Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3  

SciTech Connect (OSTI)

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

2

Hydrotreating of coal-derived liquids  

SciTech Connect (OSTI)

The objective of Sandia`s refining of coal-derived liquids project is to determine the relationship between hydrotreating conditions and Product characteristics. The coal-derived liquids used in this work were produced In HTI`s first proof-of-concept run using Illinois No. 8 coal. Samples of the whole coal liquid product, distillate fractions of this liquid, and Criterion HDN-60 catalyst were obtained from Southwest Research Inc. Hydrotreating experiments were performed using a continuous operation, unattended, microflow reactor system. A factorial experimental design with three variables (temperature, (310{degrees}C to 388{degrees}C), liquid hourly space velocity (1 to 3 g/h/cm{sup 3}(cat)), pressure (500 to 1000 psig H{sub 2}) is being used in this project. Sulfur and nitrogen contents of the hydrotreated products were monitored during the hydrotreating experiments to ensure that activity was lined out at each set of reaction conditions. Results of hydrotreating the whole coal liquid showed that nitrogen values in the products ranged from 549 ppM at 320{degrees}C, 3 g/h/cm{sup 3}(cat), 500 psig H{sub 2} to <15 ppM at 400{degrees}C, 1 g/h/ cm{sup 3}(cat), 1000 psig H{sub 2}.

Stohl, F.V.; Lott, S.E.; Diegert, K.V.; Goodnow, D.C.; Oelfke, J.B.

1995-06-01T23:59:59.000Z

3

Process for removal of mineral particulates from coal-derived liquids  

DOE Patents [OSTI]

Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

McDowell, William J. (Knoxville, TN)

1980-01-01T23:59:59.000Z

4

A fresh look at coal-derived liquid fuels  

SciTech Connect (OSTI)

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

5

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

6

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-06-30T23:59:59.000Z

7

Novel catalysts for upgrading coal-derived liquids. Final technical progress report  

SciTech Connect (OSTI)

Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

Thompson, L.T.; Savage, P.E.; Briggs, D.E.

1995-03-31T23:59:59.000Z

8

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

9

Solids precipitation and polymerization of asphaltenes in coal-derived liquids  

DOE Patents [OSTI]

The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

Kydd, Paul H. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

10

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect (OSTI)

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

11

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-06-30T23:59:59.000Z

12

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

13

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect (OSTI)

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

14

Reaction of aromatic compounds and coal-derived liquids with steam over alumina supported nickel catalysts  

SciTech Connect (OSTI)

The objective of this research program has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel-catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C6H6/ = 1.92 x 10 TP/sub C6H6/. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated.

Chen, I.E.

1985-01-01T23:59:59.000Z

15

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

Paul A. Erickson

2004-04-01T23:59:59.000Z

16

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

17

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

18

Evaluation of coal-derived liquids as boiler fuels. Volume 3. Emissions test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived fuels was conducted on a utility boiler located at the plant, Sweatt Electric Generating Station of Mississippi Power Company, in Meridian, Mississippi. Volume 1, of a 5 volume report, contains a comprehensive report of the whole test program - see abstract of Volume 1 for a detailed abstract of the whole program. Volume 3 contains detailed emissions testing results. 41 figs., 6 tabs. (LTN)

Not Available

1985-09-01T23:59:59.000Z

19

Novel catalysts for upgrading coal-derived liquids. Quarterly technical progress report, 1 October 1993--31 December 1993  

SciTech Connect (OSTI)

The principal objective of this research is to evaluate the hydrotreatment properties of {gamma}-Al{sub 2}O{sub 3} supported Mo oxynitride and oxycarbide catalysts. This information will be used to assess the potential of these materials for use as commercial catalysts for hydrotreating coal-derived liquids. During this quarter, the authors evaluated the catalytic properties of a series of supported molybdenum nitride catalysts. These catalysts were prepared in the laboratory for comparison with the supported molybdenum oxynitrides. Pyridine hydrodenitrogenation (HDN) was used as the test reaction.

Thompson, L.T.; Savage, P.E.; Briggs, D.E.

1993-12-31T23:59:59.000Z

20

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

SciTech Connect (OSTI)

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BIMETALLIC NANOCATALYSTS IN MESOPOROUS SILICA FOR HYDROGEN PRODUCTION FROM COAL-DERIVED FUELS  

SciTech Connect (OSTI)

In steam reforming reactions (SRRs) of alkanes and alcohols to produce H{sub 2}, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N{sub 2} adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m{sup 2}/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production in Production and Purification of Ultraclean Transportation Fuels; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)

Kuila, Debasish; Ilias, Shamsuddin

2013-02-13T23:59:59.000Z

22

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas  

SciTech Connect (OSTI)

The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.

O.N. Dogan; B.H. Howard; D.E. Alman

2012-02-26T23:59:59.000Z

23

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

24

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

25

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

26

Bioconversion of coal-derived synthesis gas to liquid fuels. Annual report, September 29, 1992--September 28, 1993  

SciTech Connect (OSTI)

The overall objective of the project is to develop and optimize a two-stage fermentation process for the conversion of coal derived synthesis gas in an mixture of alcohols. The goals include the development of superior strains with high product tolerance and productivity, optimization of process conditions for high volumetric productivity and product concentrations, integration and optimization of two stage syngas fermentation, evaluation of bioreactor configurations for enhanced mass transfer, evaluation of syngas conversion by a culture of Butyribacterium methyltrophicum and Clostridium acetobutylicum, development of a membrane based pervaporation system for in situ removal of alcohols, and development of a process for reduction of carbon and electron loss. The specific goals for year one (September 1992 - September 1993) were (1) development of a project work plan, (2) development of superior CO-utilizing strains, (3) optimization of process conditions for conversion of synthesis gas to a mixture of acids in a continuously stirred reactor (CSTR), (4) evaluation of different bioreactor configurations for maximization of mass transfer of synthesis gas, (5) development of a membrane based pervaporation system, and (6) reduction of carbon and electron loss via H{sub 2}CO{sub 2} fermentation. Experimentation and progress toward these goals are described in this report.

Jain, M.K.; Worden, R.M.; Grethlein, H.E.

1993-10-21T23:59:59.000Z

27

Effect of hydrogen sulfide on chemical looping of coal-derived synthesis gas over bentonite-supported metal---oxide oxygen carriers  

SciTech Connect (OSTI)

The effect of hydrogen sulfide (H2S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxidesssuch as iron oxide, nickel oxide, manganese oxide, and copper oxideswas investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H2S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H2S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H2S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H2S for all four metal oxides.

Tian, H.; Simonyi, T.; Poston, J.; Siriwardane, R.

2009-01-01T23:59:59.000Z

28

Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers  

SciTech Connect (OSTI)

The effect of hydrogen sulfide (H{sub 2}S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides - such as iron oxide, nickel oxide, manganese oxide, and copper oxide - was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H{sub 2}S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H{sub 2}S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H{sub 2}S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H{sub 2}S for all four metal oxides.

Tian, H.J.; Simonyi, T.; Poston, J.; Siriwardane, R. [US DOE, Morgantown, WV (United States). National Energy Technology Laboratory

2009-09-15T23:59:59.000Z

29

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect (OSTI)

To overcome the issue of pinhole (defect) formation in membrane films over large areas, a process was developed and implemented for producing 6-12 {micro}m-thick, Pd-Cu alloy films on thermally oxidized silicon wafer substrates. The processing parameters on silicon are such that adhesion is poor and as-deposited Pd-Cu alloy films easily release from the oxidized silicon surface. Hydrogen permeation tests were conducted on 9 and 12 {micro}m-thick Pd-Cu alloy films and the hydrogen flux for 9 and 12 {micro}m-thick films were 16.8 and 8 cm{sup 3}(STP)/cm{sup 2} {center_dot} min respectively. The hydrogen permeability (corrected using data in McKinnley patent) of the 9 {micro}m-thick membrane is 7.4 {center_dot} 10{sup -5} cm{sup 3}(STP) {center_dot} cm/cm{sup 2} {center_dot} s {center_dot} cm Hg{sup 0.5} at 350 C and compares very well to permeability reported by McKinnley for a 62.5% Pd membrane; this permeability is {approx}56% of the value reported for a Pd-Cu alloy membrane with optimum 60% Pd composition. Using XRD, we confirmed the presence of a two-phase, {alpha}/{beta}, structure and that the composition of our membrane was slightly higher than the optimum composition. We are making adjustments to the compositions of the Pd-Cu alloy target in order to produce films next quarter that match the ideal Pd{sub 60}Cu{sub 40} composition.

B. Lanning; J. Arps

2004-10-01T23:59:59.000Z

30

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect (OSTI)

During the last quarter, new procedures were developed and implemented to improve reliability and repeatability of release characteristics from the temporary substrate (i.e., silicon wafer) and to minimize through-thickness defects in a 6-inch diameter film, 3 microns in thickness. With the new procedures, we have been able to consistently produce essentially stress free films, with zero or minimal defects (less than 5) across a 6-inch diameter area. (It is important to note that for those films containing pinholes, a procedure has been developed to repair the pinholes to form a gas tight seal). The films are all within the identified tolerance range for composition (i.e., 60 {+-} 0.2 % Pd). A number of these films have subsequently been shipped to IdaTech for evaluation and integration into their test module. Colorado School of Mines continued their high temperature evaluation of 6 micron thick, sputtered Pd-Cu films. Pure hydrogen permeability increased up to 400 C while the membrane was in the {beta}-phase and dropped once the temperature increased to over 450 C. Above this temperature, as confirmed by the binary phase diagram, the film transforms into either a mixed {alpha}/{beta} or pure {alpha} phase. The same trend was observed for a baseline 25 micron-thick foil (from Wilkinson) where the pure hydrogen permeability increased with temperature while the membrane was in the {beta}-phase and then decreased upon transformation to the {alpha} phase.

B. Lanning; J. Arps

2005-10-28T23:59:59.000Z

31

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect (OSTI)

In the past quarter, significant progress has been made in optimize the deposition and release characteristics of ultrathin (less than 4 micron) membranes from rigid silicon substrates. Specifically, we have conducted a series of statistically designed experiments to examine the effects of plasma cleaning and compliant layer deposition conditions on the stress, release and pinhole density of membranes deposited on 4 inch and 6 inch round substrates. With this information we have progressed to the deposition and release of ultra-thin membranes from 12-inch diameter (113 sq. in.) rigid substrates, achieving a key milestone for large-area membrane fabrication. Idatech received and is beginning preparations to test the Pd alloy membranes fabricated at SwRI the previous quarter. They are currently evaluating alternate gasketing methods and support materials that will allow for effective sealing and mounting of such thin membranes. David Edlund has also recently left Idatech and Bill Pledger (Chief Engineer) has replaced him as the primary technical point of contact. At Idetech's request a small number of additional 16 sq. in, samples were provided in a 2 in. by 8 in. geometry for use in a new module design currently under development. Recent work at the Colorado School of Mines has focused on developing preconditioning methods for thin Pd alloy membranes (6 microns or less) and continuing tests of thin membranes produced at SwRI. Of particular note, a 300-hour short-term durability study was completed over a range of temperatures from 300-450 C on a foil that showed perfect hydrogen selectivity throughout the entire test. With a 20 psi driving force, pure hydrogen flow rates ranged from 500 to 700 cc/min. Calculated at DOE specified conditions, the H{sub 2} flux of this membrane exceeded the 2010 Fossil target value of 200 SCFH/ft{sup 2}.

J. Arps

2006-01-01T23:59:59.000Z

32

Bioconversion of coal-derived synthesis gas to liquid fuels. Final report, September 29, 1992--December 27, 1994  

SciTech Connect (OSTI)

The proposed research project consists of an integrated, two-stage fermentation and a highly energy-efficient product separation scheme. In the first fermentation, Butyribacterium methylotrophicum converts carbon monoxide (CO) into butyric acid and acetic acids which are then converted into butanol, ethanol, and a small amount of acetone in the second stage fermentation by Clostridium acetobutylicum. An advanced separation system process, based on pervaporation, removes the alcohols from the fermentation broth as they are formed, along with some of the hydrogen sulfide (H{sub 2}S), to minimize possible inhibition of the fermentations. This bioconversion process offers a critical advantage over conventional, catalytic processes for synthesis gas conversion: the microorganisms are several orders of magnitude more sulfur tolerant than metallic catalysts. The catalysts require sulfur removal to the parts per million level, while the microorganisms are unaffected by H{sub 2}S and carbonyl sulfide (COS) at one part per hundred--roughly the composition of sulfur in raw synthesis gas. During the two-year course of this project, the following major objectives have been accomplished: demonstrated long-term cell recycle of continuous fermentation of synthesis gas; demonstrated cell immobilization of Butyribacterium methylotrophicum; identified trickle-bed reactor as a viable alternative fermentation method; modulated metabolic pathways to increase C4 formation during synthesis gas fermentation; recovered carbon and electrons from H{sub 2} and CO{sub 2} with pathway modulation for increased C4 production; developed bacterial strains with improved selectivity for butyrate fermentation; demonstrated two-stage CO to alcohol fermentation; and concentrated alcohol from solventogenic fermentation by pervaporation.

Jain, M.K.; Worden, R.M.; Grethlein, H.E.

1995-01-15T23:59:59.000Z

33

Gaseous and Liquid Hydrogen Storage  

Broader source: Energy.gov [DOE]

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

34

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

35

Cryocompressed Hydrogen Storage and Liquid Delivery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cryocompressed Hydrogen Storage & Liquid Delivery Jacob Leachman, Ph.D. Assistant Professor DOE H 2 Transmission & Delivery Workshop 2262014 H Y P E R H drogen roperties for...

36

Energetics of Hydrogen Bond Network Rearrangements in Liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Wednesday, 25 May 2005 00:00 The unique...

37

Technical Assessment of Organic Liquid Carrier Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for...

38

Hydrogen from Bio-Derived Liquids (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Bio-Derived Liquids From Bio-Derived Liquids Hydrogen From Bio Hydrogen From Bio - - Derived Liquids Derived Liquids Dave King, Yong Wang, PNNL BILIWIG Meeting Laurel, Maryland November 6, 2007 Innovation / Overview Innovation / Overview Innovation / Overview Project comprises two components z Ethanol steam reforming z Aqueous phase reforming (APR) Importance to small scale hydrogen production for distributed reforming for hydrogen production ‹ Ethanol is rapidly becoming an infrastructure fuel and is a logical feedstock ‹ APR provides vehicle for facile reforming of a variety of bio-derived feedstocks available in the biorefinery that are not conducive to conventional vapor phase reforming Distinctive technology approach/innovation z We are investigating single step ethanol reforming with emphasis on lower

39

Liquid Hydrogen in Protonic Chabazite  

Science Journals Connector (OSTI)

1,5,6 Today, the prototype hydrogen vehicles use space-demanding tanks with compressed gas. ... aerogela ... hydrogen (LH2) storage in terms of vol., vehicle range, dormancy, energy required for fuel processing, and cost. ...

Adriano Zecchina; Silvia Bordiga; Jenny G. Vitillo; Gabriele Ricchiardi; Carlo Lamberti; Giuseppe Spoto; Morten Bjrgen; Karl Petter Lillerud

2005-04-12T23:59:59.000Z

40

Air Liquide Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Energy Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name Air Liquide Hydrogen Energy Address 6, Rue Cognacq-Jay Place Paris, France Zip 75321 Sector Hydrogen Year founded 2009 Website http://www.airliquide-hydrogen Coordinates 48.8617579°, 2.3047757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.8617579,"lon":2.3047757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen Delivery Infrastructure Option Analysis  

E-Print Network [OSTI]

, vehicles can still drive with gasoline/diesel derived from tar sand, oil shale, and coal derived liquids

42

NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS  

SciTech Connect (OSTI)

This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

2001-01-07T23:59:59.000Z

43

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

44

Compressed/Liquid Hydrogen Tanks  

Broader source: Energy.gov [DOE]

Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

45

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program (HFCIT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes

46

Production of jet fuels from coal-derived liquids. Volume 4. GPGP jet-fuels production program-feed analyses compilation and review. Interim report, October 1987-January 1988  

SciTech Connect (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided to the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to compile and review physical and chemical characterization data for the GPGP by-product liquids. This report describes the relative reliability of the various characterization data and indicates where specific limitations exist.

Rossi, R.J.

1988-07-01T23:59:59.000Z

47

Production of jet fuels from coal-derived liquids. Volume 10. Jet fuels production by-products, utility, and sulfur-emissions control integration study. Interim report, 1 May 1988-1 April 1989  

SciTech Connect (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding has been provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to evaluate the impact of integrating Jet Fuel and/or Chemical Production Facilities with the Great Plains Gasification Plant.

Rossi, R.J.

1989-06-01T23:59:59.000Z

48

Production of jet fuels from coal-derived liquids. Volume 5. Recovery of benzene/benzene plus phenol from the Great Pplains Gasification Plant crude phenol stream. Interim report, September 1987-February 1988  

SciTech Connect (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential for production of jet fuels from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant located in Buelah, North Dakota. Funding was provided to the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This report details the program with Hydrocarbon Research, Inc., a subcontractor to Burns and Roe Services Corporation, who, as a subcontractor to DOE, investigated the potential of producing benzene or benzene plus phenol from the crude phenol stream.

Harris, E.C.

