations and posters are provided below. Plenary Session Presentations Hydrogen Production and Delivery Presentations Production & Delivery Distributed BILI Production Electrolysis High-Temperature Thermochemical Hydrogen Delivery Nuclear Hydrogen Initiative Biomass Gasification Biological Photoelectrochemical Hydrogen From Coal

159

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

160

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

162

Link Building Martin Olsen  

E-Print Network [OSTI]

Link Building Martin Olsen PhD Dissertation Department of Computer Science Aarhus University Denmark #12;#12;Link Building A Dissertation Presented to the Faculty of Science of Aarhus University The Computational Complexity of Link Building Proc. Computing and Combinatorics, 14th Annual International

163

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

164

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

165

US National Institute of Hydrogen Fuel Cell Commercialization | Open Energy  

Open Energy Info (EERE)

Institute of Hydrogen Fuel Cell Commercialization Institute of Hydrogen Fuel Cell Commercialization Jump to: navigation, search Name US National Institute of Hydrogen Fuel Cell Commercialization Place Columbia, South Carolina Zip 29250-0768 Sector Hydro, Hydrogen Product The National Institute of Hydrogen Fuel Cell Commercialization, a nonprofit organization, will work to find commercial opportunities for USC and other state research institutions doing fuel cell research. References US National Institute of Hydrogen Fuel Cell Commercialization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US National Institute of Hydrogen Fuel Cell Commercialization is a company located in Columbia, South Carolina . References

166

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

167

Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Delicious Rank Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Digg Find More places to share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol

168

Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Facebook Tweet about Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Twitter Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Google Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Delicious Rank Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Digg Find More places to share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on AddThis.com... Publications Program Publications Technical Publications Educational Publications

169

Hythane project by Hydrogen China Ltd and China Railway Construction  

Open Energy Info (EERE)

project by Hydrogen China Ltd and China Railway Construction project by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name Hythane project by Hydrogen China Ltd and China Railway Construction Corporation Place Beijing Municipality, China Sector Hydro, Hydrogen Product China-based, joint venture between Hydrogen China and China Railway Construction Corporation for the purpose of demonstrating, marketing and making available Hythane hybrid fuel. References Hythane project by Hydrogen China Ltd and China Railway Construction Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hythane project by Hydrogen China Ltd and China Railway Construction Corporation is a company located in Beijing Municipality, China .

170

Hydrogen & Our Energy Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

171

Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

172

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

173

Metallization of fluid hydrogen  

Science Journals Connector (OSTI)

...P. Tunstall Metallization of fluid hydrogen W. J. Nellis 1 A. A. Louis 2 N...The electrical resistivity of liquid hydrogen has been measured at the high dynamic...which structural changes are paramount. hydrogen|metallization of hydrogen|liquid...

1998-01-01T23:59:59.000Z

174

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

175

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network [OSTI]

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

176

Hydrogen Macro System Model User Guide, Version 1.2.1  

SciTech Connect (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

2009-07-01T23:59:59.000Z

177

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

178

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

179

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

180

Energy Links Page - EIA  

U.S. Energy Information Administration (EIA) Indexed Site

Publications & Reports > Energy Links Page Publications & Reports > Energy Links Page Related Energy Links Energy Companies Coal & Other Electricity Foreign Integrated Natural Gas Transmission, Distribution, and Marketing News Services and Periodicals Oil & Gas Exploration and Production Petroleum Refining, Marketing, and Transportation State Owned U.S. Integrated Government Agencies Other DOE National Laboratories Federal Energy States Universities Trade Associations & Other Trade Associations Other Associations International Statistics Energy Services Other Energy Sites EIA Links Disclaimer These pages contain hypertext links to information created and maintained by other public and private organizations. These links provide additional information that may be useful or interesting and are being provided consistent with the intended purpose of the EIA Web site. EIA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this outside information. EIA does not endorse the organizations sponsoring linked websites and we do not endorse the views they express or the products/services they offer.

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Hydrogen Solar Ltd Place Guildford, United Kingdom Zip GU2 7YG Sector Hydro, Hydrogen, Solar Product Hydrogen Solar Ltd is developing innovative technology to convert sunlight directly into hydrogen fuel for vehicle refueling and other applications. Coordinates 51.237086°, -0.570516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.237086,"lon":-0.570516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

German Hydrogen Association DWV | Open Energy Information  

Open Energy Info (EERE)

German Hydrogen Association DWV German Hydrogen Association DWV Jump to: navigation, search Name German Hydrogen Association (DWV) Place Berlin, Germany Zip 12205 Sector Hydro, Hydrogen Product String representation "The German Hydr ... our existence." is too long. Coordinates 52.516074°, 13.376987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.516074,"lon":13.376987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Widget:HydrogenSunburst | Open Energy Information  

Open Energy Info (EERE)

HydrogenSunburst HydrogenSunburst Jump to: navigation, search This widget embeds the Hydrogen Sunburst visualization into a wiki page. Parameters width' - The width of the embedded object, as a css rule. (px,em,pt,%) Defaults to '100%'. height - The height of the embedded object, as a css rule. (px,em,pt,%) Defaults to '200px'. Usage To use this widget, copy the following code and paste it into your wiki page. {{#Widget:HydrogenSunburst|width=100%|height=250px}} Example Ret Left click to go straight to a CDP. Right click to find more information. The interactive graphic on this page links to all of the Composite Data Products, organized by topic. You can find this complete listing on the Composite Data Products by Topic Web page. If you need additional assistance finding a Composite Data Product, please email us.

184

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

185

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

186

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main ThemesCaveats Bulk...

187

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

188

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Simpson. (2010) Contact: Thomas Gennett 303-384-6628 Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery Hydrogen Storage...

189

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

190

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

191

Universal Ownership: Why Environmental Externalities Matter to  

Open Energy Info (EERE)

Universal Ownership: Why Environmental Externalities Matter to Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Jump to: navigation, search Tool Summary Name: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Agency/Company /Organization: UNEP-Financing Initiative Focus Area: Industry Topics: Co-benefits assessment Resource Type: Lessons learned/best practices Website: www.unepfi.org/fileadmin/documents/universal_ownership.pdf Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Screenshot References: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors[1] Logo: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Summary "This study assesses the financial implications of unsustainable natural

192

Related Links | Department of Energy  

Energy Savers [EERE]

Algal Biofuels Related Links Related Links The links below provide useful algae resources and are organized by categories. Beyond this page, learn more about BETO's Algae...

193

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

produce hydrogen in a centralized coal based operation for .79kg at the plant gate with carbon sequestration. Develop advanced OTM, HTM, technology, advanced reforming and shift...

194

Resource Assessment for Hydrogen Production: Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration ERR Estimated Recoverable Reserves FCEV fuel cell electric vehicle GHG greenhouse gas GW gigawatt GWh gigawatt-hour GWdt gigawatt-days thermal H2A Hydrogen...

195

Energy Efficiency Links  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Efficiency Organizations Energy Efficiency Organizations Release Date: October 1999 Last Updated: Septembert 2009 EIA Links Disclaimer: These pages contain hypertext links to information created and maintained by other public and private organizations. These links provide additional information that may be useful or interesting and are being provided consistent with the intended purpose of the EIA website. EIA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this outside information. EIA does not endorse the organizations sponsoring linked websites, the views they express, or the products and services they offer. U.S. Federal Government / Regional / U.S. Nonprofit / International U.S. Federal Government and Related Agencies

196

Nuclear Data Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct American Institute of Physics Journals APS Journals Online: Physical Review A, B, C, D, E,...

197

NREL: News - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links The U.S. Department of Energy provides news online: EERE Network News News and Blog Science News Science and Technology Highlights from the National Laboratories...

198

Southeast Idaho Area Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

199

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

200

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Using HyPro to Evaluate Competing Hydrogen Pathways, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

89 89 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives Develop understanding of how a hydrogen production infrastructure for H 2 fuel cell (FC)/ internal combustion engine (ICE) vehicles might develop in the U.S. Quantify production methods under consistent cost and state-of-technology assumptions. Analyze infrastructure development under dynamic conditions over time. Determine factors that will drive infrastructure development. Define role of externalities such as policy and technology advancement. Develop a computational model to aid in the analysis. Technical Barriers This project addresses the following technical barriers from the Systems Analysis section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and

202

Geodesic Form of Schwarzschild's External Solution  

Science Journals Connector (OSTI)

... ) an arbitrary differentiable function of p. It is found to be a transform of Schwarzschild's external solution: (7)

V. V. NARLIKAR; K. R. KARMARKAR

1946-04-20T23:59:59.000Z

203

Transportation External Coordination Working Group:  

Broader source: Energy.gov (indexed) [DOE]

Accomplishments and Future Accomplishments and Future Transportation External Coordination Working Group Meeting Phoenix, AZ Judith A. Holm, Office of National Transportation Office of Civilian Radioactive Waste Management April 4, 2005 TEC MEMBER ORGANIZATIONS American College of Emergency Physicians (ACEP) American Nuclear Society (ANS) Association of American Railroads (AAR) Brotherhood of Locomotive Engineers and Trainmen (BLET) Commercial Vehicle Safety Alliance (CVSA) Conference of Radiation Control Program Directors, Inc. (CRCPD) Council of Energy Resource Tribes (CERT) Council of State Governments-Eastern Regional Conference (CSG-ERC) Council of State Governments-Midwestern Office (CSG-MW) Council on Radionuclides and Radiopharmaceuticals (CORAR) Dangerous Goods Advisory Council (DGAC)

204

Diversity Links; Diversity Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source Disclaimer: Links and/or hyperlinks on this page may contain information gathered from public sources outside Brookhaven National Laboratory. This information is for reference purposes only and, as such, there is no endorsement of products or services therein, nor is BNL responsible for any content inaccuracies. By clicking any of the aforementioned links and/or hyperlinks, you acknowledge your understanding and agreement with this statement. Source Disclaimer: Links and/or hyperlinks on this page may contain information gathered from public sources outside Brookhaven National Laboratory. This information is for reference purposes only and, as such, there is no endorsement of products or services therein, nor is BNL responsible for any content inaccuracies. By clicking any of the aforementioned links and/or hyperlinks, you acknowledge your understanding and agreement with this statement. Diversity Links BNL & DOE Diversity Links Minority Recruitment Links BNL & DOE Diversity Links Brookhaven National Laboratory (BNL) Brookhaven Advocacy Council (BAC) Brookhaven Employees Recreation Association (BERA) | BERA Clubs U.S. DOE Office of Civil Rights and Diversity U.S. DOE Office of Civil Rights and Diversity - Homepage

205

Catalyzed Hydrogen Spillover for Hydrogen Storage  

Science Journals Connector (OSTI)

Catalyzed Hydrogen Spillover for Hydrogen Storage ... Storing sufficient H on-board a wide range of vehicle platforms, while meeting all consumer requirements (driving range, cost, safety, performance, etc.), without compromising passenger or cargo space, is a tremendous tech. ... The authors show that for the 1st time significant amts. of H can be stored in MOF-5 and IRMOF-8 at ambient temp. ...

