Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

2

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

3

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-06-30T23:59:59.000Z

4

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

5

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-06-30T23:59:59.000Z

6

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

Paul A. Erickson

2004-04-01T23:59:59.000Z

7

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

8

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

9

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas  

SciTech Connect

The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.

O.N. Dogan; B.H. Howard; D.E. Alman

2012-02-26T23:59:59.000Z

10

Hydrogen from Coal Edward Schmetz  

E-Print Network (OSTI)

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

11

Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3  

SciTech Connect

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

12

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

13

HYDROGEN FROM COAL  

NLE Websites -- All DOE Office Websites (Extended Search)

MT MT R 20 0 2- 31 M itr et ek T ec h n ic a l Pap e r HYDROGEN FROM COAL November 2001 D. Gray G. Tomlinson JULY 2002 ii Customer: U.S. DOE NETL Contract No.: DE-AM26-99FT40465 Dept. No.: H050 Project No.: 0601CTC2-C2 Center for Science and Technology Innovative Technology in the Public Interest (tm) iii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

14

BIMETALLIC NANOCATALYSTS IN MESOPOROUS SILICA FOR HYDROGEN PRODUCTION FROM COAL-DERIVED FUELS  

SciTech Connect

In steam reforming reactions (SRRs) of alkanes and alcohols to produce H{sub 2}, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N{sub 2} adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m{sup 2}/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production in Production and Purification of Ultraclean Transportation Fuels; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)

Kuila, Debasish; Ilias, Shamsuddin

2013-02-13T23:59:59.000Z

15

A New Hydrogen Bond in Coal  

Science Journals Connector (OSTI)

During our study on hydrogen bond in coal by diffuse reflectance IR, we found that a weak peak at 2514 cm-1 always occurred for some coals. ... Infrared absorption spectra of coals and coal extracts ... The FTIR spectra during the heat-up of eight coals (seven Argonne premium coals and an Australian brown coal), an ion-exchange resin, and a lignin were measured every 20 C from room temp. ...

Dongtao Li; Wen Li; Baoqing Li

2003-04-30T23:59:59.000Z

16

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

17

DOE Hydrogen Analysis Repository: Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Hydrogen from Coal Production of Hydrogen from Coal Project Summary Full Title: Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies Project ID: 265 Principal Investigator: Kristin Gerdes Brief Description: This report assesses the improvements in cost and performance of hydrogen production from domestic coal when employing emerging technologies funded by DOE. Keywords: Hydrogen production; Coal Purpose This analysis specifically evaluates replacing conventional acid gas removal (AGR) and hydrogen purification with warm gas cleanup (WGCU) and a high-temperature hydrogen membrane (HTHM) that meets DOE's 2010 and 2015 performance and cost research and development (R&D) targets. Performer Principal Investigator: Kristin Gerdes

18

Production of Hydrogen from Underground Coal Gasification  

DOE Patents (OSTI)

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

19

Effect of hydrogen sulfide on chemical looping of coal-derived synthesis gas over bentonite-supported metal---oxide oxygen carriers  

SciTech Connect

The effect of hydrogen sulfide (H2S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxidesssuch as iron oxide, nickel oxide, manganese oxide, and copper oxideswas investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H2S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H2S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H2S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H2S for all four metal oxides.

Tian, H.; Simonyi, T.; Poston, J.; Siriwardane, R.

2009-01-01T23:59:59.000Z

20

Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers  

SciTech Connect

The effect of hydrogen sulfide (H{sub 2}S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides - such as iron oxide, nickel oxide, manganese oxide, and copper oxide - was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H{sub 2}S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H{sub 2}S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H{sub 2}S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H{sub 2}S for all four metal oxides.

Tian, H.J.; Simonyi, T.; Poston, J.; Siriwardane, R. [US DOE, Morgantown, WV (United States). National Energy Technology Laboratory

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydrogen from Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquids » Hydrogen Liquids » Hydrogen from Coal Hydrogen from Coal Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL researchers in the Office of Research and Development are testing different types of materials that might be used to separate hydrogen from other gases. Photo courtesy of NETL. Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL researchers in the Office of Research and Development are testing different types of materials that might be used to separate hydrogen from other gases. Photo courtesy of NETL. Hydrogen from coal research supports goals of increasing energy security, reducing environmental impact of energy use, promoting economic

22

Coal hydrogenation and deashing in ebullated bed catalytic reactor  

DOE Patents (OSTI)

An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

1983-01-01T23:59:59.000Z

23

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect

To overcome the issue of pinhole (defect) formation in membrane films over large areas, a process was developed and implemented for producing 6-12 {micro}m-thick, Pd-Cu alloy films on thermally oxidized silicon wafer substrates. The processing parameters on silicon are such that adhesion is poor and as-deposited Pd-Cu alloy films easily release from the oxidized silicon surface. Hydrogen permeation tests were conducted on 9 and 12 {micro}m-thick Pd-Cu alloy films and the hydrogen flux for 9 and 12 {micro}m-thick films were 16.8 and 8 cm{sup 3}(STP)/cm{sup 2} {center_dot} min respectively. The hydrogen permeability (corrected using data in McKinnley patent) of the 9 {micro}m-thick membrane is 7.4 {center_dot} 10{sup -5} cm{sup 3}(STP) {center_dot} cm/cm{sup 2} {center_dot} s {center_dot} cm Hg{sup 0.5} at 350 C and compares very well to permeability reported by McKinnley for a 62.5% Pd membrane; this permeability is {approx}56% of the value reported for a Pd-Cu alloy membrane with optimum 60% Pd composition. Using XRD, we confirmed the presence of a two-phase, {alpha}/{beta}, structure and that the composition of our membrane was slightly higher than the optimum composition. We are making adjustments to the compositions of the Pd-Cu alloy target in order to produce films next quarter that match the ideal Pd{sub 60}Cu{sub 40} composition.

B. Lanning; J. Arps

2004-10-01T23:59:59.000Z

24

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect

During the last quarter, new procedures were developed and implemented to improve reliability and repeatability of release characteristics from the temporary substrate (i.e., silicon wafer) and to minimize through-thickness defects in a 6-inch diameter film, 3 microns in thickness. With the new procedures, we have been able to consistently produce essentially stress free films, with zero or minimal defects (less than 5) across a 6-inch diameter area. (It is important to note that for those films containing pinholes, a procedure has been developed to repair the pinholes to form a gas tight seal). The films are all within the identified tolerance range for composition (i.e., 60 {+-} 0.2 % Pd). A number of these films have subsequently been shipped to IdaTech for evaluation and integration into their test module. Colorado School of Mines continued their high temperature evaluation of 6 micron thick, sputtered Pd-Cu films. Pure hydrogen permeability increased up to 400 C while the membrane was in the {beta}-phase and dropped once the temperature increased to over 450 C. Above this temperature, as confirmed by the binary phase diagram, the film transforms into either a mixed {alpha}/{beta} or pure {alpha} phase. The same trend was observed for a baseline 25 micron-thick foil (from Wilkinson) where the pure hydrogen permeability increased with temperature while the membrane was in the {beta}-phase and then decreased upon transformation to the {alpha} phase.

B. Lanning; J. Arps

2005-10-28T23:59:59.000Z

25

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect

In the past quarter, significant progress has been made in optimize the deposition and release characteristics of ultrathin (less than 4 micron) membranes from rigid silicon substrates. Specifically, we have conducted a series of statistically designed experiments to examine the effects of plasma cleaning and compliant layer deposition conditions on the stress, release and pinhole density of membranes deposited on 4 inch and 6 inch round substrates. With this information we have progressed to the deposition and release of ultra-thin membranes from 12-inch diameter (113 sq. in.) rigid substrates, achieving a key milestone for large-area membrane fabrication. Idatech received and is beginning preparations to test the Pd alloy membranes fabricated at SwRI the previous quarter. They are currently evaluating alternate gasketing methods and support materials that will allow for effective sealing and mounting of such thin membranes. David Edlund has also recently left Idatech and Bill Pledger (Chief Engineer) has replaced him as the primary technical point of contact. At Idetech's request a small number of additional 16 sq. in, samples were provided in a 2 in. by 8 in. geometry for use in a new module design currently under development. Recent work at the Colorado School of Mines has focused on developing preconditioning methods for thin Pd alloy membranes (6 microns or less) and continuing tests of thin membranes produced at SwRI. Of particular note, a 300-hour short-term durability study was completed over a range of temperatures from 300-450 C on a foil that showed perfect hydrogen selectivity throughout the entire test. With a 20 psi driving force, pure hydrogen flow rates ranged from 500 to 700 cc/min. Calculated at DOE specified conditions, the H{sub 2} flux of this membrane exceeded the 2010 Fossil target value of 200 SCFH/ft{sup 2}.

J. Arps

2006-01-01T23:59:59.000Z

26

NETL Coal to Hydrogen Program National Energy Technology Laboratory  

E-Print Network (OSTI)

/Hydrogen Production CCPI Technology Demonstrations (50/50) · Clear Skies · Reduced Carbon Intensity Clean Coal

27

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

28

Hydrogen production with coal using a pulverization device  

DOE Patents (OSTI)

A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

Paulson, Leland E. (Morgantown, WV)

1989-01-01T23:59:59.000Z

29

Process and apparatus for coal hydrogenation  

DOE Patents (OSTI)

In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.

Ruether, John A. (McMurray, PA)

1988-01-01T23:59:59.000Z

30

High-Temperature Nano-Derived Micro-Hydrogen Sulfide Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature Nano-Derived Micro- Temperature Nano-Derived Micro- Hydrogen and -Hydrogen Sulfide Sensors Background The Department of Energy (DOE) National Energy Technology Laboratory (NETL) seeks applications for the University Coal Research (UCR) Program to further develop the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve our understanding of the chemical and physical processes involved in the conversion and utilization of coal in an environmentally

31

A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL  

SciTech Connect

Gas Technology Institute is developing a novel concept of membrane reactor coupled with a gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. Hydrogen permeation data for several perovskite membranes BCN (BaCe{sub 0.9}Nd{sub 0.1}O{sub 3-x}), SCE (SrCe{sub 0.9}Eu{sub 0.1}O{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar in this project. However, it is known that the cerate-based perovskite materials can react with CO{sub 2}. Therefore, the stability issue of the proton conducting perovskite materials under CO{sub 2} or H{sub 2}S environments was examined. Tests were conducted in the Thermo Gravimetric Analyzer (TGA) unit for powder and disk forms of BCN and SCE. Perovskite materials doped with zirconium (Zr) are known to be resistant to CO{sub 2}. The results from the evaluation of the chemical stability for the Zr doped perovskite membranes are presented. During this reporting period, flowsheet simulation was also performed to calculate material and energy balance based on several hydrogen production processes from coal using high temperature membrane reactor (1000 C), low temperature membrane reactor (250 C), or conventional technologies. The results show that the coal to hydrogen process employing both the high temperature and the low temperature membrane reactors can increase the hydrogen production efficiency (cold gas efficiency) by more than 50% compared to the conventional process. Using either high temperature or low temperature membrane reactor process also results in an increase of the cold gas efficiencies as well as the thermal efficiencies of the overall process.

Shain Doong; Estela Ong; Mike Atroshenko; Francis Lau; Mike Roberts

2005-07-29T23:59:59.000Z

32

Hydrotreating of coal-derived liquids  

SciTech Connect

The objective of Sandia`s refining of coal-derived liquids project is to determine the relationship between hydrotreating conditions and Product characteristics. The coal-derived liquids used in this work were produced In HTI`s first proof-of-concept run using Illinois No. 8 coal. Samples of the whole coal liquid product, distillate fractions of this liquid, and Criterion HDN-60 catalyst were obtained from Southwest Research Inc. Hydrotreating experiments were performed using a continuous operation, unattended, microflow reactor system. A factorial experimental design with three variables (temperature, (310{degrees}C to 388{degrees}C), liquid hourly space velocity (1 to 3 g/h/cm{sup 3}(cat)), pressure (500 to 1000 psig H{sub 2}) is being used in this project. Sulfur and nitrogen contents of the hydrotreated products were monitored during the hydrotreating experiments to ensure that activity was lined out at each set of reaction conditions. Results of hydrotreating the whole coal liquid showed that nitrogen values in the products ranged from 549 ppM at 320{degrees}C, 3 g/h/cm{sup 3}(cat), 500 psig H{sub 2} to <15 ppM at 400{degrees}C, 1 g/h/ cm{sup 3}(cat), 1000 psig H{sub 2}.

Stohl, F.V.; Lott, S.E.; Diegert, K.V.; Goodnow, D.C.; Oelfke, J.B.

1995-06-01T23:59:59.000Z

33

NETL: Gasification - Advanced Hydrogen Transport Membranes for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Hydrogen Transport Membranes for Coal Gasification Praxair Inc. Project Number: FE0004908 Project Description Praxair is conducting research to develop hydrogen transport membrane (HTM) technology to separate carbon dioxide (CO2) and hydrogen (H2) in coal-derived syngas for IGCC applications. The project team has fabricated palladium based membranes and measured hydrogen fluxes as a function of pressure, temperature, and membrane preparation conditions. Membranes are a commercially-available technology in the chemical industry for CO2 removal and H2 purification. There is, however, no commercial application of membrane processes that aims at CO2 capture for IGCC syngas. Due to the modular nature of the membrane process, the design does not exhibit economy of scale-the cost of the system will increase linearly as the plant system scale increases making the use of commercially available membranes, for an IGCC power plant, cost prohibitive. For a membrane process to be a viable CO2 capture technology for IGCC applications, a better overall performance is required, including higher permeability, higher selectivity, and lower membrane cost.

34

NETL: News Release - DOE Advances Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

6 , 2006 6 , 2006 DOE Advances Production of Hydrogen from Coal Projects Selected to Address Technological Challenges of Hydrogen Production in Large-Scale Facilities WASHINGTON, DC - The Department of Energy today announced the selection of six research and development projects that will promote the production of hydrogen from coal at large-scale facilities. This central approach will combat climate change by allowing for the capture - and subsequent sequestration - of carbon dioxide generated during hydrogen production. The selections support President Bush's Hydrogen Fuel Initiative, which provides funding for research and technology development to realize a future hydrogen economy that minimizes America's dependence on foreign oil and reduces greenhouse gas emissions.

35

A Novel Membrane Reactor for Direct Hydrogen Production From Coal  

SciTech Connect

Gas Technology Institute has developed a novel concept of a membrane reactor closely coupled with a coal gasifier for direct extraction of hydrogen from coal-derived syngas. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under the coal gasification conditions. The best performing membranes were selected for preliminary reactor design and cost estimate. The overall economics of hydrogen production from this new process was assessed and compared with conventional hydrogen production technologies from coal. Several proton-conducting perovskite membranes based on the formulations of BCN (BaCe{sub 0.8}Nd{sub 0.2}O{sub 3-x}), BCY (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-x}), SCE (Eu-doped SrCeO{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) were successfully tested in a new permeation unit at temperatures between 800 and 1040 C and pressures from 1 to 12 bars. The experimental data confirm that the hydrogen flux increases with increasing hydrogen partial pressure at the feed side. The highest hydrogen flux measured was 1.0 cc/min/cm{sup 2} (STP) for the SCTm membrane at 3 bars and 1040 C. The chemical stability of the perovskite membranes with respect to CO{sub 2} and H{sub 2}S can be improved by doping with Zr, as demonstrated from the TGA (Thermal Gravimetric Analysis) tests in this project. A conceptual design, using the measured hydrogen flux data and a modeling approach, for a 1000 tons-per-day (TPD) coal gasifier shows that a membrane module can be configured within a fluidized bed gasifier without a substantial increase of the gasifier dimensions. Flowsheet simulations show that the coal to hydrogen process employing the proposed membrane reactor concept can increase the hydrogen production efficiency by more than 50% compared to the conventional process. Preliminary economic analysis also shows a 30% cost reduction for the proposed membrane reactor process, assuming membrane materials meeting DOE's flux and cost target. Although this study shows that a membrane module can be configured within a fluidized bed gasifier, placing the membrane module outside the gasifier in a closely coupled way in terms of temperature and pressure can still offer the same performance advantage. This could also avoid the complicated fluid dynamics and heat transfer issues when the membrane module is installed inside the gasifier. Future work should be focused on improving the permeability and stability for the proton-conducting membranes, testing the membranes with real syngas from a gasifier and scaling up the membrane size.

Shain Doong; Estela Ong; Mike Atrosphenko; Francis Lau; Mike Roberts

2006-01-20T23:59:59.000Z

36

Thermodynamic properties of materials derived from coal liquefaction  

SciTech Connect

Few measurements of the thermodynamic properties of materials obtained from the liquefaction of coal have been reported. Because several sets of well-defined fractions of coal-derived materials existed that had been separated and characterized by the Characterization Branch of the Division of Processing and Thermodynamics of this Center, the expertise of the Thermodynamics Research Branch was utilized to measure enthalpies of combustion and heat capacities of these materials. The sets of fractions came from five sources: a synthetic crude oil derived from western Kentucky coal by the char-oil-energy development (COED) process, a synthetic crude oil derived from Utah A-seam coal by the COED process, material derived from West Virginia Pittsburgh seam coal by the Synthoil process, material derived from Illinois No. 6 coal by the H-Coal process and materials derived from subbituminous coal by the Conoco Colstrip zinc chloride hydrocracking process.

Smith, N.K.; Lee-Bechtold, S.H.; Good, W.D.

1980-01-01T23:59:59.000Z

37

Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction  

DOE Patents (OSTI)

A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

1989-10-17T23:59:59.000Z

38

Catalytic hydrogenation of HyperCoal (ashless coal) and reusability of catalyst  

SciTech Connect

HyperCoal (HPC) is ashless coal obtained by a mild thermal extraction of coal to remove unextractable, heavy compounds, and minerals. The temperature and duration of HPC hydrogenation was systematically varied with and without solvent in an autoclave under hydrogen pressure. Unlike raw coal, hydrogenation of HPC in the absence of solvent proceeded without coke formation when the reaction was performed for 60 min at 450{sup o}C in 10 MPa hydrogen (initial pressure). The hydrogenation catalyst was recycled five times with no detection of deactivation. Longer reactions at slightly higher temperatures (120 min at 460{sup o}C), with replenishing the hydrogen, afforded a 90 wt % oil (hexane-soluble fraction) yield. 27 refs., 8 figs., 2 tabs.

Koji Koyano; Toshimasa Takanohashi; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2009-07-15T23:59:59.000Z

39

Hydrogen from Coal in a Single Step  

Science Journals Connector (OSTI)

The CO2 generated, a greenhouse gas with a potential to contribute to global warming, is generally released to the atmosphere. ... The H2/CH4 ratio in the product gases from three different rank coals Datong coal (bituminous), Taiheiyo coal (sub-bituminous), Wyoming coal (lignite) followed the order Datong>Taiheiyo>Wyoming. ...