1988-05-01T23:59:59.000Z

49

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets  

Broader source: Energy.gov [DOE]

Presentation by Arlene Anderson at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

50

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

51

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

Electrochemical hydrogen production methods are quiteonly causative hydrogen production method. Although the massa method for the production of molecular hydrogen from

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

52

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

currents and hydrogen production rates are shown to followmolecules. The hydrogen production efficiency is currentlycurrently available hydrogen production routes that can be

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

53

Coal-Derived Liquids to Enable HCCI Technology  

Broader source: Energy.gov [DOE]

Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

54

Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product  

DOE Patents [OSTI]

Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

Davis, Benjamin L; Rekken, Brian D

2014-04-01T23:59:59.000Z

55

A case history of a fixed bed, coal-derived oil hydrotreater  

Science Journals Connector (OSTI)

With the apparent shrinkage in the worldwide supply of liquid hydrocarbon fuels, upgrading of coal-derived liquids to synthetic crude oils will eventually emerge as a commercial entity. Although the Char-Oil-Energy Development (COED) Project has been shelved in the short term, information about the reaction engineering of the upgrading of coal-derived liquids by hydrotreatment in the COED Process should be relevant to upgrading technologies for other coal liquefaction processes. The COED Process was developed by FMC Corporation and the Office of Coal Research (now DOE) in the late 1960's and early 1970's. The process produced a synthetic crude oil, medium Btu gas and char by multi-stage, fluidized bed pyrolysis of coal. The raw coal-tar produced by pyrolysis was upgraded to synthetic crude oil by catalytic, fixed-bed hydrotreatment. Raw coal-tar has different properties from petroleum-derived oils, and upgrading by hydrotreatment is not an off-the-shelf technology. A 30 barrel per day fixed-bed hydrotreater was constructed and operated at the COED pilot plant site. The pilot plant hydrotreater design was based on conventional petroleum residua hydrotreatment technology together with bench-scale hydrotreatment tests performed by ARCO in the 1960's utilizing coal-tars produced in a process development unit. The pilot plant hydrotreater did operate for about four years providing valuable information about the reaction engineering of the hydrotreatment process as well as providing numerous samples for applications studies performed by other DOE contractors and interested potential users of the COED syncrude. Of note, 50,000 gallons of COED syncrude were supplied to the U.S. Naval Ship Engineering Center for shipboard testing in the boilers of the U.S.S. Johnston on November 1516th, 1973. This paper deals with the reaction engineering of the guard chamber and fixed-bed hydrotreatment reactors at the COED facility. Of major importance is the study of the role of the feedstock (pyrolysis coal-tar) properties and their effects on the catalysts utilized in the reactors. A working kinetic model has been derived that could allow a designer to optimize a particular set of design parameters and a plant operator to determine catalyst life. A quantitative comparison has been made of the effect of metals content of coal-derived oils and petroleum resids on catalyst deactivation.

Marvin I. Greene

1981-01-01T23:59:59.000Z

56

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

57

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

58

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

59

Large-Scale Liquid Hydrogen Handling Equipment  

Broader source: Energy.gov [DOE]

Presentation by Jerry Gillette of Argonne National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

60

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Hydrogen Delivery Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Main Themes/Caveats Will be challenging (if not impossible) to meet the 2010 cost target with today's technology Without significant growth in product demand, progress will likely be slow even with incremental technology Group a little light on technical expertise, but feel captured main ideas required Less "weeding" of ideas, but more divergent thinking Targets/Objectives 2003 Status: $1.11/kg May be a bit lower than actual costs Baseline needs to be revisited 2005 Target: $1.01/kg Technically (10% improvement) could be met, but unlikely demand drivers will be present to encourage meeting target Likely no plant will be built in 2005

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network [OSTI]

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

62

Coal hydrogenation and deashing in ebullated bed catalytic reactor  

DOE Patents [OSTI]

An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

1983-01-01T23:59:59.000Z

63

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

2006-05-12T23:59:59.000Z

64

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

SciTech Connect (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

65

Experimental Study of a New PVC Foam Insulation System for Liquid-Hydrogen-Liquid-Oxygen Space Vehicles  

Science Journals Connector (OSTI)

This paper discusses the development of a rigid external foam insulation for liquid-hydrogen-liquid-oxygen space vehicles...1...], dealing with the use of Klegecell G 300,* a PVC closed-cell foam. This foam does ...

F. J. Muller

1971-01-01T23:59:59.000Z

66

System for exchange of hydrogen between liquid and solid phases  

DOE Patents [OSTI]

The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

1985-02-22T23:59:59.000Z

67

System for exchange of hydrogen between liquid and solid phases  

DOE Patents [OSTI]

The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, James J. (Bellport, NY); Grohse, Edward W. (Port Jefferson Station, NY); Johnson, John R. (Calverton, NY); Winsche, deceased, Warren E. (late of Bellport, NY)

1988-01-01T23:59:59.000Z

68

Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces  

E-Print Network [OSTI]

Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces Ahmed Hassanein the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem. Hydrogen isotope (DT) particles are likely be trapped in the liquid metal surface (e.g., lithium) due

Harilal, S. S.

69

Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol  

SciTech Connect (OSTI)

The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing at realistic conditions (e.g., elevated pressures) and differential conversions (to measure true kinetics, to avoid deactivation, and to avoid condensable concentrations of products in the outlet gas).

James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

2011-07-29T23:59:59.000Z

70

MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897 905 Dynamics and hydrogen bonding in liquid ethanol  

E-Print Network [OSTI]

MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897± 905 Dynamics and hydrogen bonding in liquid ethanol L of liquid ethanol at three temperatures have been carried out. The hydrogen bonding states of ethanol measurements of the frequency-dependent dielectric permittivity of liquid ethanol. 1. Introduction A detailed

Saiz, Leonor

71

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Programs Multiyear Re

72

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Broader source: Energy.gov [DOE]

Technical report describing the US Department of Energy's (DOE) assessment of the performance and cost of organic liquid based hydrogen storage systems for automotive applications.

73

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy held a kick-off meeting for the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) on October 24, 2006, in Baltimore, Maryland. The Working Group is addressing technical challenges to distributed reforming of biomass-derived, renewable liquid fuels to hydrogen, including the reforming, water-gas shift, and hydrogen recovery and purification steps. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with each other and with members of the DOE Hydrogen Production Technical Team.

74

Hydrogen bonding in asphaltenes and coal liquids. Quarterly report, November 1, 1982-January 31, 1983  

SciTech Connect (OSTI)

Aging of upgraded coal-derived liquids obtained from catalytic hydroprocessing of H-coal and SRC-II syncrudes has been studied. Fuel degradation, in the presence of added specific heteroatomic compounds, is monitored in the early stages by laser light scattering of developing particles at ambient temperature. The following additives have been included: 2,5-dimethypyrrole (DMP), 2,6-dimethylquioline (DMQ), phenol, 2,6-di-tert-butyl phenol (DTBP), pyridine, thiophenol, n-butyl sulfide, n-butyl disulfide, thiophene, tetrahydrothiophene, 1-hexene, copper wire, iron wire. Very pronounced enhancement of light scattering intensity has been observed for coal liquids containing the following additives: (1) Phenol, pyridine, Cu; (2) DTBP, pyridine, Cu; (3) Phenol, DMQ, Cu; (4) DMP, thiophenol. Phenolic oxidative coupling is a very important mechanism for the aging of coal liquids, and pyridine- or DMQ- complexed Cu is effective catalyst for oxidative coupling. DTBP is a hindered phenol, and therefore oxidative coupling is not as extensive as for the parent phenol. As a result, light scattering for system (2) is not as extensive as system (1). DMP by itself is deleterious to fuel stability, and the effect is enhanced by the presence of thiophenol. Thiophenes, sulfides, and hexene are much less deleterious. Iron is a poor catalyst for oxidative coupling, and therefore light scatteirng in the presence of iron is minimal. 7 figures, 1 table.

Li, N.C.; Yaggi, N.F.; Loeffler, M.C.

1983-01-01T23:59:59.000Z

75

Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby  

DOE Patents [OSTI]

A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

1985-01-01T23:59:59.000Z

76

ARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas liquid interface  

E-Print Network [OSTI]

production methods in the US have led to the emergence of large- scale commeARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas­ liquid interface-film theory Hydrogen sulfide Process-based model Lagoon flux Mass transfer a b s t r a c t Hydrogen sulfide (H

Aneja, Viney P.

77

First-order liquid-liquid phase transition in dense hydrogen  

Science Journals Connector (OSTI)

We use ab initio molecular-dynamics simulations to study the nonmetal-to-metal transition in dense liquid hydrogen. By calculating the equation of state of hydrogen at high pressures up to several megabars and temperatures above the melting line up to 1500 K we confirm the first-order nature of this transition at these temperatures. We characterize both phases based on equation of state data, the electrical conductivity, and the pair-correlation functions, which are all derived self-consistently from these simulations. We locate the respective transition line in the phase diagram and give an estimate for its critical point. We compare with available experimental data and other theoretical predictions.

Winfried Lorenzen, Bastian Holst, and Ronald Redmer

2010-11-09T23:59:59.000Z

78

Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft  

Science Journals Connector (OSTI)

Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper we report on the design fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

Gary L. Mills; Brian Buchholtz; Al Olsen

2012-01-01T23:59:59.000Z

79

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Hydrogen Production Technical Team Research Review Agenda for Tuesday, November 6, 2007 Location: BCS Incorporated, 8929 Stephens Road, Laurel, MD. 20723 410-997-7778 8:30 - 9:00 Continental Breakfast 9:00 DOE Targets, Tools and Technology o Bio-Derived Liquids to Hydrogen Distributed Reforming Targets DOE, Arlene Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen Distributed Reforming Cost Analysis DTI, Brian James 10:00 Research Review o Low-Cost Hydrogen Distributed Production Systems, H2Gen, Sandy Thomas o Integrated Short Contact Time Hydrogen Generator, GE Global Research, Wei Wei o Distributed Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar

80

Hydrogen recovery by novel solvent systems  

SciTech Connect (OSTI)

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

NONE

1996-05-01T23:59:59.000Z

82

Effect of Convection in Helium-Charged, Partial-Foam Insulations for Liquid Hydrogen Propellant Tanks  

Science Journals Connector (OSTI)

Liquid hydrogen, because of its low density and extremely low boiling point, requires very effective insulation during its storage and use as a fuel for space booster applications. For space booster. insulatio...

B. N. Taylor; F. E. Mack

1966-01-01T23:59:59.000Z

83

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Background Paper  

Broader source: Energy.gov [DOE]

Paper by Arlene Anderson and Tracy Carole presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group, with a focus on key drivers, purpose, and scope.

84

Fuel Cell Technologies Office: Bio-Derived Liquids to Hydrogen Distributed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Meeting - November 2007 Group Meeting - November 2007 The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group participated in a Hydrogen Production Technical Team Research Review on November 6, 2007. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with members of the Department of Energy Hydrogen Production Technical Team. The following meeting documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Proceedings Agenda, discussion points, and participant list (PDF 146 KB) Action items and meeting highlights (PDF 104 KB) 2007 Annual Merit Review Report excerpts on bio-derived liquids to hydrogen distributed reforming research (PDF 3.9 MB) Presentations DOE Targets, Tools, and Technology

85

Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte  

Science Journals Connector (OSTI)

We report the design and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates, and electrolyte ...

Ranga S. Jayashree; Michael Mitchell; Dilip Natarajan; Larry J. Markoski; Paul J. A. Kenis

2007-05-19T23:59:59.000Z

86

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications R. K. Ahluwalia, T. Q. Hua, and J-K Peng Argonne National Laboratory, Argonne, IL 60439 M. Kromer, S. Lasher, K. McKenney, K. Law, and J. Sinha TIAX LLC, Lexington, MA 02421 June 21, 2011 Executive Summary In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program's Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and

87

Technical Assessment of Organic Liquid Carrier Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

cell system by controlling the hydrogen utilization in such a manner that the thermal energy needed for the dehydrogenation reaction is provided by burning the remaining...

88

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new solid and liquid phase systems new solid and liquid phase systems for the containment, transport and delivery of hydrogen By Guido P. Pez Hydrogen Energy Infrastructure for Fuel Cell Vehicle Transportation Scenario A: Distributed H 2 from a Large Scale Plant (150-230 tonne/day) Large Scale H 2 Plant (300-800 psi H 2 ) H 2 Buffer Storage Tube Trailer Liquid H 2 Truck H 2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends on the vehicle's H 2 storage technology Currently H 2 up to >6000 psi for 5000 psi tanks Scenario B: Hydrogen by a small scale reforming of pipeline natural gas and compression Natural Gas Pipeline Reformer Liquid H 2 Backup Compressor H 2 (>6000 psig) H 2 Production: 100-400 kg/day; 4-5Kg H

89

Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Craig Jensen 1 (Primary Contact), Daniel Brayton 1 , and Scott Jorgensen 2 1 Hawaii Hydrogen Carriers, LLC 531 Cooke Street Honolulu, HI 96813 Phone: (808) 339-1333 Email: hhcllc@hotmail.com 2 General Motors Technical Center DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005020 Project Start Date: July 1, 2011 Project End Date: June 30, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives The objective of this project is to optimize a hydrogen storage media based on a liquid organic carrier (LOC) for hydrogen and design a commercially viable hydrogen

90

Hydrogen recovery by novel solvent systems. Final report  

SciTech Connect (OSTI)

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

91

Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction  

DOE Patents [OSTI]

A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

1989-10-17T23:59:59.000Z

92

Hydrogenation with monolith reactor under conditions of immiscible liquid phases  

DOE Patents [OSTI]

The present invention relates to an improved for the hydrogenation of an immiscible mixture of an organic reactant in water. The immiscible mixture can result from the generation of water by the hydrogenation reaction itself or, by the addition of, water to the reactant prior to contact with the catalyst. The improvement resides in effecting the hydrogenation reaction in a monolith catalytic reactor from 100 to 800 cpi, at a superficial velocity of from 0.1 to 2 m/second in the absence of a cosolvent for the immiscible mixture. In a preferred embodiment, the hydrogenation is carried out using a monolith support which has a polymer network/carbon coating onto which a transition metal is deposited.

Nordquist, Andrew Francis (Whitehall, PA); Wilhelm, Frederick Carl (Zionsville, PA); Waller, Francis Joseph (Allentown, PA); Machado, Reinaldo Mario (Allentown, PA)

2002-01-01T23:59:59.000Z

93

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production Southern Research Institute (SRI) Project Number: FE0012054 Project Description The focus of the project will be to develop, test, and optimize steam-reforming catalysts for converting tars, C2+ hydrocarbons, NH3, and CH4 in high-temperature and sulfur environments, increasing the ratio of hydrogen in syngas, as part of a modified, advanced gasification platform for the conversion of low-rank coals to syngas for coal-to-liquid and integrated gasification combined cycle applications. Project Details Program Background and Project Benefits Project Scope and Technology Readiness Level Accomplishments Contacts, Duration, and Cost Project Images Abstract Performer website: Southern Research Institute

94

FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids  

SciTech Connect (OSTI)

DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ?6 wt% and ?50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

VAJO, JOHN

2014-06-12T23:59:59.000Z

95

Unexpectedly high pressure for molecular dissociation in liquid hydrogen by a reliable electronic simulation  

E-Print Network [OSTI]

The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic roperties. We find that the molecular liquid phase is unexpectedly stable and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low temperature atomization is, therefore, still far from experimental reach.

Mazzola, Guglielmo; Sorella, Sandro

2014-01-01T23:59:59.000Z

96

Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gokhan O. Alptekin, PhD Robert Copeland, PhD Gokhan O. Alptekin, PhD Robert Copeland, PhD (Primary Contact) TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: copeland@tda.com Email: galptekin@tda.com Tel: (303) 940-2323 Tel: (303) 940-2349 Fax: (303) 422-7763 Fax: (303) 422-7763 Margarita Dubovik Yevgenia Gershanovich TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: dubovik@tda.com Email: ygershan@tda.com Tel: (303) 940-2316 Tel: (303) 940-2346 Fax: (303) 422-7763 Fax: (303) 422-7763 Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

97

Coal-derived syngas MILD combustion in parallel jet forward flow combustor  

Science Journals Connector (OSTI)

Abstract The effect of air-fuel momentum flux ratio on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using non-reactive numerical simulations and on OH? radicals distribution and exhaust emissions using experiments. The predicted gas recirculation ratios in the combustor are high enough to establish the reaction condition of MILD scheme. Lower air-fuel momentum flux ratio associated with higher heat load benefits the drop of peak flame temperature and the increase of reaction zone volume. The critical air-fuel momentum flux ratios below which MILD combustion occurred were identified for three MILD configurations. The MILD configuration equipped with larger air nozzles and smaller fuel nozzles was observed to achieve MILD combustion at leaner condition. The MILD regime was established for syngas fuel with lean operational limit and ultra-low \\{NOx\\} and CO emissions.

Mingming Huang; Zhedian Zhang; Weiwei Shao; Yan Xiong; Yan Liu; Fulin Lei; Yunhan Xiao

2014-01-01T23:59:59.000Z

98

Modeling of Plasma-Assisted Conversion of Liquid Ethanol into Hydrogen Enriched Syngas in the Nonequilibrium Electric Discharge Plasma-Liquid System  

E-Print Network [OSTI]

In this work we report recent results of our experimental and theoretical studies related to plasma conversion of liquid ethanol into hydrogen-enriched syngas in the plasma-liquid system with the electric discharge in a gas channel with liquid wall using available diagnostics and numerical modeling.

Levko, Dmitry; Naumov, Vadim; Chernyak, Valery; Yukhymenko, Vitaly; Prysiazhnevych, Irina; Olszewski, Sergey

2008-01-01T23:59:59.000Z

99

Hydrogen Highways  

E-Print Network [OSTI]

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

100

Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen  

E-Print Network [OSTI]

f = dimensionless resistance coefficient H = height of external tank, m h = specific enthalpy, J S = cross-sectional area of vent valve area or leak hole, m2 T = temperature, K u = specific internal energy, J=kg V = volume, m3 v = velocity of liquid/vapor in pipes or valves, m=s _W = power on or by control

Muratov, Cyrill

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael Mitchell, Dilip Natarajan, Larry J. Markoski, and  

E-Print Network [OSTI]

Letters Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates

Kenis, Paul J. A.