Ralph T. Yang; Yuhe Wang

2009-02-27T23:59:59.000Z

206

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

· To develop suitable welding technology for H2 pipeline construction and repair · To develop technical basisHydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J pressure permeation test · Edison Welding Institute - Pipeline materials · Lincoln Electric Company

207

Help:External SPARQL integration | Open Energy Information  

Open Energy Info (EERE)

External SPARQL integration External SPARQL integration Jump to: navigation, search Integrating with Reegle logo.png OpenEI is engaged in an ongoing linked open data collaboration with Reegle[1]. This page serves to document a few of the initial integration techniques. For the purposes of this demonstration, we'll be working with the country of Brazil. The following SPARQL query was used to detect if a country within OpenEI had a corresponding country profiles: {{#sparql: PREFIX reegle: PREFIX country: PREFIX geonames: SELECT ?countryName ?profile WHERE { SERVICE { country:{{#var:Iso3166Alpha2}} geonames:name ?countryName . country:{{#var:Iso3166Alpha2}} reegle:profile ?profile .

208

Equilibrium Pricing with Positive Externalities (Extended Abstract)  

E-Print Network [OSTI]

a product in the presence of historical externalities? A low introductory price may attract early adoptersEquilibrium Pricing with Positive Externalities (Extended Abstract) Nima Anari1 , Shayan Ehsani1 an item to strategic buyers in the pres- ence of positive historical externalities, where the value

Immorlica, Nicole

209

UNBC Library External Review 2012 Library Response  

E-Print Network [OSTI]

UNBC Library External Review 2012 Library Response November 2, 2012 An external review was conducted of the UNBC Library services in April 2012 by Dr. Vicki Williamson of University of Saskatchewan is available at https://library.unbc.ca/external- review/ . Below is the Library's planned followup

Northern British Columbia, University of

210

Enclosure 3 Independent External Peer Review  

E-Print Network [OSTI]

Enclosure 3 Summary of Independent External Peer Review Final Panel Comments November 5, 2010 #12 5, 2010 Summary of Independent External Peer Review Final Panel Comments EXECUTIVE SUMMARY Type I independent external peer reviews (IEPRs) assess the economic, engineering, and environmental aspects

US Army Corps of Engineers

211

Microsoft Word - Additional links  

Office of Legacy Management (LM)

Links: Links: Link to annual groundwater reports on LM website: http://www.lm.doe.gov/Monticello/Documents.aspx#gwreports Links to peer-reviewed papers referenced in the Program Status and Analytical Update (Note: Due to copyright restrictions, links to these papers, rather than reproductions, are provided): a. Harding, Lee E. "Non-linear uptake and hormesis effects of selenium in red- winged blackbirds (Agelaius phoeniceus)". Science of the Total Environment 389 (2008) 350-366. Available through sciencedirect at: http://www.sciencedirect.com/science/article/pii/S0048969707010029 b. King, Kirke A. and Thomas W. Custer. "Reproductive Success of Barn Swallows Nesting Near a Selenium-Contaminated Lake in East Texas, USA". Environmental Pollution 84 (1994) 53-58. Available through sciencedirect at:

212

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

213

BP and Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

214

Hydrogen Production- Current Technology  

Broader source: Energy.gov [DOE]

The development of clean, sustainable, and cost-competitive hydrogen production processesis key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

215

A Hydrogen Economy  

Science Journals Connector (OSTI)

The history of the hydrogen economy may be broken down into three parts ... is the history of the founding of the Hydrogen Energy Society which took place in Miami,...

J. OM. Bockris

1981-01-01T23:59:59.000Z

216

Solar Hydrogen Production  

Science Journals Connector (OSTI)

The common methods of hydrogen production impose many concerns regarding the decline in...2...emission, and ecological impacts. Subsequently, all the downstream industries that consume hydrogen involve the aforem...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

217

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

218

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

219

LinkedTube: semantic information on web media objects  

Science Journals Connector (OSTI)

LinkedTube is a service to create semantic and non-semantic relationships between videos available on services on the Internet (such as YouTube) and external elements (such as Wikipedia, Internet Movie Database, DBPedia, etc). The relationships are defined ... Keywords: metadata, multimedia, semantic web

Carlos Eduardo C. F. Batista; Daniel Schwabe

2009-10-01T23:59:59.000Z

220

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Hydrogen Economy  

Science Journals Connector (OSTI)

Before describing the characteristics of an economy in which hydrogen is the medium of energy, let us...

J. OM. Bockris; Z. Nagy

1974-01-01T23:59:59.000Z

222

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

223

National Hydrogen Energy Roadmap  

Broader source: Energy.gov [DOE]

This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

224

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage ... Use of hydrogen for transportation applications requires materials that not only store hydrogen at high density but that can operate reversibly at temperatures and pressures below approximately 100 C and 10 bar, respectively. ... This composition is based on assuming the following complete hydrogenation reaction:which stores 2.6 wt % hydrogen. ...

Wen Li; John J. Vajo; Robert W. Cumberland; Ping Liu; Son-Jong Hwang; Chul Kim; Robert C. Bowman, Jr.

2009-11-06T23:59:59.000Z

225

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

or reduce the likelihood of hydrogen embrittlement Test existing high strength steel alloys for use in largeGaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 compression. Safety, integrity, reliability: Metal embrittlement, no H2 odorant, low ignition energy

226

External Resources | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

External Resources | National Nuclear Security Administration External Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog External Resources Home > content > External Resources External Resources National security is not achieved by one government agency alone, but through the joint effort of multiple agencies with extraordinarily talented

227

External Resources | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

External Resources | National Nuclear Security Administration External Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog External Resources Home > content > External Resources External Resources National security is not achieved by one government agency alone, but through the joint effort of multiple agencies with extraordinarily talented

228

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

229

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

230

Lighting Group: Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Links Organizations Illuminating Engineering Society of North America (IESNA) International Commission on Illumination (CIE) International Association of Lighting Designers (IALD) International Association of Energy-Efficient Lighting Lightfair International Energy Agency - Task 21: Daylight in Buildings: Design Tools and Performance Analysis International Energy Agency - Task 31: Daylighting Buildings in 21st Century National Association on Qualifications for the Lighting Professions (NCQLP) National Association of Independent Lighting Distributors (NAILD) International Association of Lighting Management Companies (NALMCO) Research Centers California Lighting Technology Center Lighting Research Center Lighting Research at Canada Institute for Research in Construction

231

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

232

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

233

New Mexico Hydrogen Technology Partners HyTep | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Technology Partners HyTep Hydrogen Technology Partners HyTep Jump to: navigation, search Name New Mexico Hydrogen Technology Partners (HyTep) Place New Mexico Sector Hydro, Hydrogen Product An alliance of industry, academia and government leaders cooperating to encourage the development and implementation of hydrogen technology in New Mexico. References New Mexico Hydrogen Technology Partners (HyTep)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Mexico Hydrogen Technology Partners (HyTep) is a company located in New Mexico . References ↑ "New Mexico Hydrogen Technology Partners (HyTep)" Retrieved from "http://en.openei.org/w/index.php?title=New_Mexico_Hydrogen_Technology_Partners_HyTep&oldid=349173"

234

An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen  

SciTech Connect (OSTI)

Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

2014-10-10T23:59:59.000Z

235

An in situ tensile test apparatus for polymers in high pressure hydrogen  

SciTech Connect (OSTI)

Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

Alvine, K. J., E-mail: kyle.alvine@pnnl.gov; Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

2014-10-15T23:59:59.000Z

236

External cavity quantum cascade laser  

Science Journals Connector (OSTI)

In this paper we review the progress of the development of mid-infrared quantum cascade lasers (QCLs) operated in an external cavity configuration. We concentrate on QCLs based on the bound-to-continuum design, since this design is especially suitable for broadband applications. Since they were first demonstrated, these laser-based tunable sources have improved in performance in terms of output power, duty cycle, operation temperature and tuneability. Nowadays they are an interesting alternative to FTIRs for some applications. They operate at room temperature, feature a high spectral resolution while being small in size. They were successfully used in different absorption spectroscopy techniques. Due to their vast potential for applications in industry, medicine, security and research, these sources enjoy increasing interest within the research community as well as in industry.

Andreas Hugi; Richard Maulini; Jrme Faist

2010-01-01T23:59:59.000Z

237

Location linked information  

E-Print Network [OSTI]

This work builds an infrastructure called Location Linked Information that offers a means to associate digital information with public, physical places. This connection creates a hybrid virtual/physical space, called glean ...