Kanchan Mondal; Krzystof Piotrowski; Debalina Dasgupta; Edwin Hippo; Tomasz Wiltowski

2005-06-11T23:59:59.000Z

40

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production Southern Research Institute (SRI) Project Number: FE0012054 Project Description The focus of the project will be to develop, test, and optimize steam-reforming catalysts for converting tars, C2+ hydrocarbons, NH3, and CH4 in high-temperature and sulfur environments, increasing the ratio of hydrogen in syngas, as part of a modified, advanced gasification platform for the conversion of low-rank coals to syngas for coal-to-liquid and integrated gasification combined cycle applications. Project Details Program Background and Project Benefits Project Scope and Technology Readiness Level Accomplishments Contacts, Duration, and Cost Project Images Abstract Performer website: Southern Research Institute

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

42

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology (NCHT) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRIs coal-upgrading/gasification technology for subbituminous and lignite coals in the EERCs TRDU. This gasifier fires nominally 200500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRIs patent-pending coalupgrading/ gasification technology in the EERCs TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

43

NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS  

SciTech Connect

This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

2001-01-07T23:59:59.000Z

44

Hydrogen from Bio-Derived Liquids (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

From Bio-Derived Liquids From Bio-Derived Liquids Hydrogen From Bio Hydrogen From Bio - - Derived Liquids Derived Liquids Dave King, Yong Wang, PNNL BILIWIG Meeting Laurel, Maryland November 6, 2007 Innovation / Overview Innovation / Overview Innovation / Overview Project comprises two components z Ethanol steam reforming z Aqueous phase reforming (APR) Importance to small scale hydrogen production for distributed reforming for hydrogen production ‹ Ethanol is rapidly becoming an infrastructure fuel and is a logical feedstock ‹ APR provides vehicle for facile reforming of a variety of bio-derived feedstocks available in the biorefinery that are not conducive to conventional vapor phase reforming Distinctive technology approach/innovation z We are investigating single step ethanol reforming with emphasis on lower

45

Biomass-derived Hydrogen-evolution catalyst and electrode - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Biomass-derived Hydrogen-evolution catalyst and electrode Brookhaven National Laboratory Contact...

46

Exploring Hydrogen Generation from Biomass-Derived Sugar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce...

47

Process for removal of mineral particulates from coal-derived liquids  

DOE Patents (OSTI)

Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

McDowell, William J. (Knoxville, TN)

1980-01-01T23:59:59.000Z

48

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CAPITAL AND OPERATING COST OF HYDROGEN CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION Final Report April 2003 Prepared for: The United States Department of Energy National Energy Technology Laboratory (NETL) under: Contract No. DE-AM26-99FT40465 between the NETL and Concurrent Technologies Corporation (CTC) Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task 50611 DOE Task Managers: James R. Longanbach Gary J. Stiegel Parsons Project Manager: Michael D. Rutkowski Principal Investigators: Thomas L. Buchanan Michael G. Klett Ronald L. Schoff PARSONS Capital and Operating Cost of Hydrogen Production from Coal Gasification Page i April 2003 TABLE OF CONTENTS Section Title Page List of Tables iii List of Figures iii

49

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents (OSTI)

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-18T23:59:59.000Z

50

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents (OSTI)

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-05-18T23:59:59.000Z

51

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

52

Novel hydrogen separation device development for coal gasification system applications. Final report  

SciTech Connect

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01T23:59:59.000Z

53

Silica membranes for hydrogen separation from coal gas. Final report  

SciTech Connect

This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

Gavalas, G.R.

1996-01-01T23:59:59.000Z

54

Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Delicious Rank Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Digg Find More places to share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol

55

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

locate/he A GIS-based assessment of coal-based hydrogenGIS is used to calculate the shortest distance pathways between each coalGIS is used to identify the shortest distance pathways between all the coal

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

56

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program (HFCIT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes

57

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Arlene Anderson at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

58

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

59

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier  

E-Print Network (OSTI)

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier DOE Hydrogen Program Contractors biomass #12;Approach Outline Gasifier Pilot Plant· Develop subsystems for the hydrogen production system and pyrolysis occur simultaneously in a single reactor · Exothermic combustion provides heat · Endothermic

60

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

5] H2A. H2A central hydrogen production model users guide,Strategies for Future Hydrogen Production and Use. Nationalpaper, coal-based hydrogen production with CCS can signi?

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal Gasification  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

62

Coal-derived promoters for the liquefaction of Illinois coal. [Quarterly] technical report, December 1, 1991--February 29, 1992  

SciTech Connect

The objective of this program is to investigate the use of liquids derived from coal either by mild gasification or supercritical extraction (SCE) to promote direct liquefaction of Illinois coal. Some organic sulfur-, nitrogen-, and oxygen-containing compounds have been found to enhance liquefaction reactions. The use of Illinois coal to produce liquid fractions rich in these types of compounds could increase the rates of liquefaction reactions, thus improving the process economics. An integrated process combining direct liquefaction with mild gasification or SCE of coal is being developed by IGT.

Carty, R.H.; Knight, R.A.

1992-08-01T23:59:59.000Z

63

Hydrogen Production from Biomass-Derived Syngas Using a Membrane Reactor Based Process  

Science Journals Connector (OSTI)

(1) One of the benefits of adopting H2 as an energy source, in addition to reducing CO2 emissions, is that it can be produced from readily available and plentiful raw materials such as coal and renewable biomass; this then diminishes the need to use the worlds dwindling crude-oil resources. ... For that, coal must be first gasified with air or pure O2 at high temperatures(2) to produce coal-gasifier off-gas (or syngas), containing as key species H2, CO, CO2, H2O, CH4, and other byproducts such as organic vapors, tars, H2S, and NH3, etc.,(2) the exact composition depending on the operating conditions, e.g., pressure, temperature, type of coal and oxidant used and their flow rates, and gasifier configuration, etc.(2) ... A novel MR system termed as the one-box process, in which syngas cleanup, hydrogen production via the WGS reaction, and product separation are combined in the same unit, was successfully utilized for producing hydrogen from a feed with a simulated biomass-derived syngas containing common impurities such as H2S and NH3, a model organic vapor (toluene), and a model tar-like species (naphthalene). ...

Jiang Yu; Mingyang Tan; Paul K. T. Liu; Muhammad Sahimi; Theodore T. Tsotsis

2013-12-27T23:59:59.000Z

64

Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Rep. Chabot Highlight Clean Coal and and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio October 10, 2006 - 9:08am Addthis CINCINNATI, OH - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today joined Rep. Steve Chabot (OH-1st) to tour the hydrogen and clean coal research laboratory at the University of Cincinnati (UC) highlighting the importance of science and technology in reducing our dependence on fossil fuels and touting America's robust economy. Secretary Bodman discussed President Bush's commitment through the American Competitiveness Initiative to invest more than $136 billion over 10 years to increase investments in

65

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network (OSTI)

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

66

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

67

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

68

Process Intensification in Hydrogen Production from Biomass-Derived Syngas  

Science Journals Connector (OSTI)

Process Intensification in Hydrogen Production from Biomass-Derived Syngas ... A one-box process has been proposed and studied in order to economically produce pure hydrogen from biomass-derived syngas in the presence of its common impurities through the use of the water gas shift (WGS) reaction. ... (1) Hydrogen burns cleanly and produces more energy on a per mass basis than any other fuel; if widely adopted for both mobile and stationary power generation, it would reduce the emissions of pollutants typically associated with power production, and would potentially diminish the prospect of global warming. ...

Mitra Abdollahi; Jiang Yu; Hyun Tae Hwang; Paul K. T. Liu; Richard Ciora; Muhammad Sahimi; Theodore T. Tsotsis

2010-09-15T23:59:59.000Z

69

Changes in hydrogen utilization with temperature during direct coal liquefaction  

SciTech Connect

A reliable means of monitoring the major pathways of hydrogen utilization, in contrast to only measuring net hydrogen comsumption, would be very useful for process optimization. The goal of this work was to develop an analytical approach for quantitatively distinguishing hydrogen consumed in hydrogenation from that utilized to stabilize thermolysis fragments. The approach outlined yields a rather detailed description of the net utilization of hydrogen during direct liquefaction, partitioning it into contributions from gas generation, heteroatom removal, hydrogenation, and matrix breakdown. Preliminary results indicate that internal hydrogen reorganization, with little consumption, predominates at low temperatures, with hydrogenation being compensated for by the hydrogen liberated in condensations. As the temperature is increased, bond cleavage reactions and aromatization reactions appear to become more important, and the net hydrogen consumption increases. (3 tables 1 figs., 11 refs.)

Finseth, D.H.; Bockrath, B.C.; Cillo, D.L.; Illig, E.G.; Sprecher, R.F., Retcofsky, H.L.; Lett, R.G.

1983-01-01T23:59:59.000Z

70

Coal pyrolysis to acetylene using dc hydrogen plasma torch: effects of system variables on acetylene concentration  

Science Journals Connector (OSTI)

In order to unveil the inner mechanisms that determine acetylene concentration, experimental studies on the effect of several parameters such as plasma torch power, hydrogen flux and coal flux were carried out from coal pyrolysis in a dc plasma torch. Xinjiang long flame coals including volatile constituents at a level of about 42% were used in the experiment. Under the following experimental conditions, namely plasma torch power, hydrogen flow rate and pulverized coal feed speed of 2.12?MW, 32?kg?h?1 and 900?kg?h?1, respectively, acetylene volume concentration of about 9.4% was achieved. The experimental results indicate that parameters such as plasma torch power and coal flux play important roles in the formation of acetylene. Acetylene concentration increases inconspicuously with hydrogen flux. A chemical thermodynamic equilibrium model using the free energy method is introduced in this paper to numerically simulate each experimental condition. The numerical results are qualitatively consistent with the experimental results. Two parameters, i.e. the gas temperature and the ratio of hydrogen/carbon, are considered to be the dominant and independent factors that determine acetylene concentration.

Longwei Chen; Yuedong Meng; Jie Shen; Xingsheng Shu; Shidong Fang; Xinyang Xiong

2009-01-01T23:59:59.000Z

71

Evaluation of biological conversion of coal-derived synthesis gas  

SciTech Connect

Foster Wheeler USA Corporation conducted an evaluation study on the biological conversion of synthesis gas to methane which is under development at the University of Arkansas. A conceptual design of an integrated coal-based SNG plant, employing the bioconversion process route, was developed together with the corresponding capital and operating costs. The economics were compared to those for a coal-based SNG plant design using the conventional catalytic route for shift and methanation. 5 refs., 10 figs., 22 tabs.

Fu, R.K.; Mazzella, G.

1990-09-01T23:59:59.000Z

72

Hydrogen Production by Catalytic Gasification of Coal in Supercritical Water  

Science Journals Connector (OSTI)

(2) However, the extensive utilization of coal leads to many problems, such as air pollution and resource waste, because of the inefficient and unclean utilization method. ... Argon would sink to the bottom of the reactor, and air would come up because of the difference in density between these two gases. ...

Rihua Lan; Hui Jin; Liejin Guo; Zhiwei Ge; Simao Guo; Ximin Zhang

2014-10-16T23:59:59.000Z

73

Application of multidimensional analytical transport models to coal-tar derivatives  

E-Print Network (OSTI)

APPLICATION OF MULTIDIMENSIONAL ANALYTICAL TRANSPORT MODELS TO COAL-TAR DERIVATIVES A Thesis by YOUN SIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1992 Major Subject: Geology APPLICATION OF MULTIDIMENSIONAL ANALYTICAL TRANSPORT MODELS TO COAL-TAR DERIVATIVES A Thesis by YOUN SIM Approved as to style and content by: Patrick A. Domenico (Chair of Committee) N man...

Sim, Youn

2012-06-07T23:59:59.000Z

74

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

75

E-Print Network 3.0 - advanced coal cleaning Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U... Hydrogen From Coal? Huge U.S. coal reserves Hydrogen can be produced...

76

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network (OSTI)

system has run on actual syn-gas. Consequently, the Electric Power Research Institute (EPRI) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energys coal gasification plant in Plaquemine, Louisiana...

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

77

INVESTIGATION OF POSSIBLE METHODS FOR REMOVAL OF NITROGEN FROM COAL-DERIVED AND COAL-RELATED MATERIALS  

E-Print Network (OSTI)

N. , An Introduction to Coal Technology, Academic Press (Cl Cox, J. L. , ncatalysts for Coal Conversion", from "Clean Fuels from Coal", IGT Symposium, Sept. 10-14 (1974).

Frey, Douglas D.

2014-01-01T23:59:59.000Z

78

Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol  

SciTech Connect

The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing at realistic conditions (e.g., elevated pressures) and differential conversions (to measure true kinetics, to avoid deactivation, and to avoid condensable concentrations of products in the outlet gas).

James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

2011-07-29T23:59:59.000Z

79

Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor  

Science Journals Connector (OSTI)

An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal+10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal+10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

S.T. Wagland; P. Kilgallon; R. Coveney; A. Garg; R. Smith; P.J. Longhurst; S.J.T. Pollard; N. Simms

2011-01-01T23:59:59.000Z

80

Novel catalysts for upgrading coal-derived liquids. Final technical progress report  

SciTech Connect

Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

Thompson, L.T.; Savage, P.E.; Briggs, D.E.

1995-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel, Magnetically Fluidized-Bed Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is committed to improving methods for co-producing power and chemicals, fuels, and hydrogen (H2). Gasification is a process by which fuels such as coal can be used to produce synthesis gas (syngas), a mixture of H2, carbon monoxide (CO), and carbon

82

Hydrogen production by high-temperature steam gasification of biomass and coal  

SciTech Connect

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

83

Coal liquefaction process streams characterization and evaluation: Analysis of coal-derived synthetic crude from HRI CTSL Run CC-15 and HRI Run CMSL-2  

SciTech Connect

Under subcontract from CONSOL Inc. (US DOE Contract No. DE-AC22-89PC89883), IIT Research Institute, National Institute for Petroleum and Energy Research applied a suite of petroleum inspection tests to two direct coal liquefactions net product oils produced in two direct coal liquefaction processing runs. Two technical reports, authored by NIPER, are presented here. The following assessment briefly describes the two coal liquefaction runs and highlights the major findings of the project. It generally is concluded that the methods used in these studies can help define the value of liquefaction products and the requirements for further processing. The application of these methods adds substantially to our understanding of the coal liquefaction process and the chemistry of coal-derived materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract.

Sturm, G.P. Jr.; Kim, J.; Shay, J. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

1994-01-01T23:59:59.000Z

84

A case history of a fixed bed, coal-derived oil hydrotreater  

Science Journals Connector (OSTI)

With the apparent shrinkage in the worldwide supply of liquid hydrocarbon fuels, upgrading of coal-derived liquids to synthetic crude oils will eventually emerge as a commercial entity. Although the Char-Oil-Energy Development (COED) Project has been shelved in the short term, information about the reaction engineering of the upgrading of coal-derived liquids by hydrotreatment in the COED Process should be relevant to upgrading technologies for other coal liquefaction processes. The COED Process was developed by FMC Corporation and the Office of Coal Research (now DOE) in the late 1960's and early 1970's. The process produced a synthetic crude oil, medium Btu gas and char by multi-stage, fluidized bed pyrolysis of coal. The raw coal-tar produced by pyrolysis was upgraded to synthetic crude oil by catalytic, fixed-bed hydrotreatment. Raw coal-tar has different properties from petroleum-derived oils, and upgrading by hydrotreatment is not an off-the-shelf technology. A 30 barrel per day fixed-bed hydrotreater was constructed and operated at the COED pilot plant site. The pilot plant hydrotreater design was based on conventional petroleum residua hydrotreatment technology together with bench-scale hydrotreatment tests performed by ARCO in the 1960's utilizing coal-tars produced in a process development unit. The pilot plant hydrotreater did operate for about four years providing valuable information about the reaction engineering of the hydrotreatment process as well as providing numerous samples for applications studies performed by other DOE contractors and interested potential users of the COED syncrude. Of note, 50,000 gallons of COED syncrude were supplied to the U.S. Naval Ship Engineering Center for shipboard testing in the boilers of the U.S.S. Johnston on November 1516th, 1973. This paper deals with the reaction engineering of the guard chamber and fixed-bed hydrotreatment reactors at the COED facility. Of major importance is the study of the role of the feedstock (pyrolysis coal-tar) properties and their effects on the catalysts utilized in the reactors. A working kinetic model has been derived that could allow a designer to optimize a particular set of design parameters and a plant operator to determine catalyst life. A quantitative comparison has been made of the effect of metals content of coal-derived oils and petroleum resids on catalyst deactivation.

Marvin I. Greene

1981-01-01T23:59:59.000Z

85

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-06-08T23:59:59.000Z

86

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2006-03-27T23:59:59.000Z

87

Gas separation by pressure swing adsorption for producing hydrogen from coal: Final report  

SciTech Connect

This project demonstrated the feasibility of producing high purity hydrogen from a coal gasification product gas mixture by Pressure Swing Adsorption (PSA) using a commercial 5A zeolite as the adsorbent. The major advantage of PSA over conventional hydrogen upgrading processes is associated with lower overall production costs. This is mainly due to the integration of PSA into H/sub 2/ production plants as a single unit operation by replacing the low temperature carbon monoxide shift, carbon dioxide wash and methanation steps. In this way, hydrogen production costs are typically reduced from 7 to 40%. A single bed PSA process was designed to simulate the various steps of commercial multibed PSA plants. A new and very important step, ''Vacuum Purge'', was also investigated. 45 refs., 38 figs., 50 tabs.

Kapoor, A.; Ritter, J.A.; Yang, R.T.

1988-02-01T23:59:59.000Z

88

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

K. C. Kwon

2007-09-30T23:59:59.000Z

89

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

K.C. Kwon

2009-09-30T23:59:59.000Z

90

Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby  

DOE Patents (OSTI)

A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

1985-01-01T23:59:59.000Z

91

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

92

Biological upgrading of coal-derived synthesis gas: Final report  

SciTech Connect

The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

1986-10-01T23:59:59.000Z

93

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

94

Coal-oil slurry preparation  

DOE Patents (OSTI)

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

95

Solvent extraction of South African coal using a low volatile, coal-derived solvent / Eulouka Janse van Rensburg.  

E-Print Network (OSTI)

??Coal is an important fuel for countries with large coal reserves such as South Africa since it is expected that oil and natural gas prices (more)

Van Rensburg, Eulouka Janse

2007-01-01T23:59:59.000Z

96

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

K. C. Kwon

2006-09-30T23:59:59.000Z

97

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents (OSTI)

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1997-01-01T23:59:59.000Z

98

Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas  

DOE Patents (OSTI)

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1999-01-01T23:59:59.000Z

99

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy held a kick-off meeting for the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) on October 24, 2006, in Baltimore, Maryland. The Working Group is addressing technical challenges to distributed reforming of biomass-derived, renewable liquid fuels to hydrogen, including the reforming, water-gas shift, and hydrogen recovery and purification steps. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with each other and with members of the DOE Hydrogen Production Technical Team.

