Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energetics of Hydrogen Bond Network Rearrangements in Liquid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Wednesday, 25 May 2005 00:00 The unique...

2

Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, Tobias Steinel, and M. D. Fayer*  

E-Print Network (OSTI)

Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, TobiasVed: September 1, 2003; In Final Form: December 18, 2003 The nature of hydrogen bonding networks following hydrogen bond breaking is investigated using vibrational echo correlation spectroscopy of the hydroxyl

Fayer, Michael D.

3

Ultrafast structural fluctuations and rearrangements of water's hydrogen bonded network  

E-Print Network (OSTI)

Aqueous chemistry is strongly influenced by water's ability to form an extended network of hydrogen bonds. It is the fluctuations and rearrangements of this network that stabilize reaction products and drive the transport ...

Loparo, Joseph J. (Joseph John)

2007-01-01T23:59:59.000Z

4

Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN. Citation: Shokri A, Y Wang, GA...

5

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

6

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

7

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

8

Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and  

E-Print Network (OSTI)

a precur- sor for graphene, GO itself can be useful in flexible electronics,7 in battery electrodes,8Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties Engineering, University of Texas, Austin, Texas 78712 I n recent years, grapheneOa single layer of carbon

9

Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal  

SciTech Connect

We report quantifying the strengths of different types of hydrogen bonds in hydrogen bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

Shokri, Alireza; Wang, Yanping; O'Doherty, George A.; Wang, Xue B.; Kass, Steven R.

2013-11-27T23:59:59.000Z

10

Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

11

E-Print Network 3.0 - alteredintramolecular hydrogen-bonding...  

NLE Websites -- All DOE Office Websites (Extended Search)

alteredintramolecular hydrogen-bonding pattern Search Powered by Explorit Topic List Advanced Search Sample search results for: alteredintramolecular hydrogen-bonding pattern Page:...

12

Ettringite Strengthening at High Pressures Induced by the Densification of the Hydrogen Bond Network  

Science Journals Connector (OSTI)

Ettringite Strengthening at High Pressures Induced by the Densification of the Hydrogen Bond Network ... Ettringite is a rare mineral with high-water content, more than half of its weight, and a relevant secondary product in Portland cement. ... Using density functional theory, we simulate the crystal structure and properties of ettringite under pressure. ...

H. Manzano; A. Ayuela; A. Telesca; P. J. M. Monteiro; J. S. Dolado

2012-07-06T23:59:59.000Z

13

Water's Hydrogen Bond Strength  

E-Print Network (OSTI)

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

14

Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes  

E-Print Network (OSTI)

Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional, USA (Received 24 February 2003; published 3 December 2003) Hydrogen bond dynamics are explicated hydrogen bonded network are measured with ultrashort (

Fayer, Michael D.

15

Quantum Confinement in Hydrogen Bond  

E-Print Network (OSTI)

In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

Santos, Carlos da Silva dos; Ricotta, Regina Maria

2015-01-01T23:59:59.000Z

16

Neutron structure of human carbonic anhydrase II: A hydrogen bonded water network switch is observed between pH 7.8 and 10.0.  

SciTech Connect

The neutron structure of wild type human carbonic anhydrase II at pH 7.8 has been determined to 2.0 resolution. Detailed analysis and comparison to the previous determined structure at pH 10.0 shows important differences in protonation of key catalytic residues in the active site as well as a rearrangement of the hydrogen bonded water network. For the first time, a completed hydrogen bonded network stretching from the Zn-bound solvent to the proton shuttling residue His64 has been directed observed.

Fisher, Zoe [Los Alamos National Laboratory (LANL); Langan, Paul [ORNL; Mustyakimov, Marat [Los Alamos National Laboratory (LANL); Kovalevsky, Andrey [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

17

Proton transfer reactions and hydrogen-bond networks in protein environments  

Science Journals Connector (OSTI)

...recognized that a salt bridge is a strong H-bond and plays a...pronounced in salt bridges owing to the large pK a difference for the H-bond donor and acceptor...for single-well H-bond formation is...required for salt-bridge formation, which...

2014-01-01T23:59:59.000Z

18

E-Print Network 3.0 - altered intramolecular hydrogen-bonding...  

NLE Websites -- All DOE Office Websites (Extended Search)

by strong intramolecular hydrogen ... Source: Balaram , P. - Molecular Biophysics Unit, Indian Institute of Science, Bangalore Collection: Biology and Medicine 47 Layered,...

19

Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

20

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy  

SciTech Connect

We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

2009-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

22

Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....

23

Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Acidic Polymers for Chemical Vapor Sensing. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Abstract: A review with 171 references. Hydrogen-bond acidic polymers for...

24

Water Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes on the Hydrogen Bond Network  

E-Print Network (OSTI)

emissions energy source is hydrogen. Hydrogen powered vehicles using polymer electrolyte membrane fuel cells and hydrophilic aggregates.1-4 Hydrogen fuel cells operate through the oxidation of hydrogen gas at the anodeWater Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes

Fayer, Michael D.

25

Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed by Ultrafast Infrared Spectroscopy  

E-Print Network (OSTI)

Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching

van Stokkum, Ivo

26

Hydrogen Bond Switching among Flavin and Amino Acids Determines the Nature of Proton-Coupled Electron Transfer in BLUF  

E-Print Network (OSTI)

Hydrogen Bond Switching among Flavin and Amino Acids Determines the Nature of Proton results from a hydrogen bond switch between the flavin and its surrounding amino acids that preconfigures a rearrangement of the hydrogen bond network around the flavin takes place leading to a 10-15 nm red shift

van Stokkum, Ivo

27

Watching Hydrogen Bonds Break: A Transient Absorption Study of Water Tobias Steinel, John B. Asbury, Junrong Zheng, and M. D. Fayer*  

E-Print Network (OSTI)

Watching Hydrogen Bonds Break: A Transient Absorption Study of Water Tobias Steinel, John B. Asbury of picoseconds, observe hydrogen bond breaking and monitor the equilibration of the hydrogen bond network in water. In addition, the vibrational lifetime, the time constant for hydrogen bond breaking, and the rate

Fayer, Michael D.

28

Analysis of C H...O hydrogen bonds  

E-Print Network (OSTI)

1 Analysis of C H...O hydrogen bonds in high resolution protein crystal structures from the PDB 1.4 Identification of C-H...O hydrogen bonds............................................. 1.4.1 The definition of a C-H...O hydrogen bond.................................... 1.4.2 Fixing the hydrogen and measuring the parameters

Babu, M. Madan

29

Water molecules insert into N-HCl-M hydrogen bonds while M-ClX-C halogen bonds remain intact in dihydrates of halopyridinium hexachloroplatinates  

Science Journals Connector (OSTI)

Crystals of the dihydrates of three halopyridinium hexachloroplatinate salts form networks that are propagated via N-HO and O-HCl-Pt hydrogen bonds and Pt-ClX-C halogen bonds. The water molecules can be considered to have been inserted into N-HCl-Pt hydrogen bonds anticipated in the anyhdrous form of such salts.

Zordan, F.

2004-09-15T23:59:59.000Z

30

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang*  

E-Print Network (OSTI)

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang* Department of Biochemistry, University of Zurich, Zurich, Switzerland Abstract Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change

Caflisch, Amedeo

31

Collective Hydrogen Bond Reorganization in Water Studied with Temperature-Dependent Ultrafast Infrared Spectroscopy  

E-Print Network (OSTI)

We use temperature-dependent ultrafast infrared spectroscopy of dilute HOD in H2O to study the picosecond reorganization of the hydrogen bond network of liquid water. Temperature-dependent two-dimensional infrared (2D IR), ...

Nicodemus, Rebecca A.

32

A New Hydrogen Bond in Coal  

Science Journals Connector (OSTI)

During our study on hydrogen bond in coal by diffuse reflectance IR, we found that a weak peak at 2514 cm-1 always occurred for some coals. ... Infrared absorption spectra of coals and coal extracts ... The FTIR spectra during the heat-up of eight coals (seven Argonne premium coals and an Australian brown coal), an ion-exchange resin, and a lignin were measured every 20 °C from room temp. ...

Dongtao Li; Wen Li; Baoqing Li

2003-04-30T23:59:59.000Z

33

Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch  

E-Print Network (OSTI)

Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch K. J. Gaffney, I. R. Piletic, and M. D. Fayer* Department measured with ultrafast infrared pump-probe experiments. Non-hydrogen-bond donating OD stretches (2690 cm-1

Fayer, Michael D.

34

Neutron diffraction of. cap alpha. ,. beta. and. gamma. cyclodextrins: hydrogen bonding patterns  

SciTech Connect

Cyclodextrins (CD's) are torus-shaped molecules composed of six (..cap alpha..), seven (..beta..) or eight (..gamma..) (1 ..-->.. 4) linked glucoses. ..cap alpha..-CD has been shown to have two different structures with well-defined hydrogen bonds, one tense and the other relaxed. An induced-fit-like mechanism for ..cap alpha..-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for ..cap alpha..-CD due to the energetically favored cooperative effect. ..beta..-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H H-O representing an equilibrium between two states; O-H O reversible H-O. ..gamma..-CD with a disordered water structure similar to ..beta..-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state.

Hingerty, B.E.; Klar, B.; Hardgrove, G.; Betzel, C.; Saenger, W.

1983-01-01T23:59:59.000Z

35

Hydrogen bond rearrangements and the motion of charge defects in water viewed using multidimensional ultrafast infrared spectroscopy  

E-Print Network (OSTI)

Compared with other molecular liquids, water is highly structured due to its ability to form up to four hydrogen bonds to its nearest neighbors, resulting in a tetrahedral network of molecules. However, this network is ...

Roberts, Sean T. (Sean Thomas)

2010-01-01T23:59:59.000Z

36

A Surprising Path for Proton Transfer Without Hydrogen Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

A Surprising Path for Proton Transfer Without Hydrogen Bonds Print A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via hydrogen bonds. Recently, a team of Berkeley Lab and University of Southern California researchers, using the ALS, discovered to their surprise that in some cases, protons can find ways to transfer even when hydrogen bonds are blocked. Sometimes You Have to

37

A Surprising Path for Proton Transfer Without Hydrogen Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

A Surprising Path for Proton Transfer Without Hydrogen Bonds Print A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via hydrogen bonds. Recently, a team of Berkeley Lab and University of Southern California researchers, using the ALS, discovered to their surprise that in some cases, protons can find ways to transfer even when hydrogen bonds are blocked. Sometimes You Have to

38

Ion Hydration and Associated Defects in Hydrogen Bond Network of Water: Observation of Reorientationally Slow Water Molecules Beyond First Hydration Shell in Aqueous Solutions of MgCl$_2$  

E-Print Network (OSTI)

Effects of presence of ions, at moderate to high concentrations, on dynamical properties of water molecules are investigated through classical molecular dynamics simulations using two well known non-polarizable water models. Simulations reveal that the presence of magnesium chloride (MgCl$_2$) induces perturbations in the hydrogen bond network of water leading to the formation of bulk-like domains with \\textquoteleft defect sites\\textquoteright~on boundaries of such domains: water molecules at such defect sites have less number of hydrogen bonds than those in bulk water. Reorientational autocorrelation functions for dipole vectors of such defect water molecules are computed at different concentrations of ions and compared with system of pure water. Earlier experimental and simulation studies indicate significant differences in reorientational dynamics for water molecules in the first hydration shell of many dissolved ions. Results of this study suggest that defect water molecules, which are beyond the first hydration shells of ions, also experience significant slowing down of reorientation times as a function of concentration in the case of MgCl$_2$. However, addition of cesium chloride(CsCl) to water does not perturb the hydrogen bond network of water significantly even at higher concentrations. This difference in behavior between MgCl$_2$ and CsCl is consistent with the well-known Hofmeister series.

Upayan Baul; Satyavani Vemparala

2014-12-18T23:59:59.000Z

39

Intramolecular hydrogen bonding as a synthetic tool to induce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Authors: Megiatto, J. D., Patterson, D., Sherman, B. D.,...