Mankins, Matthew William David, 1975-

2003-01-01T23:59:59.000Z

238

Links - 88-Inch Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab Cafeteria Jobs at Berkeley Lab Today at Berkeley Lab Health and Safety Manual (PUB-3000) Science Links: Web Elements (Periodic Table) Science Daily News Sci Tech Daily News...

239

Nuclear Data Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S....

240

Hydrogen peroxide safety issues  

SciTech Connect (OSTI)

A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors.

Conner, W.V.

1993-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen Use and Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

242

Experimental Study of a New PVC Foam Insulation System for Liquid-Hydrogen-Liquid-Oxygen Space Vehicles  

Science Journals Connector (OSTI)

This paper discusses the development of a rigid external foam insulation for liquid-hydrogen-liquid-oxygen space vehicles...1...], dealing with the use of Klegecell G 300,* a PVC closed-cell foam. This foam does ...

F. J. Muller

1971-01-01T23:59:59.000Z

243

Hydrogen Engine Center HEC | Open Energy Information  

Open Energy Info (EERE)

Engine Center HEC Engine Center HEC Jump to: navigation, search Name Hydrogen Engine Center (HEC) Place Algona, Iowa Zip IA 50511 Sector Hydro, Hydrogen Product The Hydrogen Engine Center (HEC) manufactures and modifies ultra-low emissions engines for industrial use. Coordinates 47.278335°, -122.248554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.278335,"lon":-122.248554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

DOE Hydrogen Analysis Repository: Hydrogen Production by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

245

Hydrogen Material Compatibility for Hydrogen ICE | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pm04smith.pdf More Documents & Publications Hydrogen Materials Compatibility for the H-ICE...

246

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

247

MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho  

Office of Environmental Management (EM)

MAJOR CONFORMED CONTRACTS LINKS SiteProject Contract Link Idaho Idaho Cleanup Project http:www.id.doe.govdoeidICPContractICPContract.htm Advance Mixed Waste Treatment http:...

248

Advertising in Markets with Consumption Externalities.  

E-Print Network [OSTI]

??This paper extends the entry deterrence literature by examining coordinating advertising in markets with consumption externalities using a stochastic success function. Optimal advertising and pricing (more)

Whelan, Adele

2014-01-01T23:59:59.000Z

249

Grundlagen der Fixateur-externe-Montage  

Science Journals Connector (OSTI)

Ergebnisse:...Bei Patienten mit Polytrauma, offenen Frakturen, schlechten Hautverhltnissen, Infekt und Weichteiltrauma hat der Fixateur externe einen fixen Stellenwert im Frakturmanagement. Weit...

W. Grechenig; M. Fellinger; G. Peicha

2002-03-01T23:59:59.000Z

250

Advisory Board 2014-15 External Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Board Advisory Board 2014-15 External Committee IMS Advisory Panel Gabriel Aeppli (ETH Zurich, Paul Scherer Institute) Peter Littlewood (ANL Director) Diran Apelian (WPI)...

251

Hydrogen Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

252

President's Hydrogen Fuel Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

253

Hydrogen Based Bacteria  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Based Bacteria Hydrogen Based Bacteria Name: Ellen Location: N/A Country: N/A Date: N/A Question: i was in my Biology class and a very respectable someone mentioned something about the discovery of a hydrogen based bacteria. my teacher wasnt aware of this study, and assigned me to find out about it. so i thought i would Email you and see if you people knew anything about it. Awaiting your repsonse Replies: I'm not quite sure what you mean by hydrogen based bacteria but I will take a stab that you mean bacteria that use hydrogen for energy. Some bacteria are chemolithotrophs which mean that they are autrophs but don't use the sun as their energy source; they get their energy from chemical sources. There are bacteria that use hydrogen as their energy source. They are diverse as a group and are all facultative. The overall chemical reaction looks like this:

254

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

255

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect (OSTI)

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

256

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

257

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Issues for H2 Service Materials of Construction Hydrogen Embrittlement Presence of atomic hydrogen susceptible to Hydrogen Embrittlement. #12;Pipeline Transmission of Hydrogen --- 7 Copyright: H2 Induced, characteristic of hydrogen embrittlement. Photo Courtesy of NASA/Kennedy Space Center Materials Lab #12;Pipeline

258

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

259

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network [OSTI]

Hydrogen Storage - Overview George Thomas, Hydrogen Consultant to SNL* and Jay Keller, Hydrogen volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen and cost-effective hydrogen storage? #12;4/14/03 3 Sandia National Laboratories From George Thomas, BES

260

Global Climate Change Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Climate Change Links Global Climate Change Links This page provides links to web pages that we at CDIAC feel do a responsible job of presenting information and discussion pertinent to the science behind the global climate change ("global warming") debate. These sites include those on both sides of the debate; some asserting that global warming is a clear and present danger, and others that might be labeled global warming "skeptics." Some of these sites don't take a position per se; they exist to offer the public objective scientific information and results on our present understanding of the climate system. The list is not intended to be comprehensive, by any means. We hope it will be especially helpful for those who may be just beginning their research into global

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BCDA Machine Status Link  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machine Status Link Machine Status Link Version 1.33 (December 2005) David M. Kline. The Machine Status Link (MSL) is responsible for distributing the digitized beam current, injection status, P0 clock, and other statuses over a single fiber to several locations around the Storage Ring. The MRD100 is a VME-based module that is part of the MSL and was specifically designed for the APS. It receives and interprets information from the XMS100 module by means of copper or fiber. Signals from the XMS100 module are sent at a P0 rate (3.667 microseconds). It sends two registers every cycle and all in about 12 cycles. Refer to the ASD website for additional information regarding the MSL. The focus of this page is to provide information of how to configure the MRD100 for a beamline IOC and to discuss the sample IOC

262

DOE Hydrogen and Fuel Cells Program: Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background U.S. DRIVE Partnership Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > Background Printable Version Background In the early 1970s, concern over our growing dependence on imported petroleum, coupled with concerns about our deteriorating air quality due to emissions from combustion of fossil fuels, spurred the Federal government to act. The timeline below provides policy and programmatic highlights for federally supported hydrogen and fuel cell R&D over the last three decades. Federal Support for Hydrogen and Fuel Cell R&D Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader.

263

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

264

Hydrogen Compatibility of Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

265

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

266

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

267

Hydrogen Generator Appliance  

Broader source: Energy.gov (indexed) [DOE]

lAbOrAtOry NG Workshop summary report - appeNDIX J slide presentation: hydrogen Generator appliance Gus Block, Nuvera Fuel Cells...

268

Module 2: Hydrogen Use  

Broader source: Energy.gov [DOE]

This course covers the processes by which hydrogen is extracted, how it is stored and transported, and the inherent advantages and disadvantages of each method

269

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

270

Hydrogen Production & Delivery  

Energy Savers [EERE]

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

271

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

272

Hydrogen Production & Delivery  

Broader source: Energy.gov [DOE]

"2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2 and Fuel Cells Plenary "

273

Hydrogen Release Behavior  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

274

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

275

President's Hydrogen Fuel Initiative  

Broader source: Energy.gov [DOE]

Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

276

Hydrogen Safety Knowledge Tools  

SciTech Connect (OSTI)

With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

Fassbender, Linda L.

2011-01-31T23:59:59.000Z

277

Hydrogen ion microlithography  

DOE Patents [OSTI]

Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

Tsuo, Y.S.; Deb, S.K.

1990-10-02T23:59:59.000Z

278

Detroit Commuter Hydrogen Project  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

279

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

280

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

282

Massachusetts Hydrogen Coalition | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Hydrogen Coalition Massachusetts Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name Massachusetts Hydrogen Coalition Address 100 Cummings Center Place Beverly, Massachusetts Zip 01915 Region Greater Boston Area Website http://www.massh2.org/ Notes Membership based non-profit, focused on expanding hydrogen, fuel cell and related industries in Massachusetts Coordinates 42.559013°, -70.8870313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.559013,"lon":-70.8870313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

LTS Related Links - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Management LTS Fact Sheets Briefings LTS Related Links LTS Contact Us 2015 Vision LTS Related Links Email Email Page | Print Print Page |Text Increase Font Size...

284

Infinity Fuel Cell and Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Infinity Fuel Cell and Hydrogen Infinity Fuel Cell and Hydrogen Jump to: navigation, search Name Infinity Fuel Cell and Hydrogen Place Suffield, Connecticut Zip 6078 Sector Hydro, Hydrogen Product A team of fuel cell, hydrogen and business professionals both developing their own products and providing consulting and project management to others. Coordinates 41.983729°, -72.66° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.983729,"lon":-72.66,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Hydrogen storage in heat welded random CNT network structures  

Science Journals Connector (OSTI)

Abstract The objective of this study is to investigate hydrogen storage capability of heat welded random carbon nanotube (CNT) network structures. To achieve this objective, different three-dimensional random CNT network structures are generated by using a stochastic algorithm and molecular dynamic simulations. The interaction of CNT networks with hydrogen molecules is then examined via grand canonical Monte Carlo calculations. Hydrogen adsorption capacity of CNT networks having an arbitrarily natured morphology, adjustable porous structure and large surface ratio is investigated. The results show that if cross link density of random CNT networks decreases, hydrogen storage capability of CNT networks increases in terms of the gravimetric capacity. It is observed that random CNT networks could uptake 8.85wt.% hydrogen at 77K and this result is very comparable with the results reported in literature where generally ideal ordered nanostructures having no topological irregularities are considered.

Zeynel Ozturk; Cengiz Baykasoglu; Alper T. Celebi; Mesut Kirca; Ata Mugan; Albert C. To

2014-01-01T23:59:59.000Z

286

Hydrogen Threshold Cost Calculation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Threshold Cost Calculation Hydrogen Threshold Cost Calculation DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and...

287

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

high-pressure stationary hydrogen storage tanks. The storagehigh-pressure gaseous hydrogen storage containers, and atrailer Compressed hydrogen storage High-pressure hydrogen

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

288

Hydrogen Delivery - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

289

NREL: Hydrogen and Fuel Cells Research - Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable...