102

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006  

Broader source: Energy.gov [DOE]

Proceedings from the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

103

Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy  

SciTech Connect (OSTI)

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

2010-05-01T23:59:59.000Z

104

Hydrogen Fluoride Capture by Imidazolium Acetate Ionic Liquid  

E-Print Network [OSTI]

Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, I will evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

Chaban, Vitaly

2015-01-01T23:59:59.000Z

105

Observation of crystallization slowdown in supercooled para-hydrogen and ortho-deuterium quantum liquid mixtures  

E-Print Network [OSTI]

We report a quantitative experimental study of the crystallization kinetics of supercooled quantum liquid mixtures of para-hydrogen (pH$_2$) and ortho-deuterium (oD$_2$) by high spatial resolution Raman spectroscopy of liquid microjets. We show that in a wide range of compositions the crystallization rate of the isotopic mixtures is significantly reduced with respect to that of the pure substances. To clarify this behavior we have performed path-integral simulations of the non-equilibrium pH$_2$-oD$_2$ liquid mixtures, revealing that differences in quantum delocalization between the two isotopic species translate into different effective particle sizes. Our results provide first experimental evidence for crystallization slowdown of quantum origin, offering a benchmark for theoretical studies of quantum behavior in supercooled liquids.

Matthias Khnel; Jos M. Fernndez; Filippo Tramonto; Guzmn Tejeda; Elena Moreno; Anton Kalinin; Marco Nava; Davide E. Galli; Salvador Montero; Robert E. Grisenti

2014-10-10T23:59:59.000Z

106

Nuclear Quantum Effects and Nonlocal Exchange-Correlation Functionals Applied to Liquid Hydrogen at High Pressure  

Science Journals Connector (OSTI)

Using first-principles molecular dynamics, we study the influence of nuclear quantum effects (NQEs) and nonlocal exchange-correlation density functionals (DFs) near molecular dissociation in liquid hydrogen. NQEs strongly influence intramolecular properties, such as bond stability, and are thus an essential part of the dissociation process. Moreover, by including DFs that account for either the self-interaction error or dispersion interactions, we find a much better description of molecular dissociation and metallization than previous studies based on classical protons and/or local or semilocal DFs. We obtain excellent agreement with experimentally measured optical properties along Hugoniot curves for precompressed states, and while we still find a first-order liquid-liquid transition at low temperatures, transition pressures are increased by more than 100GPa.

Miguel A. Morales, Jeffrey M. McMahon, Carlo Pierleoni, and David M. Ceperley

2013-02-05T23:59:59.000Z

107

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

108

Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

109

Catalytic pressurization of liquid hydrogen fuel tanks for unmanned aerial vehicles  

Science Journals Connector (OSTI)

As the use and applications of Unmanned Aerial Vehicles (UAV) expand the need for a lighter weight fuel allowing for longer duration flights has become the primary limiting factor in the advancement of these vehicles. To extend the operational envelope of UAV onboard condensed hydrogen storage for missions exceeding one week is necessary. Currently large spherical liquid hydrogen tanks that are pressurized with external helium tanks or electronic heating elements are utilized for this purpose. However the mass size and power consumption of the fuel storage tank and fuel pressurization system significantly limit the flight envelope of UAV. In an effort to alleviate these issues this paper investigates the technological feasibility of orthohydrogen-parahydrogen catalysis as a method of fuel pressurization. Typical pressurization requirements for takeoff cruise and landing are reviewed. Calculations of the catalyst system mass and response time are presented.

Jacob Leachman; Melissa Jean Street; Teira Graham

2012-01-01T23:59:59.000Z

110

High pressure/high temperature vapor liquid equilibrium study of light gases in hydrogen-coal liquid model compound systems using perturbation chromatography  

SciTech Connect (OSTI)

Perturbation chromatography or gas-liquid partition chromatography (GLPC) provides a powerful tool for making physicochemical measurements. In this investigation GLPC was applied to study the vapor-liquid equilibrium behavior of light gases in nonvolatile coal liquid model compound solvents at high temperatures and high pressures. Improvements made in existing GLPC techniques include: the use of a high pressure tandem proportioning pump to give precise control of the carrier gas flow rate and low pressure drops; a high pressure ionization chamber to detect the injection of very dilute radioactive sample gases; and the use of a microcomputer to provide instantaneous integration and very precise retention times of the chromatographic peaks. Infinite dilution K-values for methane, ethane, propane, n-butane, carbon dioxide, and hydrogen sulfide in hydrogen-dibenzofuran systems were obtained at 100 and 125 C and up to 800 psia. Infinite dilution K-values for the same light gases in hydrogen-9-methylanthracene systems were obtained at 100, 125, 150, 175, and 200 C and up to 3000 psia. Henry's constants were determined for the light gases in 9-methylanthracene. Second cross virial coefficients and vapor phase infinite dilution fugacity coefficients were calculated for methane, ethane, propane, and n-butane in hydrogen. These results were combined with the experimental K-value measurements to obtain Henry's constants in hydrogen-9-methylanthracene mixtures of fixed liquid compositions. Infinite dilution heats of solution of the solute gases in the mixtures were calculated.

Kragas, T.K.

1983-01-01T23:59:59.000Z

111

REFORMING OF LIQUID HYDROCARBONS IN A NOVEL HYDROGEN-SELECTIVE MEMBRANE-BASED FUEL PROCESSOR  

SciTech Connect (OSTI)

We propose to develop an inorganic metal-metal composite membrane to study reforming of liquid hydrocarbons and methanol by equilibrium shift in membrane-reactor configuration, viewed as fuel processor. Based on our current understanding and experience in the Pd-ceramic composite membrane, we propose to further develop this membrane to a Pd and Pd-Ag alloy membrane on microporous stainless steel support to provide structural reliability from distortion due to thermal cycling. Because of the metal-metal composite structure, we believe that the associated end-seal problem in the Pd-ceramic composite membrane in tubular configuration would not be an issue at all. We plan to test this membrane as membrane-reactor-separator for reforming liquid hydrocarbons and methanol for simultaneous production and separation of high-purity hydrogen for PEM fuel cell applications. To improve the robustness of the membrane film and deep penetration into the pores, we have used osmotic pressure field in the electroless plating process. Using this novel method, we deposited thin Pd-film on the inside of microporous stainless steel tube and the deposited film appears to robust and defect free. Work is in progress to evaluate the hydrogen perm-selectivity of the Pd-stainless steel membrane.

Shamsuddin Ilias

2003-06-30T23:59:59.000Z

112

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

Science Journals Connector (OSTI)

Long endurance flight on the order of days is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However no such system of LH2 storage delivery and use is currently available for commercial UAVs. In this paper we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered student designed and constructed Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging pressurizing and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

2014-01-01T23:59:59.000Z

113

Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran  

Science Journals Connector (OSTI)

Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran ... In recent years, 2,5-dimethylfuran (DMF), which is produced by the selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) and is considered as a new-fashioned liquid biofuel for transportation, has received much more attention from many researchers in the world. ... Among the various desired compounds via the oriented transformation,(15-19) 5-hydroxymethylfurfural (HMF) is considered as a versatile platform compound (Scheme 1) and a crucial intermediate for connecting biomass resource and fossil industry,(20-24) and this is because that it can be further transformed into a series of high-quality fuels such as ethyl levulinate (EL),(25-27) 5-ethoxymethylfurfural (EMF),(28-30) 2,5-dimethylfuran (DMF),(31-33) and C9C15 alkanes(34-36) and high-value chemicals such as levulinic acid (LA),(37-39) 2,5-dihydroxymethylfuran (DHMF),(40-42) 2,5-diformylfuran (DFF),(43-45) and 2,5-furandicarboxylic acid (FDCA). ...

Lei Hu; Lu Lin; Shijie Liu

2014-05-23T23:59:59.000Z

114

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

SciTech Connect (OSTI)

Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

2014-01-29T23:59:59.000Z

115

Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen  

SciTech Connect (OSTI)

Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

K. Coulter

2008-03-31T23:59:59.000Z

116

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-07-13T23:59:59.000Z

117

Hazards Induced by Breach of Liquid Rocket Fuel Tanks: Conditions and Risks of Cryogenic Liquid Hydrogen-Oxygen Mixture Explosions  

E-Print Network [OSTI]

We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI ...

Osipov, Viatcheslav; Hafiychuk, Halyna; Ponizovskaya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary

2010-01-01T23:59:59.000Z

118

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-06-08T23:59:59.000Z

119

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2006-03-27T23:59:59.000Z

120

Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source  

SciTech Connect (OSTI)

The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G. [European Spallation Source ESS AB, SE-22100 Lund (Sweden); Beler, Y. [Forschungzentrum Jlich, Jlich (Germany); Klaus, M. [Technische Universitt Dresden, Dresden (Germany)

2014-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program  

Science Journals Connector (OSTI)

The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions based on the results of the engineering characterization tests will be used to correlate the results of the 30 day mission simulation.

E. C. Cady

1997-01-01T23:59:59.000Z

122

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Todays energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

123

The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation  

E-Print Network [OSTI]

The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

Fradera, Jorge

2013-01-01T23:59:59.000Z

124

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

pathway, with hydrogen production at refueling stations (with centralized hydrogen production and gaseous hydrogenwith centralized hydrogen production and liquid hydrogen (

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

125

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

126

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

2009-12-31T23:59:59.000Z

127

"Kohn-Shamification" of the classical density-functional theory of inhomogeneous polar molecular liquids with application to liquid hydrogen chloride  

E-Print Network [OSTI]

The Gordian knot of density-functional theories for classical molecular liquids remains finding an accurate free-energy functional in terms of the densities of the atomic sites of the molecules. Following Kohn and Sham, we show how to solve this problem by considering noninteracting molecules in a set of effective potentials. This shift in perspective leads to an accurate and computationally tractable description in terms of simple three-dimensional functions. We also treat both the linear- and saturation- dielectric responses of polar systems, presenting liquid hydrogen chloride as a case study.

Johannes Lischner; T. A. Arias

2008-06-27T23:59:59.000Z

128

Oxygen carrier development for chemical looping combustion of coal derived synthesis gas  

SciTech Connect (OSTI)

In the present work, NETL researchers have studied chemical looping combustion (CLC) with an oxygen carrier NiO/bentonite (60 wt.% NiO) for the IGCC systems utilizing simulated synthesis gas. Multi cycle CLC was conducted with NiO/Bentonite in TGA at atmospheric pressure and in a high pressure reactor in a temperature range between 700-900C. Global reaction rates of reduction and oxidation as a function of conversion were calculated for all oxidation-reduction cycles utilizing the TGA data. The effect of particle size of the oxygen carrier on CLC was studied for the size between 20-200 mesh. The multi cycle CLC tests conducted in a high pressure packed bed flow reactor indicated constant total production of CO2 from fuel gas at 800C and 900C and full consumption of hydrogen during the reaction.

Siriwardane, R.V.; Chaudhari, K.; Zinn, A.N.; Simonyi, T.; Robinson, Clark; Poston, J.A.

2006-09-01T23:59:59.000Z

129

Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process  

SciTech Connect (OSTI)

Comprehensive two-dimensional gas chromatography (GC) coupled to time-of-flight mass spectrometry (MS) has been applied to the analysis of coal-derived liquids from the former British Coal Point-of-Ayr coal liquefaction plant. The feed to the hydrocracker and the resulting product were analyzed. The results refer almost exclusively to the plant-derived recycle solvent, known as the liquefaction solvent; the molecular mass range of the GC does not exceed that of the solvent. The method allows for the resolution of the numerous structural isomers of tetralin and methyl indan, one pair of hydrogen-donor (necessary for the dissolution of coal) and isomeric nondonor (that reduce the hydrogen donors) components of the recycle solvent. In addition, the n-alkanes that concentrate in the recycle solvent are easily observed in comparison with the results from one-dimensional GC-MS. 24 refs., 6 figs., 1 tab.

Jacqui F. Hamilton; Alistair. C. Lewis; Marcos Millan; Keith D. Bartle; Alan A. Herod; Rafael Kandiyoti [University of York, York (United Kingdom). Department of Chemistry

2007-01-15T23:59:59.000Z

130

Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers  

SciTech Connect (OSTI)

CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700 C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900 C.

Tian, H.; Chaudhari, K.; Simonyi, T.; Poston, J.; Liu, T.; Sanders, T.; Veser, G.; Siriwardane, R.

2008-01-01T23:59:59.000Z

131

Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers  

SciTech Connect (OSTI)

CuO/bentonite and CuO?BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction?oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation?reduction cycles above 700 C in an atmospheric thermogravimetric analyzer. The nanostructured CuO?BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700?900 C.

Tian, Hanjing; Chaudhari, K.P.; Simonyi, Thomas; Poston, J.A.; Liu, Tengfei; Sanders, Tom; Veser, Goetz; Siriwardane, R.V.

2008-11-01T23:59:59.000Z

132

Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils  

SciTech Connect (OSTI)

Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

2014-06-03T23:59:59.000Z

133

Prediction of thermodynamic properties of coal derivatives. Progress report, September 1, 1985-August 31, 1986  

SciTech Connect (OSTI)

In this report, the progress of our efforts toward understanding molecular behavior and its effect on thermodynamic properties is presented. The theory has been developed to treat fluids and fluid mixtures with various molecular interactions, including intermolecular associations. Experiments also were performed for binary, ternary and quaternary mixtures containing model coal compounds and supercritical carbon dioxide at high pressures. Our progress, both theoretical and experimental, is presented below in the following order: (1) Application of Associated-Perturbed-Anisotropic-Chain Theory (APACT) to fluid mixtures containing one associating component (such as water, alcohol and acid) and a diluent. (2) Generalization of APACT to treat solubility enhancements using solvating entrainers and testing these equations with model coal compounds in high pressure carbon dioxide. (3) Application of the Simplified-Perturbed-Hard-Chain theory (SPHCT) to mixtures containing more than fifteen conmponents. (4) Derivation of a simple equation of state, called COMPACT, to treat fluid mixtures containing associating compounds. (5) Prediction of properties of systems containing a supercritical fluid using the Perturbed-Anisotropic-Chain theory (PACT). (6) Completion of reformulation of PACT to account for group-group interactions when several non-polar functional groups are present. (7) Experimental investigation of extracting valuable chemicals from coal liquids using supercritical carbon dioxide with methanol as cosolvent. (8) Experimental measurements of phase compositions and densities of coal compounds in high pressure carbon dioxide. 14 refs., 18 figs.

Donohue, M.D.

1986-05-01T23:59:59.000Z

134

Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers  

SciTech Connect (OSTI)

CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900{degree}C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO{sub 2} from fuel gas at 800 and 900{degree}C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700{degree}C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900{degree}C. 48 refs., 12 figs., 8 tabs.

Hanjing Tian; Karuna Chaudhari; Thomas Simonyi; James Poston; Tengfei Liu; Tom Sanders; Goetz Veser; Ranjani Siriwardane [U.S. Department of Energy, Morgantown, WV (United States). National Energy Technology Laboratory

2008-11-15T23:59:59.000Z

135

Formation and control of fuel-nitrogen pollutants in catalytic combustion of coal-derived gases. Final report  

SciTech Connect (OSTI)

The objective of this program has been the elucidation of the mechanism of high temperature catalytic oxidation of coal-derived gases, including their individual constituents,and the effects of sulfur and nitrogen impurities. Detailed experimental data were obtained and a two-dimensional model is being developed and tested by comparison with the experimental data. When complete, the model can be used to optimize designs of catalytic combustors. The model at present includes axial and radial diffusion and gas and surface chemical reactions. Measured substrate temperatures are input in lieu of complete coupling of gas and solid energy conservation equations and radiative heat transfer. Axial and radial gas temperature and composition profiles inside a catalyst channel were computed and compared with experimental measurements at the catalyst outlet. Experimental investigations were made of carbon monoxide and medium-Btu gas combustion in the presence of platinum supported on a monolithic Cordierite substrate. Axial profiles of substrate temperature, gas temperature, and gas composition were determined at different gas velocities and equivalence ratios. The effects of H/sub 2/S and NH/sub 3/ in the medium-Btu gas were also investigated. Systems were proposed for making resonance absorption and Raman scattering measurements of gas temperature and/or species concentrations in a catalytic reactor. A new pulsed multipass Raman scattering technique for increasing photon yield from a scattering volume was developed.

Walsh, P. M.; Bruno, C.; Santavicca, D. A.; Bracco, F. V.

1980-02-01T23:59:59.000Z

136

The influence of transition metal ions on the catalytic performance of Ru particles during the liquid phase hydrogenation of benzene to cyclohexene  

Science Journals Connector (OSTI)

The influence of some transition metal ions including Fe2+, Ni2+, Cr3+, Mn2+, Zn2+, Cd2+...on the catalytic performance of Ru particles during the liquid phase partial hydrogenation of benzene to cyclohexene was ...