100

E-Print Network 3.0 - advanced multi-product coal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced... Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U... 12;Presentation Outline Hydrogen Initiatives Hydrogen from Coal ......

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - advanced coal utilization Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced... Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U... 12;Presentation Outline Hydrogen Initiatives Hydrogen from Coal ......

102

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

103

Hydrogen bonding in asphaltenes and coal liquids. Quarterly report, November 1, 1982-January 31, 1983  

SciTech Connect

Aging of upgraded coal-derived liquids obtained from catalytic hydroprocessing of H-coal and SRC-II syncrudes has been studied. Fuel degradation, in the presence of added specific heteroatomic compounds, is monitored in the early stages by laser light scattering of developing particles at ambient temperature. The following additives have been included: 2,5-dimethypyrrole (DMP), 2,6-dimethylquioline (DMQ), phenol, 2,6-di-tert-butyl phenol (DTBP), pyridine, thiophenol, n-butyl sulfide, n-butyl disulfide, thiophene, tetrahydrothiophene, 1-hexene, copper wire, iron wire. Very pronounced enhancement of light scattering intensity has been observed for coal liquids containing the following additives: (1) Phenol, pyridine, Cu; (2) DTBP, pyridine, Cu; (3) Phenol, DMQ, Cu; (4) DMP, thiophenol. Phenolic oxidative coupling is a very important mechanism for the aging of coal liquids, and pyridine- or DMQ- complexed Cu is effective catalyst for oxidative coupling. DTBP is a hindered phenol, and therefore oxidative coupling is not as extensive as for the parent phenol. As a result, light scattering for system (2) is not as extensive as system (1). DMP by itself is deleterious to fuel stability, and the effect is enhanced by the presence of thiophenol. Thiophenes, sulfides, and hexene are much less deleterious. Iron is a poor catalyst for oxidative coupling, and therefore light scatteirng in the presence of iron is minimal. 7 figures, 1 table.

Li, N.C.; Yaggi, N.F.; Loeffler, M.C.

1983-01-01T23:59:59.000Z

104

Hydrogen Generation from Biomass-Derived Carbohydrates via Aqueous-Phase Reforming  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Virent Energy Systems, Inc. at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

105

Chemistry and petrology of fly ash derived from the co-combustion of western United States coal and tire-derived fuel  

Science Journals Connector (OSTI)

Inorganic ash chemistry and petrology was investigated in coal-combustion by-products from the burning of tire-derived fuel (TDF) with a 1:1 blend of Colorado and Utah high volatile C bituminous coal and Powder River Basin subbituminous coal. Both coal components had high vitrinite contents. With the exception of Sr and Ba, the trace-element contents of the coals were not high. The fly ash was enriched in Zn, known to be a constituent of both the rubber and the wire in tires. Cu, also a constituent of the brass coatings of bead wire, was enriched in the same fractions with high Zn concentrations. Zn and Cu, along with several other elements, increased in concentration in the back, cooler row of the electrostatic precipitator. The enrichment of other elements, such as Se, As, and Pb, was more problematical. It is possible that the latter elements have more of a coal source than a tire source.

James C. Hower; J.David Robertson

2004-01-01T23:59:59.000Z

106

COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS  

SciTech Connect

The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

Peter G. Stansberry; John W. Zondlo

2001-07-01T23:59:59.000Z

107

Evaluation of coal-derived liquids as boiler fuels. Volume 3. Emissions test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived fuels was conducted on a utility boiler located at the plant, Sweatt Electric Generating Station of Mississippi Power Company, in Meridian, Mississippi. Volume 1, of a 5 volume report, contains a comprehensive report of the whole test program - see abstract of Volume 1 for a detailed abstract of the whole program. Volume 3 contains detailed emissions testing results. 41 figs., 6 tabs. (LTN)

Not Available

1985-09-01T23:59:59.000Z

108

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

109

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

110

Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors  

SciTech Connect

Concern about global climate change has led to research on low CO{sub 2} emission in the process of the energy conversion of fossil fuel. One of the solutions is the conversion of fossil fuel into carbon-free energy carriers, hydrogen, and electricity with CO{sub 2} capture and storage. In this paper, the main purpose is to investigate the thermodynamics performance of converting coal to a hydrogen and electricity system with chemical-looping reactors and to explore the influences of operating parameters on the system performance. Using FeO/Fe{sub 3}O{sub 4} as an oxygen carrier, we propose a carbon-free coproduction system of hydrogen and electricity with chemical-looping reactors. The performance of the new system is simulated using ASPEN PLUS software tool. The influences of the chemical-looping reactor's temperature, steam conversion rate, and O{sub 2}/coal quality ratio on the system performance, and the exergy performance are discussed. The results show that a high-purity of H{sub 2} (99.9%) is reached and that CO{sub 2} can be separated. The system efficiency is 57.85% assuming steam reactor at 815 C and the steam conversion rate 37%. The system efficiency is affected by the steam conversion rate, rising from 53.17 to 58.33% with the increase of the steam conversion rate from 28 to 41%. The exergy efficiency is 54.25% and the losses are mainly in the process of gasification and HRSG. 14 refs., 12 figs., 3 tabs.

Xiang Wenguo; Chen Yingying [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2007-08-15T23:59:59.000Z

111

Prediction of thermodynamic properties of coal derivatives. Progress report, September 1, 1985-August 31, 1986  

SciTech Connect

In this report, the progress of our efforts toward understanding molecular behavior and its effect on thermodynamic properties is presented. The theory has been developed to treat fluids and fluid mixtures with various molecular interactions, including intermolecular associations. Experiments also were performed for binary, ternary and quaternary mixtures containing model coal compounds and supercritical carbon dioxide at high pressures. Our progress, both theoretical and experimental, is presented below in the following order: (1) Application of Associated-Perturbed-Anisotropic-Chain Theory (APACT) to fluid mixtures containing one associating component (such as water, alcohol and acid) and a diluent. (2) Generalization of APACT to treat solubility enhancements using solvating entrainers and testing these equations with model coal compounds in high pressure carbon dioxide. (3) Application of the Simplified-Perturbed-Hard-Chain theory (SPHCT) to mixtures containing more than fifteen conmponents. (4) Derivation of a simple equation of state, called COMPACT, to treat fluid mixtures containing associating compounds. (5) Prediction of properties of systems containing a supercritical fluid using the Perturbed-Anisotropic-Chain theory (PACT). (6) Completion of reformulation of PACT to account for group-group interactions when several non-polar functional groups are present. (7) Experimental investigation of extracting valuable chemicals from coal liquids using supercritical carbon dioxide with methanol as cosolvent. (8) Experimental measurements of phase compositions and densities of coal compounds in high pressure carbon dioxide. 14 refs., 18 figs.

Donohue, M.D.

1986-05-01T23:59:59.000Z

112

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

2009-12-31T23:59:59.000Z

113

A GIS-based assessment of coal-based hydrogen infrastructure deployment in the state of Ohio  

Science Journals Connector (OSTI)

Hydrogen infrastructure costs will vary by region as geographic characteristics and feedstocks differ. This paper proposes a method for optimizing regional hydrogen infrastructure deployment by combining detailed spatial data in a geographic information system (GIS) with a technoeconomic model of hydrogen infrastructure components. The method is applied to a case study in Ohio in which coal-based hydrogen infrastructure with carbon capture and storage (CCS) is modeled for two distribution modes at several steady-state hydrogen vehicle market penetration levels. The paper identifies the optimal infrastructure design at each market penetration as well as the costs, CO2 emissions, and energy useassociated with each infrastructure pathway. The results indicate that aggregating infrastructure at the regional-scale yields lower levelized costs of hydrogen than at the city-level at a given market penetration level, and centralized production with pipeline distribution is the favored pathway even at low market penetration. Based upon the hydrogen infrastructure designs evaluated in this paper, coal-based hydrogen production with CCS can significantly reduce transportation-related CO2 emissions at a relatively low infrastructure cost and levelized fuel cost.

Nils Johnson; Christopher Yang; Joan Ogden

2008-01-01T23:59:59.000Z

114

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review  

NLE Websites -- All DOE Office Websites (Extended Search)

& Hydrogen Production Technical Team Research Review Agenda for Tuesday, November 6, 2007 Location: BCS Incorporated, 8929 Stephens Road, Laurel, MD. 20723 410-997-7778 8:30 - 9:00 Continental Breakfast 9:00 DOE Targets, Tools and Technology o Bio-Derived Liquids to Hydrogen Distributed Reforming Targets DOE, Arlene Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen Distributed Reforming Cost Analysis DTI, Brian James 10:00 Research Review o Low-Cost Hydrogen Distributed Production Systems, H2Gen, Sandy Thomas o Integrated Short Contact Time Hydrogen Generator, GE Global Research, Wei Wei o Distributed Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar

115

Process for coal liquefaction employing selective coal feed  

DOE Patents (OSTI)

An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

Hoover, David S. (New Tripoli, PA); Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

116

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-04-13T23:59:59.000Z

117

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

118

Fuel Cell Technologies Office: Bio-Derived Liquids to Hydrogen Distributed  

NLE Websites -- All DOE Office Websites (Extended Search)

Group Meeting - November 2007 Group Meeting - November 2007 The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group participated in a Hydrogen Production Technical Team Research Review on November 6, 2007. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with members of the Department of Energy Hydrogen Production Technical Team. The following meeting documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Proceedings Agenda, discussion points, and participant list (PDF 146 KB) Action items and meeting highlights (PDF 104 KB) 2007 Annual Merit Review Report excerpts on bio-derived liquids to hydrogen distributed reforming research (PDF 3.9 MB) Presentations DOE Targets, Tools, and Technology

119

Reaction of aromatic compounds and coal-derived liquids with steam over alumina supported nickel catalysts  

SciTech Connect

The objective of this research program has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel-catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C6H6/ = 1.92 x 10 TP/sub C6H6/. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated.

Chen, I.E.

1985-01-01T23:59:59.000Z

120

Solids precipitation and polymerization of asphaltenes in coal-derived liquids  

DOE Patents (OSTI)

The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

Kydd, Paul H. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Inland-transport modes for coal and coal-derived energy: an evaluation method for comparing environmental impacts  

SciTech Connect

This report presents a method for evaluating relative environmental impacts of coal transportation modes (e.g., unit trains, trucks). Impacts of each mode are evaluated (rated) for a number of categories of environmental effects (e.g., air pollution, water pollution). The overall environmental impact of each mode is determined for the coal origin (mine-mouth area), the coal or coal-energy product destination (demand point), and the line-haul route. These origin, destination, and en route impact rankings are then combined into a systemwide ranking. Thus the method accounts for the many combinations of transport modes, routes, and energy products that can satisfy a user's energy demand from a particular coal source. Impact ratings and system rankings are not highly detailed (narrowly defined). Instead, environmental impacts are given low, medium, and high ratings that are developed using environmental effects data compiled in a recent Argonne National Laboratory report entitled Data for Intermodal Comparison of Environmental Impacts of Inland Transportation Alternatives for Coal Energy (ANL/EES-TM-206). The ratings and rankings developed for this report are generic. Using the method presented, policy makers can apply these generic data and the analytical framework given to particular cases by adding their own site specific data and making some informed judgements. Separate tables of generic ratings and rankings are developed for transportation systems serving coal power plants, coal liquefaction plants, and coal gasification plants. The final chapter presents an hypothetical example of a site-specific application and adjustment of generic evaluations. 44 references, 2 figures, 14 tables.

Bertram, K.M.

1983-06-01T23:59:59.000Z

122

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Background Paper  

Energy.gov (U.S. Department of Energy (DOE))

Paper by Arlene Anderson and Tracy Carole presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group, with a focus on key drivers, purpose, and scope.

123

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

2006-05-12T23:59:59.000Z

124

Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials  

SciTech Connect

Solar photoelectrochemical water-splitting has long been viewed as one of the holy grails of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

2004-10-25T23:59:59.000Z

125

Hydrogen recovery by novel solvent systems  

SciTech Connect

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

126

Coal Gasification Systems Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

127

Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gokhan O. Alptekin, PhD Robert Copeland, PhD Gokhan O. Alptekin, PhD Robert Copeland, PhD (Primary Contact) TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: copeland@tda.com Email: galptekin@tda.com Tel: (303) 940-2323 Tel: (303) 940-2349 Fax: (303) 422-7763 Fax: (303) 422-7763 Margarita Dubovik Yevgenia Gershanovich TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: dubovik@tda.com Email: ygershan@tda.com Tel: (303) 940-2316 Tel: (303) 940-2346 Fax: (303) 422-7763 Fax: (303) 422-7763 Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

128

Coal-derived syngas MILD combustion in parallel jet forward flow combustor  

Science Journals Connector (OSTI)

Abstract The effect of air-fuel momentum flux ratio on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using non-reactive numerical simulations and on OH? radicals distribution and exhaust emissions using experiments. The predicted gas recirculation ratios in the combustor are high enough to establish the reaction condition of MILD scheme. Lower air-fuel momentum flux ratio associated with higher heat load benefits the drop of peak flame temperature and the increase of reaction zone volume. The critical air-fuel momentum flux ratios below which MILD combustion occurred were identified for three MILD configurations. The MILD configuration equipped with larger air nozzles and smaller fuel nozzles was observed to achieve MILD combustion at leaner condition. The MILD regime was established for syngas fuel with lean operational limit and ultra-low \\{NOx\\} and CO emissions.

Mingming Huang; Zhedian Zhang; Weiwei Shao; Yan Xiong; Yan Liu; Fulin Lei; Yunhan Xiao

2014-01-01T23:59:59.000Z

129

Evaluation of sorbents for the cleanup of coal-derived synthesis gas at elevated temperatures  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. ...

Couling, David Joseph

2012-01-01T23:59:59.000Z

130

Sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers for chemical-looping combustion by coal char  

SciTech Connect

This paper focuses on the investigation of Ni-based oxygen carriers for CLC by coal char. First, Al(OC{sub 3}H{sub 7}){sub 3} and Ni(NO{sub 3}){sub 2} are selected as the main raw materials to prepare sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The oxygen carrier with a mass content of 60% NiO, a sintering temperature of 1300{sup o}C, and a sintering time of 6 h performs comparatively well. Second, the reduction reaction of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char and the circular reduction/oxidation reactions of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char/air or hydrogen/air are carried out in a thermogravimetric analysis (TGA) instrument to investigate the reactivities and chemical life of the prepared NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The experimental results show that (a) when the TGA temperature is higher than 850{sup o}C, NiO/NiAl{sub 2}O{sub 4} starts to react with coal char rapidly, which indicates that CLC of coal char using NiO/NiAl{sub 2}O{sub 4} as oxygen carriers is a feasible technology of energy utilization in principle; (b) NiO/NiAl{sub 2}O{sub 4}, which maintains its activity over single-cycle reduction/oxidation reactions with char/air or multiple-cycle reduction/oxidation reactions with hydrogen/air, exhibits extremely good recyclablity; (c) the porous beehive structure of the NiO/NiAl{sub 2}O{sub 4} particle is maintained, and the sintering behavior between different particles is not observed during cyclic studies. Those experimental results prove the sol-gel-derived oxygen carrier NiO/NiAl{sub 2}O{sub 4} is capable of being used in chemical-looping combustion fueled by coal char or H{sub 2}. 51 refs., 5 figs., 5 tabs.

Haibo Zhao; Liming Liu; Baowen Wang; Di Xu; Linlin Jiang; Chuguang Zheng [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

2008-03-15T23:59:59.000Z

131

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas.  

E-Print Network (OSTI)

??Since solid oxide fuel cells can operate on fuel containing both hydrogen and carbon monoxide, it may prove possible to remove hydrogen from syngas streams (more)

Burnette, David D.

2007-01-01T23:59:59.000Z

132

Effects of hydrogen donor additives on the coking properties of high-temperature coal extracts.  

E-Print Network (OSTI)

?? Refcoal is a carbon precursor obtained by alkali-mediated extraction of coal with aprotic solvents such as DMF. Refcoal can be converted into a graphitic (more)

Makgato, Matlou Hector

2009-01-01T23:59:59.000Z

133

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

SciTech Connect

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

134

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

135

Infrastructure Costs Associated with Central Hydrogen Production from Biomass and Coal - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Darlene Steward (Primary Contact), Billy Roberts, Karen Webster National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3837 Email: Darlene.Steward@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: Fiscal Year (FY) 2010 Project End Date: Project continuation and direction determined annually by DOE FY 2012 Objectives Elucidate the location-dependent variability of * infrastructure costs for biomass- and coal-based central hydrogen production and delivery and the tradeoffs inherent in plant-location choices Provide modeling output and correlations for use in other * integrated analyses and tools

136

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-07-13T23:59:59.000Z

137

Blending high sulfer coal with refuse derived fuel to make SO{sub 2} compliant slurry fuels  

SciTech Connect

The need for a better method of disposing of the international community`s garbage hardly needs emphasizing. In 1993, the United States alone generated approximately 207 million ton per year of Municipal Solid Waste (MSW), with 62% landfilled, 220/6 recycled, and 16% combusted for energy recovery. Despite strenuous efforts to make these disposal methods meet present needs, the cost of disposal is rising dramatically. Concurrently, the Clean Air Act Amendments (CAAA) of 1990 have severely restricted the SO{sub 2} emissions from coal fired boilers. Medium and high sulfur coals will not comply with the Phase II CAAA regulation limit of 1.2 lb SO{sub 2}/MM Btu, without advanced coal cleaning technologies or flue gas desulfurization, including the majority of the North Dakota lignite reserves. Utility power plants have attempted to burn refuse derived fuel (RDF), a heterogeneous solid fuel produced from MSW, with coal in utility scale boilers (generally referred to as co-firing). Co-firing of RDF with coal has been attempted in sixteen different boilers, five commercially. While lower SO{sub 2} emissions provided the impetus, co-firing RDF with coal suffered from several disadvantages including increased solids handling, increased excess air requirements, higher HCI, CO, NO{sub x} and chlorinated organic emissions, increased slag formation in the boiler, and higher fly ash resistivity. Currently, only two of the sixteen boilers are still regularly used to co-fire RDF. The overall objective of this research program was to assess the feasibility of blending RDF with lignite coal to form SO{sub 2} Compliant slurry fuels using EnerTech`s SlurryCarb{trademark} process. In particular, the objective was to overcome the difficulties of conventional co-firing. Blended slurry fuels were produced with the Energy & Environmental Research Center`s (EERC) bench-scale autoclave and were combusted in a pressurized fluidized-bed reactor (PFBR).

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States)

1995-12-31T23:59:59.000Z

138

Development of a co-firing fuel from biomass-derived binder and crushed coal.  