40

Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in N-AlOOH  

E-Print Network (OSTI)

Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in N significant amounts of hydrogen in stishovite under lower-mantle conditions. The enthalpy of solution pressure and temperature. We predict asymmetric hydrogen bonding in the stishovite^N-AlOOH solid solution

Stixrude, Lars

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Semi-flexible hydrogen-bonded and non-hydrogen bonded lattice polymers  

E-Print Network (OSTI)

We investigate the addition of stiffness to the lattice model of hydrogen-bonded polymers in two and three dimensions. We find that, in contrast to polymers that interact via a homogeneous short-range interaction, the collapse transition is unchanged by any amount of stiffness: this supports the physical argument that hydrogen bonding already introduces an effective stiffness. Contrary to possible physical arguments, favouring bends in the polymer does not return the model's behaviour to that comparable to the semi-flexible homogeneous interaction model, where the canonical $\\theta$-point occurs for a range of parameter values. In fact, for sufficiently large bending energies the crystal phase disappears altogether, and no phase transition of any type occurs. We also compare the order-disorder transition from the globule phase to crystalline phase in the semi-flexible homogeneous interaction model to that for the fully-flexible hybrid model with both hydrogen and non-hydrogen like interactions. We show that these phase transitions are of the same type and are a novel polymer critical phenomena in two dimensions. That is, it is confirmed that in two dimensions this transition is second-order, unlike in three dimensions where it is known to be first order. We also estimate the crossover exponent and show that there is a divergent specific heat, finding $\\phi=0.7(1)$ or equivalently $\\alpha=0.6(2)$. This is therefore different from the $\\theta$ transition, for which $\\alpha=-1/3$.

J Krawczyk; AL Owczarek; T Prellberg

2008-07-06T23:59:59.000Z

42

Measuring Electrostatic Fields in Both Hydrogen-Bonding and Non-Hydrogen-Bonding Environments Using Carbonyl Vibrational Probes  

E-Print Network (OSTI)

of the probe's difference dipole, which is determined by measuring the vibrational Stark effect and definesMeasuring Electrostatic Fields in Both Hydrogen-Bonding and Non- Hydrogen-Bonding Environments Using Carbonyl Vibrational Probes Stephen D. Fried, Sayan Bagchi, and Steven G. Boxer* Department

Boxer, Steven G.

43

Hydrogen Bonding Increases Packing Density in the Protein Interior  

E-Print Network (OSTI)

Hydrogen Bonding Increases Packing Density in the Protein Interior David Schell,1,2 Jerry Tsai,1 J System Health Science Center, College Station, Texas 77843-1114 ABSTRACT The contribution of hydrogen to the stability, but experimental studies show that bury- ing polar groups, especially those that are hydrogen

44

Effect of hydrogen bridge geometry on the vibrational spectra of water: Three-parameter potential of H bond  

Science Journals Connector (OSTI)

The ability of water molecules to form a three-dimensional network of hydrogen bonds basically determines both the intrinsic structure and unique properties of this liquid and also a character of interactions wit...

Yu. Ya. Efimov

2010-06-01T23:59:59.000Z

45

A new hydrogen-bonding potential for the design of proteinRNA interactions predicts specific  

E-Print Network (OSTI)

A new hydrogen-bonding potential for the design of protein­RNA interactions predicts specific-dependent hydrogen-bonding potential based on the statistical analysis of hydrogen-bonding geometries of hydrogen-bonding atom pairs at protein­ nucleic acid interfaces. A scoring function based on the hydrogen

Baker, David

46

Mpemba paradox: Hydrogen bond memory and water-skin supersolidity  

E-Print Network (OSTI)

Numerical reproduction of measurements, experimental evidence for skin super-solidity and hydrogen-bond memory clarified that Mpemba paradox integrates the heat emission-conduction-dissipation dynamics in the source-path-drain cycle system.

Chang Q Sun

2015-01-05T23:59:59.000Z

47

Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments  

E-Print Network (OSTI)

Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments Chao Zhang contributions of each of the two hydrogen atoms to the vibrational modes 1 and 3 of water molecules the early works on the molecular structure of water, it has been accepted that a water molecule

Guidoni, Leonardo

48

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical Exchange Spectroscopy  

E-Print Network (OSTI)

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution

Fayer, Michael D.

49

Do Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways?  

NLE Websites -- All DOE Office Websites (Extended Search)

Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways? An Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways? An Investigation in Designed Proteins Yongjian Zheng, Martin A. Case, James F. Wishart, and George L. McLendon J. Phys. Chem. B, 107, 7288-7292 (2003). [Find paper at ACS Publications] Abstract: We have investigated the contribution of main chain hydrogen bond (H-bond) pathways to the tunneling matrix elements which control electron transfer (ET) rates across an alpha-helical protein matrix. The paradigm system for these investigations is a metal ion-assembled parallel three-helix bundle protein that contains a ruthenium(II) tris(bipyridyl) electron donor and a ruthenium(III) pentammine electron acceptor separated by a direct metal to metal distance of ca. 19 Å, requiring tunneling through 15 Å of

50

Geometry of hydrogen bonds formed by lipid bilayer nitroxide probes : A high frequency pulsed ENDOR/EPR study.  

SciTech Connect

Solvent effects on magnetic parameters of nitroxide spin labels in combination with side-directed spin-labeling EPR methods provide very useful means for elucidating polarity profiles in lipid bilayers and mapping local electrostatic effects in complex biomolecular systems. One major contributor to these solvent effects is the hydrogen bonds that could be formed between the nitroxide moiety and water and/or the available hydroxyl groups. Here, formation of hydrogen bonds between a lipid bilayer spin probe 5-doxyl stearic acid, 5DSA and hydrogen-bond donors has been studied using high-frequency (HF) pulsed ENDOR and EPR. A hydrogen-bonded deuteron was directly detected in HF ENDOR (130 GHz) spectra of 5DSA dissolved in several deuterated alcohols, while the characteristic signal was absent in nonpolar toluene-d{sub 8}. The length of the hydrogen bond, 1.74 {+-} 0.06 {angstrom}, and its geometry were found to be essentially the same for all four alcohols studied, indicating that nearly identical hydrogen bonds have been formed regardless of the solvent dielectric constant. This strengthens a hypothesis that HF EPR spectra are exclusively sensitive to formation of hydrogen bonds and could be used for probing the hydrogen-bond network in complex biomolecular assemblies and lipid bilayers with site-directed spin-labeling methods.

Smirnova, T. I.; Smirnov, A. I.; Pachtchenko, S.; Poluektov, O. G.; Chemistry; North Carolina State Univ.

2007-01-01T23:59:59.000Z

51

Hydrogen Bonds in Crystals. X. The Isotope Effect and Thermal Expansion of Non-Co-Operative Hydrogen Bonds in Furoic Acid  

Science Journals Connector (OSTI)

24 April 1956 research-article Hydrogen Bonds in Crystals. X. The Isotope Effect...Thermal Expansion of Non-Co-Operative Hydrogen Bonds in Furoic Acid J. McC. Pollock...Ubbelohde Ida Woodward Thermal effects in the hydrogen bonds in crystalline furoic acid have...

1956-01-01T23:59:59.000Z

52

Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O-and OH,,,O-Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate  

E-Print Network (OSTI)

Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O- and OH,,,O- Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate (succinamate) and Monohydrogen 1 of amide NH,,,O- and carboxyl OH,,,O- hydrogen bonds were investigated via conformational analysis

Goddard III, William A.

53

Quantum Confinement in Hydrogen Bond of DNA and RNA  

E-Print Network (OSTI)

The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

Santos, da Silva dos; Ricotta, Regina Maria

2015-01-01T23:59:59.000Z

54

The Hydrogen Bonding of Cytosinewith Guanine:Calorimetric and`H-NMR Analysis  

E-Print Network (OSTI)

The Hydrogen Bonding of Cytosinewith Guanine:Calorimetric and`H-NMR Analysis of the Molecular of hydrogen-bondformation between guanine (G) and cytusine (C) in o-dichloro- benzene and in chloroformat 25°C forming hydrogen bonds. Consequently, hydrogen-bond formation in our system is primarily between the bases

Williams, Loren

55

Subangstrom Crystallography Reveals that Short Ionic Hydrogen Bonds, and Not a His-Asp Low-Barrier Hydrogen  

E-Print Network (OSTI)

Subangstrom Crystallography Reveals that Short Ionic Hydrogen Bonds, and Not a His-Asp Low-Barrier Hydrogen Bond, Stabilize the Transition State in Serine Protease Catalysis Cynthia N. Fuhrmann, Matthew D that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102

Agard, David

56

Bonding defects in hydrogenated amorphous silicon  

SciTech Connect

A mechanism for charged-carrier-trapping-induced defect metastability in hydrogenated amorphous silicon (a-Si:H) and in hydrogenated amorphous silicon alloys containing relatively high concentrations of oxygen and/or nitrogen atoms (a-Si:X:H, X = O or N) is described. The experimental results that identified this defect metastability mechanism were (i) differences in the Staebler-Wronski effect in a-Si:H and a-Si:N:H alloys prepared from N{sub 2} and NH{sub 3} source gases by remote plasma-enhanced chemical-vapor deposition, and (ii) differences in defect generation at N-atom terminated Si-SiO{sub 2} interfaces prepared from NH{sub 3} and N{sub 2}O.

Lucovsky, G.; Yang, H. [North Carolina State Univ., Raleigh, NC (United States)

1996-12-31T23:59:59.000Z

57

Water inertial reorientation: Hydrogen bond strength and the angular potential  

E-Print Network (OSTI)

Water inertial reorientation: Hydrogen bond strength and the angular potential David E. Moilanen) The short-time orientational relaxation of water is studied by ultrafast infrared pump-probe spectroscopy with recent molecular dynamics simulations employing the simple point charge-extended water model at room

Fayer, Michael D.

58

Hydrogen Bonding Interactions Between Ions: A Powerful Tool in Molecular Crystal Engineering  

Science Journals Connector (OSTI)

Hydrogen bonding interactions are the strongest of the non-covalent interactions and are highly directional (hence transportable and reproducible). With respect to hydrogen bonds between neutral molecules the hyd...

Dario Braga; Lucia Maini; Marco Polito…

2004-01-01T23:59:59.000Z

59

Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation spectroscopy  

E-Print Network (OSTI)

Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation September 2003 Hydrogen bond population dynamics are extricated with exceptional detail using ultrafast ( 50 of methanol­OD oligomers in CCl4 . Hydrogen bond breaking makes it possible to acquire data for times much

Fayer, Michael D.

60

Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a,  

E-Print Network (OSTI)

Review Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a, , Stephen H 30 November 2011 Available online 8 December 2011 Keywords: Membrane protein structure Hydrogen bond Membrane protein dynamics Lipid­protein interactions Changes in inter-helical hydrogen bonding

White, Stephen

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation  

E-Print Network (OSTI)

Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch, 2002 Vibrational relaxation and hydrogen bond dynamics in methanol-d dissolved in CCl4 have been-d molecules both accepting and donating hydrogen bonds at 2500 cm-1 . Following vibrational relaxation

Fayer, Michael D.

62

Hydrogen bond dynamics in the active site of photoactive yellow protein  

E-Print Network (OSTI)

Hydrogen bond dynamics in the active site of photoactive yellow protein Paul A. Sigala, Mark A for review February 5, 2009) Hydrogen bonds play major roles in biological structure and function. Nonetheless, hydrogen-bonded protons are not typically observed by X-ray crystallography, and most structural

Herschlag, Dan

63

Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate  

E-Print Network (OSTI)

Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate MarÔ�a P. Iru�n1 in surface- exposed hydrogen bonds connecting secondary-structure elements in the native protein. All hydrogen bonds analysed are formed in the molten globule intermediate, either with native strength

Sancho, Javier

64

New Insights into Hydrogen Bonding and Stacking Interactions in Cellulose  

SciTech Connect

In this quantum chemical study, we explore hydrogen bonding (H-bonding) and stacking interactions in different crystalline cellulose allomorphs, namely cellulose I and cellulose IIII. We consider a model system representing a cellulose crystalline core, made from six cellobiose units arranged in three layers with two chains per layer. We calculate the contributions of intrasheet and intersheet interactions to the structure and stability in both cellulose I and cellulose IIII crystalline cores. Reference structures for this study were generated from molecular dynamics simulations of water-solvated cellulose I and IIII fibrils. A systematic analysis of various conformations describing different mutual orientations of cellobiose units is performed using the hybrid density functional theory (DFT) with the M06-2X with 6-31+G (d, p) basis sets. We dissect the nature of the forces that stabilize the cellulose I and cellulose IIII crystalline cores and quantify the relative strength of H-bonding and stacking interactions. Our calculations demonstrate that individual H-bonding interactions are stronger in cellulose I than in cellulose IIII. We also observe a significant contribution from cooperative stacking interactions to the stabilization of cellulose I . In addition, the theory of atoms-in-molecules (AIM) has been employed to characterize and quantify these intermolecular interactions. AIM analyses highlight the role of nonconventional CH O H-bonding in the cellulose assemblies. Finally, we calculate molecular electrostatic potential maps for the cellulose allomorphs that capture the differences in chemical reactivity of the systems considered in our study.