290

Combination moisture and hydrogen getter  

DOE Patents [OSTI]

A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

Harrah, L.A.; Mead, K.E.; Smith, H.M.

1983-09-20T23:59:59.000Z

291

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

292

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

293

Solitons, links and knots  

Science Journals Connector (OSTI)

...Soc. Lond. A (1999) Solitons, links and knots 4309 on a grid containing 1003 points, where spatial derivatives are approximated...results we can speculate on some qualitative aspects of an energy mini- mization principle which leads to the interesting structures...

1999-01-01T23:59:59.000Z

294

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

295

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: Energy.gov [DOE]

Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

296

Health and Wellbeing The Microsoft External Research  

E-Print Network [OSTI]

Health and Wellbeing The Microsoft External Research Division within Microsoft Research partners to support every stage of the research process. Efforts are focused in four research areas--including Health about their health. Microsoft External Research http://research.microsoft.com/en-us/ collaboration

Oxford, University of

297

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

298

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

299

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

300

Plasma post-hydrogenation of hydrogenated amorphous silicon and germanium  

SciTech Connect (OSTI)

Incorporation and kinetics of hydrogen during plasma post-hydrogenation and thermal treatment are discussed for a-Si:H and a-Ge:H films. For material of low hydrogen content, the hydrogen surface concentration reached by plasma treatment equals the hydrogen concentration obtained by deposition at the same temperature and under similar plasma conditions. Enhancements of the hydrogen diffusion coefficient and of hydrogen solubility observed for plasma treatment at temperatures {le}400 C and {le}300 C for a-Si:H and a-Ge:H, respectively, are attributed to a plasma induced rise of the surface hydrogen chemical potential.

Beyer, W.; Zastrow, U. [Forschungszentrum Juelich (Germany). Inst. fuer Schicht- und Ionentechnik

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

302

NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric...

303

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Cost adjusted to 2007 dollars, accurate to two significant figures. Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery...

304

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Program Record Record : 5037 Date: May 22, 2006 Title: Hydrogen Storage Materials - 2004 vs 2006 Originator: Sunita Satyapal Approved by: JoAnn Milliken...

305

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

306

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...from outside: the infrastructure they need to...existing electricity grid or natural gas...massive new hydrogen infrastructure to deliver the...development of hybrid cars, critics...out on page 974 , hybrid electric vehicles...separate hydrogen infrastructure. Near-term help...

Robert F. Service

2004-08-13T23:59:59.000Z

307

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...paces, 200 fuel cells under...Switching from fossil fuels to hydrogen...reduce urban air pollution, lower dependence...cleaner air, lower greenhouse...cost of the fuel drops to $1.50...hydrogen from fossil fuels, DOE...none of these solutions is up to...

Robert F. Service

2004-08-13T23:59:59.000Z

308

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

309

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

310

Thick film hydrogen sensor  

DOE Patents [OSTI]

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

Hoffheins, B.S.; Lauf, R.J.

1995-09-19T23:59:59.000Z

311

Renewable Resources for Hydrogen (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

312

Gaseous and Liquid Hydrogen Storage  

Broader source: Energy.gov [DOE]

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

313

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in the cost of hydrogen production, distribution, and use.accelerate R&D of zero-emission hydrogen production methods.Renewable hydrogen production is a key area for focused

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

314

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

type can be applied to hydrogen storage materials. Keywords:can be applied to hydrogen storage materials. Manuscript O-of the formalism to hydrogen storage materials. A partial

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

315

Thin Film Hydrogen Storage System  

Science Journals Connector (OSTI)

In the last one decade the use of hydrogen as an energy carrier has attracted world ... on the technology involved for the production, storage and use of hydrogen. In this paper we discuss storage aspect of hydrogen

I. P. Jain; Y. K. Vijay

1987-01-01T23:59:59.000Z

316

Hydrogen Delivery | Department of Energy  

Energy Savers [EERE]

truck at hydrogen production facility. A viable hydrogen infrastructure requires that hydrogen be able to be delivered from where it's produced to the point of end-use, such as...

317

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

318

Hydrogen Storage- Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

319

Electrochemical Hydrogen Compression (EHC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

320

NREL: Learning - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Threshold Cost Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

322

Hydrogen Fuel Quality  

SciTech Connect (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

323

Hydrogen Purity Standard  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

324

Education Links | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Education Links Education Links Workforce Development for Teachers and Scientists (WDTS) WDTS Home About Organization Chart .pdf file (24KB) Education Links WDTS Budget WDTS Committees of Visitors Jobs Science Undergraduate Laboratory Internships (SULI) Community College Internships (CCI) DOE Office of Science Graduate Fellowship (SCGF) Program External link Albert Einstein Distinguished Educator Fellowship (AEF) Program Visiting Faculty Program (VFP) at DOE Laboratories DOE National Science Bowl® (NSB) Laboratory Equipment Donation Program (LEDP) Outreach Contact Information Workforce Development for Teachers and Scientists U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-8842 F: (202) 586-0019 E: sc.wdts@science.doe.gov

325

Related Links | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources ASCR Discovery Monthly News Roundup News Archives ASCR Program Documents ASCR Workshops and Conferences ASCR Presentations 100Gbps Science Network Related Links Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » News & Resources Related Links Print Text Size: A A A RSS Feeds FeedbackShare Page The White House External link U.S. Department of Energy Office of Science

326

Photoelectrochemical Hydrogen Production  

SciTech Connect (OSTI)

The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short-circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ?1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (5% STH equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes. With the metal oxide compounds, we have demonstrated that a WO{sub 3}-based hybrid p

Hu, Jian

2013-12-23T23:59:59.000Z

327

The Universe Adventure - Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Cosmology and Space Cosmic Journey A site chronicling the history of scientific cosmology, presented by the American Institute of Physics. Hubble Ultra-Deep Field Skywalker Lets you explore the famous Hubble Deep Field photo, which is the deepest view (in the visible spectrum) into the sky to date. QuietBay Constellation Tutorial A fun and easy tutorial to familiarize yourself with the night sky. Astronomy Picture of the Day Astronomy Picture of the Day features a new image from the universe every day, with short explanations written by professional astronomers. The Solar System NASA site that includes images and profiles of the planets (plus Pluto). Earth Guide An Earth planetary science site created by the Japan Science and Technology Agency describing many of the features of Earth and its place in the

328

Website Policies / Important Links | DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links...

329

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

330

Covalently Linked DNA Nanotubes  

Science Journals Connector (OSTI)

SEM analyses of the nanotubes generated according to Scheme 2 further support the suggested folding of the 2D cross-linked DNA array into the nanotube structure. ... Here, we report a modular approach to DNA nanotube synthesis that provides access to geometrically well-defined triangular and square-shaped DNA nanotubes. ... and assembly of carbon nanotubes, and in nanotube-based DNA sensing and sepns. ...

Ofer I. Wilner; Anja Henning; Bella Shlyahovsky; Itamar Willner

2010-03-17T23:59:59.000Z

331

NREL's Hydrogen Program  

SciTech Connect (OSTI)

The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful elementhydrogento power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

None

2011-01-01T23:59:59.000Z

332

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films  

E-Print Network [OSTI]

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

333

External Technical Reviews | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Management » Tank Waste and Waste Processing » Waste Management » Tank Waste and Waste Processing » External Technical Reviews External Technical Reviews Documents Available for Download September 1, 2011 Peer Review of the ASCEM Program 2010 Full Document and Summary Versions are available for download September 1, 2011 Compilation of ETR Summaries ETR Summaries from 2011 February 15, 2011 External Technical Review Report for Small Column Ion Exchange Technology at Savannah River Site Full Document and Summary Versions are available for download September 30, 2009 External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process Full Document and Summary Versions are available for download June 30, 2009 Evaluation of System Level Modeling and Simulation Tools in Support of

334

External Costs of Fossil Fuel Cycles  

Science Journals Connector (OSTI)

The use of energy causes damage to a wide range of receptors, including human health, natural ecosystems, and the built environment. Such damages are referred to as external costs, as they are not reflected in...

W. Krewitt; P. Mayerhofer; R. Friedrich; A. Trukenmller

1997-01-01T23:59:59.000Z

335

Proceedings: National conference on environmental externalities  

SciTech Connect (OSTI)

This report is the proceedings of the National Conference on Environmental Externalities. A environmental externality is the environmental impact of a process or a plant that society must endure. It is a social cost and is paid, but not by the company who produced it or the company`s customers who endure it. The main purpose of this report is to gather the many designs and ideas of how and why to internalize the externalities into the pricing systems of the public utility commissions, especially that of the electric utilities. Economic and sociological aspects of the internalization of these externalities are given in these proceedings. Individual papers are processed separately for databases. (MB)

Not Available

1990-12-31T23:59:59.000Z

336

Chapter 8 - Pipeline External Corrosion Protection  

Science Journals Connector (OSTI)

Offshore steel pipelines are normally designed for a life ranging from 10 years to 40 years. To enable the pipeline to last for the design life, the pipeline needs to be protected from corrosion both internally and externally. Internal corrosion is related to fluid that is carried by the pipeline, and this topic is not covered here. This chapter describes the method by which the external corrosion of offshore pipelines may be minimized.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

337

Pin loosening in external skeletal fixation  

E-Print Network [OSTI]

PIN LOOSENING IN EXTERNAL SKELETAL FIXATION A Thesis by BA MIN I VITTAL Submitted to the Office of Graduate Studies of Texas AII M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1993 Major... Subject: Bioengineering PIN LOOSENING IN EXTERNAL SKELETAL FIXATION A Thesis by BAMINI VITTAL Submitted to Texas A 8 M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved to as style and content by...