E-Print Network (OSTI)

??The focus of this work was the development of a co-firing boiler fuel for use in the coal power plant industry. This fuel, known as (more)

Friend, Andrew

2013-01-01T23:59:59.000Z

139

Progress in donor assisted coal liquefaction: Hydroaromatic compound formation  

SciTech Connect

The role of hydrogen donor compounds in coal liquefaction has been extensively investigated since the mid 1960`s using model compounds and process derived hydrogen donor solvents. Our recent research and that of other investigators have shown that two model compounds in particular have great efficacy in solvating low rank coals. 1,2,3,10b tetrahydrofluoranthene (H{sub 4}Fl) and 1,2,3,6,7,8 hexahydropyrene (H{sub 6}Py) have been used to dissolve Wyodak coal to > 95% soluble material as measured by tetrahydrofuran (THF). Although these hydrogen donors are very effective, they may not be found in any significant concentrations in actual liquefaction process recycle solvents. Therefore, studies with process derived recycle materials are necessary to understand donor solvent chemistry. The objective of this paper is to present results of solvent hydrogenation experiments using heavy distillate solvents produced during testing at the Wilsonville Advanced Coal Liquefaction Test Facility. We evaluated the impact of hydrogenation conditions upon hydrogen donor formation in process derived distillates and compared these process derived solvents with the highly effective H{sub 4}Fl and H{sub 6}Py donors in coal liquefaction tests. This paper presents data on reaction conditions used for distillate hydrotreating and subsequent coal liquefaction, with an aim toward understanding the relationship between reaction conditions and donor solvent quality in recycle distillates.

Kottenstette, R.J.; Stephens, H.P.

1993-12-31T23:59:59.000Z

140

Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal  

SciTech Connect

The objective of this work was to prepare supported bimetallic FeCu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with FeCu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most FeCu/support oxygen carriers. Bimetallic FeCu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 C to 900 C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported FeCu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800900 C and might be successfully used up to 900 C for coal CLC reaction in the presence of steam.

Siriwardane, Ranjani V. [U.S. DOE; Ksepko, Ewelina; Tian, Hanging [URS

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

142

DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS  

SciTech Connect

The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

2012-09-30T23:59:59.000Z

143

Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production  

SciTech Connect

Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450C. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450C (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300C (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300C. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

2014-10-31T23:59:59.000Z

144

Hydrogen recovery by novel solvent systems. Final report  

SciTech Connect

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

145

Development of Continuous Solvent Extraction Processes for Coal Derived Carbon Products  

SciTech Connect

This DOE NETL-sponsored effort seeks to develop continuous processes for producing carbon products from solvent-extracted coal. A key process step is removal of solids from liquefied coal. Three different processes were compared: gravity separation, centrifugation using a decanter-type Sharples Pennwalt centrifuge, and a Spinner-II centrifuge. The data suggest that extracts can be cleaned to as low as 0.5% ash level and probably lower using a combination of these techniques.

Elliot B. Kennel

2006-12-31T23:59:59.000Z

146

Use of coal liquefaction catalysts for coal/oil coprocessing and heavy oil upgrading  

SciTech Connect

The catalytic hydrogenation of coal and model solvents using dispersed or supported catalysts at different pressures has been the focus of several recent studies at PETC. The effectiveness of these catalysts has been studied in coal liquefaction and coal-oil coprocessing. Coal-oil coprocessing involves the co-reaction of coal and petroleum-derived oil or resid. The results of these studies have indicated that both dispersed and supported catalysts are effective in these systems at elevated H{sub 2} pressures ({approximately}2,500 psig). Attempts to reduce pressure indicated that a combination of catalyst concentration and solvent quality could be used to compensate for reductions in H{sub 2} pressure. Comparison of the coal and coprocessing systems reveals many similarities in the catalytic requirements for both systems. Both hydrogenation and hydrogenolysis activities are required and the reactive environments are similar. Also, the use of catalysts in the two systems shares problems with similar types of inhibitors and poisons. The logical extension of this is that it may be reasonable to expect similar trends in catalyst activity for both systems. In fact, many of the catalysts selected for coal liquefaction were selected based on their effectiveness in petroleum systems. This study investigates the use of supported and dispersed coal liquefaction catalysts in coal-oil coprocessing and petroleum-only systems. The focus of the study was delineating the effects of coal concentration, pressure, and catalyst type.

Cugini, A.V.; Krastman, D.; Thompson, R.L. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Gardner, T.J. [Sandia National Labs., Albuquerque, NM (United States); Ciocco, M.V.

1997-04-01T23:59:59.000Z

147

PRODUCTION OF HYDROGEN AND ELECTRICITY FROM COAL WITH CO2 CAPTURE  

E-Print Network (OSTI)

gasification, quench cooled and shifted to (pri- marily) H2 and CO2 via sulfur-tolerant water-gas shift (WGS with sulfur-bearing waste gases, H2S and SO2. I. INTRODUCTION Carbon-free energy carriers, H2 and electricity relative abundance, high carbon intensity, and low cost. Coal-to-H2 plants based on gasification have been

148

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

electricity and CO 2 from coal with commercially readyHong B, Slatick E. Carbon dioxide emission factors for coal.EIA Quarterly Coal Report JanuaryApril 1994:18. 1994. DOE/

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

149

Chemicals from coal  

SciTech Connect

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

150

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

gaseous and liquid hydrogen storage tech- nologies are giveninclude compressors, hydrogen storage and dispensing. In thein the analysis. Hydrogen production and storage Hydrogen

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

151

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

152

Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of High Purity Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies August 30, 2010 DOE/NETL-2010/1432 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

153

Secretary of Energy and Rep. Chabot Highlight Clean Coal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research...

154

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

2006-08-01T23:59:59.000Z

155

EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY  

Energy.gov (U.S. Department of Energy (DOE))

This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOEs proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

157

Studies of the mechanism of Coal Hydrogenation by Electron Spin Resonance. Quarterly technical progress report, March 1-May 31, 1980. [For high-temperature, high pressure measurements  

SciTech Connect

This is the first quarterly report on the program Studies of Coal Hydrogenation by Electron Spin Resonance. This quarter has been devoted to constructing apparatus for high temperature-high pressure electron paramagnetic resonance (EPR) measurements, characterizing the performance of the microwave cavity, and carrying out preliminary room temperature studies on coals and coal products. At the start of this program, there were no microwave cavities available to study high pressure-high temperature reactions. A system was constructed which can be used to study coal hydrogenation, and satisfies the conditions described in the report. This cavity was constructed using funding from Rockwell International, and will be used on this program. Because of the dependence of the work to be done with this device for this program, the construction is described in detail. This report, therefore, considers the design philosophy, construction of the device, a preliminary discussion of its performance, and application of the cavity for room temperature studies on several varieties of coal.

Goldberg, Ira B.

1980-07-01T23:59:59.000Z

158

Novel catalysts for upgrading coal-derived liquids. Quarterly technical progress report, 1 October 1993--31 December 1993  

SciTech Connect

The principal objective of this research is to evaluate the hydrotreatment properties of {gamma}-Al{sub 2}O{sub 3} supported Mo oxynitride and oxycarbide catalysts. This information will be used to assess the potential of these materials for use as commercial catalysts for hydrotreating coal-derived liquids. During this quarter, the authors evaluated the catalytic properties of a series of supported molybdenum nitride catalysts. These catalysts were prepared in the laboratory for comparison with the supported molybdenum oxynitrides. Pyridine hydrodenitrogenation (HDN) was used as the test reaction.

Thompson, L.T.; Savage, P.E.; Briggs, D.E.

1993-12-31T23:59:59.000Z

159

Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers  

SciTech Connect

The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal gasification streams. Although a great deal was learned regarding calibration, sample transport, instrumentation options, gas stream conditioning, and CEM design options, some challenging issues still remain. Sample transport is one area that is often not adequately considered. Because of the gas stream composition and elevated temperatures involved, special attention will need to be given to the choice of materials for the sample line and other plumbing components. When using gas stream oxidation, there will be sample transport regions under oxidizing as well as reducing conditions, and each of those regions will require different materials of construction for sample transport. The catalytic oxidation approach worked well for removal of tars and NH{sub 3} on a short term basis, but durability issues related to using the catalyst tube during extended testing periods still require study.

G. Norton; D. Eckels; C. Chriswell

2001-02-26T23:59:59.000Z

160

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-08-11T23:59:59.000Z

162

Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology  

SciTech Connect

Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals from carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.

Dunham, Grant

2012-03-15T23:59:59.000Z

163

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

164

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

165

Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids  

SciTech Connect

Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States). EMS Energy Institute

2009-09-15T23:59:59.000Z

166

Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands  

Science Journals Connector (OSTI)

Abstract This paper examines the techno-economic viability of hydrogen production from underground coal gasification (UCG) in Western Canada, for the servicing of the oil sands bitumen upgrading industry. Hydrogen production for bitumen upgrading is predominantly achieved via steam methane reforming (SMR); which involves significant greenhouse gas (GHG) emissions along with considerable feedstock (natural gas) cost volatility. UCG is a formidable candidate for cost-competitive environmentally sustainable hydrogen production; given its negligible feedstock cost, the enormity of deep coal reserves in Western Canada and the favourable CO2 sequestration characteristics of potential UCG sites in the Western Canadian sedimentary basin (WCSB). Techno-economic models were developed for UCG and SMR with and without CCS, to estimate the cost of hydrogen production including delivery to a bitumen upgrader. In this paper, at base case conditions, a 5% internal rate of return (IRR) differential between UCG and SMR was considered so as to account for the increased investment risk associated with UCG. The cost of UCG hydrogen production without CCS is estimated to be $1.78/kg of H2. With CCS, this increases to range of $2.11$2.70/kg of H2, depending on the distance of the site for CO2 sequestration from the UCG plant. The SMR hydrogen production cost without CCS is estimated to be $1.73/kg of H2. In similar fashion to UCG, this rises to a range of $2.14 to $2.41/kg of H2 with the consideration of CCS. Lastly, for hydrogen production without CCS, UCG has a superior cost competitiveness in comparison to SMR for an IRR differential less than 4.6%. This competitive threshold rises to 5.4% for hydrogen production with CCS.

Babatunde Olateju; Amit Kumar

2013-01-01T23:59:59.000Z

167

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect

The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feedstocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others. Key milestones included producing hydrogenated coal in the Hydrotreating Facility for the first time. The facility is now operational, although digital controls have not yet been completely wired. In addition, ultrasound is being used to investigate enhanced dissolution of coal. Experiments have been carried out.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2006-02-23T23:59:59.000Z

168

The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect

Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

Not Available

1993-04-01T23:59:59.000Z

169

Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran  

Science Journals Connector (OSTI)

Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran ... In recent years, 2,5-dimethylfuran (DMF), which is produced by the selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) and is considered as a new-fashioned liquid biofuel for transportation, has received much more attention from many researchers in the world. ... Among the various desired compounds via the oriented transformation,(15-19) 5-hydroxymethylfurfural (HMF) is considered as a versatile platform compound (Scheme 1) and a crucial intermediate for connecting biomass resource and fossil industry,(20-24) and this is because that it can be further transformed into a series of high-quality fuels such as ethyl levulinate (EL),(25-27) 5-ethoxymethylfurfural (EMF),(28-30) 2,5-dimethylfuran (DMF),(31-33) and C9C15 alkanes(34-36) and high-value chemicals such as levulinic acid (LA),(37-39) 2,5-dihydroxymethylfuran (DHMF),(40-42) 2,5-diformylfuran (DFF),(43-45) and 2,5-furandicarboxylic acid (FDCA). ...

Lei Hu; Lu Lin; Shijie Liu

2014-05-23T23:59:59.000Z

170

Techno-Economic Analysis of Coal-Based Hydrogen and Electricity Cogeneration Processes with CO2 Capture  

Science Journals Connector (OSTI)

The baseline coal gasification process and the novel membrane and syngas chemical-looping processes are evaluated. ... burner ...

Fanxing Li; Liang Zeng; Liang-Shih Fan

2010-07-29T23:59:59.000Z

171

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994  

SciTech Connect

Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

1995-04-01T23:59:59.000Z

172

Development of a technology for coal conversion in the presence of coal tar  

Science Journals Connector (OSTI)

A new process for the hydrogenation of coal in the presence of wide-cut coal tar was proposed; it involves cavitation treatment...

M. I. Baikenov; T. B. Omarbekov; Ma Fengyun; Sh. K. Amerkhanova

2011-08-01T23:59:59.000Z

173

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

2006-03-07T23:59:59.000Z

174

High P/T phase and volumetric behavior of coal liquid constituents. (Quarterly technical progress report), January 1-April 1, 1984. [6 gases in hydrogen-dibenzofuran and in hydrogen-g-methylanthracene  

SciTech Connect

A sophisticated perturbation chromatography technique has been used to study the vapor-liquid equilibrium behavior of six light gases in two hydrogen-coal liquid model compounds systems. Infinite-dilution K values are reported for methane, ethane, propane, n-butane, carbon dioxide and hydrogen sulfide in: (1) hydrogen-dibenzofuran system at 373.2 and 398.2/sup 0/K and up to 6 MPa; and (2) hydrogen-g-methylanthracene systems at 373.2, 398.2, 423.2, 448.2 and 473.2/sup 0/K and up to 21 M Pa. Henry's constants were determined for the light gases in 9-methylanthracene. Second cross virial coefficients and vapor-phase infinite-dilution fugacity coefficients were calculated for the hydrocarbon gases in hydrogen. The results were combined with the experimental K-value measurements to obtain Henry's constants in hydrogen-9-methylanthracene mixtures of fixed liquid composition. The constants thus obtained show a significant dependence of hydrogen solubility. 1 reference.

Kobayshi, R.

1984-01-01T23:59:59.000Z

175

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01T23:59:59.000Z

176

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Todays energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

177

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

178

Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs  

Office of Energy Efficiency and Renewable Energy (EERE)

New aqueous phase reforming process uses liquid feedstocks to produce energy from hydrogen with reduced costs.

179

ANNUAL REPORT OCTOBER 1, 1979-SEPTEMBER 30, 1980 CHEMISTRY AND MORPHOLOGY OF COAL LIQUEFACTION  

E-Print Network (OSTI)

AND MORPHOLOGY OF COAL LIQUEFACTION LA , . . ,:;. ~~Microscope Studies of Coal during Hydrogenation Taskspread evenly over the coal grains of this particular area.

Heinemann, Heinz

2013-01-01T23:59:59.000Z

180

Development of Continuous Solvent Extraction Processes For Coal Derived Carbon Products  

SciTech Connect

In this reporting period, tonnage quantities of coal extract were produced but solid separation was not accomplished in a timely manner. It became clear that the originally selected filtration process would not be effective enough for a serious commercial process. Accordingly, centrifugation was investigated as a superior means for removing solids from the extract. Results show acceptable performance. Petrographic analysis of filtered solids was carried out by R and D Carbon Petrography under the auspices of Koppers and consultant Ken Krupinski. The general conclusion is that the material appears to be amenable to centrifugation. Filtered solids shows a substantial pitch component as well as some mesophase, resulting in increased viscosity. This is likely a contributing reason for the difficulty in filtering the material. Cost estimates were made for the hydotreatment and digestion reactors that would be needed for a 20,000 ton per year demonstration plants, with the aid of ChemTech Inc. The estimates show that the costs of scaling up the existing tank reactors are acceptable. However, a strong recommendation was made to consider pipe reactors, which are thought to be more cost effective and potentially higher performance in large scale systems. The alternate feedstocks for coke and carbon products were used to fabricate carbon electrodes as described in the last quarterly report. Gregory Hackett successfully defended his MS Thesis on the use of these electrodes in Direct Carbon Fuel Cell (DCFC), which is excerpted in Section 2.4 of this quarterly report.

Elliot B. Kennel; Dady B. Dadyburjor; Gregory W. Hackett; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; Robert C. Svensson; John W. Zondlo

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-06-23T23:59:59.000Z

182

PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS  

SciTech Connect

This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-06-20T23:59:59.000Z

183

E-Print Network 3.0 - advanced coal conversion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Schmetz Summary: ;Summary of Hydrogen from Coal Cases Case 1 Case 2 Case 3 Gasifier* Conventional Advanced Advanced... Hydrogen from Coal Edward Schmetz Office of...

184

E-Print Network 3.0 - advanced direct coal Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Schmetz Summary: ;Summary of Hydrogen from Coal Cases Case 1 Case 2 Case 3 Gasifier* Conventional Advanced Advanced... Hydrogen from Coal Edward Schmetz Office of...

185

Oxygen carrier development for chemical looping combustion of coal derived synthesis gas  

SciTech Connect

In the present work, NETL researchers have studied chemical looping combustion (CLC) with an oxygen carrier NiO/bentonite (60 wt.% NiO) for the IGCC systems utilizing simulated synthesis gas. Multi cycle CLC was conducted with NiO/Bentonite in TGA at atmospheric pressure and in a high pressure reactor in a temperature range between 700-900C. Global reaction rates of reduction and oxidation as a function of conversion were calculated for all oxidation-reduction cycles utilizing the TGA data. The effect of particle size of the oxygen carrier on CLC was studied for the size between 20-200 mesh. The multi cycle CLC tests conducted in a high pressure packed bed flow reactor indicated constant total production of CO2 from fuel gas at 800C and 900C and full consumption of hydrogen during the reaction.

Siriwardane, R.V.; Chaudhari, K.; Zinn, A.N.; Simonyi, T.; Robinson, Clark; Poston, J.A.

2006-09-01T23:59:59.000Z

186

Upgraded Coal Interest Group  

SciTech Connect

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

187

Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen  

SciTech Connect

The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the watergas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology (NCHT) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model. The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperatureviscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel spreadsheets, or as pdf files. The user interface provides stepwise guides with built-in checks for efficient entry of required input data on fuels of interest to allow a successful execution of the model. The model was developed with data from several fuels selected by the sponsors, including bituminous coal, subbituminous coal, lignite, and petroleum coke (petcoke). The data from these fuels were obtained using small pilot-scale entrained-flow and fluidized-bed gasifiers at the Energy & Environmental Research Center (EERC). The CABRE III model is expected to further advance the knowledge base for the NCHT Program and, more importantly, allow for prediction of the slagging and fouling characteristics of fuels in reducing environments. The information obtained from this program will potentially also assist in maintaining prolonged gasifier operation free from failure or facilitate troubleshooting to minimize downtime in the event of a problem.

Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

2012-03-31T23:59:59.000Z

188

High pressure/high temperature vapor liquid equilibrium study of light gases in hydrogen-coal liquid model compound systems using perturbation chromatography  

SciTech Connect

Perturbation chromatography or gas-liquid partition chromatography (GLPC) provides a powerful tool for making physicochemical measurements. In this investigation GLPC was applied to study the vapor-liquid equilibrium behavior of light gases in nonvolatile coal liquid model compound solvents at high temperatures and high pressures. Improvements made in existing GLPC techniques include: the use of a high pressure tandem proportioning pump to give precise control of the carrier gas flow rate and low pressure drops; a high pressure ionization chamber to detect the injection of very dilute radioactive sample gases; and the use of a microcomputer to provide instantaneous integration and very precise retention times of the chromatographic peaks. Infinite dilution K-values for methane, ethane, propane, n-butane, carbon dioxide, and hydrogen sulfide in hydrogen-dibenzofuran systems were obtained at 100 and 125 C and up to 800 psia. Infinite dilution K-values for the same light gases in hydrogen-9-methylanthracene systems were obtained at 100, 125, 150, 175, and 200 C and up to 3000 psia. Henry's constants were determined for the light gases in 9-methylanthracene. Second cross virial coefficients and vapor phase infinite dilution fugacity coefficients were calculated for methane, ethane, propane, and n-butane in hydrogen. These results were combined with the experimental K-value measurements to obtain Henry's constants in hydrogen-9-methylanthracene mixtures of fixed liquid compositions. Infinite dilution heats of solution of the solute gases in the mixtures were calculated.