Langan, Paul [ORNL

2011-01-01T23:59:59.000Z

65

Molecular surface electrostatic potentials in the analysis of non-hydrogen-bonding noncovalent interactions  

SciTech Connect

Electrostatic potentials computed on molecular surfaces are used to analyze some noncovalent interactions that are not in the category of hydrogen bonding, e.g. halogen bonding. The systems examined include halogenated methanes, substituted benzenes, s-tetrazine and 1,3-bisphenylurea. The data were obtained by ab initio SCF calculations. Electrostatic potentials, Non-hydrogen-bonding noncovalent interactions, Molecular surfaces.

Murray, J.S.; Paulsen, K.; Politzer, P.

1993-12-27T23:59:59.000Z

66

Chemical bond and entanglement of electrons in the hydrogen molecule  

E-Print Network (OSTI)

We theoretically investigate the quantum correlations (in terms of concurrence of indistinguishable electrons) in a prototype molecular system (hydrogen molecule). With the assistance of the standard approximations of the linear combination of atomic orbitals and the con?guration interaction methods we describe the electronic wavefunction of the ground state of the H2 molecule. Moreover, we managed to ?find a rather simple analytic expression for the concurrence (the most used measure of quantum entanglement) of the two electrons when the molecule is in its lowest energy. We have found that concurrence does not really show any relation to the construction of the chemical bond.

Nikos Iliopoulos; Andreas F. Terzis

2014-08-01T23:59:59.000Z

67

Formation and Dissociation of Intra-Intermolecular Hydrogen-Bonded Solute-Solvent Complexes: Chemical  

E-Print Network (OSTI)

architectures in supramolecular chemistry, molecular recognition, and self-assembly. The strength of hydrogen, such as the properties of water4 and biological recognition.3 Hydrogen bonding has been studied extensively in many contexts since the birth of the concept in the early 1900s.2,3,5 Hydrogen bonds can be separated into two

Fayer, Michael D.

68

A revised structure and hydrogen bonding system in cellulose II from a neutron fiber diffraction analysis  

SciTech Connect

The crystal and molecular structure and hydrogen bonding system in cellulose II have been revised using new neutron diffraction data extending to 1.2 {angstrom} resolution collected from two highly crystalline fiber samples of mercerized flax. Mercerization was achieved in NaOH/H{sub 2}O for one sample and in NaOD/D{sub 2}O for the other, corresponding to the labile hydroxymethyl moieties being hydrogenated and deuterated, respectively. Fourier difference maps were calculated in which neutron difference amplitudes were combined with phases calculated from two revised X-ray models of cellulose II. The revised phasing models were determined by refinement against the X-ray data set of Kolpak and Blackwell, using the LALS methodology. Both models have two antiparallel chains organized in a P2{sub 1} space group and unit cell parameters: a = 8.01 {angstrom}, b = 9.04 {angstrom}, c = 10.36 {angstrom}, and {gamma} = 117.1{degree}. One has equivalent backbone conformations for both chains but different conformations for the hydroxymethyl moieties: gt for the origin chain and tg for the center chain. The second model based on the recent crystal structures of cellotetraose, has different conformations for the two chains but nearly equivalent conformations for the hydroxymethyl moieties. On the basis of the X-ray data alone, the models could not be differentiated. From the neutron Fourier difference maps, possible labile hydrogen atom positions were identified for each model and refined using LALS. The second model is significantly different from previous proposals based on the crystal structures of cellotetraose, MD simulations of cellulose II, and any potential hydrogen-bonding network in the structure of cellulose II determined in earlier X-ray fiber diffraction studies. The exact localization of the labile hydrogen atoms involved in this bonding, together with their donor and acceptor characteristics, is presented and discussed. This study provides, for the first time, the coordinates of all of the atoms in cellulose II.

Langan, P.; Nishiyama, Y.; Chanzy, H.

1999-11-03T23:59:59.000Z

69

The C OH O hydrogen bond: A determinant of stability and specificity  

E-Print Network (OSTI)

recovered by hydro- gen bond formation, so hydrogen bonds provide a small or even unfavorable net energy hydro- gen bond has been unclear and its interaction energy has been believed to be small. Recently that apparent carbon hydro- gen bonds cluster frequently at glycine-, serine-, and threonine-rich packing

Senes, Alessandro

70

Hydrogen Bonding, H-D Exchange, and Molecular Mobility in Thin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bonding, H-D Exchange, and Molecular Mobility in Thin Water Films on TiO2(110). Hydrogen Bonding, H-D Exchange, and Molecular Mobility in Thin Water Films on TiO2(110). Abstract:...

71

Knowledge-based model of hydrogen-bonding propensity in organic crystals  

Science Journals Connector (OSTI)

A new method is presented to predict which donors and acceptors form hydrogen bonds in a crystal structure, based on the statistical analysis of hydrogen bonds in the Cambridge Structural Database. The approach has potential application in identifying both likely and unusual hydrogen bonding, which can help to rationalize stable and metastable crystalline forms, of relevance to the drug development process in the pharmaceutical industry.

Galek, P.T.A.

2007-09-14T23:59:59.000Z

72

Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues  

SciTech Connect

Enzymes and their mimics use hydrogen bonds to catalyze chemical transformations. Small molecule transition state analogs of oxyanion holes are characterized by gas phase IR and photoelectron spectroscopy and their binding constants in acetonitrile. As a result, a new class of hydrogen bond catalysts is proposed (OH donors that can contribute three hydrogen bonds to a single functional group) and demonstrated in a Friedel-Crafts reaction.

Beletskiy, Evgeny V.; Schmidt, Jacob C.; Wang, Xue B.; Kass, Steven R.

2012-11-14T23:59:59.000Z

73

A CH O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices  

E-Print Network (OSTI)

A C­H· · ·O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices of Science Bangalore 560012, India The serendipitous observation of a C­H· · ·O hydrogen bond mediated­N hydrogen bond involving the side- chain of residue T 2 4 and the N­H group of residue T ĂŸ 3. In as many

Babu, M. Madan

74

Metal-and hydrogen-bonding competition during water absorption on Pd(111) and Ru(0001)  

SciTech Connect

The initial stages of water adsorption on the Pd(111) and Ru(0001) surfaces have been investigated experimentally by Scanning Tunneling Microscopy in the temperature range between 40 K and 130 K, and theoretically with Density Functional Theory (DFT) total energy calculations and STM image simulations. Below 125 K water dissociation does not occur at any appreciable rate and only molecular films are formed. Film growth starts by the formation of flat hexamer clusters where the molecules bind to the metal substrate through the O-lone pair while making H-bonds with neighboring molecules. As coverage increases, larger networks of linked hexagons are formed with a honeycomb structure, which requires a fraction of the water molecules to have their molecular plane perpendicular to the metal surface with reduced water-metal interaction. Energy minimization favors the growth of networks with limited width. As additional water molecules adsorb on the surface they attach to the periphery of existing islands, where they interact only weakly with the metal substrate. These molecules hop along the periphery of the clusters at intermediate temperatures. At higher temperatures they bind to the metal to continue the honeycomb growth. The water-Ru interaction is significantly stronger than the water-Pd interaction, which is consistent with the greater degree of hydrogen-bonded network formation and reduced water-metal bonding observed on Pd relative to Ru.

Tatarkhanov, Mouslim; Ogletree, D. Frank; Rose, Franck; Mitsui, Toshiyuki; Fomin, Evgeny; Rose, Mark; Cerda, Jorge I.; Salmeron, Miquel

2009-09-03T23:59:59.000Z

75

Hydrogen Bond Lifetimes and Energetics for Solute/Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy  

E-Print Network (OSTI)

Hydrogen Bond Lifetimes and Energetics for Solute/Solvent Complexes Studied with 2D-IR Vibrational@stanford.edu Abstract: Weak hydrogen-bonded solute/solvent complexes are studied with ultrafast two the dissociation and formation rates of the hydrogen-bonded complexes. The dissociation rates of the weak hydrogen

Fayer, Michael D.

76

MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897 905 Dynamics and hydrogen bonding in liquid ethanol  

E-Print Network (OSTI)

MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897± 905 Dynamics and hydrogen bonding in liquid ethanol L of liquid ethanol at three temperatures have been carried out. The hydrogen bonding states of ethanol measurements of the frequency-dependent dielectric permittivity of liquid ethanol. 1. Introduction A detailed

Saiz, Leonor

77

Testing Geometrical Discrimination within an Enzyme Active Site: Constrained Hydrogen Bonding in the Ketosteroid  

E-Print Network (OSTI)

Testing Geometrical Discrimination within an Enzyme Active Site: Constrained Hydrogen Bonding, Stanford UniVersity, Stanford, California 94305, and Departments of Biochemistry and Chemistry-chain reorientation and prevent hydrogen bond shortening by 0.1 Ă? or less. Further, this constraint has substantial

Herschlag, Dan

78

Pressure-Induced Phase Transition in Guanidinium Perchlorate: A Supramolecular Structure Directed by Hydrogen Bonding and Electrostatic Interactions  

SciTech Connect

In situ Raman spectroscopy and synchrotron X-ray diffraction (XRD) experiments have been performed to investigate the response of guanidinium perchlorate (C(NH{sub 2}){sub 3}{sup +} {center_dot} ClO{sub 4}{sup -}, GP) to high pressures of {approx}11 GPa. GP exhibits a typical supramolecular structure of two-dimensional (2D) hydrogen-bonded ionic networks at ambient conditions. A subtle phase transition, accompanied by the symmetry transformation from R3m to C2, has been confirmed by obvious changes in both Raman and XRD patterns at 4.5 GPa. The phase transition is attributed to the competition between hydrogen bonds and close packing of the supramolecular structure at high pressure. Hydrogen bonds have been demonstrated to evolve into a distorted state through the phase transition, accompanied by the reduction in separation of oppositely charged ions in adjacent sheet motifs. A detailed mechanism of the phase transition, as well as the cooperativity between hydrogen bonding and electrostatic interactions, is discussed by virtue of the local nature of the structure.

Li, Shourui; Li, Qian; Wang, Kai; Tan, Xiao; Zhou, Mi; Li, Bing; Liu, Bingbing; Zou, Guangtian; Zou, Bo (Jilin)

2012-01-20T23:59:59.000Z

79

C-H..O Hydrogen Bonds in Minor Groove of A-tracts in DNA Double Helices  

E-Print Network (OSTI)

C-H..O Hydrogen Bonds in Minor Groove of A-tracts in DNA Double Helices Anirban Ghosh and Manju-pair as well as cross-strand C-H..O hydrogen bonds in the minor groove. The C2-H2..O2 hydrogen bonds within leads to a narrow minor groove in these regions. # 1999 Academic Press Keywords: C-H..O hydrogen bonds

Bansal, Manju

80

Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy  

SciTech Connect

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Alexei Khalizov, and Renyi Zhang*  

E-Print Network (OSTI)

Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors, water, and ammonia. A central feature of the complexes is the presence of two hydrogen bonds. Organic acid-sulfuric acid complexes show one strong and one medium-strength hydrogen bond whereas

82

Hydrogen Bonds Involved in Binding the Qi-site Semiquinone in the bc1 Complex, Identified through Deuterium Exchange  

E-Print Network (OSTI)

Hydrogen Bonds Involved in Binding the Qi-site Semiquinone in the bc1 Complex, Identified through them. The strength of interactions indicates that the protons are involved in hydrogen bonds with SQ. The hyperfine cou- plings differ from values typical for in-plane hydrogen bonds previously observed in model

Crofts, Antony R.