Vittal, Bamini

2012-06-07T23:59:59.000Z

338

Hydrogen: The ultimate fuel and energy carrier  

Science Journals Connector (OSTI)

Hydrogen: The ultimate fuel and energy carrier ... Some of the questions include: 1)Why choose hydrogen as a fuel, 2) How is hydrogen produced, 3)Why is this combustion nonpolluting, 4) How is hydrogen stored? ... Hydrogen ...

Gustav P. Dinga

1988-01-01T23:59:59.000Z

339

The London Hydrogen Partnership | Open Energy Information  

Open Energy Info (EERE)

Partnership Partnership Jump to: navigation, search Name The London Hydrogen Partnership Place London, United Kingdom Zip SE1 2AA Sector Hydro, Hydrogen Product The London Hydrogen Partnership is striving to promote the use of hydrogen as an alternative fuel in the capital to improve air quality, reduce greenhouse gases and noise, improve energy security and support Londonâ€(tm)s green economy. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons  

DOE Patents [OSTI]

A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

Muradov, Nazim Z. (Melbourne, FL)

2011-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

hydrogen | OpenEI  

Open Energy Info (EERE)

hydrogen hydrogen Dataset Summary Description Technical Reference for Hydrogen Compatibility of Materials Source Sandia National Laboratories Date Released June 03rd, 2010 (4 years ago) Date Updated September 27th, 2012 (2 years ago) Keywords Compatibility of Materials hydrogen NREL Sandia Technical Database Technical Reference Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_cia85_ten_fra_fat.xlsx (xlsx, 60.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10_fra_fat.xlsx (xlsx, 58.5 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10b_fra_fat.xlsx (xlsx, 59.4 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san11_fra_fat.xlsx (xlsx, 48.4 KiB)

342

NREL: Learning - Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

343

Sustainable Hydrogen Production  

Science Journals Connector (OSTI)

...Today, hydrogen is mainly produced from natural gas via steam methane reforming, and although this process can sustain an initial...operating, or maintenance costs are included in the calculation. HHV, higher heating value. System efficiencies of commercial electrolyzers...

John A. Turner

2004-08-13T23:59:59.000Z

344

Hydrogen Production Methods  

Science Journals Connector (OSTI)

As hydrogen appears to be a potential solution for a carbon-free society, its production plays a critical role in showing how well it fulfills the criteria of being environmentally benign and sustainable. Of c...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

345

Hydrogen Production Methods  

Science Journals Connector (OSTI)

Commercially available hydrogen production methods such as steam reforming of natural gas, ... process that are based on fossil hydrocarbons and methods in the stage of development, like thermolysis ... radiolysi...

Y. Yrm

1995-01-01T23:59:59.000Z

346

Bacterial Fermentative Hydrogen Production  

Broader source: Energy.gov [DOE]

Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

347

Electrolytic Hydrogen Generators  

Science Journals Connector (OSTI)

The energy crisis and associated fuel shortages have propagated many proposals to attain energy independence and develop new sources of energy. The approach of a Hydrogen Economy is one of these proposals. The ...

J. B. Laskin

1975-01-01T23:59:59.000Z

348

A Hydrogen Economy  

Science Journals Connector (OSTI)

For some time, people have envisioned an economy where the only source of energy was hydrogen. The idea may have originated in Jules...Mysterious Island....There, a shipwrecked engineer says that once they ran ou...

Sidney Borowitz

1999-01-01T23:59:59.000Z

349

The Hydrogen Economy  

Science Journals Connector (OSTI)

During the 1970s a concept grew up: one of the better ways to reduce the spread of pollutants from the burning of fossil fuels would be to replace these with hydrogen. Thoughts concerning this were expressed in t...

J. OM. Bockris

1977-01-01T23:59:59.000Z

350

Energy Security Through Hydrogen  

Science Journals Connector (OSTI)

Energy and environmental security are major problems facing our global economy. Fossil fuels, particularly crude oil, are ... energy sources. In the long term, a hydrogen-based economy will have an impact on all ...

Professor John W. Sheffield

2007-01-01T23:59:59.000Z

351

The Hydrogen Connection  

SciTech Connect (OSTI)

As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

Barilo, Nick F.

2014-05-01T23:59:59.000Z

352

NREL: Learning - Hydrogen Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel, so the carbon dioxide released in the reformation process adds to the greenhouse effect. Hydrogen has very high energy for its weight, but very low energy for its...

353

National Hydrogen Energy Roadmap  

Fuel Cell Technologies Publication and Product Library (EERE)

This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

354

Hydrogen Compatible Materials Workshop  

Broader source: Energy.gov [DOE]

Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

355

H2 Hydrogen Hungary Ltd aka Integral Energy | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Hungary Ltd aka Integral Energy Hydrogen Hungary Ltd aka Integral Energy Jump to: navigation, search Name H2 Hydrogen Hungary Ltd (aka Integral Energy) Place Ipoly u 1/A, Hungary Zip H-6000 Sector Solar Product Owns an empty factory in Hungary, which it plans to use to make heat pumps and assemble solar panels. References H2 Hydrogen Hungary Ltd (aka Integral Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. H2 Hydrogen Hungary Ltd (aka Integral Energy) is a company located in Ipoly u 1/A, Hungary . References ↑ "[ H2 Hydrogen Hungary Ltd (aka Integral Energy)]" Retrieved from "http://en.openei.org/w/index.php?title=H2_Hydrogen_Hungary_Ltd_aka_Integral_Energy&oldid=346329

356

DOE Hydrogen and Fuel Cells Program: 2007 Annual Merit Review Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Annual Merit Review Proceedings 2007 Annual Merit Review Proceedings Printable Version 2007 Annual Merit Review Proceedings Logo for the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation, May 15-18, Washington, D.C. Principal investigators presented the status and results of their hydrogen and fuel cell projects at the DOE Hydrogen Program's Annual Merit Review on May 15-18, 2007 in Washington, D.C. Links to their presentations and posters are provided below. Plenary Session Presentations Hydrogen Production and Delivery Presentations Distributed Production Biological Production Separations Electrolysis Photoelectrochemical Production Hi-Temp Thermochemical Hydrogen Delivery Hydrogen from Coal Nuclear Hydrogen Initiative Posters Central Biomass Biological Production Compressed/Liquid Tanks

357

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV | Open  

Open Energy Info (EERE)

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Jump to: navigation, search Name Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV Place New York Zip 12110 Sector Hydro, Hydrogen Product Plug Power has entered a JV with Exxon Mobil Corporation, QuestAir Technologies and Ben Gurion University. It plans to commercialize an on-vehicle hydrogen production system for use in a fuel cell-powered lift truck application. References Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV is

358

Hydrogen Production Infrastructure Options Analysis  

Broader source: Energy.gov [DOE]

Presentation on hydrogen production and infrastructure options presented at the DOE Transition Workshop.

359

Solar energy: Hydrogen and oxygen  

Science Journals Connector (OSTI)

Solar energy: Hydrogen and oxygen ... Demonstrating the electrolysis of water with solar energy. ...

John J. Farrell

1982-01-01T23:59:59.000Z

360

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov [DOE]

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

January 2005 HYDROGEN EMBRITTLEMENT OF  

E-Print Network [OSTI]

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I #12;3 January 2005 Hydrogen Embrittlement: Long History Proc. R. Soc. 23, 168-175, 1875 #12;4 January 2005 Hydrogen Embrittlement: Long History Proc. R. Soc. 23, 168-175, 1875 #12;5 January 2005 Hydrogen

362

Bulk Hydrogen Strategic Directions for  

E-Print Network [OSTI]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia #12;Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything storage is an economic solution to address supply/demand imbalance #12;Breakout Session - Bulk Hydrogen

363

Webinar: Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

364

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

365

Hydrogen & Fuel Cells Program Overview  

E-Print Network [OSTI]

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell

366

Composites Technology for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution

367

Hydrogen recovery process  

DOE Patents [OSTI]

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

368

Michelangelo Network recommendations on nuclear hydrogen production  

Science Journals Connector (OSTI)

The Michelangelo Network (MICANET) was started within the 5th EURATOM Framework Programme (FP5) with the objective to elaborate a general European R&D strategy for the further development of the nuclear industry in the short, medium, and long term. To broaden the application range of nuclear power beyond dedicated electricity generation, the network proposed an orientation for future EURATOM R&D programmes including new industrial aspects of nuclear energy, such as combined heat and power and, particularly, the production of hydrogen or other fuels as a link to CO2-free energy sources. MICANET is acting as the European counterpart and partner to the Generation IV International Forum. The MICANET project ended in November 2005. Goals achieved related to nuclear hydrogen production and other non-electrical nuclear applications are outlined in this paper.

Karl Verfondern; Werner Von Lensa

2006-01-01T23:59:59.000Z

369

Fermilab | About FermiLINK  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About FermiLINK About FermiLINK Fermilab Today September 28, 2009 Mentors wanted for Diversity Office's FermiLINK program Fermilab Today October 5, 2009 Mentors wanted for Diversity Office's FermiLINK program Fermilab Today October 13, 2009 FermiLINK Q&A session Fermilab Today November 9, 2009 FermiLINK calls for mentees FermiLINK is Fermilab’s mentorship system designed to create an organizational network of leaders by providing opportunities for professional development and career management. This support structure creates access to the counsel and institutional knowledge of successful Fermilab professionals independent of the immediate supervisory hierarchy. FermiLINK provides web-based access to a host of mentors for issue-specific work-related challenges and opportunities. The network supports email,

370

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

pathway, with hydrogen production at refueling stations (with centralized hydrogen production and gaseous hydrogenwith centralized hydrogen production and liquid hydrogen (

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

371

20130221WebCastLinks | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ready Talk -- slides and audio. You will need to register to view these: Ready Talk -- slides and audio. You will need to register to view these: Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings Ready Talk -- slides and audio. You will need to register to view these: Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting February 21, 2013 - Session 1 - http://cc.readytalk.com/play?id=1bsrre External link BERAC Meeting February 21, 2013 - Session 2 - http://cc.readytalk.com/play?id=11ojq2 External link BERAC Meeting February 21, 2013 - Session 3 - http://cc.readytalk.com/play?id=5tm3ax External link (phone connection lost for about 20 minutes of BERAC charge discussion)

372

List of Companies in Hydrogen Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Hydrogen Sector Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-190) Map of Hydrogen companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

373

Hydrogen storage and generation system  

DOE Patents [OSTI]

A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-08-24T23:59:59.000Z

374

The Climate Impacts LINK Project  

E-Print Network [OSTI]

The Climate Impacts LINK Project The Climatic Research Unit, University of East Anglia Funded Impacts LINK Project: Applying Results from the Hadley Centre's Climate Change Experiments for Climate change is relatively undeveloped.The Climate Impacts LINK Project was conceived to encourage research

Feigon, Brooke

375

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

376

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

377

Meeting on Battery Chargers and External Power Supplies | Department...  