Kragas, T.K.

1983-01-01T23:59:59.000Z

189

Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers  

SciTech Connect

CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700 C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900 C.

Tian, H.; Chaudhari, K.; Simonyi, T.; Poston, J.; Liu, T.; Sanders, T.; Veser, G.; Siriwardane, R.

2008-01-01T23:59:59.000Z

190

Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers  

SciTech Connect

CuO/bentonite and CuO?BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction?oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation?reduction cycles above 700 C in an atmospheric thermogravimetric analyzer. The nanostructured CuO?BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700?900 C.

Tian, Hanjing; Chaudhari, K.P.; Simonyi, Thomas; Poston, J.A.; Liu, Tengfei; Sanders, Tom; Veser, Goetz; Siriwardane, R.V.

2008-11-01T23:59:59.000Z

191

A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range  

SciTech Connect

This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

S. D. Brandes; R. A. Winschel

1999-12-30T23:59:59.000Z

192

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

produce hydrogen in a centralized coal based operation for .79kg at the plant gate with carbon sequestration. Develop advanced OTM, HTM, technology, advanced reforming and shift...

193

Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers  

SciTech Connect

CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900{degree}C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO{sub 2} from fuel gas at 800 and 900{degree}C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700{degree}C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900{degree}C. 48 refs., 12 figs., 8 tabs.

Hanjing Tian; Karuna Chaudhari; Thomas Simonyi; James Poston; Tengfei Liu; Tom Sanders; Goetz Veser; Ranjani Siriwardane [U.S. Department of Energy, Morgantown, WV (United States). National Energy Technology Laboratory

2008-11-15T23:59:59.000Z

194

Investigation of hydrogen transfer in coprocessing using model systems  

SciTech Connect

Coprocessing of coal with petroleum resid involves the reaction of two very different materials: coal is aromatic and resid is naphthenic. Hydrogen transfer is an important mechanism in most coal liquefaction systems. When coal is reacted with a coal-derived solvent, a high hydroaromatic content capable of transferring hydrogen in the solvent is desirable for achieving the desired coal conversions. But, resids tend to be naphthenic rather than hydroaromatic in character. The current study evaluated the reactivity of naphthenic compounds as models for resids in the presence of aromatic acceptors that are representative of the coal structure. The model donor used was perhydropyrene and the model acceptors were phenanthrene and anthracene. Thermal and catalytic reactions were performed at 400 and 440{degrees}C for 30 min in a H{sub 2} or N{sub 2} atmosphere with 1:1 and 5:1 ratios of model donor to model acceptor and with slurry phase catalysts, Mo naphthenate and Ni octoate. In reactions containing anthracene, the presence of perhydropyrene had increased the total amount of hydrogen being accepted by anthracene, while excess perhydropyrene was required to increase the hydrogen accepted by the model phenanthrene. Catalysis by Mo naphthenate promoted hydrogen transfer from perhydropyrene to anthracene, but catalysis by Ni octoate did not.

Shen, J.; Curtis, C.W. [Auburn Univ., AL (United States)

1995-12-31T23:59:59.000Z

195

Formation and control of fuel-nitrogen pollutants in catalytic combustion of coal-derived gases. Final report  

SciTech Connect

The objective of this program has been the elucidation of the mechanism of high temperature catalytic oxidation of coal-derived gases, including their individual constituents,and the effects of sulfur and nitrogen impurities. Detailed experimental data were obtained and a two-dimensional model is being developed and tested by comparison with the experimental data. When complete, the model can be used to optimize designs of catalytic combustors. The model at present includes axial and radial diffusion and gas and surface chemical reactions. Measured substrate temperatures are input in lieu of complete coupling of gas and solid energy conservation equations and radiative heat transfer. Axial and radial gas temperature and composition profiles inside a catalyst channel were computed and compared with experimental measurements at the catalyst outlet. Experimental investigations were made of carbon monoxide and medium-Btu gas combustion in the presence of platinum supported on a monolithic Cordierite substrate. Axial profiles of substrate temperature, gas temperature, and gas composition were determined at different gas velocities and equivalence ratios. The effects of H/sub 2/S and NH/sub 3/ in the medium-Btu gas were also investigated. Systems were proposed for making resonance absorption and Raman scattering measurements of gas temperature and/or species concentrations in a catalytic reactor. A new pulsed multipass Raman scattering technique for increasing photon yield from a scattering volume was developed.

Walsh, P. M.; Bruno, C.; Santavicca, D. A.; Bracco, F. V.

1980-02-01T23:59:59.000Z

196

Bioconversion of coal-derived synthesis gas to liquid fuels. Annual report, September 29, 1992--September 28, 1993  

SciTech Connect

The overall objective of the project is to develop and optimize a two-stage fermentation process for the conversion of coal derived synthesis gas in an mixture of alcohols. The goals include the development of superior strains with high product tolerance and productivity, optimization of process conditions for high volumetric productivity and product concentrations, integration and optimization of two stage syngas fermentation, evaluation of bioreactor configurations for enhanced mass transfer, evaluation of syngas conversion by a culture of Butyribacterium methyltrophicum and Clostridium acetobutylicum, development of a membrane based pervaporation system for in situ removal of alcohols, and development of a process for reduction of carbon and electron loss. The specific goals for year one (September 1992 - September 1993) were (1) development of a project work plan, (2) development of superior CO-utilizing strains, (3) optimization of process conditions for conversion of synthesis gas to a mixture of acids in a continuously stirred reactor (CSTR), (4) evaluation of different bioreactor configurations for maximization of mass transfer of synthesis gas, (5) development of a membrane based pervaporation system, and (6) reduction of carbon and electron loss via H{sub 2}CO{sub 2} fermentation. Experimentation and progress toward these goals are described in this report.

Jain, M.K.; Worden, R.M.; Grethlein, H.E.

1993-10-21T23:59:59.000Z

197

The potential utilization of nuclear hydrogen for synthetic fuels production at a coaltoliquid facility / Steven Chiuta.  

E-Print Network (OSTI)

??The production of synthetic fuels (synfuels) in coaltoliquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

198

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

2004. [12] Parks K. GIS-based infrastructure modeling, 2010information systems (GIS). Washington, DC: National Hydrogenwww.elsevier.com/locate/he A GIS-based assessment of coal-

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

199

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

200

Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process  

SciTech Connect

Comprehensive two-dimensional gas chromatography (GC) coupled to time-of-flight mass spectrometry (MS) has been applied to the analysis of coal-derived liquids from the former British Coal Point-of-Ayr coal liquefaction plant. The feed to the hydrocracker and the resulting product were analyzed. The results refer almost exclusively to the plant-derived recycle solvent, known as the liquefaction solvent; the molecular mass range of the GC does not exceed that of the solvent. The method allows for the resolution of the numerous structural isomers of tetralin and methyl indan, one pair of hydrogen-donor (necessary for the dissolution of coal) and isomeric nondonor (that reduce the hydrogen donors) components of the recycle solvent. In addition, the n-alkanes that concentrate in the recycle solvent are easily observed in comparison with the results from one-dimensional GC-MS. 24 refs., 6 figs., 1 tab.

Jacqui F. Hamilton; Alistair. C. Lewis; Marcos Millan; Keith D. Bartle; Alan A. Herod; Rafael Kandiyoti [University of York, York (United Kingdom). Department of Chemistry

2007-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Set to Target Efficiency, Environmental Gains at Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities July 27, 2010 - 1:00pm Addthis Washington, D.C. -- Four projects that will demonstrate an innovative technology that could eventually enhance hydrogen fuel production, lower greenhouse gas (GHG) emissions, improve efficiencies and lower consumer electricity costs from advanced coal gasification power systems have been selected by the U.S. Department of Energy (DOE). The projects will test membrane technology to separate hydrogen and carbon dioxide (CO2) from coal or coal/biomass-derived synthesis gas (syngas), such as from Integrated Gasification Combined Cycle (IGCC) power systems.

202

Hydrogen Delivery Infrastructure Option Analysis  

E-Print Network (OSTI)

, vehicles can still drive with gasoline/diesel derived from tar sand, oil shale, and coal derived liquids

203

Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals  

SciTech Connect

The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

Lili Huang; Schobert, H.H.; Chunshan Song

1998-01-01T23:59:59.000Z

204

Hydrogen Production & Delivery  

Energy Savers (EERE)

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

205

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents (OSTI)

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

206

METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products  

SciTech Connect

The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

1982-05-01T23:59:59.000Z

207

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

I. Solvent Refined Coal II. Catalysts III. Purpose andSondreal, E.A. , "Viscosity of Coal Liquids - The Effect ofAnthraxylon - Kinetics of Coal Hydrogenation," Ind. and Eng.

Tanner, K.I.

2010-01-01T23:59:59.000Z

208

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

209

EFFECTS OF LEWIS ACID CATALYSTS ON THE HYDROGENATION AND CRACKING OF TWO-RING AROMATIC AND HYDROAROMATIC STRUCTURES RELATED TO COAL  

E-Print Network (OSTI)

Asphaltenes in Processed Coal", EPRI Report AF-480, preparedS. A. and Bell, A. T. , "Coal Liquefaction Using ZincJ. H. , and Vermeulen, T. , "Coal Conversion Using Zinc

Salim, Sadie S.

2013-01-01T23:59:59.000Z

210

HYDROGENATION AND CRACKING OF COAL RELATED FUSED-RING STRUCTURES USING ZnCl2 AND AlCl3 CATALYSTS  

E-Print Network (OSTI)

The Na enes in Processed Coal EPRI Report AF- & DevelopmentCA (1976). Whitehurst, Coals in Behavior of Western at EPRIH. H. , ed. , Chemistry of Coal Utilization~~_:e.l~mer:

Salim, Sadie S.

2013-01-01T23:59:59.000Z

211

Coal liquefaction process  

DOE Patents (OSTI)

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

212

Coal liquefaction process  

DOE Patents (OSTI)

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

213

Simulated investigation of chemical looping combustion with coal-derived syngas and CaSO4 oxygen carrier  

Science Journals Connector (OSTI)

Compared to metal oxides, CaSO4 adopted as oxygen carrier (OC) in chemical looping combustion (CLC) presents several advantages such as low cost, easy availability and superior oxygen transfer capacity, whilst the SO2 emission and solid sulfur deposit in the process could be a big concern. In this study, thermodynamic simulations were conducted to investigate the sulfur distribution in a CLC system with CaSO4 as OC and syngas derived from coal as the fuel. Several findings were attained: (i) On the main products and reaction pathways in the fuel reactor (FR), at the low temperature of 100C400C, the main sulfur species and carbon deposit were H2S and CaCO3 via the methanation of CO with H2 coupled with both the shift reaction of CO with H2O(g) and the ensuing thermochemical sulfate reduction (TSR). Then at 400C915C, CaS and CO2 were the main products through the reaction of CaSO4 with H2 or CO, and both products increased with increasing FR temperature. Furthermore, at the FR temperature higher than 915C, due to the initiation of the solid side reaction between CaS and CaSO4, the percentage of CaS declined. In contrary, the percentages of CaO, H2 and CO increased possibly due to the consumption of part of CaSO4 in the side reaction and thus not enough lattice oxygen available. In the air reactor (AR), the oxidization of CaS by air into CaSO4 was always dominant. Besides at ?AR below 0.8, both the solid side reaction of CaSO4 with CaS and the oxidization of CaS into CaO were simultaneously in effect. (ii) In the FR, the optimized condition was suggested as at around 915C, atmospheric condition and carefully controlled ?FR around unity. (iii) In the AR, sufficient supply of air was important for the oxidization of CaS, and ?AR ? 1 would ensure the full oxidization of CaS into CaSO4 and prevent the emission of SO2 and formation of CaO as well. Overall, this study provided the most suitable conditions of using CaSO4 as OC in CLC of syngas with minimal SO2 emissions and CaO formation.

Bao-wen WANG; Rong YAN; Ying ZHENG; Hai-bo ZHAO; Chu-guang ZHENG

2011-01-01T23:59:59.000Z

214

Process to upgrade coal liquids by extraction prior to hydrodenitrogenation  

DOE Patents (OSTI)

Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

Schneider, Abraham (Overbrook Hills, PA); Hollstein, Elmer J. (Wilmington, DE); Janoski, Edward J. (Havertown, PA); Scheibel, Edward G. (Media, PA)

1982-01-01T23:59:59.000Z

215

Survey of the Economics of Hydrogen Technologies  

E-Print Network (OSTI)

Gasification Biomass Pyrolysis Electrolysis Hydrogen Storage Compressed Gas Liquefied Gas Metal Hydride Carbon Hydrogen Production Steam Methane Reforming Noncatalytic Partial Oxidation Coal Gasification Biomass

216

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

217

DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect

During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

K. Payette; D. Tillman

2004-06-01T23:59:59.000Z

218

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

219

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

SciTech Connect

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

220

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Printable Version 2010 Annual Progress Report The 2010 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2010. Published in February 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence Chemical Hydrogen Storage Center of Excellence Hydrogen Sorption Center of Excellence

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Printable Version 2011 Annual Progress Report The 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2011. Published in November 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover and Title Page Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Analysis Production Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Chemical Hydrogen Storage Hydrogen Sorption

222

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

223

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

224

CArHO Hydrogen Bonds in Substituted Isobenzofuranone Derivatives: Geometric, Topological, and NMR Characterization  

Science Journals Connector (OSTI)

The O10H7 H-bond energy [?E, kcal/mol] in the gas phase evaluated as the difference between the total energies of the a and b isomers. ... In an earlier paper(11b) focused on bindone 4, we separated the effect of the hydrogen bond (0.6 ppm) from the overall deshielding effects, including steric, anisotropic, and electric field effects of the C?O group on the 1H NMR chemical shift of the participating proton (1.8 ppm). ...

Mark V. Sigalov; Evgeniya P. Doronina; Valery F. Sidorkin

2012-06-26T23:59:59.000Z

225

Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen  

SciTech Connect

Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

K. Coulter

2008-03-31T23:59:59.000Z

226

Hydrogenation of carbonaceous materials  

DOE Patents (OSTI)

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

227

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

228

Hydrogen Related Analytical Studies Office of Fossil Energy and  

E-Print Network (OSTI)

coal with co-production of electric power · Centralized production of liquid fuel hydrogen carriers to ASPEN. Simulations included production of power, liquids, syngas and hydrogen from coal. · In the mid current baseline · Centralized production of hydrogen from coal · Centralized production of hydrogen from

229

Process for stabilization of coal liquid fractions  

DOE Patents (OSTI)

Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

Davies, Geoffrey (Boston, MA); El-Toukhy, Ahmed (Alexandria, EG)

1987-01-01T23:59:59.000Z

230

Clean coal  

SciTech Connect

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

231

Low-rank coal research  

SciTech Connect

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

232

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Printable Version 2009 Annual Progress Report The 2009 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2009. Published in November 2009, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 318 KB) I. Introduction, Sunita Satyapal, U.S. Department of Energy (PDF 1.5 MB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Nuclear Hydrogen Initiative Photoelectrochemical Biological Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence

233

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Printable Version 2008 Annual Progress Report The 2008 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2008. Published in November 2008, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 180 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 980 KB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Electrolysis Separations Biomass Gasification Photoelectrochemical Biological Production Hydrogen From Coal Nuclear Hydrogen Initiative Hi-Temp Thermochemical Cross-Cutting Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage

234

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Southern Research Institute Project Number: FE0010231 Project Description Fischer-Tropsch (FT) process converts a mixture of carbon monoxide and hydrogen, called syngas, into liquid hydrocarbons. It is a leading technology for converting syngas derived from gasification of coal and coal-biomass mixtures to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FTS catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. The objectives of this project are (i) to demonstrate potential for CBTL cost reduction by maximizing the production of C5-C20 hydrocarbon liquids using a selective FTS catalyst and (ii) to evaluate the impacts of the addition of biomass to coal on product characteristics, carbon foot print, and economics.

235

Clean coal technology applications  

SciTech Connect

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

236

Hydrogen Energy Technology Geoff Dutton  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

237

Fabrication and Performance of Ni-YSZ Anode Supported Cell for Coal Derived Syngas Application by Tape Casting and Spin Coating  

SciTech Connect

Ni-YSZ anode supported cell has been developed for direct utilization of coal derived syngas as fuel in the temperature range of 700-850 C. The porous Ni-YSZ anode substrate was prepared based on processes of slip casting and lamination of anode tape. Then thin-film YSZ electrolyte was deposited on pre-sintered anode substrate via a colloidal spin coating technique and an optimized final sintering route. Dense and crackfree YSZ electrolyte was successfully obtained after sintering at 1440C for 4hrs. Processing factors like pre-sintering of anode, solvent, coating cycles and sintering route on the final properties of YSZ film was studied. A power density of 0.62W/cm2 has been achieved for the anode supported cell tested in 97%H2/3%H2O at 800C. EIS test results indicated the cell performance was essentially influenced by interfacial resistance and charge transfer process.

Gong, Mingyang (West Virginia U., Morgantown WV); Jiang, Yinglu (West Virginia U., Morgantown WV); Johnson, C.D.; Xingbo, Liu (West Virginia U., Morgantown WV)

2007-10-01T23:59:59.000Z

238

NETL: Coal and Coal/Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

C&CBTL C&CBTL Coal and Power Systems Coal and Coal/Biomass to Liquids The Coal and Coal/Biomass to Liquids program effort is focused on technologies to foster the commercial adoption of coal and coal/biomass gasification and the production of affordable liquid fuels and hydrogen with excellent environmental performance. U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis Systems Analyses Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits

239

Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of Biomass- and Coal-derived Syngas  

Science Journals Connector (OSTI)

Biomass feedstocks contain low percentages of protein-derived sulfur that is converted primarily to H2S, as well as small amounts of carbonyl sulfide (COS) and organosulfur compounds during pyrolysis and gasification. ...

Singfoong Cheah; Daniel L. Carpenter; Kimberly A. Magrini-Bair

2009-10-16T23:59:59.000Z

240

Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes  

SciTech Connect

Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

Ilias, Shamsuddin; Kumar, Dhananjay

2012-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coal: the cornerstone of America's energy future  

SciTech Connect

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

242

CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY  

SciTech Connect

Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

Zhen Fan

2006-05-30T23:59:59.000Z

243

NETL: Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

244

Coal-tire co-liquefaction  

SciTech Connect

Co-liquefaction of ground coal and tire rubber was studied at 400{degrees}C both with and without catalyst. Two different tire samples were used. In the non-catalytic runs, the conversion of coal increased with the addition of tire and the increase was dependent on tire/coal ratio and hydrogen pressure. Using a ferric sulfide-based catalyst, the coal conversion increased with an increase in the catalyst loading. However, the increase was more pronounced at loadings of around 0.5 wt%. The addition of tire to coal in the catalytic runs was not particularly beneficial, especially, when the tire/coal ratio was above 1.