Yixin Qu; Chengxuan Fang; Chengyang Qian

2014-04-01T23:59:59.000Z

137

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

K. C. Kwon

2007-09-30T23:59:59.000Z

138

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

K.C. Kwon

2009-09-30T23:59:59.000Z

139

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

K. C. Kwon

2006-09-30T23:59:59.000Z

140

Coal liquefaction process streams characterization and evaluation: Analysis of coal-derived synthetic crude from HRI CTSL Run CC-15 and HRI Run CMSL-2  

SciTech Connect (OSTI)

Under subcontract from CONSOL Inc. (US DOE Contract No. DE-AC22-89PC89883), IIT Research Institute, National Institute for Petroleum and Energy Research applied a suite of petroleum inspection tests to two direct coal liquefactions net product oils produced in two direct coal liquefaction processing runs. Two technical reports, authored by NIPER, are presented here. The following assessment briefly describes the two coal liquefaction runs and highlights the major findings of the project. It generally is concluded that the methods used in these studies can help define the value of liquefaction products and the requirements for further processing. The application of these methods adds substantially to our understanding of the coal liquefaction process and the chemistry of coal-derived materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract.

Sturm, G.P. Jr.; Kim, J.; Shay, J. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

142

The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

Not Available

1993-04-01T23:59:59.000Z

143

Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant  

Broader source: Energy.gov [DOE]

This May 2012 study assesses the costs and potential for remote renewable energy to be transported via hydrogen to a demand center for transportation use.

144

High P/T phase and volumetric behavior of coal liquid constituents. (Quarterly technical progress report), January 1-April 1, 1984. [6 gases in hydrogen-dibenzofuran and in hydrogen-g-methylanthracene  

SciTech Connect (OSTI)

A sophisticated perturbation chromatography technique has been used to study the vapor-liquid equilibrium behavior of six light gases in two hydrogen-coal liquid model compounds systems. Infinite-dilution K values are reported for methane, ethane, propane, n-butane, carbon dioxide and hydrogen sulfide in: (1) hydrogen-dibenzofuran system at 373.2 and 398.2/sup 0/K and up to 6 MPa; and (2) hydrogen-g-methylanthracene systems at 373.2, 398.2, 423.2, 448.2 and 473.2/sup 0/K and up to 21 M Pa. Henry's constants were determined for the light gases in 9-methylanthracene. Second cross virial coefficients and vapor-phase infinite-dilution fugacity coefficients were calculated for the hydrocarbon gases in hydrogen. The results were combined with the experimental K-value measurements to obtain Henry's constants in hydrogen-9-methylanthracene mixtures of fixed liquid composition. The constants thus obtained show a significant dependence of hydrogen solubility. 1 reference.

Kobayshi, R.

1984-01-01T23:59:59.000Z

145

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology (NCHT) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRIs coal-upgrading/gasification technology for subbituminous and lignite coals in the EERCs TRDU. This gasifier fires nominally 200500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRIs patent-pending coalupgrading/ gasification technology in the EERCs TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

146

COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS  

SciTech Connect (OSTI)

The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

Peter G. Stansberry; John W. Zondlo

2001-07-01T23:59:59.000Z

147

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect (OSTI)

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

148

Determining the Lowest-Cost Hydrogen Delivery Mode  

E-Print Network [OSTI]

liquefaction and liquid hydrogen storage tanks are needed.low cost of liquid hydrogen storage is offset by the highrefueling pressure. Hydrogen storage requirements vary among

Yang, Christopher; Ogden, Joan M

2008-01-01T23:59:59.000Z

149

Determining the lowest-cost hydrogen delivery mode  

E-Print Network [OSTI]

liquefaction and liquid hydrogen storage tanks are needed.low cost of liquid hydrogen storage is offset by the highrefueling pressure. Hydrogen storage requirements vary among

Yang, Christopher; Ogden, Joan M

2007-01-01T23:59:59.000Z

150

Hydrogen Cryomagnetics  

E-Print Network [OSTI]

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4 Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

151

METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

1982-05-01T23:59:59.000Z

152

Metallization of fluid hydrogen  

Science Journals Connector (OSTI)

...P. Tunstall Metallization of fluid hydrogen W. J. Nellis 1 A. A. Louis 2 N...The electrical resistivity of liquid hydrogen has been measured at the high dynamic...which structural changes are paramount. hydrogen|metallization of hydrogen|liquid...

1998-01-01T23:59:59.000Z

153

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

154

Coal-derived promoters for the liquefaction of Illinois coal. [Quarterly] technical report, December 1, 1991--February 29, 1992  

SciTech Connect (OSTI)

The objective of this program is to investigate the use of liquids derived from coal either by mild gasification or supercritical extraction (SCE) to promote direct liquefaction of Illinois coal. Some organic sulfur-, nitrogen-, and oxygen-containing compounds have been found to enhance liquefaction reactions. The use of Illinois coal to produce liquid fractions rich in these types of compounds could increase the rates of liquefaction reactions, thus improving the process economics. An integrated process combining direct liquefaction with mild gasification or SCE of coal is being developed by IGT.

Carty, R.H.; Knight, R.A.

1992-08-01T23:59:59.000Z

155

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

156

Fabrication and Performance of Ni-YSZ Anode Supported Cell for Coal Derived Syngas Application by Tape Casting and Spin Coating  

SciTech Connect (OSTI)

Ni-YSZ anode supported cell has been developed for direct utilization of coal derived syngas as fuel in the temperature range of 700-850 C. The porous Ni-YSZ anode substrate was prepared based on processes of slip casting and lamination of anode tape. Then thin-film YSZ electrolyte was deposited on pre-sintered anode substrate via a colloidal spin coating technique and an optimized final sintering route. Dense and crackfree YSZ electrolyte was successfully obtained after sintering at 1440C for 4hrs. Processing factors like pre-sintering of anode, solvent, coating cycles and sintering route on the final properties of YSZ film was studied. A power density of 0.62W/cm2 has been achieved for the anode supported cell tested in 97%H2/3%H2O at 800C. EIS test results indicated the cell performance was essentially influenced by interfacial resistance and charge transfer process.

Gong, Mingyang (West Virginia U., Morgantown WV); Jiang, Yinglu (West Virginia U., Morgantown WV); Johnson, C.D.; Xingbo, Liu (West Virginia U., Morgantown WV)

2007-10-01T23:59:59.000Z

157

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

gas trucks needs hydrogen storage, hydrogen compressors forcapacity. Liquid hydrogen storage consists of 5 days of thethis reason the liquid hydrogen storage at the station is

Parker, Nathan C

2007-01-01T23:59:59.000Z

158

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

gas trucks needs hydrogen storage, hydrogen compressors forcapacity. Liquid hydrogen storage consists of 5 days of thethis reason the liquid hydrogen storage at the station is

Parker, Nathan

2007-01-01T23:59:59.000Z

159

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

SciTech Connect (OSTI)

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

160

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Comparative investigation on chemical looping combustion of coal-derived synthesis gas containing H2S over supported NiO oxygen carriers  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) of simulated coal-derived synthesis gas was conducted with NiO oxygen carriers supported on SiO2, ZrO2, TiO2, and sepiolite. The effect of H2S on the performance of these samples for the CLC process was also evaluated. Five-cycle thermogravimetric analysis (TGA) tests at 800 #1;C indicated that all oxygen carriers had a stable performance at 800 #1;C, except NiO/SiO2. Full reduction/oxidation reactions of the oxygen carrier were obtained during the five-cycle test. It was found that support had a significant effect on reaction performance of NiO both in reduction and oxidation rates. The reduction reaction was significantly faster than the oxidation reaction for all oxygen carriers, while the oxidation reaction is fairly slow due to oxygen diffusion on NiO layers. The reaction profile was greatly affected by the presence of H2S, but there was no effect on the capacity due to the presence of H2S in synthesis gas. The presence of H2S decreased reduction reaction rates significantly, but oxidation rates of reduced samples increased. X-ray diffraction (XRD) data of the oxidized samples after a five-cycle test showed stable crystalline phases without any formation of sulfides or sulfites/sulfates. Increase in reaction temperature to 900 #1;C had a positive effect on the performance.

Ksepko, E.; Siriwardane, R.; Tian, H.; Simonyi, T.; Sciazko, M.

2010-01-01T23:59:59.000Z

162

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

163

E-Print Network 3.0 - air liquide adds Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

All Sizes (Cylinders to Liquid to Pipelines) Operations... ;4 Merchant Hydrogen Plants Praxair Liquid Hydrogen Plant Praxair Tube Trailer Hydrogen Plant ... Source: DOE Office of...

164

Final Report for the DOE Chemical Hydrogen Storage Center of...  

Energy Savers [EERE]

of interest for further development into viable storage systems. High pressure hydrogen tanks, systems that store hydrogen in a cryocompressed state, or liquid hydrogen storage...

165

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

166

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines - University of California, Irvine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanisms Underpinning Degradation Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines-University of California, Irvine Background Thermal barrier coatings (TBCs) and components in the hot section of gas turbines are degraded by coal-derived high hydrogen content (HHC) synthesis gas (syngas). In this project the University of California, Irvine (UCI) will provide an improved mechanistic understanding of the degradation of critical turbine system materials in HHC-fueled

167

Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report  

SciTech Connect (OSTI)

The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

Kabadi, V.N.

1995-06-30T23:59:59.000Z

168

Direct Experimental Evidence for a Negative Heat Capacity in the Liquid-to-Gas Phase Transition in Hydrogen Cluster Ions: Backbending of the Caloric Curve  

Science Journals Connector (OSTI)

By selecting specific decay reactions in high-energy collisions (60??keV/amu) of hydrogen cluster ions with a helium target (utilizing event-by-event data of a recently developed multicoincidence experiment) and by deriving corresponding temperatures for these microcanonical cluster ensembles (analyzing respective fragment distributions), we are able to construct caloric curves for H3+(H2)m cluster ions (6?m?14). All individual curves and the mean of these curves show a backbending in the plateau region, thus constituting direct evidence for a negative microcanonical heat capacity in the liquid-to-gas transition of these finite systems.

F. Gobet; B. Farizon; M. Farizon; M. J. Gaillard; J. P. Buchet; M. Carr; P. Scheier; T. D. Mrk

2002-10-11T23:59:59.000Z

169

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network [OSTI]

gaseous and liquid hydrogen storage tech- nologies are giveninclude compressors, hydrogen storage and dispensing. In thein the analysis. Hydrogen production and storage Hydrogen

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

170

The potential utilization of nuclear hydrogen for synthetic fuels production at a coaltoliquid facility / Steven Chiuta.  

E-Print Network [OSTI]

??The production of synthetic fuels (synfuels) in coaltoliquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

171

Coal and Biomass to Liquids | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal to Liquids » Coal and Coal to Liquids » Coal and Biomass to Liquids Coal and Biomass to Liquids Over the last several decades, the Office of Fossil Energy performed RD&D activities that made significant advancements in the areas of coal conversion to liquid fuels and chemicals. Technology improvements and cost reductions that were achieved led to the construction of demonstration-scale facilities. The program is now supporting work to reduce the carbon footprint of coal derived liquids by incorporating the co-feeding of biomass and carbon capture. In the area of direct coal liquefaction, which is the process of breaking down coal to maximize the correct size of molecules for liquid products, the U.S. DOE made significant investments and advancements in technology in the 1970s and 1980s. Research enabled direct coal liquefaction to produce

172

Modular Gas-to-Liquid: Converting a Liability into Economic Value  

Science Journals Connector (OSTI)

Modular Gas-to-Liquid: Converting a Liability into Economic Value ... In the 1950s, several plants started again using the FT process, one in Brownsville, TX, with a capacity of 10800 bbl/day based on methane and one in Sasolburg, South Africa, based on coal-derived gas. ... Commercial-scale technologies do not apply to associated gas because the technologies benefit from economies of scale based on high feed rates and sustained gas flow rates. ...

Johannes G. Koortzen; Sabjinder Bains; Lary L. Kocher; Iain K. Baxter; Ross A. Morgan

2013-09-19T23:59:59.000Z

173

Negative void reactivity in a large liquid-metal fast breeder reactor with hydrogenous moderator (ZrH[sub 1. 7]) layers  

SciTech Connect (OSTI)

Placing a thin hydrogenous moderator (ZrH[sub 1.7]) layer between the seed and the blanket is very effective in reducing the sodium void reactivity of a liquid-metal fast breeder reactor (LMFBR). The void reactivity reduction is attributed to the decrease in neutron production and increase in neutron absorption in the blanket at voiding due to the slowing down of fast neutrons in the layer. This dominates the whole core neutron balance. The fixed hydrogenous layer concept is much more effective than the conventional uniform introduction of such moderator in a core. Furthermore, it does not seriously deteriorate the breeding capability. For realizing the negative sodium void reactivity in a large-sized core, the seeds should be divided by blankets with the layers. The conceptual design of a nonflat LMFBR core is presented for demonstrating the effectiveness of the layer. Negative void reactivity is realized in a radially heterogeneous core of 1,000-MW(electric) class output. The active core is 2.9 m high. It is much taller than the conventional LMFBR core, which is [approximately]1 m high. A wide pitch-to-fuel diameter ratio was chosen so as not to increase the pressure drop in the core. The compound system doubling time is 12.5 yr.

Oka, Yoshiaki; Jevremovic, T.; Koshizuka, Seiichi (Univ. of Tokyo, Ibaraki (Japan). Nuclear Engineering Research Lab.)

1994-07-01T23:59:59.000Z

174

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

Production 2. Hydrogen Storage 3. Hydrogen Compression vi 4.Table 2-13: Liquid Hydrogen Storage System Costs fromTable 2-1 4: Gaseou s Hydrogen Storage System Costs from

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

175

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

Production 2. Hydrogen Storage 3. Hydrogen Compression vi 4.Table 2-13: Liquid Hydrogen Storage System Costs fromTable 2-1 4: Gaseou s Hydrogen Storage System Costs from

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

176

Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride  

SciTech Connect (OSTI)

Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

1991-12-31T23:59:59.000Z

177

hydrogen | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

totals), hydrogen production or co-production from syngas generated by liquid or solid gasification is commercially practiced as well, with ten plants in operation worldwide1 as...

178

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

179

NETL: News Release - Enabling Turbine Technologies for Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 8, 2005 September 8, 2005 Enabling Turbine Technologies for Hydrogen Fuels Turbine Program Advances Ultra-Clean, Coal-Based Systems WASHINGTON, DC - The Department of Energy's Office of Fossil Energy Turbine Technology R&D Program was recently expanded with the selection of 10 new projects valued at $130 million. The new program will advance turbines and turbine subsystems for integrated gasification combined cycle (IGCC) power plants, and address the use of hydrogen in small-scale turbines for industrial applications. Resulting technologies will operate cleanly and efficiently when fueled with coal-derived hydrogen or synthesis gas. Turbines can generate electrical power on a large scale-in central power stations sized 250 megawatts and larger-or on a small scale-in local, industrial power systems sized 1-100 megawatts. Small-scale systems also produce mechanical power for jet engines, compressors, heating systems, and other applications.

180

FCT Hydrogen Storage: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Determining the Lowest-Cost Hydrogen Delivery Mode  

E-Print Network [OSTI]

liquid hydrogen pumps cost less than compressors. Further,hydrogen flow rate, though there are slight economies of scale associated with compressor cost.

Yang, Christopher; Ogden, Joan M

2008-01-01T23:59:59.000Z

182

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

183

Stability characteristics of some shale and coal liquids. Final report. [Thermal and storage stability  

SciTech Connect (OSTI)

Liquid hydrocarbon fuels derived from coal and from oil shale were made available for characterization and thermal and storage stability investigations. The coal-derived liquids identified as naphthas from No. 6 Illinois and Wyodak coals produced by the Exxon Donor Solvent process contained high concentrations of oxygen, nitrogen, and sulfur compounds and were considered to be unrefined synthetic crudes. These materials were found to be relatively unstable in storage. The shale-derived fuels were refined to meet the requirements of military specification jet fuels JP-8 and JP-5 and marine diesel fuel (DFM). Virtually all the specification requirements were met and the fuels were found to be thermally and storage stable. During 32-week, 43/sup 0/C storage tests conducted on these liquids, periodic measurements were made of precipitate fuel-insolubles, fuel-soluble gum, dissolved oxygen content and peroxide number. The liquids were analyzed, in some instances, by infrared, NMR, and uv spectroscopy, before and after the 32-week storage test with little or no change being observed in the bulk liquid samples. Shale-derived liquid hydrocarbons have been refined to meet current specification requirements for hydrocarbon fuels, and it appears that coal-derived liquids can also be refined to meet requirements for performance and storage stability.

Bowden, J.N.

1980-11-01T23:59:59.000Z

184

Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs  

Office of Energy Efficiency and Renewable Energy (EERE)

New aqueous phase reforming process uses liquid feedstocks to produce energy from hydrogen with reduced costs.

185

Liguid and Solid Carriers Group- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for solid and liquid hydrogen storage and delivery materials.

186

A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range  

SciTech Connect (OSTI)

This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

S. D. Brandes; R. A. Winschel

1999-12-30T23:59:59.000Z

187

Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Using Ionic Liquids to Make...

188

Determining the lowest-cost hydrogen delivery mode  

E-Print Network [OSTI]

liquid hydrogen pumps cost less than compressors. Further,hydrogen ?ow rate, though there are slight economies of scale associated with compressor cost.hydrogen storage tanks are needed. Costs for central plant compressors

Yang, Christopher; Ogden, Joan M

2007-01-01T23:59:59.000Z

189

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

190

Hydrogen Related Analytical Studies Office of Fossil Energy and  

E-Print Network [OSTI]

coal with co-production of electric power · Centralized production of liquid fuel hydrogen carriers to ASPEN. Simulations included production of power, liquids, syngas and hydrogen from coal. · In the mid current baseline · Centralized production of hydrogen from coal · Centralized production of hydrogen from

191

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

192

Renewable Liquid Fuels Reforming  

Broader source: Energy.gov [DOE]

The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used in the mid- and long-term time frames.