Energy Savers [EERE]

for Energy Conservation Standards for Battery Chargers and External Power Supplies, BatteriesandExternalPowerSupplies.pdf More Documents & Publications Ex Parte Communication...

378

2014-02-03 Issuance: Energy Conservation Standards for External...  

Broader source: Energy.gov (indexed) [DOE]

3 Issuance: Energy Conservation Standards for External Power Supplies; Final Rule 2014-02-03 Issuance: Energy Conservation Standards for External Power Supplies; Final Rule This...

379

External-field-free magnetic biosensor  

SciTech Connect (OSTI)

In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm??200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2014-03-24T23:59:59.000Z

380

Externally fired gas turbine technology: A review  

Science Journals Connector (OSTI)

Abstract Externally fired heat engines were used widely since helium the industrial revolution using dirty solid fuels for example coal, due to the lack of refined fuels. However, with the availability of clean fuels, external firing mode was abandoned, except for steam power plants. Lately, with the global trend moving towards green power production, the idea of the external fired system has captured the attention again especially externally fired gas turbine (EFGT) due to its wider range of power generation and the potential of using environment friendly renewable energy sources like biomass. In this paper, a wide range of thermal power sources utilizing EFGT such as concentrated solar power (CSP), fossil, nuclear and biomass fuels are reviewed. Gas turbine as the main component of EFGT is investigated from micro scale below 1MWe to the large scale central power generation. Moreover, the different high temperature heat exchanger (HTHE) materials and designs are reviewed. Finally, the methods of improving cycle efficiency such as the externally fired combined cycle (EFCC), humidified air turbine (HAT), EFGT with fuel cells and other cycles are reviewed thoroughly.

K.A. Al-attab; Z.A. Zainal

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Future Challenges for Linked APIs  

E-Print Network [OSTI]

Abstract. A number of approaches combine the principles and technologies of Linked Data and RESTful services. Services and APIs are thus enriched by, and contribute to, the Web of Data. These resource-centric approaches, referred to as Linked APIs, focus on flexibility and the integration capabilities of Linked Data. We use our experience in teaching students on how to use Linked APIs to identify the existing challenges in the area. Additionally we introduce the LAPIS catalogue, a directory for Linked APIs as basis for the research to address the identified challenges. 1

Steffen Stadtmller; Sebastian Speiser; Andreas Harth

382

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

383

Transportation External Coordination Working Group (TEC)  

Broader source: Energy.gov (indexed) [DOE]

Transportation External Coordination Working Group (TEC) Transportation External Coordination Working Group (TEC) July 17-19, 2001 Cincinnati, Ohio Meeting Summary The Transportation External Coordination Working Group (TEC) held its 19 th semi-annual meeting July 17-19, 2001, in Cincinnati, Ohio. One hundred fifteen people attended (see Appendix A for listing of participants). Jim Carlson, U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) and TEC co-chair, welcomed participants to the meeting. He then introduced Robert Owen of the Ohio Department of Health, and Jim Richter of the Cincinnati/Hamilton County Emergency Management Agency, who also made some welcoming remarks. Topic Group Meetings Tribal Issues Topic Group Issues discussed during this meeting included the Federal Railroad Administration (FRA) rail safety pilot

384

External Technical Reviews | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » External Technical Reviews External Technical Reviews Documents Available for Download March 17, 2006 Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download previous 1 2 next Miscellaneous Supporting Information January 9, 2007 Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review August 10, 2006 Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review August 10, 2006 Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review

385

Component external leakage and rupture frequency estimates  

SciTech Connect (OSTI)

In order to perform detailed internal flooding risk analyses of nuclear power plants, external leakage and rupture frequencies are needed for various types of components - piping, valves, pumps, flanges, and others. However, there appears to be no up-to-date, comprehensive source for such frequency estimates. This report attempts to fill that void. Based on a comprehensive search of Licensee Event Reports (LERs) contained in Nuclear Power Experience (NPE), and estimates of component populations and exposure times, component external leakage and rupture frequencies were generated. The remainder of this report covers the specifies of the NPE search for external leakage and rupture events, analysis of the data, a comparison with frequency estimates from other sources, and a discussion of the results.

Eide, S.A.; Khericha, S.T.; Calley, M.B.; Johnson, D.A.; Marteeny, M.L.

1991-11-01T23:59:59.000Z

386

Magnetic liquefier for hydrogen  

SciTech Connect (OSTI)

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31T23:59:59.000Z

387

Hydrogen-Selective Membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1995-09-19T23:59:59.000Z

388

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

389

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1997-07-29T23:59:59.000Z

390

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

391

External Dynamic Capabilities: Creating Competitive Advantage in Innovation via External Resource Renewal  

E-Print Network [OSTI]

Resource Renewal Ann-Kristin Ridder Department of Organization & Strategy School of Business and Economics External Resource Renewal Abstract: While prior research has examined how firms internally transform their resource base to develop new innovations, less is known about external paths of resource renewal

Sekhon, Jasjeet S.

392

External corrosion assessment in a LNG pipeline  

SciTech Connect (OSTI)

A 16 inch. diameter LNG pipeline which transports 54 MBPD between extraction and fractionation facilities located north-east of Venezuela, showed an accelerated external corrosion even though coating and cathodic protection had been used to protect it. A diagnosis of the external condition of the pipeline was addressed by matching the results obtained by using different techniques such as electromagnetic pigging, DC voltage gradient survey, close interval potential survey, soil classification and resistivity profiles along the pipeline. This paper discusses the factors evaluated to identify sections of the pipe where corrosion problems occurred under disbonded pipeline coating, which required immediate attention for coating rehabilitation.

Luciani, B.; Gutierrez, X. [Corpoven S.A., Caracas (Venezuela)

1998-12-31T23:59:59.000Z

393

Hydrogen Pathway Cost Distributions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

394

ENERGY | Hydrogen Economy  

Science Journals Connector (OSTI)

Abstract The growing concerns about global climate change, local pollution, and availability and security of energy supply have drawn the larger public attention, well outside the frontiers of the research community. A large debate has been considering the potential benefits of a hydrogen economy with low- or carbon-free primary energy sources. The attractive potential of hydrogen is countered by uncertainties about the development and the economics of the implied key enabling technologies, such as renewable energy sources, advanced production processes, fuel cells (FCs), novel storage technologies, safety, and a brand new or a substantially modified infrastructure. A paradigm shift to a hydrogen economy will surely require substantial research and development (R&D) breakthroughs on critical technologies with a lengthy transitional approach.

M. Conte; M. Ronchetti

2013-01-01T23:59:59.000Z

395

Hydrogen Generator Appliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Generator Appliance Hydrogen Generator Appliance Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held...

396

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen...

397

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

398

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

Electrochemical hydrogen production methods are quiteonly causative hydrogen production method. Although the massa method for the production of molecular hydrogen from

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

399

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

currents and hydrogen production rates are shown to followmolecules. The hydrogen production efficiency is currentlycurrently available hydrogen production routes that can be

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

400

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

pieces of hardware: 1. Hydrogen production equipment (e.g.when evaluating hydrogen production costs. Many analyses inrespect to size and hydrogen production method. These costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tanadgusix (TDX) Foundation Hydrogen Project | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tanadgusix (TDX) Foundation Hydrogen Project Tanadgusix (TDX) Foundation Hydrogen Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

402

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

403

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

404

Hydrogen Storage Challenges | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

405

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

406

Chemical Hydrogen Storage Research and Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage Research and Development Chemical Hydrogen Storage Research and Development DOE's chemical hydrogen storage R&D is focused on developing low-cost...

407

Hydrogen Production Fact Sheet | Department of Energy  

Energy Savers [EERE]

Production Fact Sheet Hydrogen Production Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen production. Hydrogen Production More Documents &...

408

Chevron Hydrogen Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

409

HYDROGEN TO THE HIGHWAYS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HYDROGEN TO THE HIGHWAYS HYDROGEN TO THE HIGHWAYS 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 --...

410

Hunterston Hydrogen Ltd | Open Energy Information  

Open Energy Info (EERE)

Hunterston Hydrogen Ltd Jump to: navigation, search Name: Hunterston Hydrogen Ltd Place: Anglesey, United Kingdom Zip: LL65 4RJ Sector: Hydro, Hydrogen, Wind energy Product:...

411

Florida Hydrogen Initiative | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Florida Hydrogen Initiative Florida Hydrogen Initiative 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009...

412

California Hydrogen Infrastructure Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Infrastructure Project California Hydrogen Infrastructure Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

413

Maximizing Light Utilization Efficiency and Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen...

414

President's Hydrogen Fuel Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

President's Hydrogen Fuel Initiative President's Hydrogen Fuel Initiative Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop...

415

Hydrogen Fuel Quality - Focus: Analytical Methods Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

416

Hydrogen and Fuel Cells Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

71 Hydrogen and Fuel Cells Success Stories en Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle http:energy.goveeresuccess-storiesarticlesadvancing-hydrogen-in...