Sharma, R.K.; Dadyburjor, D.B.; Zondlo, J.W.; Liu, Zhenyu; Stiller, A.H. [West Virginia Univ., Morgantown, WV (United States)

1995-12-31T23:59:59.000Z

245

International Partnership for a Hydrogen Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding .... "With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free. President George W. Bush 2003 State of the Union Address January 28, 2003

246

SolventCoalMineral Interaction during Solvent Extraction of Coal  

Science Journals Connector (OSTI)

The solvent extraction of Poplar lignite coal was studied with three model solvents (tetralin, quinoline, and 1-naphtol) and one industrial coal liquid derived solvent. ... Thanks to its wide distribution and large reserves, coal is a feasible local substitute feed material for conventional crude oil in many countries. ... Physical dissolution dominates at lower temperature, around 200 C and lower temperatures for lignites; the role of the solvent is to relax the coal matrix and drag soluble molecules from the coal into the bulk solvent phase. ...

Mariangel Rivolta Hernndez; Carolina Figueroa Murcia; Rajender Gupta; Arno de Klerk

2012-10-26T23:59:59.000Z

247

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

248

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

249

Moisture determination and structure investigation of native and dried Argonne premium coals. A hydrogen-1 solid-state NMR relaxation study  

Science Journals Connector (OSTI)

Moisture determination and structure investigation of native and dried Argonne premium coals. ... This work has been undertaken aiming to estimate the size of pores in moist coals on the basis of the nuclear magnetic resonance relaxation characteristics of water sorbed in the pores as the molecular probe. ...

X. Yang; A. R. Garcia; J. W. Larsen; B. G. Silbernagel

1992-09-01T23:59:59.000Z

250

Bioconversion of coal-derived synthesis gas to liquid fuels. Final report, September 29, 1992--December 27, 1994  

SciTech Connect

The proposed research project consists of an integrated, two-stage fermentation and a highly energy-efficient product separation scheme. In the first fermentation, Butyribacterium methylotrophicum converts carbon monoxide (CO) into butyric acid and acetic acids which are then converted into butanol, ethanol, and a small amount of acetone in the second stage fermentation by Clostridium acetobutylicum. An advanced separation system process, based on pervaporation, removes the alcohols from the fermentation broth as they are formed, along with some of the hydrogen sulfide (H{sub 2}S), to minimize possible inhibition of the fermentations. This bioconversion process offers a critical advantage over conventional, catalytic processes for synthesis gas conversion: the microorganisms are several orders of magnitude more sulfur tolerant than metallic catalysts. The catalysts require sulfur removal to the parts per million level, while the microorganisms are unaffected by H{sub 2}S and carbonyl sulfide (COS) at one part per hundred--roughly the composition of sulfur in raw synthesis gas. During the two-year course of this project, the following major objectives have been accomplished: demonstrated long-term cell recycle of continuous fermentation of synthesis gas; demonstrated cell immobilization of Butyribacterium methylotrophicum; identified trickle-bed reactor as a viable alternative fermentation method; modulated metabolic pathways to increase C4 formation during synthesis gas fermentation; recovered carbon and electrons from H{sub 2} and CO{sub 2} with pathway modulation for increased C4 production; developed bacterial strains with improved selectivity for butyrate fermentation; demonstrated two-stage CO to alcohol fermentation; and concentrated alcohol from solventogenic fermentation by pervaporation.

Jain, M.K.; Worden, R.M.; Grethlein, H.E.

1995-01-15T23:59:59.000Z

251

Characterization of Liquids Derived From Laboratory Coking of Decant Oil and Co-Coking of Pittsburgh Seam Bituminous Coal with Decant Oil  

Science Journals Connector (OSTI)

(41-43) Co-coking of decant oil/coal blend produced higher coke and gas yields but less liquid product than those of coking. ... When the same decant oil was blended with the Pittsburgh Seam coal and then delayed co-coked, the overhead liquid contained 2.1% gasoline, 3.6% jet fuel, 4.6% diesel, and 88.8% fuel oil on average. ... It is also possible that catalytic cracking reactions may occur via the coal mineral matter (e.g., clays, which are abundant minerals in coals, can serve as cracking catalysts) (Table 1). ...

mer Gl; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

2009-04-21T23:59:59.000Z

252

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network (OSTI)

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder. (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

253

NETL: News Release - Enabling Turbine Technologies for Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

September 8, 2005 September 8, 2005 Enabling Turbine Technologies for Hydrogen Fuels Turbine Program Advances Ultra-Clean, Coal-Based Systems WASHINGTON, DC - The Department of Energy's Office of Fossil Energy Turbine Technology R&D Program was recently expanded with the selection of 10 new projects valued at $130 million. The new program will advance turbines and turbine subsystems for integrated gasification combined cycle (IGCC) power plants, and address the use of hydrogen in small-scale turbines for industrial applications. Resulting technologies will operate cleanly and efficiently when fueled with coal-derived hydrogen or synthesis gas. Turbines can generate electrical power on a large scale-in central power stations sized 250 megawatts and larger-or on a small scale-in local, industrial power systems sized 1-100 megawatts. Small-scale systems also produce mechanical power for jet engines, compressors, heating systems, and other applications.

254

Comparative investigation on chemical looping combustion of coal-derived synthesis gas containing H2S over supported NiO oxygen carriers  

SciTech Connect

Chemical looping combustion (CLC) of simulated coal-derived synthesis gas was conducted with NiO oxygen carriers supported on SiO2, ZrO2, TiO2, and sepiolite. The effect of H2S on the performance of these samples for the CLC process was also evaluated. Five-cycle thermogravimetric analysis (TGA) tests at 800 #1;C indicated that all oxygen carriers had a stable performance at 800 #1;C, except NiO/SiO2. Full reduction/oxidation reactions of the oxygen carrier were obtained during the five-cycle test. It was found that support had a significant effect on reaction performance of NiO both in reduction and oxidation rates. The reduction reaction was significantly faster than the oxidation reaction for all oxygen carriers, while the oxidation reaction is fairly slow due to oxygen diffusion on NiO layers. The reaction profile was greatly affected by the presence of H2S, but there was no effect on the capacity due to the presence of H2S in synthesis gas. The presence of H2S decreased reduction reaction rates significantly, but oxidation rates of reduced samples increased. X-ray diffraction (XRD) data of the oxidized samples after a five-cycle test showed stable crystalline phases without any formation of sulfides or sulfites/sulfates. Increase in reaction temperature to 900 #1;C had a positive effect on the performance.

Ksepko, E.; Siriwardane, R.; Tian, H.; Simonyi, T.; Sciazko, M.

2010-01-01T23:59:59.000Z

255

Gasification of New Zealand coals: a comparative simulation study  

SciTech Connect

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young [University of Auckland, Auckland (New Zealand). Department of Chemical and Materials Engineering

2008-07-15T23:59:59.000Z

256

NETL: Coal & Coal Biomass to Liquids - NETL H2-from-Coal Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal/Biomass to Liquids - Reference Shelf and Coal/Biomass to Liquids - Reference Shelf NETL H2-from-Coal Separations Project Reviews April 29-30, 2008 National Energy Technology Laboratory Morgantown, WV Presentations NETL/ORD In-House Membrane Research Bryan Morreale - National Energy Technology Laboratory Development of Mixed-Conducting Dense Ceramic Membranes for Hydrogen Separation [PDF-1.4MB] Hydrogen Production by Water Dissociation Using Ceramic Membranes Balu Balachandran - Argonne National Laboratory High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors [PDF-505KB] Robert Buxbaum - REB Research and Consulting Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Doug Jack - Eltron Research Sulfur and Halide Tolerance Kent Coulter - Southwest Research Institute

257

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Printable Version 2007 Annual Progress Report The 2007 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2007. Published in November 2007, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 711 KB) Table of Contents (PDF 236 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 821 KB) II. Hydrogen Production Distributed Production from Natural Gas Distributed Production from Bio-Derived Liquids Electrolysis Separations Central Biomass Gasification Solar Hi-Temp Thermochemical Water Splitting Photoelectrochemical Biological Production Hydrogen from Coal Nuclear Hydrogen Initiative

258

Interaction of low-metamorphic coal components in coking batch  

Science Journals Connector (OSTI)

The interaction of low-metamorphic coal components in coking batch during pyrolysis is studied. The characteristics of the resulting coke are presented, and the partial hydrogenation is...

E. I. Malyi; A. S. Koverya; M. A. Starovoit

2010-08-01T23:59:59.000Z

259

Zero emission coal  

SciTech Connect

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

260

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect

High melting temperature synthetic pitches (Synpitches) were created using coal derivatives produced from a solvent extraction technique. Solvent extraction is used to separate hydrocarbons from mineral matter as well as other insolubles. Mild hydrogenation can be used to chemically modify resultant material to produce a true pitch. There are three main techniques which can be used to tailor the softening point of the Synpitch. First, the softening point can be controlled by varying the conditions of hydrogenation, chiefly the temperature, pressure and residence time in a hydrogen overpressure. Second, by selectively distilling light hydrocarbons, the softening point of the remaining pitch can be raised. Third, the Synpitch can be blended with another mutually soluble pitch or hydrocarbon liquid. Through such techniques, spinnable isotropic Synpitches have been created from coal feedstocks. Characteristics of Synpitches include high cross-linking reactivity and high molecular weight, resulting in carbon fibers with excellent mechanical properties. To date, mechanical properties have been achieved which are comparable to the state of the art achievable with conventional coal tar pitch or petroleum pitch.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Carbon dioxide recovery from an integrated coal gasifier, combined cycle plant using membrane separation and a CO2 gas turbine  

Science Journals Connector (OSTI)

A scheme is described for electricity production based on coal gasification with recovery of carbon dioxide. In this scheme, coal is gasified into a coal gas, consisting mainly of hydrogen and carbon monoxide. A ...

Chris Hendriks

1994-01-01T23:59:59.000Z

262

Caustic washing for refining of direct coal liquefaction products  

SciTech Connect

Extensive research and development sponsored by the U.S. DOE/PETC over the past two decades has resulted in dramatic improvements in the quality of direct coal liquefaction products. High-quality coal-derived distillates are obtainable from catalytic two-stage liquefaction (TSL) processes, such as those developed at the Wilsonville, AL pilot plant and the Hydrocarbon Technologies Inc. (HTI) pilot plant and bench units. The products of the Wilsonville and HTI TSL operations are suitable as high quality feedstocks for producing transportation fuels in a refinery. These products have important quality advantages over crude petroleum: they are distillates boiling below about 700{degrees}F and are thus virtually free of resid and metals, and they have very low sulfur contents and low nitrogen contents. The coal liquids have carbon and hydrogen contents and Watson characterization factors within the range of crude petroleums. However, relative to crude petroleum, the crude coal products have elevated oxygen contents. This report describes the removal of phenols from coal liquids by caustic washing, and the the recovery of the cresylic acid by-product.

Winschel, R.A.; Burke, F.P.; Robbins, G.A.; Brandes, S.D. [CONSOL, Inc., Library, PA (United States); Zhou, P. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1995-12-31T23:59:59.000Z

263

Synthesis and Application of New Ligands Derived from N-Heterocyclic Carbenes, Phosphines and Phosphites for Asymmetric Hydrogenations  

E-Print Network (OSTI)

N-Heterocyclic carbene and phosphorus ligands have been synthesized and used for many catalytic reactions including chiral analogs of Crabtrees catalyst for asymmetric hydrogenation. These catalysts have been studied extensively...

Khumsubdee, Sakunchai

2013-11-05T23:59:59.000Z

264

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

265

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal for Biomass Application  

SciTech Connect

Systems comprising of multiple sorbent and catalytic beds have been developed for the warm syngas cleanup of coal- and biomass-derived syngas. Tailored specifically for biomass application the process described here consists of six primary unit operations: 1) Na2CO3 bed for HCl removal, 2) two regenerable ZnO beds for bulk H2S removal, 3) ZnO bed for H2S polishing, 4) NiCu/SBA-16 sorbent for trace metal (e.g. AsH3) removal, 5) steam reforming catalyst bed for tars and light hydrocarbons reformation and NH3 decomposition, and a 6) Cu-based LT-WGS catalyst bed. Simulated biomass-derived syngas containing a multitude of inorganic contaminants (H2S, AsH3, HCl, and NH3) and hydrocarbon additives (methane, ethylene, benzene, and naphthalene) was used to demonstrate process effectiveness. The efficiency of the process was demonstrated for a period of 175 hours, during which no signs of deactivation were observed. Post-run analysis revealed small levels of sulfur slipped through the sorbent bed train to the two downstream catalytic beds. Future improvements could be made to the trace metal polishing sorbent to ensure complete inorganic contaminant removal (to low ppb level) prior to the catalytic steps. However, dual, regenerating ZnO beds were effective for continuous removal for the vast majority of the sulfur present in the feed gas. The process was effective for complete AsH3 and HCl removal. The steam reforming catalyst completely reformed all the hydrocarbons present in the feed (methane, ethylene, benzene, and naphthalene) to additional syngas. However, post-run evaluation, under kinetically-controlled conditions, indicates deactivation of the steam reforming catalyst. Spent material characterization suggests this is attributed, in part, to coke formation, likely due to the presence of benzene and/or naphthalene in the feed. Future adaptation of this technology may require dual, regenerable steam reformers. The process and materials described in this report hold promise for a warm cleanup of a variety of contaminant species within warm syngas.

Howard, Christopher J.; Dagle, Robert A.; Lebarbier, Vanessa MC; Rainbolt, James E.; Li, Liyu; King, David L.

2013-06-19T23:59:59.000Z

266

Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream  

DOE Patents (OSTI)

A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (S. Somerville, NJ)

1989-01-01T23:59:59.000Z

267

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

268

Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification  

Science Journals Connector (OSTI)

Abstract The kinetics of steam gasification was examined for bituminous coals of a low coal rank. The examined coals can be the raw material for underground coal gasification. Measurements were carried out under isothermal conditions at a high pressure of 4MPa and temperatures of 800, 900, 950, and 1000C. Yields of gasification products such as carbon monoxide and carbon dioxide, hydrogen and methane were calculated based on the kinetic curves of formation reactions of these products. Also carbon conversion degrees are presented. Moreover, calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the coal gasification process. The parameters obtained during the examinations enable a preliminary assessment of coal for the process of underground coal gasification.

Stanis?aw Porada; Grzegorz Czerski; Tadeusz Dziok; Przemys?aw Grzywacz; Dorota Makowska

2015-01-01T23:59:59.000Z

269

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

270

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS  

SciTech Connect

This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

2002-03-31T23:59:59.000Z

271

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines - University of California, Irvine  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanisms Underpinning Degradation Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines-University of California, Irvine Background Thermal barrier coatings (TBCs) and components in the hot section of gas turbines are degraded by coal-derived high hydrogen content (HHC) synthesis gas (syngas). In this project the University of California, Irvine (UCI) will provide an improved mechanistic understanding of the degradation of critical turbine system materials in HHC-fueled

272

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents (OSTI)

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

Miller, R.N.

1986-10-14T23:59:59.000Z

273

COAL LIQUEFACTION STUDIES USING PHOSPHORIC ACID AT MODERATE TEMPERATURES AND PRESSURES  

E-Print Network (OSTI)

1976. Cox, John 1. , urCatalysts for Coal Conversion", fromUiClean Fuels from Coal", IGT Symposium, Sept. 10-14, 1974.Derived from Solvent Refined Coal Conversion Products", SRI

McLean, J.B.

2010-01-01T23:59:59.000Z

274

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

275

Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1993--March 31, 1993  

SciTech Connect

Five barrels of a Wilsonville process derived solvent (V-1074) from Black Thunder coal were obtained. This material boils within the preferred gas oil range, is more aromatic than previous solvents, and will therefore be used for the bench unit studies. Several repeat runs were performed in the autoclave to confirm the results of the matrix study. In addition, runs were carried out with different catalysts, with agglomerates and with the V-1074 solvent. The results of the autoclave runs were analyzed with respect to coal conversion, CO conversion, oil yield, hydrogen consumption and oxygen removal. It was concluded that the best operating conditions for the first stage operation was a temperature of at least 390{degrees}C, residence time of at least 30 minutes, cold CO pressure of at least 600 psig and potassium carbonate catalyst (2% wt on total feed). The data also indicated however, that the coal conversion goes through a maximum, and too high a severity leads to retrograde reaction and lower coal solubilization. The scope for increasing temperature and time is therefore limited. Petrographic examination of the THF insoluble resids from the autoclave program indicated a maximum coal conversion of about 90% for Black Thunder coal. The bench unit construction was also essentially completed and the bench unit program to be carded out in the next twelve months was defined.

Berger, D.J.; Parker, R.J.; Simpson, P.L. [Canadian Energy Development, Inc., Edmonton, AB (Canada)

1993-07-01T23:59:59.000Z

276

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents (OSTI)

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

277

Coal extraction  

SciTech Connect

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

278

EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS  

SciTech Connect

Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed. An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.

Kevin C. Galbreath

2002-08-01T23:59:59.000Z

279

The proceedings of the 31st international technical conference on coal utilization and fuel systems  

SciTech Connect

Topics covered include oxy-fuel, gasification, CO{sub 2} sequestration, coal preparation, opportunities and barriers for overall energy efficiency improvement, advanced sensors and controls, co-firing, computer simulations and virtual power plants, hydrogen fuels from coal, advanced materials, combustion optimisation, innovations for existing power plants, CO{sub 2} capture, biomass, alternative methods of hydrogen production, NOx control, mercury, low NOx technology, coal to liquids, and coal compatible fuel cells.

Sakkestad, B.A. (ed.)

2006-07-01T23:59:59.000Z

280

FutureGen -- A Sequestration and Hydrogen Research Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

governmentindustry partnership to design, build and operate a nearly emission-free, coal-fired electric and hydrogen production plant. FutureGen -- A Sequestration and...