193

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

194

Parametric and kinetic studies on deactivation and regeneration of hydrotreating catalysts in solvent refined coal upgrading process and an evaluation of the liquid vaporization effects on hydrotreater performance  

SciTech Connect (OSTI)

Catalysts used in hydrotreating the solvent refined coal were rapidly deactivated during the initial stages of processing. The major cause of deactivation appears to be the deposition of carbonaceous material on the catalyst. A simulated aging technique involving a series of reactions on the same batch of catalyst and a model compound activity test were developed and used to study the effects of process conditions, feedstock characteristics, catalyst properties, and catalyst pretreatment on initial catalyst deactivation. The variables shown to increase the rate of deactivation are: increased catalyst loading, high reaction temperature, low hydrogen pressure, unsulfiding the catalyst, and high concentrations of preasphaltenes and insoluble organic matter in the feedstock. The loss in catalyst surface area during the aging process was substantial, being as high as 95%. A simple kinetic model, including a first-order catalyst deactivation rate, was applied to upgrading of two-coal derived feedstocks. A catalyst deactivation mechanism was proposed which involves the adsorption and surface reaction of coke precursors on catalytic active sites. Catalyst regeneration of aged catalysts from the LC-Finer and the ITSL process has been accomplished through oxidative treatment followed by presulfiding. A parametric study has been performed to identify the optimum regeneration conditions. The degree of regeneration appears to be dependent on the feed material and reaction history of the catalyst. Liquid vaporization affects the hydrotreater performance significantly. The hydrotreater is simulated to study the effects of the solvent volatility, hydrogen flow rate, feed concentration, temperature, and pressure. A gradientless reactor system was designed, built, and used to verify the key result ofthe simulation study.

Nalitham, R.V.

1983-01-01T23:59:59.000Z

195

FCT Hydrogen Delivery: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

196

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

part of the MICE experiment is muon energy absorber.an absorbing material, muons lose energy due to ionization

Ishimoto, S.

2010-01-01T23:59:59.000Z

197

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

from a cryocooler with cooling power 1.5 W at 4.2 K. ThePT415 cryocooler with cooling power 1.5W at 4.2K. In415D cryocooler with cooling power 1.5 W at 4.2K was used.

Ishimoto, S.

2010-01-01T23:59:59.000Z

198

Process to upgrade coal liquids by extraction prior to hydrodenitrogenation  

DOE Patents [OSTI]

Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

Schneider, Abraham (Overbrook Hills, PA); Hollstein, Elmer J. (Wilmington, DE); Janoski, Edward J. (Havertown, PA); Scheibel, Edward G. (Media, PA)

1982-01-01T23:59:59.000Z

199

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

200

FCEVs and Hydrogen in California  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Board South Coast AQMD US EPA US DOE US DOT TECHNOLOGY AFCC AC Transit Air Liquide Air Products Ballard Power Systems CDFA CEERT EIN Hydrogenics ITS - UC Davis Linde NFCRC -...

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network [OSTI]

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

202

Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide  

SciTech Connect (OSTI)

The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates. Several different types of dual-phase membranes were fabricated and tested for their CO{sub 2} permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm{sup 2}/min, the selectivity of CO{sub 2}/He was almost infinite at temperatures of about 800 C. A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO{sub 2} permeation. The measured CO{sub 2} fluxes were 0.015 and 0.02 cc STP/cm{sup 2}/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ({approx}0.01 cc STP/cm{sup 2}/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO{sub 2} flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O{sub 2} does improve the permeance of CO{sub 2} through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO{sub 2} membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes integration of cooling and preheating feed streams as well as particulate removal so that stea

Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

2008-05-31T23:59:59.000Z

203

Hydrogen Storage- Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

204

E-Print Network 3.0 - alternative hydrogen energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technically challenging barriers to the widespread use of hydrogen as a form of energy... energy content by volume (liquid hydrogen is about four times less than gasoline). This...

205

Investigation of hydrogen transfer in coprocessing using model systems  

SciTech Connect (OSTI)

Coprocessing of coal with petroleum resid involves the reaction of two very different materials: coal is aromatic and resid is naphthenic. Hydrogen transfer is an important mechanism in most coal liquefaction systems. When coal is reacted with a coal-derived solvent, a high hydroaromatic content capable of transferring hydrogen in the solvent is desirable for achieving the desired coal conversions. But, resids tend to be naphthenic rather than hydroaromatic in character. The current study evaluated the reactivity of naphthenic compounds as models for resids in the presence of aromatic acceptors that are representative of the coal structure. The model donor used was perhydropyrene and the model acceptors were phenanthrene and anthracene. Thermal and catalytic reactions were performed at 400 and 440{degrees}C for 30 min in a H{sub 2} or N{sub 2} atmosphere with 1:1 and 5:1 ratios of model donor to model acceptor and with slurry phase catalysts, Mo naphthenate and Ni octoate. In reactions containing anthracene, the presence of perhydropyrene had increased the total amount of hydrogen being accepted by anthracene, while excess perhydropyrene was required to increase the hydrogen accepted by the model phenanthrene. Catalysis by Mo naphthenate promoted hydrogen transfer from perhydropyrene to anthracene, but catalysis by Ni octoate did not.

Shen, J.; Curtis, C.W. [Auburn Univ., AL (United States)

1995-12-31T23:59:59.000Z

206

Autothermal hydrogen storage and delivery systems  

DOE Patents [OSTI]

Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

2011-08-23T23:59:59.000Z

207

Hydrogens Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

208

Muon capture in hydrogen  

E-Print Network [OSTI]

Theoretical difficulties in reconciling the measured rates for ordinary and radiative muon capture are discussed, based on heavy-baryon chiral perturbation theory. We also examine ambiguity in our analysis due to the formation of p$\\mu$p molecules in the liquid hydrogen target.

S. Ando; F. Myhrer; K. Kubodera

2001-10-30T23:59:59.000Z

209

High temperature ceramic membrane reactors for coal liquid upgrading  

SciTech Connect (OSTI)

In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

Tsotsis, T.T.

1992-01-01T23:59:59.000Z

210

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

211

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

212

NETL: Gasification - Advanced Hydrogen Transport Membranes for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Hydrogen Transport Membranes for Coal Gasification Praxair Inc. Project Number: FE0004908 Project Description Praxair is conducting research to develop hydrogen transport membrane (HTM) technology to separate carbon dioxide (CO2) and hydrogen (H2) in coal-derived syngas for IGCC applications. The project team has fabricated palladium based membranes and measured hydrogen fluxes as a function of pressure, temperature, and membrane preparation conditions. Membranes are a commercially-available technology in the chemical industry for CO2 removal and H2 purification. There is, however, no commercial application of membrane processes that aims at CO2 capture for IGCC syngas. Due to the modular nature of the membrane process, the design does not exhibit economy of scale-the cost of the system will increase linearly as the plant system scale increases making the use of commercially available membranes, for an IGCC power plant, cost prohibitive. For a membrane process to be a viable CO2 capture technology for IGCC applications, a better overall performance is required, including higher permeability, higher selectivity, and lower membrane cost.

213

Hydrogen from Coal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Liquids » Hydrogen Liquids » Hydrogen from Coal Hydrogen from Coal Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL researchers in the Office of Research and Development are testing different types of materials that might be used to separate hydrogen from other gases. Photo courtesy of NETL. Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL researchers in the Office of Research and Development are testing different types of materials that might be used to separate hydrogen from other gases. Photo courtesy of NETL. Hydrogen from coal research supports goals of increasing energy security, reducing environmental impact of energy use, promoting economic

214

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

215

Dehydrogenation of liquid fuel in microchannel catalytic reactor  

DOE Patents [OSTI]

The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

Toseland, Bernard Allen (Coopersburg, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

2010-08-03T23:59:59.000Z

216

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

217

Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes  

DOE Patents [OSTI]

In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.

Nizamoff, Alan J. (Convent Station, NJ)

1980-01-01T23:59:59.000Z

218

Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

219

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2012 Annual Progress Report II. Hydrogen Production This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on hydrogen production. Hydrogen Production Sub-Program Overview, Sara Dillich, U.S. Department of Energy A. Distributed Bio-Derived Liquid Production Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming, David King, Pacific Northwest National Laboratory Distributed Bio-Oil Reforming, Stefan Czernik, National Renewable Energy Laboratory Back to Top B. Biomass Gasification One Step Biomass Gas Reforming-Shift Separation Membrane Reactor, Mike Roberts, Gas Technology Institute Back to Top C. Separations Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production, Paul Liu, Media

220

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

222

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

223

Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes  

SciTech Connect (OSTI)

IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

None

2011-02-02T23:59:59.000Z

224

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

225

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2011 Annual Progress Report II. Hydrogen Production This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Hydrogen Production Sub-Program Overview, Sara Dillich, DOE A. Distributed Bio-Derived Liquid Production Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming, David King, Pacific Northwest National Laboratory Distributed Bio-Oil Reforming, Stefan Czernik, National Renewable Energy Laboratory Distributed Reforming of Renewable Liquids Using Oxygen Transport Membranes (OTMs), Balu Balachandran, Argonne National Laboratory Back to Top B. Biomass Gasification A Novel Slurry-Based Biomass Reforming Process, Sean Emerson, United

226

Dynamic simulation of nuclear hydrogen production systems  

E-Print Network [OSTI]

Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

Ramrez Muoz, Patricio D. (Patricio Dario)

2011-01-01T23:59:59.000Z

227

Chemical Hydrogen Storage | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a new type of liquid-phase material has been developed. This material, developed by Air Products and Chemicals, Inc., has shown 5-7 wt.% gravimetric hydrogen storage capacity...

228

Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids  

SciTech Connect (OSTI)

Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States). EMS Energy Institute

2009-09-15T23:59:59.000Z

229

Condensed hydrogen for thermonuclear fusion  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2010-11-15T23:59:59.000Z

230

Magnetic liquefier for hydrogen  

SciTech Connect (OSTI)

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31T23:59:59.000Z

231

Novel hydrogen separation device development for coal gasification system applications. Final report  

SciTech Connect (OSTI)

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01T23:59:59.000Z

232

Amorphous Alloy Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute (SwRI), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

Coulter, K

2013-09-30T23:59:59.000Z

233

Hydrogen from Post-Consumer Residues  

E-Print Network [OSTI]

. #12;Approach Technology being developed for producing hydrogen from biomass: Pyrolysis or partial pyrolysis gases and vapors. Catalytic steam reforming of biomass-derived liquid streams (trap grease of the Project This work is one of three tasks in the Biomass to Hydrogen project. Goal: develop and demonstrate

234

Improvements to Hydrogen Delivery Scenario Analysis  

E-Print Network [OSTI]

­ Improved liquefier, pipeline, compressors, storage, labor, indirect capital, and O&M cost estimatesImprovements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results May 8, 2007 Amgad and storage are at or adjacent to Liquid Hydrogen (LH) TruckH2 Production 100 or 1500 kg/d Compressed H2 (CH

235

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2009 Annual Progress Report II. Hydrogen Production This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Richard Farmer, U.S. Department of Energy (PDF 76 KB) A. Distributed Production from Bio-Derived Liquids Low-Cost Hydrogen Distributed Production System Development (PDF 246 KB), Frank Lomax, H2Gen Innovations, Inc. Distributed Hydrogen Production from Biomass Reforming (PDF 485 KB), Yong Wang, Pacific Northwest National Laboratory Hydrogen Generation from Biomass-Derived Carbohydrates via the Aqueous-Phase Reforming (APR) Process (PDF 234 KB), Greg Keenan, Virent

236

Microsoft Word - 42643_GE_Hydrogen Turbine_Factsheet_Rev B_12-08-06.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 - Advanced IGCC/H2 Gas Turbine Development 3 - Advanced IGCC/H2 Gas Turbine Development Revision B 1 December 2006 FACT SHEET I. PROJECT PARTICIPANTS A. Prime Participant: General Electric Company, GE Energy B. Sub-Award Participant: General Electric Company, Global Research Center II. PROJECT DESCRIPTION A. Objective(s): The objective of this project is to design and develop a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC and FutureGen type applications that meets DOE turbine performance goals. The overall DOE Advanced Power System goal is to conduct, by 2010, the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency (45-50% (HHV)), near-zero emissions (less than 3 ppm v NOx @ 15% O 2 ) and competitive capital cost (< $1000/kW).

237

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Annual Progress Report 11 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II.A Distributed BDL Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

238

Novel Compression and Fueling Apparatus to Meet Hydrogen  

E-Print Network [OSTI]

compressor concept involving compression of hydrogen with a "liquid piston" with little temperature rise that are available commercially Cost increases, but cost per kg of delivered hydrogen decreases slightly 700 barg delivers 71% more hydrogen for a similar sized vehicle tank #12;8 Novel Compressor Targets: ­ Prototype

239

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2012 Annual Progress Report FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-1 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-3 II.A Distributed Biomass-Derived Liquids Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-11 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

240

Basic Research for the Hydrogen Fuel Initiative  

Broader source: Energy.gov (indexed) [DOE]

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Institution Project Title Category A: Novel Hydrogen Storage Materials Massachusetts Institute of Technology Theory and Modeling of Materials for Hydrogen Storage Washington University In Situ NMR Studies of Hydrogen Storage Systems University of Pennsylvania Chemical Hydrogen Storage in Ionic Liquid Media Colorado School of Mines Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures Georgia Institute of Technology First-Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides Louisiana Tech University Understanding the Local Atomic-Level Effect of Dopants In Complex Metal Hydrides Using Synchrotron X-ray Absorption

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

17 - Hydrogen as a fuel in transportation  

Science Journals Connector (OSTI)

Abstract: Hydrogen has attracted fresh attention in recent decades as an alternative renewable and sustainable transportation fuel. Hydrogen can fuel conventional or hybridized power trains, through highly efficient and low emission hydrogen-fueled internal combustion engines (H2ICE) and proton exchange membrane fuel cells (PEMFC). High capacity and cost-effective onboard vehicle hydrogen storage remains a major challenge, along with the affordability of building out a distributed hydrogen production, distribution, and fueling infrastructure. Current practice is to store hydrogen onboard vehicles as a compressed gas, cryogenic liquid, or in chemical form for conversion on demand. Recent hydrogen demonstrations and field trials have advanced the technology, lowered costs, and improved public perception.

J.R. Anstrom

2014-01-01T23:59:59.000Z

242

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage Printable Version 2004 Annual Progress Report III. Hydrogen Storage Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Hydrogen Storage Sub-Program Review, JoAnn Milliken, DOE (PDF 227 KB) A. Compressed/Liquid H2 Tanks Low-Cost, High-Efficiency, High-Pressure Hydrogen Storage, Jui Ko, Quantum (PDF 373 KB) Optimum Utilization of Available Space in a Vehicle through Conformable Hydrogen Tanks, Salvador Aceves, LLNL (PDF 614 KB) Next Generation Physical Hydrogen Storage, Andrew Weisberg, LLNL (PDF 1 MB) Back to Top B. Chemical Hydrides Low-Cost, Off-Board Regeneration of Sodium Borohydride, Ying Wu, Millennium Cell (PDF 420 KB) Hydrogen Storage: Radiolysis for Borate Regeneration, Bruce Wilding,

243

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2008 Annual Progress Report II. Hydrogen Production This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Richard Farmer, U.S. Department of Energy (PDF 319 KB) A. Distributed Production from Bio-Derived Liquids Low-Cost Hydrogen Distributed Production System Development, Frank Lomax, H2Gen Innovations, Inc. (PDF 298 KB) Distributed Hydrogen Production from Biomass Reforming, David King, Pacific Northwest National Laboratory (PDF 372 KB) Analysis of Ethanol Reforming System Configurations, Brian James, Directed Technologies, Inc. (PDF 515 KB)

244

8 - Photocatalytic production of hydrogen  

Science Journals Connector (OSTI)

Abstract: The photocatalytic production of hydrogen represents a fascinating way to convert and store solar energy as chemical energy, in the form of renewable hydrogen, the ideal fuel for the future. Hydrogen can be produced either by direct water splitting or by photo-reforming of organics in either liquid or gas phase. Both methods are reviewed in this chapter. Starting with a brief historical background, the most recent achievements in the field of photocatalytic hydrogen production are discussed, concerning both the development of innovative materials able to exploit a larger portion of the solar spectrum compared to traditional photocatalytic materials, and the different set-ups and devices which have been developed and tested.

G.L. Chiarello; E. Selli

2014-01-01T23:59:59.000Z

245

Recirculating cryogenic hydrogen maser  

Science Journals Connector (OSTI)

We report on the design and initial testing of a new type of hydrogen maser, operated at dilution refrigerator temperatures, in which H atoms circulate back and forth between a microwave-pumped state selector and the maser cavity. Other novel design features include liquid-4He-coated walls, He-cooled electronics, and the use of microscopic magnetic particles to relax the two lowest hyperfine levels in the state selector. Stabilities at least as good as that of a Rb clock and a high-stability quartz oscillator are observed for measuring times between 1 and 300 s.

M. D. Hrlimann; W. N. Hardy; A. J. Berlinsky; R. W. Cline

1986-08-01T23:59:59.000Z

246

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

247

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

248

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

249

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

250

Table of Contents; DOE Hydrogen Program FY 2008 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Annual Progress Report 8 Annual Progress Report DOE Hydrogen Program Table of Contents I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 II.A Distributed Production from Bio-Derived Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 II.A.1 H 2 Gen Innovations, Inc: Low-Cost Hydrogen Distributed Production System Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

251

Effective hydrogen storage in single-wall carbon nanotubes  

Science Journals Connector (OSTI)

The hydrogen-storage behavior of single-wall carbon nanotubes was studied using molecular dynamics simulations and ab initio electronic calculations. Hydrogen atoms with kinetic energy of 1625 eV were observed to penetrate into and be trapped inside the tube. Consecutively injected H atoms form hydrogen molecules, and gradually condense to become liquid hydrogen in the tube. The density of injected hydrogen in the tube and the pressure on the wall of the nanotube induced by the stored hydrogen molecules were evaluated at room temperature.