83

Hydrogen bonding preference of equatorial versus axial hydroxyl groups in pyran and cyclohexane rings in organic crystals  

E-Print Network (OSTI)

Paper Hydrogen bonding preference of equatorial versus axial hydroxyl groups in pyran of the hydrogen bonding counts in crystalline pyranose monosaccharides, we noticed that equatorial hydroxyls formed more hydrogen bonds, on average, than axial groups. A survey of the Cambridge Structural Database

de Gispert, AdriĂ 

84

Calorimetry of dehydrogenation and dangling-bond recombination in several hydrogenated amorphous silicon materials  

Science Journals Connector (OSTI)

Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A?), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50meV?(H atoms), indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A), 360 (A?), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linear relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si?H bond-dissociation energies have been determined to be E(Si?H)0=3.14 (A), 3.19 (A?), and 3.28eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si?H bond breaking [0.97 (A), 1.05 (A?), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10eV for the isolated dangling bond in the bulk. After Si?H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusion.

P. Roura, J. Farjas, Chandana Rath, J. Serra-Miralles, E. Bertran, and P. Roca i Cabarrocas

2006-02-13T23:59:59.000Z

85

E-Print Network 3.0 - amide bonds stabilize Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Amide-Amide and Amide-Water Hydrogen Bonds Summary: Bonds: Implicationsfor Protein Folding and Stability Eric S.Eberhardt and Ronald T. Rained Department... folds, many of...

86

Hydrogen-bond equilibria and life times in a supercooled monohydroxy alcohol  

E-Print Network (OSTI)

Dielectric loss spectra covering 13 decades in frequency were collected for 2-ethyl-1-hexanol, a monohydroxy alcohol that exhibits a prominent Debye-like relaxation, typical for several classes of hydrogen-bonded liquids. The thermal variation of the dielectric absorption amplitude agrees well with that of the hydrogen-bond equilibrium population, experimentally mapped out using near infrared (NIR) and nuclear magnetic resonance (NMR) measurements. Despite this agreement, temperature-jump NIR spectroscopy reveals that the hydrogen-bond switching rate does not define the frequency position of the prominent absorption peak. This contrasts with widespread notions and models based thereon, but is consistent with a recent approach.

C. Gainaru; S. Kastner; F. Mayr; P. Lunkenheimer; S. Schildmann; H. J. Weber; W. Hiller; A. Loidl; R. Böhmer

2011-06-29T23:59:59.000Z

87

Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR  

E-Print Network (OSTI)

We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

Nicodemus, Rebecca A.

88

Hydrogen bonds of DsrD protein revealed by neutron crystallography  

Science Journals Connector (OSTI)

Hydrogen bonds of DNA-binding protein DsrD have been determined by neutron diffraction. In terms of proton donors and acceptors, DsrD protein shows striking differences from other proteins.

Chatake, T.

2008-04-18T23:59:59.000Z

89

Hydrogen-bonded complexes of serotonin with methanol and ethanol: a DFT study  

Science Journals Connector (OSTI)

Density functional theoretical studies on hydrogen-bonded complexes of serotonin with methanol/ethanol have been carried out in a systematic ... -hydroxyl group. Serotonin-molecules strongly bind with ethanol tha...

A. Mano Priya; L. Senthilkumar; P. Kolandaivel

2014-02-01T23:59:59.000Z

90

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Energy Savers (EERE)

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

91

California Hydrogen Highway Network October 3, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Highway Hydrogen Highway Network April 3, 2008 California Air Resources Board California Blueprint Plan * Phased approach to infrastructure implementation * Environmental goals * Shared risk CaH2Net Background * Governor's Executive Order, S-7-04 formed the CaH2Net in April 2004 * A Blueprint Plan, May 2005 * Legislative Authority - SB76, $6.5 Million, stations, vehicles, support - Budget Act 2006, $6.5 Million, ZBuses, stations - Budget Act 2007, $6 Million, stations, support The State's Contribution * Vehicles * Stations * CaH2Net Membership * Hydrogen Fuel Quality Standard * Environmental Standards for Hydrogen * Public outreach and education Over 90% of Californians Breathe Unhealthy Air at Times 0-5 Days >100 Days 6-50 Days 50-100 Days Days Over State 24-Hour PM10 Standard

92

Dynamics of Weak, Bifurcated and Strong Hydrogen Bonds in Lithium Nitrate Trihydrate  

SciTech Connect

The properties of three distinct types of hydrogen bonds, namely a weak, a bifurcated and a strong one, all present in/the LiNO3 (HDO)(D2O)2 hydrate lattice unit cell are studied using steady-state and time-resolved spectroscopy. The lifetimes of the OH stretching vibrations for the three individual bonds are 2.2 ps (weak), 1.7 ps (bifurcated), and 1.2 ps (strong), respectively. For the first time the properties of bifurcated H bonds can thus be unambiguously directly compared to those of weak and strong H bonds in the same system. The values of their OH stretching vibration lifetime, anharmonicity, red shift and bond strength lie between those for the strong and weak H bonds. The experimentally observed inhomogeneous broadening of their spectral signature is attributed to the coupling with a low frequency intermolecular wagging vibration/

Werhahn, Jasper C.; Pandelov, S.; Xantheas, Sotiris S.; Iglev, H.

2011-07-07T23:59:59.000Z

93

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Wednesday, 28 June 2006 00:00 Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

94

Recognizing molecular patterns by machine learning: an agnostic structural definition of the hydrogen bond  

E-Print Network (OSTI)

The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding -- a central concept to our understanding of the physical chemistry of water, biological systems and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a ...

Gasparotto, Piero

2014-01-01T23:59:59.000Z

95

Michelangelo Network recommendations on nuclear hydrogen production  

Science Journals Connector (OSTI)

The Michelangelo Network (MICANET) was started within the 5th EURATOM Framework Programme (FP5) with the objective to elaborate a general European R&D strategy for the further development of the nuclear industry in the short, medium, and long term. To broaden the application range of nuclear power beyond dedicated electricity generation, the network proposed an orientation for future EURATOM R&D programmes including new industrial aspects of nuclear energy, such as combined heat and power and, particularly, the production of hydrogen or other fuels as a link to CO2-free energy sources. MICANET is acting as the European counterpart and partner to the Generation IV International Forum. The MICANET project ended in November 2005. Goals achieved related to nuclear hydrogen production and other non-electrical nuclear applications are outlined in this paper.

Karl Verfondern; Werner Von Lensa

2006-01-01T23:59:59.000Z

96

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

97

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

98

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

99

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

100

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Self-Assembly Using Hydrogen Bonds to Direct the Assembly of  

E-Print Network (OSTI)

Self-Assembly Using Hydrogen Bonds to Direct the Assembly of Crowded Aromatics Mark L. Bushey, Thuc · molecular recognition · nanotechnology · self-assembly 1. Introduction Self-assembly is a powerful tool such self-assembled system.[2] This relatively new class of liquid crystalline compounds, discovered in 1977

Hone, James

102

Hydrogen-bridge bonding on semiconductor surfaces:?Density-functional calculations  

Science Journals Connector (OSTI)

The relative stabilities of hydrogen bridge bonds on diamond C(001), Si(001), Ge(001), and GaAs(001) surfaces have been studied within the framework of density functional theory. Hydrogen-bridge bonds are found to be stable on cation terminated GaAs(001) and almost stable on p-type doped Si(001) surfaces with an excess energy of 0.08eV per bridge. Bridge bonds are unstable on n-type doped Si(001) and anion terminated GaAs(001). H-bridges are metastable on intrinsic group IV surfaces, and the excess energy cost diminishes monotonically across the C-Si-Ge series. In stark contrast with group IV semiconductors, the (2Ś1) monohydride dimer structure is not stable on GaAs(001).

J. M. Ripalda; J. D. Gale; T. S. Jones

2004-12-16T23:59:59.000Z

103

Hydrogen storage in heat welded random CNT network structures  

Science Journals Connector (OSTI)

Abstract The objective of this study is to investigate hydrogen storage capability of heat welded random carbon nanotube (CNT) network structures. To achieve this objective, different three-dimensional random CNT network structures are generated by using a stochastic algorithm and molecular dynamic simulations. The interaction of CNT networks with hydrogen molecules is then examined via grand canonical Monte Carlo calculations. Hydrogen adsorption capacity of CNT networks having an arbitrarily natured morphology, adjustable porous structure and large surface ratio is investigated. The results show that if cross link density of random CNT networks decreases, hydrogen storage capability of CNT networks increases in terms of the gravimetric capacity. It is observed that random CNT networks could uptake 8.85 wt.% hydrogen at 77 K and this result is very comparable with the results reported in literature where generally ideal ordered nanostructures having no topological irregularities are considered.

Zeynel Ozturk; Cengiz Baykasoglu; Alper T. Celebi; Mesut Kirca; Ata Mugan; Albert C. To

2014-01-01T23:59:59.000Z

104

Prediction of a multicenter-bonded solid boron hydride for hydrogen storage  

Science Journals Connector (OSTI)

A layered solid boron hydride structure (B2H2) consisting of a hexagonal boron network and bridge hydrogen which has a gravimetric capacity of 8wt% hydrogen is predicted. The structural, electronic, and dynamical properties of the proposed structure are investigated using first-principles electronic structure methods. The absence of soft phonon modes confirms the dynamical stability of the proposed structure. Charging the structure significantly softens hydrogen related phonon modes. Boron modes, in contrast, are either hardened or not significantly affected by electron doping. Furthermore, self-doping the structure considerably reduces the energy barrier against hydrogen release. These results suggest that electrochemical charging or self-doping mechanisms may facilitate hydrogen release while the underlying boron network remains intact for subsequent rehydrogenation.

Tesfaye A. Abtew; Bi-ching Shih; Pratibha Dev; Vincent H. Crespi; Peihong Zhang

2011-03-07T23:59:59.000Z

105

Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains  

SciTech Connect

Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.

Daidone, Isabella [University of Heidelberg; Neuweiler, H [University of Heidelberg; Doose, S [University of Heidelberg; Sauer, M [University of Heidelberg; Smith, Jeremy C [ORNL

2010-12-01T23:59:59.000Z

106

Theory of coherent neutron scattering by hydrogen-bonded ferroelectrics at low temperatures. I. General expression for inelastic coherent scattering of slow neutrons and effective thermal factors  

Science Journals Connector (OSTI)

The differential cross section for inelastic coherent scattering of slow neutrons scattered by hydrogen-bonded ferroelectrics at low temperatures...

S. Stamenkovi?

1972-12-01T23:59:59.000Z

107

Reactivity and migration of hydrogen in a-Si:H  

SciTech Connect

Tight-binding molecular dynamics calculations reveal a new mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicon and breaking their Si-Si bonds. The diffusing hydrogen carried with it a newly created dangling bond. These intermediate transporting states are densely populated in the network and have lower energies than H at the center of stretched Si-Si bonds.

Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

1997-07-01T23:59:59.000Z

108

Hydrogen Bonds, Water Rotation and Proton Mobility Liaisons Hydrog`ene, Rotation de l'eau et Mobilit'e du  

E-Print Network (OSTI)

Hydrogen Bonds, Water Rotation and Proton Mobility Liaisons Hydrog`ene, Rotation de l'eau et H 3 O + est presque immo­ bilis'e par des liaisons hydrog`ene extrâ??emement fortes. Ces derni liaisons hydrog`ene de l'eau pure. Dans l'eau en dessous de 20 0 C, la rotation des mol'ecules est plus

Agmon, Noam

109

CH O Hydrogen Bonds at Protein-Protein Interfaces*S Received for publication, May 8, 2002, and in revised form, July 8, 2002  

E-Print Network (OSTI)

CH O Hydrogen Bonds at Protein-Protein Interfaces*S Received for publication, May 8, 2002, a statistical potential has been de- veloped to quantitatively describe the CH O hydrogen bonding interaction-protein interaction studies. The conventional hydrogen bonds of the type X­H Y (where X and Y N or O) have been widely

Luhua, Lai

110

CAr–H···O Hydrogen Bonds in Substituted Isobenzofuranone Derivatives: Geometric, Topological, and NMR Characterization  

Science Journals Connector (OSTI)

The O10···H7 H-bond energy [?E, kcal/mol] in the gas phase evaluated as the difference between the total energies of the a and b isomers. ... In an earlier paper(11b) focused on bindone 4, we separated the effect of the hydrogen bond (0.6 ppm) from the overall deshielding effects, including steric, anisotropic, and electric field effects of the C?O group on the 1H NMR chemical shift of the participating proton (1.8 ppm). ...