417

New Materials for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

418

Hydrogen production from microbial strains  

DOE Patents [OSTI]

The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

Harwood, Caroline S; Rey, Federico E

2012-09-18T23:59:59.000Z

419

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

420

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting  

SciTech Connect (OSTI)

Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

Melendez, M.; Milbrandt, A.

2008-04-01T23:59:59.000Z

422

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National...

423

NREL: Hydrogen and Fuel Cells Research - 2014 DOE Hydrogen and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted November 3, 2014 The U.S. Department of Energy's (DOE) Hydrogen and Fuel Cells...

424

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

425

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

426

Model calculations of the hydrogen/deuterium kinetic isotope effect in the atomic hydrogen + disilane reaction  

Science Journals Connector (OSTI)

Model calculations of the hydrogen/deuterium kinetic isotope effect in the atomic hydrogen + disilane reaction ...

I. Safarik; T. L. Pollock; O. P. Strausz

1974-01-01T23:59:59.000Z

427

Catalyst for Recombination of Hydrogen and Oxygen in Confined Spaces Under High Concentrations of Hydrogen  

Science Journals Connector (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners

V. Shepelin; D. Koshmanov; E. Chepelin

428

Charge to the External Review Team John. A. Schmidt  

E-Print Network [OSTI]

and resources, we plan a External Review meeting scheduled for June 5-7, 2001 at Princeton Plasma Physics LabCharge to the External Review Team John. A. Schmidt Presented at External Review of FIRE Laboratory for Technology http://fire.pppl.gov #12;External Review of FIRE Major Engineering Subsystems

429

Hard thermal loops in static external fields  

E-Print Network [OSTI]

We study, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop at zero external energies and momenta.

J. Frenkel; S. H. Pereira; N. Takahashi

2009-02-04T23:59:59.000Z

430

Review of Externality Valuation Lotte Schleisner  

E-Print Network [OSTI]

in the project "Investigation of Pricing Incentives in a Renewable Energy Strategy in Thailand". The report gives-EC fuel cycle study 17 4.5 Environmental costs of coal-based thermal power generation in India 18 4 of externalities in the project "Investigation of Pricing Incentives in a Renewable Energy Strategy in Thailand

431

Research on External Power Supplies Will Save  

E-Print Network [OSTI]

of energy used by 92,000 homes in one year, or about $90 million annually. External Power Supplies consoles, cordless tools, and computer printers and speakers. The average California home has at least. Estimated annual energy consumption of these devices is more than 5,500 gigawatts per hour, or about 2

432

Hard thermal loops in static external fields  

SciTech Connect (OSTI)

We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop integral at zero external energies and momenta.

Frenkel, J.; Takahashi, N. [Universidade de Sao Paulo, Instituto de Fisica Rua do Matao, Travessa R, 187-05508-090 Cidade Universitaria, Sao Paulo, SP (Brazil); Pereira, S. H. [Universidade de Sao Paulo, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas Rua do Matao, 1226-05508-090 Cidade Universitaria, Sao Paulo, SP (Brazil)

2009-04-15T23:59:59.000Z

433

Exploiting External Collections for Query Expansion  

Science Journals Connector (OSTI)

A persisting challenge in the field of information retrieval is the vocabulary mismatch between a users information need and the relevant documents. One way of addressing this issue is to apply query modeling: to add terms to the original query ... Keywords: Query modeling, blog post retrieval, external expansion

Wouter Weerkamp; Krisztian Balog; Maarten de Rijke

2012-11-01T23:59:59.000Z

434

Partners and related links | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the organizations with which EMSL maintains closest relationships in high performance computing and software development. Partners Note: The links below leave this site...

435

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

436

High-Pressure Hydrogen Tanks  

Broader source: Energy.gov [DOE]

Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

437

Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov (indexed) [DOE]

U.S. * 50% of this resource could provide 340,000 kgday of hydrogen. Background: Biogas as an Early Source of Renewable Hydrogen * The majority of biogas resources are...

438

Liquid Hydrogen in Protonic Chabazite  

Science Journals Connector (OSTI)

1,5,6 Today, the prototype hydrogen vehicles use space-demanding tanks with compressed gas. ... aerogela ... hydrogen (LH2) storage in terms of vol., vehicle range, dormancy, energy required for fuel processing, and cost. ...

Adriano Zecchina; Silvia Bordiga; Jenny G. Vitillo; Gabriele Ricchiardi; Carlo Lamberti; Giuseppe Spoto; Morten Bjrgen; Karl Petter Lillerud

2005-04-12T23:59:59.000Z

439

Hydrogen Storage in Graphite Nanofibers  

Science Journals Connector (OSTI)

Hydrogen Storage in Graphite Nanofibers ... Subsequent lowering of the pressure to nearly atmospheric conditions results in the release of a major fraction of the stored hydrogen at room temperature. ...

Alan Chambers; Colin Park; R. Terry K. Baker; Nelly M. Rodriguez

1998-05-12T23:59:59.000Z

440

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Muon capture in hydrogen  

E-Print Network [OSTI]

Theoretical difficulties in reconciling the measured rates for ordinary and radiative muon capture are discussed, based on heavy-baryon chiral perturbation theory. We also examine ambiguity in our analysis due to the formation of p$\\mu$p molecules in the liquid hydrogen target.

S. Ando; F. Myhrer; K. Kubodera

2001-10-30T23:59:59.000Z

442

Rethinking Hydrogen Cars  

Science Journals Connector (OSTI)

...cleanly or used in fuel cells and so can reduce air pollution; (ii) it emits...oil dependence. Air Quality Hydrogen...cost-effective solutions (9). Emissions...SO 2 per GJ of fuel(kg SO 2 /GJ...08 39 0.70 Fossil fuel electricity...

David W. Keith; Alexander E. Farrell

2003-07-18T23:59:59.000Z

443

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...be gained by adopting hybrid gasoline-electric...former DOE director of energy research John Deutch...point out on page 974 , hybrid electric vehiclesa...marketwould improve energy efficiency and reduce...a separate hydrogen infrastructure. Near-term help...

Robert F. Service

2004-08-13T23:59:59.000Z

444

Hydrogen isotope separation  

DOE Patents [OSTI]

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

445

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

446

Hydrogen & Fuel Cells Program Overview  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

447

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

448

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

449

Materials-Based Hydrogen Storage  

Broader source: Energy.gov [DOE]

There are presently three generic mechanisms known for storing hydrogen in materials: absorption, adsorption, and chemical reaction.

450

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

451

Argonne leads hydrogen storage project  

Science Journals Connector (OSTI)

A new $1.88m research project on on-board hydrogen storage at the US Department of Energy's Argonne National Laboratory in Illinois aims to develop a hydrogen storage system that can hold enough hydrogen for a driving range of 300 miles (480 km).

2007-01-01T23:59:59.000Z

452

Hydrogen Cars and Water Vapor  

E-Print Network [OSTI]

. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solutionHydrogen Cars and Water Vapor D.W.KEITHANDA.E.FARRELL'S POLICY FORUM "Rethinking hydrogen cars" (18 misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have

Colorado at Boulder, University of

453

Rydberg states of triatomic hydrogen  

Science Journals Connector (OSTI)

...Watson Rydberg states of triatomic hydrogen C. H. Greene 1 J. A. Stephens 2 1...Rydberg electron dynamics in triatomic hydrogen, at a level that includes the full rotational...deuterium. Rydberg states of triatomic hydrogen B y C. H. Greene1 and J. A. Stephens2...

1997-01-01T23:59:59.000Z

454

Hydrogen & Fuel Cells Program Overview  

E-Print Network [OSTI]

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager 2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2

455

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

456

Upcoming Webinar December 16: International Hydrogen Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

457

Ultraviolet stimulation of hydrogen peroxide production using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer Ultraviolet stimulation of hydrogen peroxide...

458

Robust Polymer Composite Membranes for Hydrogen Separation |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

459

International Hydrogen Infrastructure Challenges Workshop Summary...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

460

International Hydrogen Infrastructure Challenges Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE...

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Broader source: Energy.gov (indexed) [DOE]

Combinatorial Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial...

462

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

463

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

464

National Hydrogen Learning Demonstration Status | Department...  

Energy Savers [EERE]

Hydrogen Learning Demonstration Status National Hydrogen Learning Demonstration Status Download presentation slides from the Fuel Cell Technologies Program webinar "National...

465

NREL: Hydrogen and Fuel Cells Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery Hydrogen storage Manufacturing Market transformation...