Yuchen Ma; Yueyuan Xia; Mingwen Zhao; Ruijin Wang; Liangmo Mei

2001-03-02T23:59:59.000Z

252

High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992  

SciTech Connect (OSTI)

In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

Tsotsis, T.T.

1992-07-01T23:59:59.000Z

253

CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY  

SciTech Connect (OSTI)

Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

Zhen Fan

2006-05-30T23:59:59.000Z

254

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

255

Integrated production/use of ultra low-ash coal, premium liquids and clean char  

SciTech Connect (OSTI)

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-01-01T23:59:59.000Z

256

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

257

A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL  

SciTech Connect (OSTI)

Gas Technology Institute is developing a novel concept of membrane reactor coupled with a gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. Hydrogen permeation data for several perovskite membranes BCN (BaCe{sub 0.9}Nd{sub 0.1}O{sub 3-x}), SCE (SrCe{sub 0.9}Eu{sub 0.1}O{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar in this project. However, it is known that the cerate-based perovskite materials can react with CO{sub 2}. Therefore, the stability issue of the proton conducting perovskite materials under CO{sub 2} or H{sub 2}S environments was examined. Tests were conducted in the Thermo Gravimetric Analyzer (TGA) unit for powder and disk forms of BCN and SCE. Perovskite materials doped with zirconium (Zr) are known to be resistant to CO{sub 2}. The results from the evaluation of the chemical stability for the Zr doped perovskite membranes are presented. During this reporting period, flowsheet simulation was also performed to calculate material and energy balance based on several hydrogen production processes from coal using high temperature membrane reactor (1000 C), low temperature membrane reactor (250 C), or conventional technologies. The results show that the coal to hydrogen process employing both the high temperature and the low temperature membrane reactors can increase the hydrogen production efficiency (cold gas efficiency) by more than 50% compared to the conventional process. Using either high temperature or low temperature membrane reactor process also results in an increase of the cold gas efficiencies as well as the thermal efficiencies of the overall process.

Shain Doong; Estela Ong; Mike Atroshenko; Francis Lau; Mike Roberts

2005-07-29T23:59:59.000Z

258

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

259

Hydrogen Generation from Biomass-Derived Carbohydrates via Aqueous-Phase Reforming  

Broader source: Energy.gov [DOE]

Presentation by Virent Energy Systems, Inc. at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

260

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

10 kpsi) in carbon fiber-composite tanks, liquid hydrogen incarbon fiber is the highest cost material component of high pressure compressed gas tanks.

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BILIWG Meeting: DOE Hydrogen Quality Working Group Update and Recent Progress (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

262

Hydrogen Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

263

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

264

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from "http:en.openei.orgwindex.php?titleHydrogen&oldid271963...

265

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

266

NETL: Gasification - Recovery Act: Scale-Up of Hydrogen Transport Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Eltron Research & Development Inc. Project Number: FC26-05NT42469 Project Description The Eltron Hydrogen Transport Membrane (HTM) technology uses composite metal alloy materials to separate H2 from coal-derived syngas (a mixture of H2, CO, CO2, and steam). Carbon dioxide on the feed side of the membrane remains at high pressure and in a concentrated form suitable for capture and re-use or storage. The Eltron HTM system is an enabling technology for the production of high purity H2 and the capture of CO2 at high pressure that is applicable to future integrated gasification combined cycle (IGCC) and central station H2 production plants. These novel membranes have an operating temperature of 280 to 440 degrees Celsius (°C), which is well-matched with emerging coal gas cleaning technologies and has the potential to significantly improve the overall efficiency and process economics for future gasification-based power, fuels, and chemical production plants. Eltron's membranes can withstand differential pressures of up to 1,000 pounds per square inch gauge (psig) without structural failure, allowing for successful integration into advanced, high-pressure coal gasification plants.

267

Laboratory scale studies of Pd/{gamma}-Al{sub 2}O{sub 3} sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures  

SciTech Connect (OSTI)

The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150540 C) to hot (>540 C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/?-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/?-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/?-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

Rupp, Erik C.; Granite, Evan J. [U.S. DOE; Stanko, Dennis C. [U.S. DOE

2013-01-01T23:59:59.000Z

268

Hydrogen Systems Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal » Coal to Liquids » Hydrogen Clean Coal » Coal to Liquids » Hydrogen Systems Analysis Hydrogen Systems Analysis Energy analyses provide valuable information, input, and guidance into the decision-making process on important issues such as national energy security and environmental policies, research and development programs and plans, technology options, and potential technical, economic, market, and social barriers to technology deployment. The Hydrogen and Clean Coal Fuels Program, working with the NETL Office of Systems, Analyses, and Planning, supports systems, techno-economic, and benefits analysis activities to provide guidance and input for its research and development program portfolio, assess the progress made by Program-funded research, and measure the energy security, economic and

269

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

270

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

271

Hydrogen Delivery Infrastructure Option Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Delivery Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and Preliminary Results for Each Delivery Option Summary of Observations Next Step Project Background Project Background 4 Delivery Options Option 1* GH delivery by new pipelines Option 2 Converting NG/oil pipelines for GH delivery Option 3 Blending GH into NG pipelines Option 4* GH tube trailers

272

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

Shepodd, Timothy J. (330 Thrasher Ave., Livermore, CA 94550); Even, Jr., William R. (4254 Drake Way, Livermore, CA 94550)

2000-01-01T23:59:59.000Z

273

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

274

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

275

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Broader source: Energy.gov [DOE]

Overview of the U.S. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program, including technical targets and research and development needs for hydrogen storage and delivery.

276

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

277

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

278

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

279

Techno-Economic Analysis of Traditional Hydrogen Transmission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Golden, CO February 25, 2014 2 Traditional hydrogen transmission and distribution (T&D) options Gaseous Form Liquid Form 3 Cost contribution of components in pipeline T&D...

280

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Printable Version 2004 Annual Progress Report The 2004 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D and analysis activities and accomplishments for FY 2004. Published in November 2004, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 203 KB) Table of Contents (PDF 432 KB) I. Introduction (PDF 350 KB) II. Hydrogen Production and Delivery Distributed Production Technologies Separations Biomass Gasification/Pyrolysis Photobiological Production Photoelectrochemical Production Electrolysis High-Temperature Thermochemical Processes Hydrogen Delivery Analysis III. Hydrogen Storage Compressed/Liquid H2 Tanks Chemical Hydrides Metal Hydrides

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

282

Nuclear Hydrogen Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

283

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Printable Version 2010 Annual Progress Report The 2010 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2010. Published in February 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence Chemical Hydrogen Storage Center of Excellence Hydrogen Sorption Center of Excellence

284

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Printable Version 2011 Annual Progress Report The 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2011. Published in November 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover and Title Page Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Analysis Production Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Chemical Hydrogen Storage Hydrogen Sorption

285

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

286

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

287

Methods of using ionic liquids having a fluoride anion as solvents  

DOE Patents [OSTI]

A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

2011-12-06T23:59:59.000Z

288

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

289

Air Liquide - Biogas & Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquide - Biogas & Fuel Cells Liquide - Biogas & Fuel Cells ■ Hydrogen Energy ■ Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Integrated Concept Purified Biogas 3 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Non-Integrated Concept Landfill WWTP digester Biogas membrane Pipeline quality methane CH4 Pipeline Hydrogen Production To Fuel Cell Vehicles Stationary Fuel Cells With H2 purification Stationary Fuel Cells Direct Conversion Directed Biomethane 4 Air Liquide, world leader in gases for industry, health and the environment Biogas Sources in the US ■ Landfill gas dominates (~4,000 Nm3/h typical)

290

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

291

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

292

Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

293

Efficient production of 5-hydroxymethylfurfural through the dehydration of sugars with caprolactam hydrogen sulfate ([CPL]HSO4) ionic liquid catalyst in a water/proprylene glycol monomethyl ether mixed solvent  

Science Journals Connector (OSTI)

Efficient production of 5-hydroxymethylfurfural (HMF) through the dehydration of sugars...4) ionic liquid or using metal halide as the co-catalyst in a new water/proprylene glycol monomethyl ether solvent system....

Pingzhen Huang; Aijuan Gu; Jinxing Wang

2014-04-01T23:59:59.000Z

294

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

295

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

296

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

297

Hydrogen Storage Materials: Properties and Possibilities  

Science Journals Connector (OSTI)

...diffuse rapidly into the niobium. For bs hydroLaNi5 and FeTi as well, the role...storage. The most attractive source of low-cost hydrogen, coal gasification, produces...but substantial extra energy and capital costs are incurred by going through the liquid...

R. L. Cohen; J. H. Wernick

1981-12-04T23:59:59.000Z

298

Hydrogen Storage in Ammonia and Aminoborane Complexes  

E-Print Network [OSTI]

Hydrogen Storage in Ammonia and Aminoborane Complexes Ali Raissi Florida Solar Energy Center;Advantages of Ammonia Costs about $150 per short ton or less than $6.25 per million BTU of H2 contained and utilization Stores 30% more energy by liquid volume than LH2 Easily reformed using 16% of the energy

299

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

300

Kinetic study of hydrogen sulfide absorption in aqueous chlorine solution  

E-Print Network [OSTI]

). This technique involves H2S mass transfer in an aqueous phase using a gas-liquid contactor. Since H2S is poorly. This scrubbing liquid is just drained when the salt accumulation due to H2S oxidation into sulfate anions becomes Hydrogen sulfide (H2S) is currently removed from gaseous effluents by chemical scrubbing using water

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FCT Hydrogen Production: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

302

The Transition to Hydrogen  

E-Print Network [OSTI]

above, not all hydrogen production methods are equal inrealize hydrogens bene- ?ts fully, production methods thathydrogen vary depending on which primary source produces it and which production method

Ogden, Joan M

2005-01-01T23:59:59.000Z

303

The Hydrogen Economy  

Science Journals Connector (OSTI)

The hydrogen economy is a vision for a future in which hydrogen replaces fossil fuels. There are a variety ... of methods for generating, storing and delivering hydrogen since no single method has yet proven supe...

2009-01-01T23:59:59.000Z

304

Hydrogen storage methods  

Science Journals Connector (OSTI)

Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of todays ...

Andreas Zttel

2004-04-01T23:59:59.000Z

305

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

306

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

307

EMSL - liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate...

308

Coal to Liquids | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Liquids Liquids Coal to Liquids Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in Charleston, WV, the Yeager facility was constructed and operated with support from the Office of Fossil Energy’s National Energy Technology Laboratory. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in Charleston, WV, the Yeager facility was constructed and operated with support from the Office of Fossil Energy's National Energy Technology Laboratory. The Hydrogen and Clean Coal Fuels Program supports DOE's strategic goals of increasing energy security, reducing environmental impact of energy use,

309

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Printable Version 2009 Annual Progress Report The 2009 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2009. Published in November 2009, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 318 KB) I. Introduction, Sunita Satyapal, U.S. Department of Energy (PDF 1.5 MB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Nuclear Hydrogen Initiative Photoelectrochemical Biological Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence

310

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Printable Version 2008 Annual Progress Report The 2008 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2008. Published in November 2008, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 180 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 980 KB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Electrolysis Separations Biomass Gasification Photoelectrochemical Biological Production Hydrogen From Coal Nuclear Hydrogen Initiative Hi-Temp Thermochemical Cross-Cutting Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage

311

Biological upgrading of coal-derived synthesis gas: Final report  

SciTech Connect (OSTI)

The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

1986-10-01T23:59:59.000Z

312

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network [OSTI]

system has run on actual syn-gas. Consequently, the Electric Power Research Institute (EPRI) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energys coal gasification plant in Plaquemine, Louisiana...

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

313

Evaluation of biological conversion of coal-derived synthesis gas  

SciTech Connect (OSTI)

Foster Wheeler USA Corporation conducted an evaluation study on the biological conversion of synthesis gas to methane which is under development at the University of Arkansas. A conceptual design of an integrated coal-based SNG plant, employing the bioconversion process route, was developed together with the corresponding capital and operating costs. The economics were compared to those for a coal-based SNG plant design using the conventional catalytic route for shift and methanation. 5 refs., 10 figs., 22 tabs.

Fu, R.K.; Mazzella, G.

1990-09-01T23:59:59.000Z

314

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

315

Technology: Hydrogen and hydrates  

Science Journals Connector (OSTI)

... . 22492258 (2004). US Department of Energy Hydrogen Posture Plan http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_posture_plan.pdf Kuhs, W. F. , Genov, ...

Ferdi Schth

2005-04-06T23:59:59.000Z

316

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

317

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

318

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

319

Terminal Operations for Tube Trailer and Liquid Tanker Filling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Liquid Tanker Filling: Status, Challenges and R&D Needs 1 Linde covers the entire hydrogen value chain LH 2 storage SupplyStorage CompressionTransfer Dispenser Onsite SMR...

320

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network [OSTI]

I. Solvent Refined Coal II. Catalysts III. Purpose andSondreal, E.A. , "Viscosity of Coal Liquids - The Effect ofAnthraxylon - Kinetics of Coal Hydrogenation," Ind. and Eng.

Tanner, K.I.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

322

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

323

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

324

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

325

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

326

A Novel Membrane Reactor for Direct Hydrogen Production From Coal  

SciTech Connect (OSTI)

Gas Technology Institute has developed a novel concept of a membrane reactor closely coupled with a coal gasifier for direct extraction of hydrogen from coal-derived syngas. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under the coal gasification conditions. The best performing membranes were selected for preliminary reactor design and cost estimate. The overall economics of hydrogen production from this new process was assessed and compared with conventional hydrogen production technologies from coal. Several proton-conducting perovskite membranes based on the formulations of BCN (BaCe{sub 0.8}Nd{sub 0.2}O{sub 3-x}), BCY (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-x}), SCE (Eu-doped SrCeO{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) were successfully tested in a new permeation unit at temperatures between 800 and 1040 C and pressures from 1 to 12 bars. The experimental data confirm that the hydrogen flux increases with increasing hydrogen partial pressure at the feed side. The highest hydrogen flux measured was 1.0 cc/min/cm{sup 2} (STP) for the SCTm membrane at 3 bars and 1040 C. The chemical stability of the perovskite membranes with respect to CO{sub 2} and H{sub 2}S can be improved by doping with Zr, as demonstrated from the TGA (Thermal Gravimetric Analysis) tests in this project. A conceptual design, using the measured hydrogen flux data and a modeling approach, for a 1000 tons-per-day (TPD) coal gasifier shows that a membrane module can be configured within a fluidized bed gasifier without a substantial increase of the gasifier dimensions. Flowsheet simulations show that the coal to hydrogen process employing the proposed membrane reactor concept can increase the hydrogen production efficiency by more than 50% compared to the conventional process. Preliminary economic analysis also shows a 30% cost reduction for the proposed membrane reactor process, assuming membrane materials meeting DOE's flux and cost target. Although this study shows that a membrane module can be configured within a fluidized bed gasifier, placing the membrane module outside the gasifier in a closely coupled way in terms of temperature and pressure can still offer the same performance advantage. This could also avoid the complicated fluid dynamics and heat transfer issues when the membrane module is installed inside the gasifier. Future work should be focused on improving the permeability and stability for the proton-conducting membranes, testing the membranes with real syngas from a gasifier and scaling up the membrane size.

Shain Doong; Estela Ong; Mike Atrosphenko; Francis Lau; Mike Roberts

2006-01-20T23:59:59.000Z

327

Spatial development of hydrogen economy in a low-carbon UK energy system  

Science Journals Connector (OSTI)

Hydrogen technologies and infrastructures might play a significant role in meeting ambitious climate and energy policy goals of the UK Government. Nonetheless, studies on hydrogen are either limited in scope in that they do not take into account the relationships with the wider energy system drivers and constraints or do not consider how a hydrogen network might develop geographically. This paper presents a framework where a spatially explicit hydrogen module is embedded in the UK MARKAL Energy System model to explore energy system trade-offs for the production, delivery and use of hydrogen at the sub-national level. A set of illustrative scenarios highlight the competitiveness of hydrogen related infrastructures and technologies as well as imported liquid hydrogen against a stringent emissions reduction target; the effect of emissions reduction trajectory on the development of hydrogen network; the intense resource competition between low carbon hydrogen production and electricity generation, and the importance of economies of scale in hydrogen supply and distribution.

Nazmiye Balta-Ozkan; Elizabeth Baldwin

2013-01-01T23:59:59.000Z

328

Hydrogen & Our Energy Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

329

Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

330

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

331

UNDERSTANDING OF CATALYST DEACTIVATION CAUSED BY SULFUR POISONING AND CARBON DEPOSITION IN STEAM REFORMING OF LIQUID HYDROCARBON FUELS.  

E-Print Network [OSTI]

??The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. (more)

Xie, Chao

2011-01-01T23:59:59.000Z

332

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

333

Liquid fossil fuel technology  

SciTech Connect (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

334

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

335

Method for synthesis of titanium dioxide nanotubes using ionic liquids  

SciTech Connect (OSTI)

The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

Qu, Jun; Luo, Huimin; Dai, Sheng

2013-11-19T23:59:59.000Z

336

Report on the evening discussion: Hydrogen storage in carbon materials  

Science Journals Connector (OSTI)

Hydrogen may be the most important energy carrier of the future as soon as the problem of hydrogen storage is solved. Storing of hydrogen under high pressure or as liquid costs much energy. Furthermore a high pressure or liquid hydrogen tank in a fuel cell driven vehicle would be much larger and heavier compared to a typical gasoline tank. In metal hydride tanks the stored hydrogen density is higher but the tank would be much too heavy (for a comparison see Fig. 1). Since the first promising results of Heben et al. in 1997 on hydrogen storage in single walled carbon nanotubes and the spectacularly large storage capacities in carbon nanofibers from the Baker and Rodriguez group in 1998 considerable research activity has been started all over the world to investigate hydrogen storage in carbon materials. Especially car industry is very interested and is waiting for a material with a reversible hydrogen storage capacity above 6.5 wt%. In this report the evening discussion on Hydrogen storage in carbon materials is summarized.