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen Systems Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal » Coal to Liquids » Hydrogen Clean Coal » Coal to Liquids » Hydrogen Systems Analysis Hydrogen Systems Analysis Energy analyses provide valuable information, input, and guidance into the decision-making process on important issues such as national energy security and environmental policies, research and development programs and plans, technology options, and potential technical, economic, market, and social barriers to technology deployment. The Hydrogen and Clean Coal Fuels Program, working with the NETL Office of Systems, Analyses, and Planning, supports systems, techno-economic, and benefits analysis activities to provide guidance and input for its research and development program portfolio, assess the progress made by Program-funded research, and measure the energy security, economic and

282

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

283

Ni catalysts derived from MgAl layered double hydroxides for hydrogen production from landfill gas conversion  

Science Journals Connector (OSTI)

A layered double hydroxide (LDH) precursor with a hydrotalcite-like structure containing Ni/Mg/Al cations was prepared. A series of Ni catalysts containing mixed-oxides and spinel phases were then obtained through thermal treatment of the LDH precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), and temperature-programmed reduction (TPR) revealed that the LDH derived Ni catalysts have well-dispersed nickel phases upon reduction. The thermal treatment temperatures have noticeable effects on the specific surface area, pore volume, phase transformation, particle size, and reducibility of the catalysts. Thermal treatment temperatures up to 700C promote the generation of mesopores which facilitate an increase in specific area and pore volume. Beyond 700C sintering occurs, mesopores collapse, and specific area and pore volume decrease. High thermal treatment temperatures favor the phase transformation to spinel solid solutions and the particle size growth. Metal-support interaction is enhanced but reducibility is hindered due to the formation of spinel solid solution phases. The LDH derived Ni catalysts were tested for landfill gas conversion at 750C and have shown excellent activity and stability in terms of methane conversion. At gas hourly space velocity (GHSV) of 240,000h?1 and pressure of 1atm, 81% methane conversion was achieved during a 48h test period without apparent catalyst deactivation.

Qingsong Wang; Wei Ren; Xueliang Yuan; Ruimin Mu; Zhanlong Song; Xiaolin Wang

2012-01-01T23:59:59.000Z

284

Coal and Biomass to Liquids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal to Liquids » Coal and Coal to Liquids » Coal and Biomass to Liquids Coal and Biomass to Liquids Over the last several decades, the Office of Fossil Energy performed RD&D activities that made significant advancements in the areas of coal conversion to liquid fuels and chemicals. Technology improvements and cost reductions that were achieved led to the construction of demonstration-scale facilities. The program is now supporting work to reduce the carbon footprint of coal derived liquids by incorporating the co-feeding of biomass and carbon capture. In the area of direct coal liquefaction, which is the process of breaking down coal to maximize the correct size of molecules for liquid products, the U.S. DOE made significant investments and advancements in technology in the 1970s and 1980s. Research enabled direct coal liquefaction to produce

285

Novel Metallic Membranes for Hydrogen Separation  

SciTech Connect

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

286

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

287

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

288

Thermochemical Analysis of U.S. Argonne Premium Coal Samples by Time-Resolved Pyrolysis-Field ionization Mass Spectrometry  

Science Journals Connector (OSTI)

Analytical pyrolysis techniques are widely used for the thermochemical analysis of coals and coal-derived products. During heating, complex mixtures of chemical substances are released from coal by distillatio...

Norbert Simmleit; Hans-Rolf Schulten; Yongseung Yun

1992-01-01T23:59:59.000Z

289

Production of hydrogen rich bio-oil derived syngas from co-gasification of bio-oil and waste engine oil as feedstock for lower alcohols synthesis in two-stage bed reactor  

Science Journals Connector (OSTI)

Abstract High efficient production of lower alcohols (C1C5 mixed alcohols) from hydrogen rich bio-oil derived syngas was achieved in this work. A non-catalytic partial oxidation (NPOX) gasification technology was successfully applied in the production and conditioning of bio-oil derived syngas using bio-oil (BO) and emulsifying waste engine oil (EWEO) as feedstock. The effects of water addition and feedstock composition on the gasification performances were investigated. When the BO20 and EWEO30 was mixed with mass ratio of 1: 0.33, the maximum hydrogen yield of 93.7% with carbon conversion of 96.7% was obtained, and the hydrogen rich bio-oil derived syngas was effectively produced. Furthermore, a two-stage bed reactor was applied in the downstream process of lower alcohols synthesis from hydrogen rich bio-oil derived syngas (H2/CO/CO2/CH4/N2=52.2/19.5/3.0/9.4/15.9, v/v). The highest carbon conversion of 42.5% and the maximum alcohol yield of 0.18kg/kgcath with selectivity of 53.8wt% were obtained over the Cu/ZnO/Al2O3(2.5)//Cu25Fe22Co3K3/SiO2(2.5) catalyst combination system. The mechanism and evaluation for lower alcohols synthesis from model bio-oil derived syngas and model mixture gas were also discussed. The integrative process of hydrogen rich bio-oil derived syngas production and downstream lower alcohols synthesis, potentially providing a promising route for the conversion of organic wastes into high performance fuels and high value-added chemicals.

Haijun Guo; Fen Peng; Hairong Zhang; Lian Xiong; Shanggui Li; Can Wang; Bo Wang; Xinde Chen; Yong Chen

2014-01-01T23:59:59.000Z

290

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect

During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2003-10-01T23:59:59.000Z

291

Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure  

Science Journals Connector (OSTI)

A high-pressure high-temperature apparatus has been developed for the analysis of sorbents capable of removing alkali compounds to the concentration levels required by advanced coal-fired power generating systems. The reactor is capable of operating at temperatures up to 1200? C and pressures up to 2.0 MPa. A laser-based techniquephotofragment fluorescenceenables in situ analysis of the sodium content in a gas stream before and after a sorbent bed thereby determining the efficiency of the alkali removal by the various sorbents studied (typically alumino-silicate clays). The design and development of both the reactor and the laser-based analytical technique is described.

P. G. Griffin; R. J. S. Morrison; A. Campisi; B. L. Chadwick

1998-01-01T23:59:59.000Z

292

NETL: News Release - NETL Building Hydrogen Production and Dispensing  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 NETL Building Hydrogen Production and Dispensing Facility at Yeager Airport Morgantown, WV- The Department of Energy's National Energy Technology Laboratory (NETL) today announced its plans to construct and operate a hydrogen fuel production-and-dispensing facility at the Yeager Airport in Charleston, W.Va. According to U.S. Senator Robert C. Byrd, D-W.Va., "This project is a great example of the wonderful potential of coal. Coal can produce hydrogen fuel, which can greatly reduce greenhouse gases and our need to import foreign oil. Coal is abundant and remarkably versatile - particularly hydrogen produced from coal through gasification or coal-based power used to split water that provides a secure source of hydrogen fuel that will compete with imported petroleum. I am very pleased to be involved in helping this new hydrogen facility in West Virginia become a reality."

293

Coal liquefaction process wherein jet fuel, diesel fuel and/or astm no. 2 fuel oil is recovered  

SciTech Connect

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, R.F.; Ryan, D.F.

1982-06-01T23:59:59.000Z

294

Amorphous Alloy Membranes for High Temperature Hydrogen Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

for High for High Temperature Hydrogen Separations Background Coal and biomass are readily available in the United States and can be mixed for thermal processing to produce hydrogen and power. The produced hydrogen can be sent directly to a fuel cell for highly efficient and environmentally clean power generation. For coal and biomass to become economically viable sources of hydrogen, more efficient production processes need to be developed. To meet this

295

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

296

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

$4. Wind electrolysis-derived hydrogen would cost about $7-Electrolysis 24,000 kg/day NAS/NRC, 2004 Note: Delivered hydrogen costs

2004-01-01T23:59:59.000Z

297

Hydrogen: The fuel for the future  

SciTech Connect

This publication briefly reviews the benefits that would be derived from using hydrogen as a fuel source. The various methods of producing hydrogen are also briefly reviewed.

NONE

1995-03-01T23:59:59.000Z

298

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

299

IN THIS ISSUE Clean Coal Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Efforts Clean Coal Efforts ......................... 1 News Bytes ................................... 1 Virtual Energy Plants .................... 3 Sulfur Removal Efforts ................ 4 Environmental Benefits Topical ... 6 R&D Milestones ........................... 6 Hydrogen Program Activities ........ 7 Gasification Workshop ................. 8 Sensors and Controls Workshop ... 9 Upcoming Events ........................ 10 International Initiatives ............... 11 Status of CCT Projects ................ 14 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOE/FE-0215P-45 ISSUE NO. 45, SUMMER 2001 See "News Bytes" on page 2 ... The Port Authority of Port Arthur, Texas and Sabine Power I Ltd have

300

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Coal preparation: The essential clean coal technology  

SciTech Connect

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

302

Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes  

DOE Patents (OSTI)

In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.

Nizamoff, Alan J. (Convent Station, NJ)

1980-01-01T23:59:59.000Z

303

Chapter 12 - Coal use in iron and steel metallurgy  

Science Journals Connector (OSTI)

Abstract: This chapter discusses the role of coal in iron and steel metallurgy. The chapter first gives information about routes for steel manufacture, current levels of steel production and forecasts for the future. It then discusses the use of coal in different metallurgical processes with emphasis on various ironmaking technologies as the most energy consuming step of the process chain. Alternatives to coal like biomass, hydrogen or waste plastics are discussed from the point of view of CO2 reduction.

A. Babich; D. Senk

2013-01-01T23:59:59.000Z

304

Membrane separation advances in FE hydrogen program  

SciTech Connect

Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

NONE

2007-12-31T23:59:59.000Z

305

Case-study of a coal gasification-based energy supply system for China  

E-Print Network (OSTI)

clean fuels derived via coal gasification. Emissions of air pollutants in the SC scenario are compared polygeneration technologies to meet energy needs of coal-rich areas. Polygeneration systems, based on coalCase-study of a coal gasification-based energy supply system for China Zheng Hongtao Department

306

Coal liquefaction. Quarterly report, January-March 1979. [US DOE supported  

SciTech Connect

Progress in DOE-supported coal liquefaction pilot plant projects is reported: company, location, contract, funding, process description, history and progress in the current quarter. Related projects discussed are: coking and gasification of liquefaction plant residues, filtration of coal liquids and refining of coal liquids by hydrogenation. (LTN)

None

1980-01-01T23:59:59.000Z

307

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Plant - without coking (lb/hr) Feed Coal* Hydrogen YieldsCoking Summary Cost Estimates for Solvent Refining of Five U.S. CoalsCoal Handling and Preparation Preheaters and Dissolvers Mineral Separation (Filters) Solvent Recovery Gas Recovery Mineral Residue Processing and Storage Coking

Ferrell, G.C.

2010-01-01T23:59:59.000Z

308

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

309

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

310

Coal conversion. 1979 technical report  

SciTech Connect

Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

None

1980-09-01T23:59:59.000Z

311

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

312

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

313

Preparation and gasification of a Thailand coal-water fuel  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.

Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.; Richter, J.J.; Dewall, R.A.; Young, B.C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Nakanart, A. [Ministry of Industry, Bangkok (Thailand)

1996-12-31T23:59:59.000Z

314

Coal industry annual 1993  

SciTech Connect

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

315

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

316

Laboratory scale studies of Pd/{gamma}-Al{sub 2}O{sub 3} sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures  

SciTech Connect

The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150540 C) to hot (>540 C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/?-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/?-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/?-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

Rupp, Erik C.; Granite, Evan J. [U.S. DOE; Stanko, Dennis C. [U.S. DOE

2013-01-01T23:59:59.000Z

317

Direct coal liquefaction process  

DOE Patents (OSTI)

An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300.degree. C. to 400.degree. C. for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.

Rindt, John R. (Grand Forks, ND); Hetland, Melanie D. (Grand Forks, ND)

1993-01-01T23:59:59.000Z

318

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

319

Clean Coal Power Initiative  

Energy.gov (U.S. Department of Energy (DOE))

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

320

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

322

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

323

Process for coal liquefaction in staged dissolvers  

DOE Patents (OSTI)

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01T23:59:59.000Z

324

An assessment of the potential for coal/residual oil coprocessing  

SciTech Connect

Among the promising new techniques to produce liquid hydrocarbon fuels from coal is coal/petroleum coprocessing based upon the use of heavy oil, tar sand bitumen and petroleum residua as ''solvents'' for the conversion of coal. Coprocessing is the simultaneous hydrogenation of coal and heavy oil fractions in specially designed reactors with coal contents by weight ranging from as low as 1% to potentially as high as 50-60% depending upon the technology employed. The results of a study on the potential for coal/residual oil coprocessing in the United States are addressed in this paper.

Huber, D.A.; Lee, Q.; Thomas, R.L.; Frye, K.; Rudins, G.

1986-09-01T23:59:59.000Z

325

Hydrogen storage in multilayer carbon nanotubes  

Science Journals Connector (OSTI)

Multilayer carbon nanotubes obtained by pyrolysis and mechanical activation of plant-derived amorphous carbon are excellent sorbents for hydrogen.

D. V. Onishchenko; V. P. Reva; V. G. Kuryavyi

2013-05-01T23:59:59.000Z

326

U.S. zero emission coal alliance techology  

SciTech Connect

For coal to maintain its major role in supplying the world's energy, eventually all emissions to the atmosphere must be eliminated. Not only must conventional pollutants, like sulfur compounds and dust particles be kept out of the air, but also the far larger quantities of carbon dioxide that result from the combustion of carbon. We present a new technology for coal-based power that generates hydrogen from carbon and water, avoids emissions to the atmosphere, and disposes of the carbon dioxide as inert, solid mineral carbonates. Based on the available resources, coal power is sustainable for centuries. Our zero emission technology makes coal energy as clean as renewable energy.

Lackner, K. S. (Klaus S.); Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

327

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

328

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jntgen

1987-01-01T23:59:59.000Z

329

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

330

Hydrogen Highways  

E-Print Network (OSTI)

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

331

The effect of coal particle size on the heat of combustion  

SciTech Connect

The relations between integral heat and differential heat of combustion for pulverized coal, respectively, and the size of coal particle were derived in this paper. The results show that coal particle size has some effect on its heats of combustion; the smaller coal particle size, the greater the specific surface area and the specific surface energy, and the greater the heat value, also; and that the differential heat of combustion for pulverized coal differs from the integral one.

Xue Yongqiang; Yan Ruiping; Gao Yang [Dept. of Coal Processing and Utilization, Shanxi (China)

1997-12-31T23:59:59.000Z

332

NETL: Gasification - Recovery Act: Scale-Up of Hydrogen Transport Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Eltron Research & Development Inc. Project Number: FC26-05NT42469 Project Description The Eltron Hydrogen Transport Membrane (HTM) technology uses composite metal alloy materials to separate H2 from coal-derived syngas (a mixture of H2, CO, CO2, and steam). Carbon dioxide on the feed side of the membrane remains at high pressure and in a concentrated form suitable for capture and re-use or storage. The Eltron HTM system is an enabling technology for the production of high purity H2 and the capture of CO2 at high pressure that is applicable to future integrated gasification combined cycle (IGCC) and central station H2 production plants. These novel membranes have an operating temperature of 280 to 440 degrees Celsius (°C), which is well-matched with emerging coal gas cleaning technologies and has the potential to significantly improve the overall efficiency and process economics for future gasification-based power, fuels, and chemical production plants. Eltron's membranes can withstand differential pressures of up to 1,000 pounds per square inch gauge (psig) without structural failure, allowing for successful integration into advanced, high-pressure coal gasification plants.

333

Amorphous Alloy Membranes for High Temperature Hydrogen Separation  

SciTech Connect

At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute (SwRI), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

Coulter, K

2013-09-30T23:59:59.000Z

334

Coal to Liquids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquids Liquids Coal to Liquids Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in Charleston, WV, the Yeager facility was constructed and operated with support from the Office of Fossil Energy’s National Energy Technology Laboratory. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in Charleston, WV, the Yeager facility was constructed and operated with support from the Office of Fossil Energy's National Energy Technology Laboratory. The Hydrogen and Clean Coal Fuels Program supports DOE's strategic goals of increasing energy security, reducing environmental impact of energy use,

335

Low-rank coal research. Quarterly report, January--March 1990  

SciTech Connect

This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

Not Available

1990-08-01T23:59:59.000Z

336

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

337

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

338

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

339

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

340

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal: world energy security. The Clearwater clean coal conference  

SciTech Connect

Topics covered include: oxy-fuel (overview, demonstrations, experimental studies, burner developments, emissions, fundamental and advanced concepts); post-combustion CO{sub 2} capture; coal conversion to chemicals and fuels; advanced materials; hydrogen production from opportunity fuels; mercury abatement options for power plants; and carbon capture and storage in volume 1. Subjects covered in volume 2 include: advanced modelling; advanced concepts for emission control; gasification technology; biomass; low NOx technology; computer simulations; multi emissions control; chemical looping; and options for improving efficiency and reducing emissions.

Sakkestad, B. (ed.)

2009-07-01T23:59:59.000Z

342

Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPEs technology refines coal by employing a novel catalyst to crack the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild catalytic gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPEs catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to fluidize the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A PdCu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

Swanson, Michael; Henderson, Ann

2012-04-01T23:59:59.000Z

343

Author's personal copy Photoelectrochemical hydrogen production from water/  

E-Print Network (OSTI)

coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resourcesAuthor's personal copy Photoelectrochemical hydrogen production from water/ methanol decomposition

Wood, Thomas K.

344

Hydrogen cars have zero emissions at the tailpipe  

E-Print Network (OSTI)

infrastructure would provide jobs · Hydrogen fuel cells have a higher "tank to wheel' efficiency than gasoline effi- ciency from plants other than corn #12;· Hydrogen fuel cells are currently very expensive · Fuel hydrogen from fossil fuels or elec- tricity made from coal produces the same emis- sions as any other fuel

Bowen, James D.

345

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

346

Controlled short residence time coal liquefaction process  

DOE Patents (OSTI)

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-04T23:59:59.000Z

347

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

348

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

of this study possible. iv List of Acronyms CH 4 Methane CO 2 Carbon dioxide EIA Energy Information Administration GIS Geographic Information System H2A U.S. Department of...

349

Advanced spectroscopic analysis of coal surfaces during beneficiation  

SciTech Connect

Preliminary FTIR spectra are reported on coals undergoing flotation where enhanced recovery was achieved by ultrasonic or chemical treatments. The spectra of sonicated coals indicate that ultrasonic treatment (10 kHz Swen Sonic) reduces the surface oxidation of heavily oxidized coal. Spectra of chemically treated coal indicate that a higher mineral concentration is present on or near the surface of float coal suggesting that a slime might be present. Spectra are reported for coal-, mineral-, and crystal-derived pyrite which show a strong absorbance band at 420 cm{sup {minus}1}. Spectra of eight Argonne Premium Coal Library specimens have been examined in the 420 cm{sup {minus}1} spectral region and are found to have numerous overlapping bands. 4 figs.

McClelland, J.F.; Oh, J.S.

1989-10-01T23:59:59.000Z

350

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 g...?1 and 120 to 450 g...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

351

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

352

Chapter 2 - Coal as Multiple Sources of Energy  

Science Journals Connector (OSTI)

Abstract Coal as multiple sources of energy is mined for its solid and gas-, oil-, and condensate-derived hydrocarbons as well as liquefied for synfuels. More than 50 countries mine coal as feedstock for power plants to generate electricity but only six of these countries monopolize 73% of the total recoverable coalbed gas resources of the world. Worldwide, about 30,000 coal mine explosions are caused by methane and carbon dioxide, and to prevent outbursts and emissions, underground, surface, and abandoned coalmine gases are exploited for industrial and commercial uses. Still, a large volume of unrecovered fugitive coalmine gases is released as global greenhouse gas emissions. An alternative source for foreign oil dependent countries is synfuels from coal liquefaction technology. Also, coal-derived hydrocarbons are a part of the conventional resources that is, gas, oil, and condensate sourced from coal but expelled into adjoining reservoirs, are attractive alternative energy sources.