Mark V. Sigalov; Evgeniya P. Doronina; Valery F. Sidorkin

2012-06-26T23:59:59.000Z

111

Is there hydrogen bonding for gas phase SN2 pre-reaction complexes?  

Science Journals Connector (OSTI)

Abstract For some gas-phase X? + CH3Y ? XCH3 + Y? SN2 nucleophilic substitution reactions a pre-reaction complex is formed in which the attacking anion binds to a H-atom to form X??HCH2Y. In this work properties of this complex are investigated, for the OH? + CH3I and F? + CH3I reactions, to determine whether the HO??HCH2I and F??HCH2I complexes should be considered hydrogen-bonded complexes. Properties considered for these complexes are their structures, vibrational frequencies, well depths, and partial atomic charges. Also considered is the role of the HO??HCH2I complex in proton transfer for both the proton transfer and SN2 reaction pathways. The results of these analyses indicate that these X??HCH2Y complexes are hydrogen bonding complexes.

Jing Xie; Jiaxu Zhang; William L. Hase

2014-01-01T23:59:59.000Z

112

Crystal structure prediction and hydrogen-bond symmetrization of solid hydrazine under high pressure: a first-principles study  

Science Journals Connector (OSTI)

Three crystal structures of hydrazine under high pressure have been found, including the reported experimental phase. Pressure-induced hydrogen-bond symmetrization occurs at 235 GPa during the CcC2/c transition.

Zhang, H.-D.

2014-01-31T23:59:59.000Z

113

Crystal Structure and Hydrogen-Bonding System in Cellulose I? from Synchrotron X-ray and Neutron Fiber Diffraction  

Science Journals Connector (OSTI)

The crystal and molecular structure together with the hydrogen-bonding system in cellulose I? has been determined using synchrotron and neutron diffraction data recorded from oriented fibrous samples prepared by aligning cellulose microcrystals from ...?

Yoshiharu Nishiyama; Paul Langan; Henri Chanzy

2002-07-10T23:59:59.000Z

114

Effect of the hydrogen bridge geometry on the vibrational spectra of water: Two-parameter H-bonding potentials  

Science Journals Connector (OSTI)

A principle to design the multi-parameter potentials of hydrogen bonding is proposed and developed. Based on fluctuation theory, they provide the description of temperature evolution of the shape of OH vibrati...

Yu. Ya. Efimov

2009-08-01T23:59:59.000Z

115

A trajectory-based approach to modeling nonlinear infrared spectra : interrogating strong hydrogen bonds and proton transfer  

E-Print Network (OSTI)

This work describes a phenomenological approach for modeling linear and nonlinear infrared spectroscopy of condensed phase chemical systems, focusing on applications to strongly hydrogen bonded complexes. To overcome the ...

Hornng, Andrew D. (Andrew Davis)

2012-01-01T23:59:59.000Z

116

Comparative PCET Study of a Donor?Acceptor Pair Linked by Ionized and Nonionized Asymmetric Hydrogen-Bonded Interfaces  

E-Print Network (OSTI)

A Zn(II) amidinium porphyrin is the excited-state electron donor (D) to a naphthalene diimide acceptor (A) appended with either a carboxylate or sulfonate functionality. The two-point hydrogen bond (···[H[superscript +

Young, Elizabeth R.

117

Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-di­nitro­salicylic acid and 5-sulfosalicylic acid  

Science Journals Connector (OSTI)

The crystal structures of the 1:1 salts of nicotine with 3,5-di­nitro­salicylic acid and with 5-sulfosalicylic acid both show polymeric hydrogen-bonded and --bonded structures but these differ in that in the first example, cations and anions form separate cation chains or anion columns which are unassociated through formal hydrogen bonds while in the second, hydrogen-bonded cation-anion chains are found.

Smith, G.

2014-10-29T23:59:59.000Z

118

E-Print Network 3.0 - aligned hydrogen molecules Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen molecules Search Powered by Explorit Topic List Advanced Search Sample search results for: aligned hydrogen molecules Page: << < 1 2 3 4 5 > >> 1 Hydrogen-Bond Kinetics in...

119

Electronic structure, stacking energy, partial charge, and hydrogen bonding in four periodic B-DNA models  

Science Journals Connector (OSTI)

We present a theoretical study of the electronic structure of four periodic B-DNA models labeled (AT)10, (GC)10, (AT)5(GC)5, and (AT?GC)5 where A denotes adenine, T denotes thymine, G denotes guanine, and C denotes cytosine. Each model has ten base pairs with Na counterions to neutralize the negative phosphate group in the backbone. The (AT)5(GC)5 and (AT?GC)5 models contain two and five AT-GC bilayers, respectively. When compared against the average of the two pure models, we estimate the AT-GC bilayer interaction energy to be 19.015 Kcal/mol, which is comparable to the hydrogen bonding energy between base pairs obtained from the literature. Our investigation shows that the stacking of base pairs plays a vital role in the electronic structure, relative stability, bonding, and distribution of partial charges in the DNA models. All four models show a highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gap ranging from 2.14 to 3.12 eV with HOMO states residing on the PO4 + Na functional group and LUMO states originating from the bases. Our calculation implies that the electrical conductance of a DNA molecule should increase with increased base-pair mixing. Interatomic bonding effects in these models are investigated in detail by analyzing the distributions of the calculated bond order values for every pair of atoms in the four models including hydrogen bonding. The counterions significantly affect the gap width, the conductivity, and the distribution of partial charge on the DNA backbone. We also evaluate quantitatively the surface partial charge density on each functional group of the DNA models.

Lokendra Poudel; Paul Rulis; Lei Liang; W. Y. Ching

2014-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Understanding the Hydrogen Bond in Terms of the Location of the Bond Critical Point and the Geometry of the Lone Pairs  

Science Journals Connector (OSTI)

The origin of such high dCP values has been related to the constellation of the various interaction centersthe lone pairs and the atom cores of the donor and the acceptor oxygens and the hydrogen atom. ... Furthermore, for closed-shell interactions, the kinetic energy density, G(rCP), and the potential energy density, V(rCP), at the critical point depend exponentially on the H···O distance. ... The crystal contains three short strong N-H ? O hydrogen bonds (HBs) with dN?O energies above 13 kcal mol-1, although the hydrogen atoms are firmly localized in the "nitrogen wells". ...

Anupama Ranganathan; G. U. Kulkarni; C. N. R. Rao

2003-07-15T23:59:59.000Z

122

Proton-irradiation-induced anomaly in the electrical conductivity of a hydrogen-bonded ferroelastic system  

SciTech Connect

An anomalous abrupt drop in the electrical conductivity has been observed at the ferroelastic phase transition of a proton-irradiated system of hydrogen-bonded TlH{sub 2}PO{sub 4}. As a result of the high-resolution {sup 31}P NMR chemical-shift measurements, distinct changes in the atomic displacements due to the irradiation were identified in the ferroelastic and paraelastic phases. Besides, {sup 1}H NMR spin-spin relaxation measurements revealed a change due to the irradiation in the proton dynamics at the ferroelastic phase transition, apparently accounting for the much-reduced electrical conductivity in the paraelastic phase of the irradiated system.

Kim, Se-Hun [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Faculty of Science Education, Jeju National University, Jeju 690-756 (Korea, Republic of); Lee, Kyu Won; Lee, Cheol Eui [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Kwang-Sei [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Gyeongnam (Korea, Republic of)

2009-11-01T23:59:59.000Z

123

California Hydrogen Highway Network October 3, 2007  

Energy.gov (U.S. Department of Energy (DOE))

Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

124

Soluble Hydrogen-bonding Interpolymer Complexes in Water: A Small-Angle Neutron Scattering Study  

E-Print Network (OSTI)

The hydrogen-bonding interpolymer complexation between poly(acrylic acid) (PAA) and the poly(N,N-dimethylacrylamide) (PDMAM) side chains of the negatively charged graft copolymer poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N, N dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM), containing 48 wt % of PDMAM, and shortly designated as G48, has been studied by small-angle neutron scattering in aqueous solution. Complexation occurs at low pH (pH < 3.75), resulting in the formation of negatively charged colloidal particles, consisting of PAA/PDMAM hydrogen-bonding interpolymer complexes, whose radius is estimated to be around 165 A. As these particles involve more than five graft copolymer chains, they act as stickers between the anionic chains of the graft copolymer backbone. This can explain the characteristic thickening observed in past rheological measurements with these mixtures in the semidilute solution, with decreasing pH. We have also examined the influence of pH and PAA molecular weight on the formation of these nanoparticles.

Maria Sotiropoulou; Julian Oberdisse; Georgios Staikos

2006-04-03T23:59:59.000Z

125

The role of hydrogen bonds in protein folding and protein association  

SciTech Connect

The contribution of a pair of functional groups that can form either intermolecular or intramolecular hydrogen bonds to the total standard free energy of the process of protein folding or protein association is examined. It is found that this contribution can be quite large, either positive or negative, depending on the particular process and on the solvent density. This is in contrast to the common belief that the hydrogen-bond energies tend to be compensated in these processes. For the binding process, in which the two functional groups are completely removed from the aqueous environment, the contribution of such a pair of functional groups to {Delta}G can be as high as +6.4 kcal/mol. This is the main reason why hydrophobic rather than hydrophilic surfaces tend to attach to each other. In contrast, when the two functional groups are only partially removed from the aqueous environment, as in the case of the formation of {alpha}-helix, their contribution to {Delta}G can be negative and of the order of about 1 kcal/mol.

Ben-Naim, A. (National Inst. of Health, Bethesda, MD (USA))

1991-02-07T23:59:59.000Z

126

Weak C-HX (X = O, N) hydrogen bonds in the crystal structure of di­hydro­berberine  

Science Journals Connector (OSTI)

Di­hydro­berberine, a reduced form of pharmacologically important berberine, crystallizes from ethanol without inter­stitial solvent. Although lacking classical O-H or N-H donors, the packing in the crystalline state is clearly governed by C-HN and C-HO hydrogen bonds involving the two acetal-type C-H bonds of the 1,3-dioxole ring.

Pingali, S.

2014-03-11T23:59:59.000Z

127

Cellulose solventbased biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent-Based Solvent-Based Biomass Pretreatment Breaks Highly Ordered Hydrogen Bonds in Cellulose Fibers of Switchgrass Noppadon Sathitsuksanoh, 1,2 Zhiguang Zhu, 1 Sungsool Wi, 3 Y.-H. Percival Zhang 1,2,4 1 Biological Systems Engineering Department, Virginia Polytechnic Institute and State University (Virginia Tech), 210-A Seitz Hall, Blacksburg, Virginia 24061; telephone: 540-231-7414, fax: 540-231-3199; e-mail: ypzhang@vt.edu 2 Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 3 Chemistry Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 4 DOE BioEnergy Science Center (BESC), Oak Ridge, Tennessee Received 25 June 2010; revision received 23 August 2010; accepted 4 October 2010 Published online 21 October 2010 in Wiley Online Library (wileyonlinelibrary.com).

128

Using molecular orbital calculations to describe the phase behavior of hydrogen-bonding fluids  

SciTech Connect

The authors have used Hartree-Fock theory and density functional theory to compute the enthalpy and entropy changes of dimerization for water, methanol, and the family of carboxylic acids. These results are used in a physical equation of state, the statistical associating fluid theory (SAFT), in order to model the phase behavior of these hydrogen-bonding compounds. A procedure has been developed to relate the calculated enthalpy and entropy changes to the association parameters in SAFT using only low-pressure data, as well as to relate molar volumes from molecular orbital calculations to the segment size and chain length parameters in SAFT. By doing so, the SAFT model is reduced to a three-parameter equation of state for associating fluids. The modified equation of state is shown to be as accurate as the original SAFT model for correlating pure-component vapor-liquid equilibrium data with fewer adjustable parameters.

Wolbach, J.P.; Sandler, S.I. [Univ. of Delaware, Newark, DE (United States)] [Univ. of Delaware, Newark, DE (United States)

1997-10-01T23:59:59.000Z

129

Modeling and Multi-objective Optimization of Refinery Hydrogen Network  

Science Journals Connector (OSTI)

The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single- objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is introduced to illustrate the applicability of the approach.