Andrea Quintel

2000-01-01T23:59:59.000Z

337

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, September 1, 1991--November 30, 1991  

SciTech Connect (OSTI)

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-12-31T23:59:59.000Z

338

Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars  

Science Journals Connector (OSTI)

In this paper, we review the current technology for the storage of hydrogen on board a fuel cell-propelled vehicle. Having outlined the technical specifications necessary to match the performance of hydrocarbon. fue1, we first outline the inherent difficulties with gas pressure and liquid hydrogen storage. We then outline the history of transition metal hydride storage, leading to the development of metal hydride batteries. A viable system, however, must involve lighter elements and be vacuum-tight. The first new system to get serious consideration is titanium-activated sodium alanate, followed by the lithium amide and borohydride systems that potentially overcome several of the disadvantages of alanates. Borohydrides can alternatively produce hydrogen by reaction with water in the presence of a catalyst but the product would have to be recycled via a chemical plant. Finally various possible ways of making magnesium hydride decompose and reform more readily are discussed. The alternative to lighter hydrides is the development of physisorption of molecular hydrogen on high surface area materials such as carbons, metal oxide frameworks, zeolites. Here the problem is that the surface binding energy is too low to work at anything above liquid nitrogen temperature. Recent investigations of the interaction mechanism are discussed which show that systems with stronger interactions will inevitably require a surface interaction that increases the molecular hydrogenhydrogen distance.

D.K. Ross

2006-01-01T23:59:59.000Z

339

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

340

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

342

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main ThemesCaveats Bulk...

343

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

344

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Simpson. (2010) Contact: Thomas Gennett 303-384-6628 Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery Hydrogen Storage...

345

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

346

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

347

De-ashing of coal liquids with ceramic membrane microfiltration and diafiltration. Quarterly technical progress report, January 1--March 31, 1993  

SciTech Connect (OSTI)

Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. This program is directed towards development of an improved process for de-ashing and recovery of coal-derived residual oil: the use of ceramic membranes for high-temperature microfiltration and disfiltration. Using laboratory-scale ceramic membrane modules, samples of a coal-derived residual oil containing ash will be processed by crossflow microfiltration, followed by solvent addition and refiltration (disfiltration). Recovery of de-ashed residual oil will be demonstrated. Data from this program will be used to develop a preliminary engineering design and cost estimate for a demonstration pilot plant incorporating full-scale membrane modules. In addition, estimates for production system capital and operating costs will be developed to assess process economic feasibility.The five program tasks include (1) ceramic membrane fabrication, (2) membrane test system assembly, (3) testing of the ceramic membranes, (4) design of a demonstration system using full scale membrane modules, and (5) development of estimates for microfiltration capital and operating costs and assessment of process economic feasibility. A subcontract is being sought with Exxon Research and Engineering (ER+E) to conduct microfiltration and diafiltration with CeraMem`s modules using a coal liquid made at Exxon`s liquefaction facility in Baton Rouge LA. To help plan the test program at Exxon and to anticipate how the CeraMem module many perform, CeraMem made mass balance calculations of a prototypical diafiltration process. These calculations predict that 80% to 90% of the residual oil can be recovered in an ash-free form even with modest ratios (2 to 4) of diafiltration solvent volume to residual oil volume. The calculations also say that no more than three diafiltration stages will likely be economical.

Not Available

1993-07-01T23:59:59.000Z

348

138 Industrial Productivity Spinoff 2009 Gauging Systems Monitor Cryogenic Liquids  

E-Print Network [OSTI]

138 Industrial Productivity Spinoff 2009 Gauging Systems Monitor Cryogenic Liquids originating propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 °F) is crucial for space) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support

349

LNG liquid-liquid immiscibility  

SciTech Connect (OSTI)

Although natural gas species rarely exhibit liquid-liquid immiscibility in binary systems, the presence of additional components can extend the domain of immiscibility in those few binary systems where it already exists or produce immiscibility in binary systems where it had not existed. If the solute has the proper molecular relation to the solvent mixture background, liquid-liquid-vapor (LLV) behavior will occur; such phenomena greatly complicate the design of LNG processing equipment. To aid LNG engineers, researchers mapped the thermodynamic behavior of four ternary LLV systems and examined the effects of the second solvents - ethane, propane, n-butane, and CO/sub 2/ - on the binary methane + n-octane system.

Luks, K.D.; Kohn, J.P.

1981-09-01T23:59:59.000Z

350

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

produce hydrogen in a centralized coal based operation for .79kg at the plant gate with carbon sequestration. Develop advanced OTM, HTM, technology, advanced reforming and shift...

351

Resource Assessment for Hydrogen Production: Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration ERR Estimated Recoverable Reserves FCEV fuel cell electric vehicle GHG greenhouse gas GW gigawatt GWh gigawatt-hour GWdt gigawatt-days thermal H2A Hydrogen...

352

Muon Capture in Gaseous Hydrogen  

Science Journals Connector (OSTI)

An experiment to measure the muon nuclear capture rate in ultrapure gaseous hydrogen (8 atm, 293K) has been performed using a special target in which a system of gas proportional counters, working with the pure hydrogen of the target itself, were operating. Neutrons from the capture reactions were detected using a scintillation-counter technique, and the ?-ray background was eliminated by pulse-shape discrimination. The working conditions ensured that the captures were taking place in ?p atomic systems in a singlet total-spin state. The experimental result is ?expt=65157 sec-1, which has to be compared with the theoretical rate ?s,theor=62626 sec-1. From the experimental capture rate, and within the framework of the currently accepted theory, we have obtained for the induced pseudoscalar coupling constant gp=(-7.33.7)gV. The results of the present experiment are analyzed, together with results obtained from stopping negative muons in liquid hydrogen.

A. Alberigi Quaranta; A. Bertin; G. Matone; F. Palmonari; G. Torelli; P. Dalpiaz; A. Placci; E. Zavattini

1969-01-25T23:59:59.000Z

353

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996  

SciTech Connect (OSTI)

The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.

NONE

1997-06-06T23:59:59.000Z

354

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

355

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

356

FCT Hydrogen Production: Hydrogen Production R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

357

Catalyzed Hydrogen Spillover for Hydrogen Storage  

Science Journals Connector (OSTI)

Catalyzed Hydrogen Spillover for Hydrogen Storage ... Storing sufficient H on-board a wide range of vehicle platforms, while meeting all consumer requirements (driving range, cost, safety, performance, etc.), without compromising passenger or cargo space, is a tremendous tech. ... The authors show that for the 1st time significant amts. of H can be stored in MOF-5 and IRMOF-8 at ambient temp. ...

Ralph T. Yang; Yuhe Wang

2009-02-27T23:59:59.000Z

358

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

· To develop suitable welding technology for H2 pipeline construction and repair · To develop technical basisHydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J pressure permeation test · Edison Welding Institute - Pipeline materials · Lincoln Electric Company

359

Hydrogen Pathway Cost Distributions Jim Uihlein  

E-Print Network [OSTI]

Influence · Approach · Implementation · Results · Discussion Process · Summary #12;3 Hydrogen R&D Cost Goal $) EIA Annual Energy Outlook, 2005 Ratio of FCV fuel economy to evolved gasoline ICE 2.40 NRC H2 Economy Liquid Distribution $0.28 $1.06 $2.54 $3.88 Central Wind Electrolysis Pipeline Distribution $0.01 $6

360

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

BP and Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

362

Hydrogen Production- Current Technology  

Broader source: Energy.gov [DOE]

The development of clean, sustainable, and cost-competitive hydrogen production processesis key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

363

A Hydrogen Economy  

Science Journals Connector (OSTI)

The history of the hydrogen economy may be broken down into three parts ... is the history of the founding of the Hydrogen Energy Society which took place in Miami,...

J. OM. Bockris

1981-01-01T23:59:59.000Z

364

Solar Hydrogen Production  

Science Journals Connector (OSTI)

The common methods of hydrogen production impose many concerns regarding the decline in...2...emission, and ecological impacts. Subsequently, all the downstream industries that consume hydrogen involve the aforem...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

365

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

366

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

367

The Hydrogen Economy  

Science Journals Connector (OSTI)

Before describing the characteristics of an economy in which hydrogen is the medium of energy, let us...

J. OM. Bockris; Z. Nagy

1974-01-01T23:59:59.000Z

368

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

369

National Hydrogen Energy Roadmap  

Broader source: Energy.gov [DOE]

This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

370

Fueling up with Hydrogen: New Approaches to Hydrogen Storage (433rd Brookhaven Lecture)  

SciTech Connect (OSTI)

Hydrogen, the most abundant element in the universe, burns excellently and cleanly, with only pure water as a byproduct. NASA has used hydrogen as fuel for years in the space program. So, why not use hydrogen to fuel cars? The bottleneck of developing hydrogen-fueled vehicles has been identified: the greatest problem is storage. The conventional storage method, compressed hydrogen gas, requires a large tank volume, and the possibility of a tank rupture poses a significant safety risk. Another method, low temperature liquid storage, is expensive and impractical for most automotive applications. An alternative is to store the hydrogen in the solid state. In his talk, Jason Graetz will describe the new approaches to hydrogen storage being studied by his group at BNL. These include using kinetically stabilized hydrides, bialkali alanates and reversible metal-organic hydrides. The researchers are also using novel synthesis approaches, state-of-the-art characterization and first principles modeling, all providing a better fundamental understanding of these interesting and useful new materials.

Graetz, Jason (Energy Sciences and Technology Dept) [Energy Sciences and Technology Dept

2008-02-20T23:59:59.000Z

371

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage ... Use of hydrogen for transportation applications requires materials that not only store hydrogen at high density but that can operate reversibly at temperatures and pressures below approximately 100 C and 10 bar, respectively. ... This composition is based on assuming the following complete hydrogenation reaction:which stores 2.6 wt % hydrogen. ...

Wen Li; John J. Vajo; Robert W. Cumberland; Ping Liu; Son-Jong Hwang; Chul Kim; Robert C. Bowman, Jr.

2009-11-06T23:59:59.000Z

372

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

or reduce the likelihood of hydrogen embrittlement Test existing high strength steel alloys for use in largeGaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 compression. Safety, integrity, reliability: Metal embrittlement, no H2 odorant, low ignition energy

373

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

374

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

375

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

376

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

377

Hydrogen production from the reaction of solvated electrons with benzene in water-ammonia mixtures  

SciTech Connect (OSTI)

Product analysis data for the reaction of the ammoniated electron with benzene-water mixtures in liquid ammonia show that the dominant product is evolved hydrogen and not 1,4-cyclohexadiene.

Dewald, R.R.; Jones, S.R.; Schwartz, B.S.

1980-11-27T23:59:59.000Z

378

Collective Hydrogen Bond Reorganization in Water Studied with Temperature-Dependent Ultrafast Infrared Spectroscopy  

E-Print Network [OSTI]

We use temperature-dependent ultrafast infrared spectroscopy of dilute HOD in H2O to study the picosecond reorganization of the hydrogen bond network of liquid water. Temperature-dependent two-dimensional infrared (2D IR), ...

Nicodemus, Rebecca A.

379

ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations  

Broader source: Energy.gov [DOE]

In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly

380

Hydrogen peroxide safety issues  

SciTech Connect (OSTI)

A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors.

Conner, W.V.

1993-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen Use and Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

382

DOE Hydrogen Analysis Repository: Hydrogen Production by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

383

Hydrogen Material Compatibility for Hydrogen ICE | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pm04smith.pdf More Documents & Publications Hydrogen Materials Compatibility for the H-ICE...

384

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Printable Version 2007 Annual Progress Report The 2007 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2007. Published in November 2007, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 711 KB) Table of Contents (PDF 236 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 821 KB) II. Hydrogen Production Distributed Production from Natural Gas Distributed Production from Bio-Derived Liquids Electrolysis Separations Central Biomass Gasification Solar Hi-Temp Thermochemical Water Splitting Photoelectrochemical Biological Production Hydrogen from Coal Nuclear Hydrogen Initiative

385

Where does Hydrogen Fit in a Sustainable Energy Economy?  

Science Journals Connector (OSTI)

Where does hydrogen fit into a global sustainable energy strategy for the 21st century, as we face the enormous challenges of irreversible climate change and uncertain oil supply? This fundamental question is addressed by sketching a sustainable energy strategy that is based predominantly on renewable energy inputs and energy efficiency, with hydrogen playing a crucial and substantial role. But this role is not an exclusive one as in the original concept of the hydrogen economy proposed in the early 1970s. A hierarchy of spatially-distributed hydrogen production, storage and distribution centres relying on local renewable energy sources and feedstocks would be created to avoid the need for an expensive long-distance hydrogen pipeline system. There would thus be complementary use of electricity and hydrogen as energy vectors. Importantly, bulk hydrogen storage would provide the strategic energy reserve to guarantee national and global energy security in a world relying increasingly on renewable energy; and longer-term seasonal storage on electricity grids relying mainly on renewables. In the transport sector, a horses for courses approach is proposed in which hydrogen fuel cell vehicles would be used in road and rail vehicles requiring a range comparable to today's petrol and diesel vehicles, and in coastal and international shipping, while liquid hydrogen would probably have to be used in air transport. Plug-in battery electric vehicles would be reserved for shorter-trips. Energy-economic-environmental modelling is recommended as the next step to quantify the net benefits of the overall strategy outlined.

John Andrews; Bahman Shabani

2012-01-01T23:59:59.000Z

386

Hydrogen and Nitrogen Control in Ladle and Casting Operations  

SciTech Connect (OSTI)

In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the slag thickness. The model predictions are based on mathematical and empirical evidence which are derived from thermodynamic and kinetic fundamental principles.

Richard J. Fruehan; Siddhartha Misra

2005-01-15T23:59:59.000Z

387

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

388

Catalyst for hydrotreating carbonaceous liquids  

DOE Patents [OSTI]

A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

Berg, Lloyd (Bozeman, MT); McCandless, Frank P. (Bozeman, MT); Ramer, Ronald J. (Idaho Falls, ID)

1982-01-01T23:59:59.000Z

389

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network [OSTI]

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss P: 847-768-0753; E: william hurdles facing on-board liquid fuel reforming. This program leverages efforts to develop natural gas for compressed natural gas vehicles. The integrated natural gas-to-hydrogen system includes a high efficiency

390

Hydrogen Generation Via Fuel Reforming  

Science Journals Connector (OSTI)

Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2?based power generation via reforming is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2?enriched product stream such as carbon monoxide (CO) and hydrogen sulfide (H2S) can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFCs). Removal of such contaminants requires extensive processing of the H2?rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

John F. Krebs

2003-01-01T23:59:59.000Z

391

Hydrogen Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

392

President's Hydrogen Fuel Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

393

Hydrogen Based Bacteria  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Based Bacteria Hydrogen Based Bacteria Name: Ellen Location: N/A Country: N/A Date: N/A Question: i was in my Biology class and a very respectable someone mentioned something about the discovery of a hydrogen based bacteria. my teacher wasnt aware of this study, and assigned me to find out about it. so i thought i would Email you and see if you people knew anything about it. Awaiting your repsonse Replies: I'm not quite sure what you mean by hydrogen based bacteria but I will take a stab that you mean bacteria that use hydrogen for energy. Some bacteria are chemolithotrophs which mean that they are autrophs but don't use the sun as their energy source; they get their energy from chemical sources. There are bacteria that use hydrogen as their energy source. They are diverse as a group and are all facultative. The overall chemical reaction looks like this:

394

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

395

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Issues for H2 Service Materials of Construction Hydrogen Embrittlement Presence of atomic hydrogen susceptible to Hydrogen Embrittlement. #12;Pipeline Transmission of Hydrogen --- 7 Copyright: H2 Induced, characteristic of hydrogen embrittlement. Photo Courtesy of NASA/Kennedy Space Center Materials Lab #12;Pipeline

396

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

397

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network [OSTI]

Hydrogen Storage - Overview George Thomas, Hydrogen Consultant to SNL* and Jay Keller, Hydrogen volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen and cost-effective hydrogen storage? #12;4/14/03 3 Sandia National Laboratories From George Thomas, BES

398

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

399

Liquid electrode  

DOE Patents [OSTI]

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

400

Hydrogen Compatibility of Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

402

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

403

Hydrogen Generator Appliance  

Broader source: Energy.gov (indexed) [DOE]

lAbOrAtOry NG Workshop summary report - appeNDIX J slide presentation: hydrogen Generator appliance Gus Block, Nuvera Fuel Cells...

404

Module 2: Hydrogen Use  

Broader source: Energy.gov [DOE]

This course covers the processes by which hydrogen is extracted, how it is stored and transported, and the inherent advantages and disadvantages of each method

405

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

406

Hydrogen Production & Delivery  

Energy Savers [EERE]

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

407

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

408

Hydrogen Production & Delivery  

Broader source: Energy.gov [DOE]

"2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2 and Fuel Cells Plenary "

409

Hydrogen Release Behavior  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

410

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

411

President's Hydrogen Fuel Initiative  

Broader source: Energy.gov [DOE]

Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

412

Hydrogen Safety Knowledge Tools  

SciTech Connect (OSTI)

With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

Fassbender, Linda L.

2011-01-31T23:59:59.000Z

413

Hydrogen ion microlithography  

DOE Patents [OSTI]

Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

Tsuo, Y.S.; Deb, S.K.