Romeo M. Flores

2014-01-01T23:59:59.000Z

353

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

354

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

355

Activated Granulocytes and Granulocyte-derived Hydrogen Peroxide Are the Underlying Mechanism of Suppression of T-Cell Function in Advanced Cancer Patients  

Science Journals Connector (OSTI)

...and decreased cytokine production by patients T cells...also inhibit cytokine production by T cells. This action...the addition of the hydrogen peroxide (H2O2) scavenger...could suppress cytokine production of normal T cells...H2O2. MATERIALS AND METHODS Blood Samples. Blood...

Jan Schmielau and Olivera J. Finn

2001-06-15T23:59:59.000Z

356

SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2008-09-01T23:59:59.000Z

357

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

358

Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal  

SciTech Connect

This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

2008-01-01T23:59:59.000Z

359

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

SciTech Connect

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

360

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogens Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

362

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

363

Hydrogen Program Contacts; DOE Hydrogen Program FY 2009 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2009 Annual Progress Report DOE Hydrogen Program Sunita Satyapal, DOE Hydrogen Program, Acting Program Manager Office of Hydrogen, Fuel Cells and Infrastructure Technologies DOE Office of Energy Efficiency and Renewable Energy Phone: (202) 586-9811 E-mail: Sunita.Satyapal@ee.doe.gov Mark Ackiewicz, Hydrogen and Clean Coal Fuels Program Manager Office of Sequestration, Hydrogen, and Clean Coal Fuels U.S. Department of Energy Phone: (301) 903-3913 E-mail: Mark.Ackiewicz@hq.doe.gov Carl Sink, Program Manager Nuclear Hydrogen Initiative Office of Advanced Nuclear Research DOE Office of Nuclear Energy, Science and Technology Phone: (301) 903-5131 E-mail: Carl.Sink@nuclear.energy.gov John Vetrano, Materials Sciences and Engineering Division Office of Basic Energy Sciences

364

Hydrogen Vehicles and Refueling Infrastructure in India  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN VEHICLES AND FUELLING HYDROGEN VEHICLES AND FUELLING INFRASTRUCTURE IN INDIA Prof. L. M. Das Centre for Energy Studies Indian Institute of Technology Delhi INDIA " The earth was not given to us by our parents , it has been loaned to us by our children" Kenyan Proverb Same feeling exists in all societies Our moral responsibility---to handover a safer earth to future generation IIT Delhi August 18, 2004 -:Hydrogen:- Not a Radically New Concept JULES VERNE Mysterious Island (1876) ...." I believe that water will one day be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together will furnish an inexhaustible source of heat and light of an intensity of which coal is not capable.........water will be coal of the future" IIT Delhi August 18, 2004 Source: T. Nejat Veziroglu , Hydrogen Energy Technologies, UNIDO

365

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

366

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

367

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

368

From Coal to Coke  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

369

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

370

Coal Distribution Database, 2008  

Annual Energy Outlook 2012 (EIA)

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

371

Indonesian coal mining  

SciTech Connect

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

372

METC research on coal-fired diesels  

SciTech Connect

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

373

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrochlore-Based Catalysts for Syngas-Derived Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis Contact NETL Technology Transfer Group techtransfer@netl.doe.gov PON-13-006 August 2013 Opportunity This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates as well as other long-chain hydrocarbons. Research is currently active on this patent-pending technology "Method of CO and/or CO2 Hydrogenation Using Doped Mixed Metal Oxides." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Improves the conversion of syngas from natural gas, coal, or biomass * Enhances the potential use of oxygenates as

374

Microsoft Word - 42643_GE_Hydrogen Turbine_Factsheet_Rev B_12-08-06.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - Advanced IGCC/H2 Gas Turbine Development 3 - Advanced IGCC/H2 Gas Turbine Development Revision B 1 December 2006 FACT SHEET I. PROJECT PARTICIPANTS A. Prime Participant: General Electric Company, GE Energy B. Sub-Award Participant: General Electric Company, Global Research Center II. PROJECT DESCRIPTION A. Objective(s): The objective of this project is to design and develop a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC and FutureGen type applications that meets DOE turbine performance goals. The overall DOE Advanced Power System goal is to conduct, by 2010, the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency (45-50% (HHV)), near-zero emissions (less than 3 ppm v NOx @ 15% O 2 ) and competitive capital cost (< $1000/kW).

375

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

376

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

377

NETL: Coal Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

378

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

379

Ore components in coal  

SciTech Connect

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

380

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network (OSTI)

technologies. Given China's rich coal resources, the production and use of coal-derived DME as a cooking fuelDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

conventional and clean coal technologies. This project was primarily directed toward developing concrete, mineralogical, and microstructural properties. A clean coal ash is defined as the ash derived from SO2 control technologies. Based on these properties, two sources of both conventional and clean coal ashes were selected

Wisconsin-Milwaukee, University of

382

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

383

Nuclear Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

384

Coal Study Guide for Elementary School  

Energy.gov (U.S. Department of Energy (DOE))

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

385

Advanced Palladium Membrane Scale-up for Hydrogen Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Palladium Membrane Scale-up Palladium Membrane Scale-up for Hydrogen Separation Background Among the options being considered to establish greater U.S. independence from foreign energy sources is to increase the use of the nation's domestic coal reserves. The Department of Energy (DOE) is committed to supporting research and development of technologies for the reliable, efficient and environmentally friendly conversion of coal to hydrogen for utilization in advanced gasification-based electric power generation

386

H-Coal process and plant design  

DOE Patents (OSTI)

A process for converting coal and other hydrocarbonaceous materials into useful and more valuable liquid products. The process comprises: feeding coal and/or other hydrocarbonaceous materials with a hydrogen-containing gas into an ebullated catalyst bed reactor; passing the reaction products from the reactor to a hot separator where the vaporous and distillate products are separated from the residuals; introducing the vaporous and distillate products from the separator directly into a hydrotreater where they are further hydrogenated; passing the residuals from the separator successively through flash vessels at reduced pressures where distillates are flashed off and combined with the vaporous and distillate products to be hydrogenated; transferring the unseparated residuals to a solids concentrating and removal means to remove a substantial portion of solids therefrom and recycling the remaining residual oil to the reactor; and passing the hydrogenated vaporous and distillate products to an atmospheric fractionator where the combined products are fractionated into separate valuable liquid products. The hydrogen-containing gas is generated from sources within the process.

Kydd, Paul H. (Lawrenceville, NJ); Chervenak, Michael C. (Pennington, NJ); DeVaux, George R. (Princeton, NJ)

1983-01-01T23:59:59.000Z

387

H-coal process and plant design  

SciTech Connect

A process is disclosed for converting coal and other hydrocarbonaceous materials into useful and valuable liquid products. The process comprises: feeding coal and/or other hydrocarbonaceous mater with a hydrogen-containing gas into an ebullated catalyst bed reactor; passing the reaction product from the reactor to a hot separator where the vaporous and distillate products are separated from residuals; introducing the vaporous and distillate products from the separator directly into a hydrotreater where they are further hydrogenated; passing the residuals from the separator sucessively through flash vessels at reduced pressures where distillates are flashed off and combined with the vaporous and distillate products to be hydrogenated; transferring the unseparated residua to a solids concentrating and removal means to remove a substantial portion of solids therefrom an recycling the remaining residual oil to the reactor; and passing the hydrogenated vaporous and distillate products to an atmospheric fractionator where the combined products are fractionated in separate valuable liquid products. The hydrogen-containing gas is generated from sources within the process.

Kydd, P.H.; Chervenak, M.C.; DeVaux, G.R.

1983-08-23T23:59:59.000Z

388

The Economic Impact of Coal Mining in New Mexico  

SciTech Connect

The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic multipliers derived from an input-output model of the New Mexico economy. The direct, indirect, and induced impacts of coal mining in New Mexico are presented in terms of output, value added, employment, and labor income for calendar year 2007. Tax, rental, and royalty income to the State of New Mexico are also presented. Historical coal production, reserves, and price data are also presented and discussed. The impacts of coal-fired electricity generation will be examined in a separate report.

Peach, James; Starbuck, C.

2009-06-01T23:59:59.000Z

389

Co-processing of agriculture and biomass waste with coal  

SciTech Connect

Biomass and bio-processed waste are potential candidates for co-liquefaction with coal. Specific materials used here include sawdust and poultry manure. Liquefaction experiments were run on each of these materials, separately and with coal, using tetralin as solvent at 350{degrees}C and 1000 psi(cold) hydrogen pressure for 1h. Total conversion was monitored, as well as conversion to asphaltenes, oils and gases. All the biomass samples are converted to oils and gases under the reaction conditions. Poultry manure seems to convert coal more completely, and to produce more oils and gases, than conventional liquefaction.

Stiller, A.H.; Dadyburjor, D.B.; Wann, J.P. [West Virginia Univ., Morgantown, WV (United States)

1995-12-01T23:59:59.000Z

390

Exploratory Research on Novel Coal  

SciTech Connect

The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

Winschel, R.A.; Brandes, S.D.

1998-05-01T23:59:59.000Z

391

Study on reaction property of China Yangcun coal with heavy oils  

SciTech Connect

The reaction properties in coprocessing of China Yangcun coal with three heavy oils (coal tar, petroleum residua and mixed heavy oil) were investigated at different temperatures and 7.0 MPa cold-initial pressure (H{sub 2}) by using a GJ-02 resonance agitation tube reactor. The analyses of feedstock and reaction residua were conducted with GC-MS and FTIR. Experimental results showed: (1) A quantity of low molecular compounds were dissolved in Yangcun coal and these compounds mostly were preasphaltene. (2) The temperature of the highest conversion of Yangcun coal was 390 C. The highest conversion temperature mainly depended upon the coal property and not upon the categories of heavy oils. (3) Conversion order of coprocessing of Yangcun coal with three heavy oils: coal tar > mixed heavy oils > petroleum residua. Aromatic components in heavy oils were media which produced and transferred active hydrogen during reactions. (4) Ash in the coal had a self-catalytic effect. FeS in the coal was catalyst species during coprocessing of coal with heavy oils. (5) Conversion-time curves of coprocessing of Yangcun coal with petroleum residua at 390 C and 430 C were studied. It was discussed that the coprocessing process could be divided into three stages: beginning high reactivity stage, slower-rate hydrogenation stage and condensation polymerization stage. Reaction rate constant of each stage was also calculated. (6) The reaction mechanism of coprocessing was discussed.

Ling Kaicheng; Shen Jun; Zhou Gangming; Wang Zhizhong [Taiyuan Univ. of Technology (China)

1997-12-31T23:59:59.000Z

392

Composition of liquids from coals of different rank  

SciTech Connect

Eight coal liquids prepared from six coals of widely differing rank were compared with respect to their suitability as potential feedstocks for production of refined fuels. The compositions of the liquids were determined by methods adapted from those developed for characterization of petroleum crudes. The coal liquids were prepared and upgraded by hydrogenation in a batch autoclave. The reaction conditions employed were selected to minimize hydrocarbon ring-opening reactions and, at the same time, to produce most of the hydrocarbon liquids potentially available from the coals. The degree of hydrogenation of the raw coal liquids was varied as required to decrease the nitrogen content to about the same level and to provide a predominantly hydrocarbon liquid for analysis. Distilled fractions of the upgraded coal liquids boiling up to 540/sup 0/C were characterized by a combination of separation and analytical techniques including adsorption chromatography; gel permeation chromatography; separations of acids, bases, and asphaltenes; and high- and low-resolution mass spectrometry. In general, the results show that liquids of comparable suitability as feedstocks for production of refined fuels can be produced from coals of different rank.

Sturm, G.P. Jr.; Thomson, J.S.; Woodward, P.W.; Vogh, J.W.

1980-09-01T23:59:59.000Z

393

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

394

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

395

Integrated production/use of ultra low-ash coal, premium liquids and clean char  

SciTech Connect

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-01-01T23:59:59.000Z

396

Bio-coal briquette  

SciTech Connect

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

397

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

398

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

399

Chemical comminution of coal  

SciTech Connect

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

400

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

402

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

403

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network (OSTI)

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

404

EA-1642S: Small-Scale Pilot Plant for the Gasification of Coal and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

642S: Small-Scale Pilot Plant for the Gasification of Coal and 642S: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY EA-1642S: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY SUMMARY This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE's proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

405

Development of an electrochemical hydrogen separator  

SciTech Connect

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

406

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

407

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

408

Fuel Cell Technologies Office: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Photo of hydrogen researcher. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as natural gas and coal (with carbon sequestration); nuclear; biomass; and other renewable energy technologies, such as wind, solar, geothermal, and hydro-electric power. The overall challenge to hydrogen production is cost reduction. For cost-competitive transportation, a key driver for energy independence, hydrogen must be comparable to conventional fuels and technologies on a per-mile basis in order to succeed in the commercial marketplace. Learn more about DOE's hydrogen cost goal and the analysis used in projecting the future cost of hydrogen. The U.S. Department of Energy supports the research and development of a wide range of technologies to produce hydrogen economically and in environmentally friendly ways.

409

A combustion/deposition entrained reactor for high?temperature/pressure studies of coal and coal minerals  

Science Journals Connector (OSTI)

The combustion of coal and coal?derived fuels in heat engines poses significant technical challenges in terms of establishing high combustion rates and efficiencies controlling emissions and minimizing the impact of fuel contaminants on engine components. An entrained reactor has been designed and constructed to study coal particle combustion the tendency of coal ash to form deposits on heat engine components and the effects of fuel additives on residual ash composition. The reactor is designed for high temperature/pressure conditions similar to those of a coal?fired gas turbine. Optical access ports and advanced instrumentation allow the i n s i t u measurement of gas and particle temperatures and vapor phase alkali concentrations. The reactor has been used to study the deposition potential of several coals as a function of process conditions and to determine the effects of selected additives on the deposition rate.

Rodney J. Anderson; Ronald G. Logan; Charles T. Meyer; Richard A. Dennis

1990-01-01T23:59:59.000Z

410

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

411

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

fixation in slag or bottom ash, coal gasification, or coallimestone and coal that form little fly ash and trap sulfurSulfate Organic Ash (%) "Organic Sulfur", in Wheelock, Coal

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

412

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov

2008-03-01T23:59:59.000Z

413

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

414

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

415

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

416

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

417

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

418

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

419

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

420

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmalko; M. A. Solovev

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

422

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

423

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

424

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

425

Weekly Coal Production Estimation Methodology  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

426

Sandia National Laboratories: Clean Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

427

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

428

Coal extraction process  

SciTech Connect

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

429

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

430

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

431

Spitsbergen Tertiary Coal Fossils  

Science Journals Connector (OSTI)

... grains and spores to be observed in coal deposits of Tertiary age in west Spitsbergen (Norsk Polarinstitutt, Med. 79, pp. 1-9; 1954; English summary).

1955-08-06T23:59:59.000Z

432

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

433

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

434

US coal market softens  

SciTech Connect

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

435

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Distribution Report Release Date: December 19, 2013 | Next Release Date: December 12, 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report...

436

Liquefaction of coal in a petroleum fraction under mild conditions  

Science Journals Connector (OSTI)

Experimental studies on a mild coal liquefaction process for extending the petroleum fuel supply are presented. In this process, coal is dissolved in bottoms from fluid catalytic cracking (FCC), a thermally stable, highly aromatic refinery stream, without added hydrogen and under mild conditions. After ash removal, the product mixture of coal liquid and FCC bottoms is a pumpable fluid and can be used as a boiler fuel. Further upgrading to turbine fuel may be possible. At 600800F, 0.1 to 5 h, and 01000 psig, conversion of a bituminous coal to pyridine soluble, gas and water was about 90%, while that of lignite was about 60%. Improved product quality was favored by increased reaction pressure. The operable solvent to coal ratio can be as low as 1.3. This ratio can be further reduced if provisions are made to recycle part of the solvent. However, the efficiency of the recovered solvent decreases with each recycle due to a gradual replacement of labile ? hydrogen by ? hydrogen.

T.Y. Yan; W.F. Espenscheid

1983-01-01T23:59:59.000Z

437

Hydrogen production by gasification of municipal solid waste  

SciTech Connect

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20T23:59:59.000Z

438

Polymer system for gettering hydrogen  

DOE Patents (OSTI)

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

439

Polymer formulations for gettering hydrogen  

DOE Patents (OSTI)

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

440

FE Clean Coal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 6, 2009 November 6, 2009 DOE Signs Cooperative Agreement for New Hydrogen Power Plant The U.S. Department of Energy has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. October 13, 2009 Secretary Chu Announces Up to $55 Million in Funding to Develop Advanced Carbon Capture Technology at Existing Coal-Fired Power Plants Funding Opportunity Announcement Solicits Proposals for Bench- through Pilot-Scale Projects October 2, 2009 DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance A researcher at the Office of Fossil Energy's National Energy Technology Laboratory has been presented with the Chairman's Award by the Propulsion

Note: This page contains sample records for the topic "hydrogen coal derived" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion  

E-Print Network (OSTI)

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion A. J. Aspden1,2 , M. S. Day2 between fuel consumption and heat release. Keywords: turbulent premixed combustion, low Mach number flow or hydrogen-rich mixtures obtained from gasi- fication of coal or biomass. These types of fuels provide clean

Bell, John B.

442

Cooperative research program in coal liquefaction  

SciTech Connect

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

443

Cooperative research program in coal liquefaction  

SciTech Connect

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

444

DOE Hydrogen and Fuel Cells Program Record 5002: Hydrogen Program Solicitation Awardee Announcements  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Date: March 27, 2006 2 Date: March 27, 2006 Title: Hydrogen Program Solicitation Awardee Announcements Originator: Elvin Yuzugullu Approved by: JoAnn Milliken Date: March 28, 2006 Item: "Competitively selected approximately $529 million in projects ($779 million with private cost share), subject to appropriations, to overcome critical technology barriers and to bring hydrogen and fuel cell technology from the laboratory to the showroom. Through these awards, DOE:" References: o "Selected 65 new hydrogen production and delivery projects ($107 million over four years) to address major technical and economic hurdles in renewable, nuclear, and coal-based hydrogen production and delivery technologies ($75 million for distributed natural gas and

445

Hydrogen Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

446

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

447

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

448

Illinois Coal Development Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

449

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

450

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey  

SciTech Connect

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

451

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

452

STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION  

SciTech Connect

There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak temperature for volatile evolution from coal was a reliable measure of coal rank. Because of this observation, a wide variety of coals of a wide range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatile evolution was quite a precise indicator of rank and correlated closely wit the rank values obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile materials evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amount of alkenes and aromatic hydrocarbons increases and the oxygenated species decrease. It was s