Yunqiang JIAO; Hongye SU; Zuwei LIAO; Weifeng HOU

2011-01-01T23:59:59.000Z

130

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Energy.gov (U.S. Department of Energy (DOE))

This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

131

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Fuel Cell Technologies Publication and Product Library (EERE)

This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

132

Neutron and x-ray structural studies of short hydrogen bonds in photoactive yellow protein (PYP).  

SciTech Connect

Photoactive yellow protein (PYP) from Halorhodospira halophila is a soluble 14 kDa blue-light photoreceptor. It absorbs light via its para-coumaric acid chromophore (pCA), which is covalently attached to Cys69 and is believed to be involved in the negative phototactic response of the organism to blue light. The complete structure (including H atoms) of PYP has been determined in D{sub 2}O-soaked crystals through the application of joint X-ray (1.1 {angstrom}) and neutron (2.5 {angstrom}) structure refinement in combination with cross-validated maximum-likelihood simulated annealing. The resulting XN structure reveals that the phenolate O atom of pCA accepts deuterons from Glu46 O{sup {epsilon}2} and Tyr42 O{sup {eta}} in two unusually short hydrogen bonds. This arrangement is stabilized by the donation of a deuteron from Thr50 O{sup {gamma}1} to Tyr42 O{sup {eta}}. However, the deuteron position between pCA and Tyr42 is only partially occupied. Thus, this atom may also interact with Thr50, possibly being disordered or fluctuating between the two bonds.

Fisher, S. Z.; Langan, P.; Anderson, S.; Henning, R.; Moffat, K.; Thiyagarajan, P.; Schultz, A. J.; LANL; Univ. of Chicago; Northwestern Univ.

2007-11-01T23:59:59.000Z

133

Novel Ionophores with 2n-Crown-n Topology: Anion Sensing via Pure Aliphatic C–H···Anion Hydrogen Bonding  

Science Journals Connector (OSTI)

A series of novel coronands having a 2n-crown-n topology based on trioxane (6-crown-3) derivatives are designed and characterized. These neutral hosts can sense anions through pure aliphatic C–H hydrogen bonding (HB) in condensed phases due to the unusual ...

Genggongwo Shi; Changdev G. Gadhe; Sung-Woo Park; Kwang S. Kim; Jongmin Kang; Humaira Seema; N. Jiten Singh; Seung Joo Cho

2013-12-31T23:59:59.000Z

134

Conformation of a terminally protected hybrid dipeptide Boc-Ant-Gpn-OMe stabilized by C6/C7 hydrogen bonds  

Science Journals Connector (OSTI)

A hybrid dipeptide, Boc-Ant-Gpn-OMe, adopts a folded conformation stabilized by intra­molecular six- (C6) and seven-membered (C7) hydrogen bonds, together with weak C-HO and C-H inter­actions, resulting in a ribbon-like structure.

Wani, N.A.

2013-12-14T23:59:59.000Z

135

Interpreting the electronic structure of the hydrogen-bridge bond in B2H6 through a hypothetical reaction  

Science Journals Connector (OSTI)

In order to elucidate the electronic structure of the hydrogen-bridge bond in B2H6 molecule, the formation process of B2H6 had been created by a hypothetical reaction of “B2H4 2? + 2H+...”, and th...

Rongbao Liao

2012-04-01T23:59:59.000Z

136

Hydrogen Bond Dynamics of Histamine Monocation in Aqueous Solution: Car–Parrinello Molecular Dynamics and Vibrational Spectroscopy Study  

Science Journals Connector (OSTI)

Hydrogen Bond Dynamics of Histamine Monocation in Aqueous Solution: Car–Parrinello Molecular Dynamics and Vibrational Spectroscopy Study ... Our focus was on the part of vibrational spectra that corresponds to histamine N–H stretching, since these degrees of freedom are essential for its interactions with either water molecules or transporters and receptors. ... The resulting vibrational power spectrum is presented in Figure 9. ...

Jernej Stare; Janez Mavri; Jože Grdadolnik; Jernej Zidar; Zvonimir B. Maksi?; Robert Vianello

2011-04-25T23:59:59.000Z

137

Self-Assembly of Hydrogen-Bonded Polymeric Rods Based on the Cyanuric Acid,Melamine Lattice  

E-Print Network (OSTI)

Self-Assembly of Hydrogen-Bonded Polymeric Rods Based on the Cyanuric Acid,Melamine Lattice Insung Received July 29, 1998. Revised Manuscript Received December 28, 1998 This paper describes the self-assembly) are interpreted as indicating that the self-assembly of a bisisocyanuric acid (bisCA) and a bismelamine (bis

Prentiss, Mara

138

Self-assembly of hydrogen-bonded supramolecular strands from complementary melamine and barbiturate components with chiral  

E-Print Network (OSTI)

Self-assembly of hydrogen-bonded supramolecular strands from complementary melamine and barbiturate barbiturate 7 result in molecular recognition directed self-assembly in solution and in the solid state containing a dierent triazine enantiomer. Self-assembly takes place in biological systems with a high level

Rusell, K.C.

139

Hydrogen-Bonding Structure and Dynamics of Aqueous Carbonate Species from Car?Parrinello Molecular Dynamics Simulations  

Science Journals Connector (OSTI)

A comprehensive Car?Parrinello molecular dynamics (CP-MD) study of aqueous solutions of carbonic acid (H2CO3), bicarbonate (HCO3?), carbonate (CO32?), and carbon dioxide (CO2) provides new quantitative insight into the structural and dynamic aspects of the hydrogen-bonding environments for these important aqueous species and their effects on the structure, H-bonding, and dynamical behavior of the surrounding water molecules. ... The power spectra of the carbonate species were calculated as Fourier transforms of their velocity autocorrelation functions over the 14 ps production trajectories of the CP-MD simulations. ... The first solvation shell of the anion was found to contain between five and six hydrogen bonded water mols., compared to the six to seven waters found in analogous classical studies based on empirical potentials. ...

P. Padma Kumar; Andrey G. Kalinichev; R. James Kirkpatrick

2008-12-24T23:59:59.000Z

140

OH · · · X (X = O, S) hydrogen bonding in thetrahydrofuran and tetrahydrothiophene  

Science Journals Connector (OSTI)

In this article hydrogen bonding interaction between p-cresol (p-CR) and cyclic ether tetrahydrofuran (THF) and thioether tetrahydrothiophene (THT) has been investigated. Two-color resonantly enhanced two-photon ionization in conjunction with the fluorescence detected IR (FDIR) spectroscopy was used to record the changes in the OH stretching frequency in these complexes. The FDIR spectra showed existence of a single conformer of the p-CR · THF and two conformers of the p-CR · THT complex. With the help of computed IR spectra and atoms-in-molecules analysis the two conformers of p-CR · THT were assigned as the complex of p-CR with THT (C2)/THT (CS). The redshift of OH stretching frequency for the p-CR · THF complex was greater compared to those for the conformers of the p-CR · THT complex. The binding energies of the p-CR · THF and p-CR · THT complexes were computed to be 7.42 and 6.15 kcal/mole. These were of the same order as those for the acyclic analogs diethylether (DEE) and diethylsulfide (DES) of the solvent molecules under investigation. Although the DEE and THF consist of same number of carbon atoms the dispersionenergy contribution was much higher (43%) for DEE than that for THF (30%). In the case of sulfur analogs however it was similar (?50%) in the case of both DES well as THT complexes. All the computed H-bond indicators for these two complexes nicely correlate with the observed redshift of the O–H stretch.

Himansu S. Biswal; Sanjay Wategaonkar

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The use of molecular orbital calculations to describe the phase behavior of hydrogen-bonding mixtures  

SciTech Connect

In previous studies, the authors have used Hartree-Fock theory and density functional theory to compute the enthalpy and entropy changes of dimerization for methanol and a number of small carboxylic acids. They have shown that by using these results in a physical equation of state, the statistical associating fluid theory (SAFT), they are able to model the phase behavior of these pure hydrogen-bonding compounds with a reduction in the number of adjustable parameters; in this study, they use the pure-component parameters derived from the results of the molecular orbital calculations to describe the phase behavior of mixtures containing one associating and one nonassociating compound, again using the SAFT equation of state. They show that the use of the pure-component SAFT parameters derived from the quantum-mechanical calculations results in correlations of mixture VLE data with no loss of accuracy, and frequently with improved accuracy, compared to the original parameters reported for use with the SAFT model.

Wolbach, J.P.; Sandler, S.I. [Univ. of Delaware, Newark, DE (United States)

1997-07-01T23:59:59.000Z

142

Water Molecules Hydrogen Bonding to Aromatic Acceptors of Amino Acids: the Structure of Tyr-Tyr-Phe Dihydrate and a Crystallographic Database Study on Peptides  

Science Journals Connector (OSTI)

In the crystal structure of Tyr-Tyr-Phe dihydrate, one of the water molecules forms a hydrogen bond with the Phe side chain. In a database study four related examples in peptides are found.

Steiner, T.

1998-01-01T23:59:59.000Z

143

Energetics of Homogeneous Intermolecular Vinyl and Allyl Carbon-Hydrogen Bond Activation by the  

E-Print Network (OSTI)

of alkanes for both industrial and synthetic applications. While the goal of catalytic activation-H bonds,4 few have allowed for quantification of activated products crucial to the assessment of a C-H bond to a coordinatively unsaturated late-metal center (d8 Rh and Ir), generating a relatively

Jones, William D.

144

Interfacial chemical bonding state and band alignment of CaF{sub 2}/hydrogen-terminated diamond heterojunction  

SciTech Connect

CaF{sub 2} films are deposited on hydrogen-terminated diamond (H-diamond) by a radio-frequency sputter-deposition technique at room temperature. Interfacial chemical bonding state and band alignment of CaF{sub 2}/H-diamond heterojunction are investigated by X-ray photoelectron spectroscopy. It is confirmed that there are only C-Ca bonds at the CaF{sub 2}/H-diamond heterointerface. Valence and conductance band offsets of the CaF{sub 2}/H-diamond heterojunciton are determined to be 3.7 {+-} 0.2 and 0.3 {+-} 0.2 eV, respectively. It shows a type I straddling band configuration. The large valence band offset suggests advantage of the CaF{sub 2}/H-diamond heterojunciton for the development of high power and high frequency field effect transistors.

Liu, J. W.; Liao, M. Y.; Cheng, S. H.; Imura, M. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Koide, Y. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission (CMRLC), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2013-03-28T23:59:59.000Z

145

Electron spin-lattice relaxation in solid ethanol: the effect of nitroxyl radical hydrogen bonding and matrix disorder  

E-Print Network (OSTI)

The electron spin-lattice relaxation of TEMPO and TEMPONE was measured at temperatures between 5 and 80 K in crystalline and glassy ethanol using X-band electron paramagnetic resonance spectroscopy. The experimental data at the lowest temperatures studied were explained in terms of electron-nuclear dipolar interaction between the paramagnetic center and the localized excitations, whereas at higher temperatures low-frequency vibrational modes from the host matrix and Raman processes should be considered. The strong impact of hydrogen bonding between the dopant molecule and ethanol host on the spin relaxation was observed in ethanol glass whereas in crystalline ethanol both paramagnetic guest molecules behaved similarly.

Marina Kveder; Dalibor Merunka; Milan Joki?; Janja Makarevi?; Boris Rakvin

2010-08-24T23:59:59.000Z

146

Electron spin-lattice relaxation in solid ethanol: the effect of nitroxyl radical hydrogen bonding and matrix disorder  

E-Print Network (OSTI)

The electron spin-lattice relaxation of TEMPO and TEMPONE was measured at temperatures between 5 and 80 K in crystalline and glassy ethanol using X-band electron paramagnetic resonance spectroscopy. The experimental data at the lowest temperatures studied were explained in terms of electron-nuclear dipolar interaction between the paramagnetic center and the localized excitations, whereas at higher temperatures low-frequency vibrational modes from the host matrix and Raman processes should be considered. The strong impact of hydrogen bonding between the dopant molecule and ethanol host on the spin relaxation was observed in ethanol glass whereas in crystalline ethanol both paramagnetic guest molecules behaved similarly.