466

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

467

SHEC Energy Formerly SHEC Labs Solar Hydrogen Energy Corporation | Open  

Open Energy Info (EERE)

SHEC Energy Formerly SHEC Labs Solar Hydrogen Energy Corporation SHEC Energy Formerly SHEC Labs Solar Hydrogen Energy Corporation Jump to: navigation, search Name SHEC Energy (Formerly SHEC Labs - Solar Hydrogen Energy Corporation) Place Saskatoon, Saskatchewan, Canada Zip S2L 6A4 Sector Hydro, Hydrogen, Solar Product Solar Hydrogen Energy Corporation (SHEC) Labs is a research and development company that was incorporated in 1996 and has developed technologies for the solar thermo catalytic production of hydrogen. Coordinates 52.130505°, -106.659314° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.130505,"lon":-106.659314,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

469

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

470

DOE Hydrogen Analysis Repository: Production of Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Hydrogen from Coal Production of Hydrogen from Coal Project Summary Full Title: Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies Project ID: 265 Principal Investigator: Kristin Gerdes Brief Description: This report assesses the improvements in cost and performance of hydrogen production from domestic coal when employing emerging technologies funded by DOE. Keywords: Hydrogen production; Coal Purpose This analysis specifically evaluates replacing conventional acid gas removal (AGR) and hydrogen purification with warm gas cleanup (WGCU) and a high-temperature hydrogen membrane (HTHM) that meets DOE's 2010 and 2015 performance and cost research and development (R&D) targets. Performer Principal Investigator: Kristin Gerdes

471

DOE Hydrogen and Fuel Cells Program: Permitting Hydrogen Facilities Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy The objective of this U.S. Department of Energy Hydrogen Permitting Web site is to help local permitting officials deal with proposed hydrogen fueling stations, fuel cell installations for telecommunications backup power, and other hydrogen projects. Resources for local permitting officials who are looking to address project proposals include current citations for hydrogen fueling stations and a listing of setback requirements on the Alternative Fuels & Advanced Vehicle Data Center Web site. In addition, this overview of telecommunications fuel cell use and an animation that demonstrates telecommunications site layout using hydrogen fuel cells for backup power should provide helpful

472

DOE Hydrogen Analysis Repository: Hydrogen Demand and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Demand and Infrastructure Deployment Hydrogen Demand and Infrastructure Deployment Project Summary Full Title: Geographically-Based Hydrogen Demand and Infrastructure Deployment Scenario Analysis Project ID: 189 Principal Investigator: Margo Melendez Keywords: Hydrogen fueling; infrastructure; fuel cell vehicles (FCV) Purpose This analysis estimates the spatial distribution of hydrogen fueling stations necessary to support the 5 million fuel cell vehicle scenario, based on demographic demand patterns for hydrogen fuel cell vehicles and strategy of focusing development on specific regions of the U.S. that may have high hydrogen demand. Performer Principal Investigator: Margo Melendez Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401-3393 Telephone: 303-275-4479

473

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

474

Educational Global Climate Change Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Educational Global Climate Change Links Educational Global Climate Change Links Evidence of the importance of global climate change to the future generation is reflected in the increasing number of queries CDIAC receives from students and educators, from a range of educational levels. We have compiled a listing of some sites that we hope will be of interest and of use to those looking for information, fun, ideas, and ways that they can make a difference. These links were chosen because we have found them useful in responding to those with inquiring minds. These links will take the user outside of CDIAC, and are by no means comprehensive. We are not responsible for the content or intent of these outside links. Tools you can use! NOAA's Global Climate Dashboard - The Global Climate Dashboard is

475

Hydrogen Storage by Polylithiated Molecules and Nanostructures  

Science Journals Connector (OSTI)

Hydrogen Storage by Polylithiated Molecules and Nanostructures ... (3) Physisorption offers the possibility of storing hydrogen in molecular form. ... Also given in Table 1 are the hydrogen binding energies, which are calculated by subtracting the total energy of the hydrogenated polylithiated molecules from the sum of the total energies of the isolated polylithiated molecules and the hydrogen molecules, divided by the number of hydrogen molecules. ...

Sleyman Er; Gilles A. de Wijs; Geert Brocks

2009-04-29T23:59:59.000Z

476

FINAL Transportation External Coordination Working Group (TEC)  

Broader source: Energy.gov (indexed) [DOE]

Transportation External Coordination Working Group (TEC) January 28-30, 2002 New Orleans, Louisiana Meeting Summary The Transportation External Coordination Working Group (TEC) held its 20 th semi-annual meeting January 28-30, 2002, in New Orleans, Louisiana. This was the tenth anniversary of TEC, and 102 attendees from national, State, Tribal, and local government organizations; industry and professional groups and other interested parties in the U.S. Department of Energy (DOE) programs, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved

477

External ionization mechanisms for advanced thermionic converters  

SciTech Connect (OSTI)

This work investigates ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter. The changes in plasma density and temperature within the converter have been studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation have been investigated in some detail, namely vibrationally excited N/sub 2/ as are energy source of ionization of Cs ions in a dc discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N/sub 2/-Cs mixture. The experimental data obtained and discussed in this work show that all three techniques - i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power - have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

Hatziprokopiou, M.E.

1981-01-01T23:59:59.000Z

478

Transportation External Coordination Working Group (TEC)  

Broader source: Energy.gov (indexed) [DOE]

Portland, Oregon - February 6-7, 2001 Portland, Oregon - February 6-7, 2001 Transportation External Coordination Working Group (TEC) February 6-7, 2001 Portland, Oregon Meeting Summary The Transportation External Coordination Working Group (TEC) held its 18 th semi-annual meeting February 6-7, 2001, in Portland, Oregon. Attending were 125 representatives from national, State, Tribal and local government organizations, industry and professional groups and other interested parties/DOE programs who meet to address a variety of issues related to DOE's radioactive materials transportation activities and provide continuing and improved coordination between DOE, other levels of government, and outside organizations with DOE transportation-related responsibilities. PLENARY I - TRANSCOM 2000 PRESENTATION (February 6)

479

External breaking of ground-state symmetry  

Science Journals Connector (OSTI)

Ground-state symmetry can be broken by an external field. The threshold value of the symmetry-breaking field may be roughly estimated by comparing experimentally the behavior of two identical physical quantities, as functions of the field, for the set of field directions equivalent, with respect to the action, to a group generator. The kinetic coefficients as the functions of magnetic induction B are used as an illustration.

S. Malinowski

1994-01-01T23:59:59.000Z

480

Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Chloride and Hydrogen Sulfide Hydrogen Chloride and Hydrogen Sulfide Removal Sorbents for High Temperature Gas Streams Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,767,000 entitled "Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams." Disclosed in this patent is the invention of a unique regenerable sorbent process that can remove contaminants from gas produced by the gasification of fossil fuels. Specifically, the process removes hydrogen chloride by using the regenerable sorbent and simultaneously extracts hydrogen chloride compounds and hydrogen

Note: This page contains sample records for the topic "hydrogen external link" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced hydrogen utilization technology demonstration  

SciTech Connect (OSTI)

This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

Hedrick, J.C.; Winsor, R.E. [Detroit Diesel Corp., MI (United States)] [Detroit Diesel Corp., MI (United States)

1994-06-01T23:59:59.000Z

482

Polymer system for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

483

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

484

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

485

Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-03-04T23:59:59.000Z

486

Hydrogen Fuel Cell Automobiles  

Science Journals Connector (OSTI)

With gasoline now more than $2.00 a gallon alternate automobiletechnologies will be discussed with greater interest and developed with more urgency. For our government the hydrogen fuel cell-powered automobile is at the top of the list of future technologies. This paper presents a simple description of the principles behind this technology and a brief discussion of the pros and cons. It is also an extension on my previous paper on the physics of the automobile engine.1

Bernard J. Feldman

2005-01-01T23:59:59.000Z

487

Hydrogen Visual CDP Directory (Sunburst) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Hydrogen Visual CDP Directory (Sunburst) Jump to: navigation, search Ret Left click to go straight to a CDP. Right click to find more information. The interactive graphic on this page links to all of the Composite Data Products, organized by topic. You can find this complete listing on the Composite Data Products by Topic Web page. If you need additional assistance finding a Composite Data Product, please email us. rieved from "http://en.openei.org/w/index.php?title=Hydrogen_Visual_CDP_Directory_(Sunburst)&oldid=618100" What links here Related changes Special pages

488

Building Technologies Office: Battery Chargers and External Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

489

Infinity Fuel Cell and Hydrogen Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Infinity Fuel Cell and Hydrogen Inc Address 431A Hayden Station Road Place Windsor, Connecticut Zip 06095 Sector Hydrogen Product Developing commercial fuel cell and hydrogen products Website http://www.infinityfuel.com/ Coordinates 41.8957999°, -72.6439144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8957999,"lon":-72.6439144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Related Links | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Related Links Related Links Related Links November 1, 2013 - 11:40am Addthis Need additional help or more information? DOE's CHP Technical Assistance Partnerships (CHP TAPs) provide local, individualized solutions to customers on specific combined heat and power (CHP) projects. Partners of DOE's CHP Program include federal and state agencies, non-governmental organizations, international entities, private clean energy companies, technology developers, and commercial builders and developers. Partners American Council for an Energy-Efficient Economy (ACEEE) Argonne National Laboratory (ANL) CHP Association International District Energy Association (IDEA) International Energy Agency (IEA) National Energy Technology Laboratory (NETL) New York State Energy Research and Development Authority (NYSERDA)

491

NREL: Energy Analysis - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links Related Links Here you'll find links to other programs, organizations, and information resources concerning other analysis capabilities, energy-modeling, and technology expertise related to renewable energy. International Applications NREL's International Program in its effort to promote the use of renewable energy as a tool for sustainable development, applies world-class expertise in technology development and deployment, economic analysis, resource assessment, project design and implementation, and policy formulation. Assisting State and Local Governments Using renewable energy and being energy efficient is smart. Not only does it protect the environment, it benefits the economy. Many mayors, governors, city/county commissioners, state legislators, state energy

492

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

493

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy ■ Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

494

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Performing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performing Organization Performing Organization Below are hydrogen analyses and analytical models grouped by performing organization. A B D E F G I L M N O P R S T U W A Aalborg University Wind Power Integration Air Products and Chemicals, Inc. Ceramic Membrane Reactors for Converting Natural Gas to Hydrogen Hydrogen Energy Station Validation Anhui University of Technology Well-to-Wheels Analysis of Hydrogen Fuel-Cell Vehicle Pathways in Shanghai Argonne National Laboratory (ANL) Advanced Vehicle Introduction Decisions (AVID) Model AirCRED Model All Modular Industry Growth Assessment (AMIGA) Model Biofuels in Light-Duty Vehicles Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power Cost Implications of Hydrogen Quality Requirements

495

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

496

High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas and Blends - Materials Testing and Design Requirements for Hydrogen Components and Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Hydrogen...

497

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

498

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus:...

499

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

500

Linked Deposit Loan Program (Kentucky)  

Broader source: Energy.gov [DOE]

The Linked Deposit Program provides loan financing for small businesses of up to $100,000 for up to 7 years. The State Investment Commission invests funds from the state's Abandoned Property Cash...