1990-10-02T23:59:59.000Z

414

Detroit Commuter Hydrogen Project  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

415

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

416

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

417

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

418

Alternative Fuels Data Center: Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Hydrogen is a potentially emissions-free alternative fuel that can be produced from diverse domestic energy sources. Research is under way to make hydrogen vehicles practical for widespread use.

419

FCT Hydrogen Production: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

420

Hydrogen Threshold Cost Calculation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Threshold Cost Calculation Hydrogen Threshold Cost Calculation DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and...

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

high-pressure stationary hydrogen storage tanks. The storagehigh-pressure gaseous hydrogen storage containers, and atrailer Compressed hydrogen storage High-pressure hydrogen

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

422

Hydrogen Delivery - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

423

NREL: Hydrogen and Fuel Cells Research - Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable...

424

Combination moisture and hydrogen getter  

DOE Patents [OSTI]

A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

Harrah, L.A.; Mead, K.E.; Smith, H.M.

1983-09-20T23:59:59.000Z

425

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

426

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

427

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

428

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

429

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: Energy.gov [DOE]

Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

430

Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Hydrogen to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results May 8, 2007 Amgad Elgowainy Argonne National Laboratory Comparison of Delivery Pathways- V1.0 vs. V2.0 2 1 3 i delivery by a Loading, the plant Version 1.0 character zed components for 3 pathways with single mode. conditioning and storage are at or adjacent to Liquid Hydrogen (LH) Truck H2 Production 100 or 1500 kg/d Compressed H2 (CH) Truck H2 Production 3 or 7 kpsi 100 or 1500 kg/d H2 Production Gaseous H2 Pipeline 100 or 1500 kg/d HDSAM V1.0 Estimates Delivery Cost for 3 Pathways 4 H2 H2 1 2 3 H2 Distribution and Ci I. Liquid H2 Distribution: HDSAM V2.0 Simulates Nine Pathways Production Production LH Terminal LH Terminal Production LH Terminal Transmission Transmission Distribution

431

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect (OSTI)

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

432

Guidance Document Cryogenic Liquids  

E-Print Network [OSTI]

Guidance Document Cryogenic Liquids [This is a brief and general summary. Read the full MSDS for more details before handling.] Introduction: All cryogenic liquids are gases at normal temperature liquefies them. Cryogenic liquids are kept in the liquid state at very low temperatures. Cryogenic liquids

433

Microchannel Reactor System for Catalytic Hydrogenation  

SciTech Connect (OSTI)

We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

2010-12-22T23:59:59.000Z

434

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

435

Plasma post-hydrogenation of hydrogenated amorphous silicon and germanium  

SciTech Connect (OSTI)

Incorporation and kinetics of hydrogen during plasma post-hydrogenation and thermal treatment are discussed for a-Si:H and a-Ge:H films. For material of low hydrogen content, the hydrogen surface concentration reached by plasma treatment equals the hydrogen concentration obtained by deposition at the same temperature and under similar plasma conditions. Enhancements of the hydrogen diffusion coefficient and of hydrogen solubility observed for plasma treatment at temperatures {le}400 C and {le}300 C for a-Si:H and a-Ge:H, respectively, are attributed to a plasma induced rise of the surface hydrogen chemical potential.

Beyer, W.; Zastrow, U. [Forschungszentrum Juelich (Germany). Inst. fuer Schicht- und Ionentechnik

1996-12-31T23:59:59.000Z

436

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

437

NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric...

438

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Cost adjusted to 2007 dollars, accurate to two significant figures. Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery...

439

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Program Record Record : 5037 Date: May 22, 2006 Title: Hydrogen Storage Materials - 2004 vs 2006 Originator: Sunita Satyapal Approved by: JoAnn Milliken...

440

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...from outside: the infrastructure they need to...existing electricity grid or natural gas...massive new hydrogen infrastructure to deliver the...development of hybrid cars, critics...out on page 974 , hybrid electric vehicles...separate hydrogen infrastructure. Near-term help...

Robert F. Service

2004-08-13T23:59:59.000Z

442

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...paces, 200 fuel cells under...Switching from fossil fuels to hydrogen...reduce urban air pollution, lower dependence...cleaner air, lower greenhouse...cost of the fuel drops to $1.50...hydrogen from fossil fuels, DOE...none of these solutions is up to...

Robert F. Service

2004-08-13T23:59:59.000Z

443

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

444

Thick film hydrogen sensor  

DOE Patents [OSTI]

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

Hoffheins, B.S.; Lauf, R.J.

1995-09-19T23:59:59.000Z

445

Renewable Resources for Hydrogen (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

446

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in the cost of hydrogen production, distribution, and use.accelerate R&D of zero-emission hydrogen production methods.Renewable hydrogen production is a key area for focused

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

447

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

type can be applied to hydrogen storage materials. Keywords:can be applied to hydrogen storage materials. Manuscript O-of the formalism to hydrogen storage materials. A partial

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

448

Thin Film Hydrogen Storage System  

Science Journals Connector (OSTI)

In the last one decade the use of hydrogen as an energy carrier has attracted world ... on the technology involved for the production, storage and use of hydrogen. In this paper we discuss storage aspect of hydrogen

I. P. Jain; Y. K. Vijay

1987-01-01T23:59:59.000Z

449

Hydrogen Delivery | Department of Energy  

Energy Savers [EERE]

truck at hydrogen production facility. A viable hydrogen infrastructure requires that hydrogen be able to be delivered from where it's produced to the point of end-use, such as...

450

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

451

Electrochemical Hydrogen Compression (EHC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

452

NREL: Learning - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

453

Hydrogen Threshold Cost Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

454

Hydrogen Fuel Quality  

SciTech Connect (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

455

Hydrogen Purity Standard  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

456

Air Liquide Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Air Liquide Group Place Paris, France Zip 75321 Sector Hydro, Hydrogen Product Paris-based manufacturer of industrial and medical gases. The company is working on hydrogen production and gas-to-liquid technology. Coordinates 48.85693°, 2.3412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.85693,"lon":2.3412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

DOE Hydrogen and Fuel Cells Program: 2007 Annual Merit Review Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Annual Merit Review Proceedings 2007 Annual Merit Review Proceedings Printable Version 2007 Annual Merit Review Proceedings Logo for the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation, May 15-18, Washington, D.C. Principal investigators presented the status and results of their hydrogen and fuel cell projects at the DOE Hydrogen Program's Annual Merit Review on May 15-18, 2007 in Washington, D.C. Links to their presentations and posters are provided below. Plenary Session Presentations Hydrogen Production and Delivery Presentations Distributed Production Biological Production Separations Electrolysis Photoelectrochemical Production Hi-Temp Thermochemical Hydrogen Delivery Hydrogen from Coal Nuclear Hydrogen Initiative Posters Central Biomass Biological Production Compressed/Liquid Tanks

458

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

459

A liquid film motor  

Science Journals Connector (OSTI)

It is well known that electro-hydrodynamical effects in freely suspended liquid films can force liquids to flow. Here, we report a purely electrically driven rotation in water and some other liquid suspended film...

A. Amjadi; R. Shirsavar; N. Hamedani Radja

2009-05-01T23:59:59.000Z

460

Final Report - Hydrogen Delivery Infrastructure Options Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Power of Experience The Power of Experience Final Report Hydrogen Delivery Infrastructure Options Analysis DOE Award Number: DE-FG36-05GO15032 Project director/principal investigator: Tan-Ping Chen Consortium/teaming Partners: Air Liquide, Chevron Technology Venture, Gas Technology Institute, NREL, Tiax, ANL Hydrogen Delivery Infrastructure Options Analysis ii TABLE OF CONTENTS SECTION 1 EXECUTIVE SUMMARY ........................................................................... 1-1 1.1 HOW THE RESEARCH ADDS TO THE UNDERSTANDING OF THE AREA INVESTIGATED. 1-1 1.2 TECHNICAL EFFECTIVENESS AND ECONOMIC FEASIBILITY OF THE METHODS OR TECHNIQUES INVESTIGATED OR DEMONSTRATED .................................................... 1-1 1.3 HOW THE PROJECT IS OF BENEFIT TO THE PUBLIC..................................................... 1-1

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Quantum MonteCarlo Simulation of the High-Pressure Molecular-Atomic Crossover in Fluid Hydrogen  

Science Journals Connector (OSTI)

A first-order liquid-liquid phase transition in high-pressure hydrogen between molecular and atomic fluid phases has been predicted in computer simulations using abinitio molecular dynamics approaches. However, experiments indicate that molecular dissociation may occur through a continuous crossover rather than a first-order transition. Here we study the nature of molecular dissociation in fluid hydrogen using an alternative simulation technique in which electronic correlation is computed within quantum MonteCarlo methods, the so-called coupled electron-ion MonteCarlo method. We find no evidence for a first-order liquid-liquid phase transition.

Kris T. Delaney; Carlo Pierleoni; D. M. Ceperley

2006-12-06T23:59:59.000Z

462

Hydrogen Production from Carbohydrates: A Mini-Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Hydrogen Production from Carbohydrates: A Mini-Review Y.-H. Percival Zhang *,1,2,3 1 Department of Biological Systems Engineering, Virginia Tech, 210-A Seitz Hall, Blacksburg, VA 24061, USA 2 Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA 24061, USA 3 DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831, USA * Tel: 540-231-7414. Fax: 540-231-7414. Email: ypzhang@vt.edu. The hydrogen economy promises a clean energy future featuring higher energy utilization ef ciency and fewer pollutants compared to liquid fuel/internal combustion engines. Hydrogen production from the enriched low-cost biomass carbohydrates would achieve nearly zero carbon emissions in a whole life cycle. In this book chapter, we present latest advances of hydrogen generation from biomass carbohydrates by chemical catalysis (e.g., gasi cation,

463

Liquid suspensions of reversible metal hydrides  

DOE Patents [OSTI]

The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

1983-12-08T23:59:59.000Z

464

A Basic, and Slightly Acidic, Solution to Hydrogen Storage | Department of  

Broader source: Energy.gov (indexed) [DOE]

A Basic, and Slightly Acidic, Solution to Hydrogen Storage A Basic, and Slightly Acidic, Solution to Hydrogen Storage A Basic, and Slightly Acidic, Solution to Hydrogen Storage March 23, 2012 - 2:17pm Addthis Brookhaven researchers Etsuko Fujita, Jonathan Hull, and James Muckerman developed a new catalyst that reversibly converts hydrogen gas and carbon dioxide to a liquid under very mild conditions. Their findings were published in the March 18th issue of Nature Chemistry. | Photo courtesy of Brookhaven National Lab. Brookhaven researchers Etsuko Fujita, Jonathan Hull, and James Muckerman developed a new catalyst that reversibly converts hydrogen gas and carbon dioxide to a liquid under very mild conditions. Their findings were published in the March 18th issue of Nature Chemistry. | Photo courtesy of Brookhaven National Lab.

465

Ionic (Proton) Transport Hydrogen Separation Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Proton) (Proton) Transport Hydrogen Separation Systems Summary Session Participants -- Ionic Transport Balachandran, Balu Cornelius, Chris Fleming, Greg Glass, Robert Hartvigsen, Joseph Higgins, Richard King, David Paster, Mark Paul, Dilo Robbins, John Samells, Anthony Schwartz, Michael Schinski, Bill Smith, Ronald Van Bibber, Lawrence Zalesky, Rick Argonne National Laboratory Sandia National Laboratory Air Liquide Lawrence Livermore National Laboratory Cerametec, Inc. CeraMem Corporation Battelle, PNNL DOE Science Applications International Corporation ExxonMobil Eltron Research, Inc. ITN Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures Performance Goals 4-5 years (5 years upper limit) (100,000 hrs is 12 years) High durability 250-350

466

NREL's Hydrogen Program  

SciTech Connect (OSTI)

The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful elementhydrogento power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

None

2011-01-01T23:59:59.000Z

467

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films  

E-Print Network [OSTI]

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

468

Composition of liquids from coals of different rank  

SciTech Connect (OSTI)

Eight coal liquids prepared from six coals of widely differing rank were compared with respect to their suitability as potential feedstocks for production of refined fuels. The compositions of the liquids were determined by methods adapted from those developed for characterization of petroleum crudes. The coal liquids were prepared and upgraded by hydrogenation in a batch autoclave. The reaction conditions employed were selected to minimize hydrocarbon ring-opening reactions and, at the same time, to produce most of the hydrocarbon liquids potentially available from the coals. The degree of hydrogenation of the raw coal liquids was varied as required to decrease the nitrogen content to about the same level and to provide a predominantly hydrocarbon liquid for analysis. Distilled fractions of the upgraded coal liquids boiling up to 540/sup 0/C were characterized by a combination of separation and analytical techniques including adsorption chromatography; gel permeation chromatography; separations of acids, bases, and asphaltenes; and high- and low-resolution mass spectrometry. In general, the results show that liquids of comparable suitability as feedstocks for production of refined fuels can be produced from coals of different rank.

Sturm, G.P. Jr.; Thomson, J.S.; Woodward, P.W.; Vogh, J.W.

1980-09-01T23:59:59.000Z

469

Hydrogen bond rearrangements and the motion of charge defects in water viewed using multidimensional ultrafast infrared spectroscopy  

E-Print Network [OSTI]

Compared with other molecular liquids, water is highly structured due to its ability to form up to four hydrogen bonds to its nearest neighbors, resulting in a tetrahedral network of molecules. However, this network is ...

Roberts, Sean T. (Sean Thomas)

2010-01-01T23:59:59.000Z

470

Effect of hydrogen bridge geometry on the vibrational spectra of water: Three-parameter potential of H bond  

Science Journals Connector (OSTI)

The ability of water molecules to form a three-dimensional network of hydrogen bonds basically determines both the intrinsic structure and unique properties of this liquid and also a character of interactions wit...

Yu. Ya. Efimov

2010-06-01T23:59:59.000Z

471

Hydrogen: The ultimate fuel and energy carrier  

Science Journals Connector (OSTI)

Hydrogen: The ultimate fuel and energy carrier ... Some of the questions include: 1)Why choose hydrogen as a fuel, 2) How is hydrogen produced, 3)Why is this combustion nonpolluting, 4) How is hydrogen stored? ... Hydrogen ...

Gustav P. Dinga

1988-01-01T23:59:59.000Z

472

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

473

Hydrogen Storage in Metal-Organic Frameworks  

SciTech Connect (OSTI)

Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up 15 wt% of total H2 uptake at 80 bar and 77 K. More importantly, the total H2 uptake by MOF-210 was 2.7 wt% at 80 bar and 298 K, which is the highest number reported for physisorptive materials.

Omar M. Yaghi

2012-04-26T23:59:59.000Z

474

hydrogen | OpenEI  

Open Energy Info (EERE)

hydrogen hydrogen Dataset Summary Description Technical Reference for Hydrogen Compatibility of Materials Source Sandia National Laboratories Date Released June 03rd, 2010 (4 years ago) Date Updated September 27th, 2012 (2 years ago) Keywords Compatibility of Materials hydrogen NREL Sandia Technical Database Technical Reference Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_cia85_ten_fra_fat.xlsx (xlsx, 60.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10_fra_fat.xlsx (xlsx, 58.5 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10b_fra_fat.xlsx (xlsx, 59.4 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san11_fra_fat.xlsx (xlsx, 48.4 KiB)

475

NREL: Learning - Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

476

Sustainable Hydrogen Production  

Science Journals Connector (OSTI)

...Today, hydrogen is mainly produced from natural gas via steam methane reforming, and although this process can sustain an initial...operating, or maintenance costs are included in the calculation. HHV, higher heating value. System efficiencies of commercial electrolyzers...

John A. Turner

2004-08-13T23:59:59.000Z

477

Hydrogen Production Methods  

Science Journals Connector (OSTI)

As hydrogen appears to be a potential solution for a carbon-free society, its production plays a critical role in showing how well it fulfills the criteria of being environmentally benign and sustainable. Of c...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

478

Hydrogen Production Methods  

Science Journals Connector (OSTI)

Commercially available hydrogen production methods such as steam reforming of natural gas, ... process that are based on fossil hydrocarbons and methods in the stage of development, like thermolysis ... radiolysi...

Y. Yrm

1995-01-01T23:59:59.000Z

479

Bacterial Fermentative Hydrogen Production  

Broader source: Energy.gov [DOE]

Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

480

Electrolytic Hydrogen Generators  

Science Journals Connector (OSTI)

The energy crisis and associated fuel shortages have propagated many proposals to attain energy independence and develop new sources of energy. The approach of a Hydrogen Economy is one of these proposals. The ...

J. B. Laskin

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal-derived liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Hydrogen Economy  

Science Journals Connector (OSTI)

For some time, people have envisioned an economy where the only source of energy was hydrogen. The idea may have originated in Jules...Mysterious Island....There, a shipwrecked engineer says that once they ran ou...

Sidney Borowitz

1999-01-01T23:59:59.000Z

482

The Hydrogen Economy  

Science Journals Connector (OSTI)

During the 1970s a concept grew up: one of the better ways to reduce the spread of pollutants from the burning of fossil fuels would be to replace these with hydrogen. Thoughts concerning this were expressed in t...

J. OM. Bockris

1977-01-01T23:59:59.000Z

483

Energy Security Through Hydrogen  

Science Journals Connector (OSTI)

Energy and environmental security are major problems facing our global economy. Fossil fuels, particularly crude oil, are ... energy sources. In the long term, a hydrogen-based economy will have an impact on all ...

Professor John W. Sheffield

2007-01-01T23:59:59.000Z

484

The Hydrogen Connection  

SciTech Connect (OSTI)

As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

Barilo, Nick F.

2014-05-01T23:59:59.000Z