Kveder, Marina; Joki?, Milan; Makarevi?, Janja; Rakvin, Boris

2010-01-01T23:59:59.000Z

147

Distal hydrogen-bonding effects and cofacial bimetallic salen architectures for oxygen activation chemistry  

E-Print Network (OSTI)

Two distinct structural scaffolds elaborated from Schiff-base macrocycles were designed to study the proton-coupled electron transfer chemistry of 0-0 bond forming and activation chemistry. The "Hangman" architecture is ...

Yang, Jenny Yue-fon

2007-01-01T23:59:59.000Z

148

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

SciTech Connect

The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

Melaina, M. W.; Antonia, O.; Penev, M.

2013-03-01T23:59:59.000Z

149

The three-dimensional hydrogen-bonded structures in the ammonium and sodium salt hydrates of 4-amino­phenyl­arsonic acid  

Science Journals Connector (OSTI)

In the hydrated ammonium salt of 4-amino­phenyl­arsonic acid (p-arsanilic acid), the ammonium cations, arsonate anions and water mol­ecules inter­act through inter-species N-HO hydrogen bonds to arsonate and water, and water O-HO hydrogen bonds, giving the common two-dimensional layers lying parallel to (010), which are expanded into three-dimensions through the amine group. The sodium salt is a one-dimensional coordination polymer with water bridges generating chains extending along c and extensive inter-chain O-HO and N-HO hydrogen-bonding inter­actions linking these chains, giving an overall three-dimensional structure.

Smith, G.

2014-07-04T23:59:59.000Z

150

Modelling and optimisation for design of hydrogen networks for multi-period operation  

Science Journals Connector (OSTI)

Hydrogen management is a problem of increasing importance: hydrogen consumption of refineries is rising sharply with additional capacities of hydrocracking and hydrotreating units in order to comply with cleaner fuel specifications. Product Specifications for transportation fuels are becoming increasingly stringent to ensure production of environmentally more benign fuels. Hydrogen management techniques currently do not account for varying operating conditions of hydrogen consuming processes and assume constant operating conditions. A novel approach is developed for the design of flexible hydrogen networks that can remain optimally operable under multiple periods of operation. The proposed methodology for multi-period design of hydrogen networks can take into account pressure differences, maximum capacity of existing equipment, and optimal placement of new equipment such as compressors.

Muhammad Imran Ahmad; Nan Zhang; Megan Jobson

2010-01-01T23:59:59.000Z

151

Hydroxide Hydrogen Bonding: Probing the Solvation Structure through Ultrafast Time Domain Raman Spectroscopy  

Science Journals Connector (OSTI)

(6-8) It has also been supported by neutron scattering experiments that suggest coordination numbers between 3.5 and 5.(9, 10) In addition, Car–Parrinello molecular dynamics (CPMD) calculations support the hypercoordination picture, suggesting a concentration and counterion-dependent distribution of 3–5 water molecules bonded to the hydroxide oxygen. ... (20, 30) The 15 fs pulses were generated by a Kerr-lens mode-locked Ti:Sapphire laser with center wavelength of 800 nm, an 80 nm bandwidth, and an 800 mW average power. ... energy structure on the potential energy surface, because the water drifts to become attached to one of the first solvation shell waters. ...

Ismael A. Heisler; Kamila Mazur; Stephen R. Meech

2011-04-27T23:59:59.000Z

152

Single-Objective and Multiobjective Designs for Hydrogen Networks with Fuel Cells  

Science Journals Connector (OSTI)

Single-Objective and Multiobjective Designs for Hydrogen Networks with Fuel Cells ... Zhao et al.(3) then extended this design strategy to optimize a multicomponent hydrogen management system, while Ding et al.(4) further introduced pressure considerations so as to ensure feasibility in practice. ... Kumar et al.(8) suggested several different models and compared the optimization results. ...

Yen-Cheng Chiang; Chuei-Tin Chang

2014-03-18T23:59:59.000Z

153

Supply chain network for hydrogen transportation in Spain  

E-Print Network (OSTI)

Hydrogen fuel is considered one of the major emerging renewable substitutes for fossil fuel. A crucial factor as to whether hydrogen will be successful depends on its cost as a substitute. Recently, there has been a growing ...

Liang, Li

2010-01-01T23:59:59.000Z

154

Optimum network on future hydrogen supply chain in Peninsular Malaysia  

Science Journals Connector (OSTI)

The main objective of this study is to presents the overview ideas on the infrastructure planning of hydrogen energy in Malaysia as potential future use of hydrogen as an energy carrier in the transportation sector. Finally the results will give the ... Keywords: Malaysia, economy, fuel, hydrogen energy

S. K. Kamarudin; Z. Yaakob; W. R. W. Daud; W. Anuar; A. Zaharim

2008-11-01T23:59:59.000Z

155

Production of Hydrogen by Electrocatalysis: Making the H-H Bond by Combining Protons and Hydrides  

SciTech Connect

Generation of hydrogen by reduction of two protons by two electrons can be catalysed by molecular electrocatalysts. Determination of the thermodynamic driving force for elimination of H2 from molecular complexes is important for the rational design of molecular electrocatalysts, and allows the design of metal complexes of abundant, inexpensive metals rather than precious metals (“Cheap Metals for Noble Tasks”). The rate of H2 evolution can be dramatically accelerated by incorporating pendant amines into diphosphine ligands. These pendant amines in the second coordination sphere function as protons relays, accelerating intramolecular and intermolecular proton transfer reactions. The thermodynamics of hydride transfer from metal hydrides and the acidity of protonated pendant amines (pKa of N-H) contribute to the thermodynamics of elimination of H2; both of the hydricity and acidity can be systematically varied by changing the substituents on the ligands. A series of Ni(II) electrocatalysts with pendant amines have been developed. In addition to the thermochemical considerations, the catalytic rate is strongly influenced by the ability to deliver protons to the correct location of the pendant amine. Protonation of the amine endo to the metal leads to the N-H being positioned appropriately to favor rapid heterocoupling with the M-H. Designing ligands that include proton relays that are properly positioned and thermodynamically tuned is a key principle for molecular electrocatalysts for H2 production as well as for other multi-proton, multi-electron reactions important for energy conversions. The research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE.

Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.

2014-03-25T23:59:59.000Z

156

E-Print Network 3.0 - adhesively bonded lap Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

The lap-shear strengths of adhesively bonded polystyrene (PS), high-density polyethylene (HDPE... bonded in a lap-shear geometry. The bonded area of adhesion was nominally...

157

Mg7(AsO4)2(HAsO4)4: a new magnesium arsenate with a very strong hydrogen bond  

Science Journals Connector (OSTI)

Hydro­thermally synthesized Mg7(AsO4)2(HAsO4)4 has a framework structure built of edge- and corner-sharing MgO6, MgO4(OH)2, MgO5, AsO3(OH) and AsO4 polyhedra. The compound contains a very short hydrogen bond [OO = 2.468 (3) ?].

Kolitsch, U.

2004-08-21T23:59:59.000Z

158

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Today’s energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

159

E-Print Network 3.0 - adhesive bond strength Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

The lap-shear strengths of adhesively bonded polystyrene (PS), high-density polyethylene (HDPE... 12;strength of the substrate, or the adhesive strength of the bond 9....

160

E-Print Network 3.0 - affects durably bonding Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

adhesive layers are less affected, creep behavior of adhesively bonded joints... ABSTRACT SMITH, GLEN. Bond Characteristics and Qualifications of Adhesives for ... Source:...

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improved Model Formulations for Multi-Period Hydrogen Network Designs  

Science Journals Connector (OSTI)

Operating cost reduction and/or air pollution abatement via hydrogen integration is a research issue that has recently attracted considerable attention in the petroleum refining industries. Although a number of mathematical programming models have been ...

Che-Chi Kuo; Chuei-Tin Chang

2014-12-05T23:59:59.000Z

162

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

applied repair procedures have been investigated to determine if they can be used for pipeline repair under hydrogen service. The focus was on the pipeline load and the effect...

163

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Blending Hydrogen into Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Technical Report NREL/TP-5600-51995 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 Technical Report NREL/TP-5600-51995 March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

164

Measurement of the 3D Born-Oppenheimer Potential of a Proton in a Hydrogen-Bonded System via Deep Inelastic Neutron Scattering: The Superprotonic Conductor Rb{sub 3}H(SO{sub 4}){sub 2}  

SciTech Connect

We report the first direct measurement of the proton 3-D Born-Oppenheimer potential in any material. The proton potential surfaces in the hydrogen-bonded superprotonic conductor Rb{sub 3}H(SO{sub 4}){sub 2} are extracted from the momentum distribution measured using Deep Inelastic Neutron Scattering (DINS). The potential has a single minimum along the bond direction, which accounts for the absence of the antiferroelectric transition seen in the deuterated material. The measured potential is in qualitative agreement with phenomenological double Morse potentials that have been used to describe hydrogen bonds in other systems.

Homouz, D.; Reiter, G. [Physics Department, University of Houston, Houston, Texas, 77204 (United States); Eckert, J. [LANSCE, Los Alamos National Laboratory, and University of California, Santa Barbara, California (United States); Mayers, J. [ISIS, Rutherford Appelton Laboratory, Chilton, Didcot, England (United Kingdom); Blinc, R. [Stefan Jozef Institut, Lubljana (Slovenia)

2007-03-16T23:59:59.000Z

165

E-Print Network 3.0 - aryl-metal bond chemistry Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

metal bond chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: aryl-metal bond chemistry Page: << < 1 2 3 4 5 > >> 1 Subscriber access...

166

Remote Functionalization of Carbon-Hydrogen and Carbon-Carbon Bonds by Bare Transition Metal Ions in the Gas Phase  

Science Journals Connector (OSTI)

The selective functionaIization of C-H bonds remains one of the major focuses of catalytic and organic chemistry. High selectivity is often achieved by the presence of activating groups which induce the reacti...

Gregor Czekay; Thomas Drewello; Karsten Eller…

1989-01-01T23:59:59.000Z

167

Critical percolation phase and thermal Berezinskii-Kosterlitz-Thouless transition in a scale-free network with short-range and long-range random bonds  

E-Print Network (OSTI)

Percolation in a scale-free hierarchical network is solved exactly by renormalization-group theory in terms of the different probabilities of short-range and long-range bonds. A phase of critical percolation, with algebraic ...

Berker, A. Nihat

168

Hydrogen-Bonding Density of Supramolecular Self-Assembled Fibrillar Networks Probed Using Synchrotron Infrared Spectromicroscopy  

Science Journals Connector (OSTI)

Two weight percent samples of 12HSA in each solvent were prepared by heating the mixture to 85 °C for 30 min. ... Light is focused on the sample using a 36Ś magnification Schwarzschild condenser, collected by a 36Ś magnification Schwarzschild objective and detected by a liquid nitrogen cooled narrowband MCT detector with a 100 ?m sensing element. ... Interferograms were collected using 256 scans and were recorded by scanning the moving mirror at 40 kHz, to an upper frequency limit of 7899 cm?1 and with a spectral resolution of 4 cm?1. ...

Michael A. Rogers; Tor Pedersen; Luca Quaroni

2009-06-17T23:59:59.000Z

169

E-Print Network 3.0 - anisotropic bond model Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

in Summary: of the combined bonds. In terms FIG. 7: Phase boundary surface for the Ising model on the d 3 fully anisotropic... anisotropic systems are introduced. These...

170

In Situ Hydrogenation of Amorphous Silicon Prepared by Thermal Decomposition of Disilane  

Science Journals Connector (OSTI)

Thin hydrogenated amorphous silicon (a-Si:H) layers with thicknesses of 90-600 ? grown by thermal decomposition of disilane were treated with rf hydrogen plasma just after deposition at the same temperature (430-440?C). During this process (referred to as in situ hydrogenation), atomic hydrogen passivates defects, and the effective thickness of this passivated layer is estimated to be 220 ?. Atomic hydrogen also induces structural relaxation of the Si network even in a-Si:H deposited at high temperature (>400?C) while the change of bonded hydrogen content is rather small in in situ hydrogenation.

Mitsuyuki Yamanaka; Yutaka Hayashi; Isao Sakata

1993-01-01T23:59:59.000Z

171

Experimental Investigation of Hydrogen Chloride Bonding with Calcium Hydroxide in the Furnace of a Stoker-Fired Boiler  

Science Journals Connector (OSTI)

The paper presents the results of experimental technical investigations to limit the mobility of chlorine released in the form of hydrogen chloride from the fuel in a stoker-fired boiler furnace. In the combustion process, hydrated lime was used as the ...

S?awomir Poskrobko; Jan ?ach; Danuta Król

2010-03-04T23:59:59.000Z

172

E-Print Network 3.0 - aluminide-bonded carbide ceramics Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

R. Begleyw Summary: include TBCs on superalloys, EBCs on sili- con-based ceramics, or TiCNbN coatings on cemented carbide... with Diffusion Aluminide Bond Coatings,'' Mater....

173

E-Print Network 3.0 - azo covalent bond Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Materials Science ; Chemistry 76 1,4-Dimethyl-l,4,5,6-hexahydro-l,2,3,4-tetrazine. A Cyclic cis-2-Tetrazene Summary: the N2-C bond in position for a large interaction...

174

Influence of physicochemical properties of alkaline solutions and temperature on the hydrogen evolution reaction on porous lanthanum-phosphate-bonded nickel electrodes  

SciTech Connect

A steady-state method and ac impedance spectroscopy were used to investigate the hydrogen evolution reaction (HER) on porous lanthanum-phosphate-bonded nickel (LPBN) electrodes in 9M NaOH and KOH solutions at temperatures ranging from 20 to 70C. The Tafel slopes, exchange current densities, and overpotential at a current density of 250 mA/cm[sup 2] were obtained from steady-state measurements. The ac impedance data were analyzed using the porous-electrode model, and the kinetic parameters of the HER and double-layer capacitances were determined. The pore length was deduced to be 64 to 73 [mu]m compared to 1 [mu]m for the diameter. The effect of temperature and the nature of the electrolyte on the intrinsic electrocatalytic activity of the LPBN electrodes are discussed.

Dumont, H.; Los, P.; Menard, H. (Univ. de Sherbrooke, Quebec (Canada). Dept. de Chimie); Brossard, L. (Inst. de recherche d'Hydro-Quebec, Varennes, Quebec (Canada))

1994-05-01T23:59:59.000Z

175

Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H - - - H-N Dihydorgen Bond Characterized by Neutron Diffraction  

SciTech Connect

Use of hydrogen as a fuel by [FeFe]-hydrogenase enzymes in nature requires heterolytic cleavage of the H-H bond into a proton (H+) and hydride (H-), a reaction that is also a critical step in homogeneous catalysts for hydrogenation of C=O and C=N bonds. An understanding of the catalytic oxidation of H2 by hydrogenases provides insights into the design of synthetic catalysts that are sought as cost-effective alternatives to the use of the precious metal platinum in fuel cells. Crystallographic studies on the [FeFe]-hydrogenase enzyme were critical to understanding of its reactivity, but the key H-H cleavage step is not readily observed experimentally in natural hydrogenases. Synthetic biomimics have provided evidence for H2 cleavage leading to hydride transfer to the metal and proton transfer to an amine. Limitations on the precise location of hydrogen atoms by x-ray diffraction can be overcome by use of neutron diffraction, though its use is severely limited by the difficulty of obtaining suitable crystals and by the scarcity of neutron sources. Here we show that an iron complex with a pendant amine in the diphosphine ligand cleaves hydrogen heterolytically under mild conditions, leading to [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4-, [PtBu2NtBu2 = 1,5-di(tert-butyl)-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane; ArF = 3,5-bis(trifluoromethyl)phenyl]. The Fe-H- - - H-N moiety has a strong dihydrogen bond, with a remarkably short H • • • H distance of 1.489(10) Ć between the protic N-H?+ and hydridic Fe-H?-. The structural data for [CpC5F4NFeH(PtBu2NtBu2H)]+ provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes, with the pendant amine playing a key role as a proton relay. The iron complex [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4- is an electrocatalyst for oxidation of H2 (1 atm) at 22 °C, so the structural data are obtained on a complex that is a functional model for catalysis by [FeFe]-hydrogenase enzymes. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Liu, Tianbiao L.; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L.; Bullock, R. Morris

2014-05-19T23:59:59.000Z

176

One-Step Purification of 3,4-Dihydroxyphenyllactic Acid, Salvianolic Acid B, and Protocatechualdehyde from Salvia miltiorrhiza Bunge by Isocratic Stepwise Hydrogen Bond Adsorption Chromatography on Cross-Linked 12% Agarose  

Science Journals Connector (OSTI)

......with ethanol. This method is still popular for...standard separation method (7). However, the...either of these two methods is not satisfactory...product. However, the production cost is very high and...by Isocratic Stepwise Hydrogen Bond Adsorption Chromatography......

M. Gu; Z.-G. Su; J.-C. Janson

2008-02-01T23:59:59.000Z

177

Role of Hydrogen Bonding in the Interaction between a Xylan Binding Module and Hefang Xie, David N. Bolam, Tibor Nagy, Lorand Szabo, Alan Cooper,| Peter J. Simpson, Jeremy H. Lakey,@  

E-Print Network (OSTI)

Role of Hydrogen Bonding in the Interaction between a Xylan Binding Module and Xylan Hefang Xie ligand, xylan. To investigate the importance of the various interactions, free energy and enthalpy changes have been measured for the binding of xylan to native and mutant forms of CBM2b-1. The data show

Williamson, Mike P.

178

Two-dimensional hydrogen-bonded polymers in the crystal structures of the ammonium salts of phen­oxy­acetic acid, (4-fluoro­phen­oxy)acetic acid and (4-chloro-2-methyl­phen­oxy)acetic acid  

Science Journals Connector (OSTI)

The crystal of the isomorphous anhydrous ammonium salts of phen­oxy­acetic acid and (4-fluoro­phen­oxy)acetic acid and that of the hemihydrate ammonium salt of 4-chloro-2-methyl­phen­oxy)acetic acid show two-dimensional layered structures based on conjoined cyclic hydrogen-bonded motifs.

Smith, G.

2014-11-19T23:59:59.000Z

179

Hydrogen bond topology and the ice VII/VIII and Ih/XI proton ordering phase transitions  

Science Journals Connector (OSTI)

Ice Ih, ordinary ice at atmospheric pressure, is a proton-disordered crystal that when cooled under special conditions is believed to transform to ferroelectric proton-ordered ice XI, but this transformation is still subject to controversy. Ice VII, also proton disordered throughout its region of stability, transforms to proton-ordered ice VIII upon cooling. In contrast to the ice Ih/XI transition, the VII/VIII transition and the crystal structure of ice VIII are well characterized. In order to shed some light on the ice Ih proton ordering transition, we present the results of periodic electronic density functional theory calculations and statistical simulations. We are able to describe the small energy differences among the innumerable H-bond configurations possible in a large simulation cell by using an analytic theory to extrapolate from electronic DFT calculations on small unit cells to cells large enough to approximate the thermodynamic limit. We first validate our methods by comparing our predictions to the well-characterized ice VII/VIII proton ordering transition, finding agreement with respect to both the transition temperature and structure of the low-temperature phase. For ice Ih, our results indicate that a proton-ordered phase is attainable at low temperatures, the structure of which is in agreement with the experimentally proposed ferroelectric Cmc21 structure. The predicted transition temperature of 98K is in qualitative agreement with the observed transition at 72K on KOH-doped ice samples.

Chris Knight; Sherwin J. Singer; Jer-Lai Kuo; Tomas K. Hirsch; Lars Ojamäe; Michael L. Klein

2006-05-16T23:59:59.000Z

180

E-Print Network 3.0 - apocynin decreases hydrogen Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Compression Summary: Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic... Initiatives for Hydrogen Delivery Workshop - May 7, 2003...

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - alternative hydrogen pathways Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Hydrogen Related...

182

E-Print Network 3.0 - automotive hydrogen storage Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Hydrogen Composite Tank...

183

E-Print Network 3.0 - advanced hydrogen transport Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 Hydrogen Codes and...

184

E-Print Network 3.0 - added hydrogeneous moderator Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 NATIONAL HYDROGEN ENERGY...

185

E-Print Network 3.0 - advancing bio-hydrogen presentation Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

producing bio-hydrogen 27 2.3.3 Photo-fermentation producing bio-hydrogen 28 2.3.4 Biogas production 28 2... Dark fermentation producing bio-hydrogen Photo-fermentation...

186

E-Print Network 3.0 - aspect ratio hydrogen Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: of fuel cells is an extremely important aspect in the production of hydrogen. Fuel cells function... HYDROGEN There is a good chance that hydrogen will be the shining...

187

E-Print Network 3.0 - asymmetric transfer hydrogenation Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: . Catalyst for Asymmetric (Transfer) Hydrogenation. Michel van den Berg, Adriaan J. Minnaard, Johannes G. de... Asymmetric hydrogenation with cheap ligands...

188

E-Print Network 3.0 - atomic hydrogen passivation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Ventures July 13, 2005 12;2 Chevron 2005 CTV Hydrogen Strategy... Develop organizational capability to be a market leader should hydrogen be adopted in the ......

189

E-Print Network 3.0 - atomic hydrogen density Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

> >> 1 Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption Summary: two hydrogen atoms, but only one of...

190

E-Print Network 3.0 - atomic hydrogen generated Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

> >> 1 Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption Summary: two hydrogen atoms, but only one of...

191

E-Print Network 3.0 - atomic hydrogen gas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and Fuel Summary: : Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar); Physical storage... of a material either as hydrogen molecules (H2...

192

E-Print Network 3.0 - alkaline hydrogen peroxide Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

concentration, ethanol... RK, Sampath S, Shukla AK. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant... of hydrogen ... Source: Zhao, Tianshou -...

193

E-Print Network 3.0 - advanced nuclear-electrolytic hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

of H2 from Hydrocarbon Fuels Novel Catalytic... ) Fossil-Based Hydrogen Production Praxair Praxair ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen,...

194

E-Print Network 3.0 - alternative hydrogen energy Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

technically challenging barriers to the widespread use of hydrogen as a form of energy... energy content by volume (liquid hydrogen is about four times less than gasoline). This...

195

E-Print Network 3.0 - activity recycles hydrogen Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Hydrogen, Fuel Cells, and...

196

E-Print Network 3.0 - attenuate hydrogen peroxide Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen peroxide Search Powered by Explorit Topic List Advanced Search Sample search results for: attenuate hydrogen peroxide Page: << < 1 2 3 4 5 > >> 1 SHORT COMMUNICATION Ned...

197

E-Print Network 3.0 - atomic hydrogen irradiation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic hydrogen irradiation Page: << < 1 2 3 4 5 > >> 1 ORIGIN OF THE HYDROGEN INVOLVED IN IRON...

198

E-Print Network 3.0 - aortic hydrogen peroxide Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen peroxide Search Powered by Explorit Topic List Advanced Search Sample search results for: aortic hydrogen peroxide Page: << < 1 2 3 4 5 > >> 1 SHORT COMMUNICATION Ned A....

199

E-Print Network 3.0 - alternative hydrogen production Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

a number of countries have quite a substantial production of hydrogen, among these are Germany and the USA... . In the Nordic countries most of the production of hydrogen is...

200

E-Print Network 3.0 - absolute standard hydrogen Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Science and Engineering Center Part 2. Hydrogen and Related Topics Summary: Energy Content for 1 kg (2.2 lb) of Hydrogen 424 Standard Cubic Feet (Reacting with...

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - applications hydrogen vehicle Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Summary: Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

202

E-Print Network 3.0 - adsorbed hydrogen technical Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 FUEL CELL TECHNOLOGIES...

203

E-Print Network 3.0 - accurate hydrogen depth Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Elastic recoil detection...

204

E-Print Network 3.0 - atomic hydrogen cleaning Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 TEMPERATURE DEPENDENT...

205

E-Print Network 3.0 - array-based electrochemical hydrogen Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

206

E-Print Network 3.0 - agency hydrogen-powered transit Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

207

Insights into the Importance of Hydrogen Bonding in the [gamma]-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Serine 236  

SciTech Connect

The active site of myosin contains a group of highly conserved amino acid residues whose roles in nucleotide hydrolysis and energy transduction might appear to be obvious from the initial structural and kinetic analyses but become less clear on deeper investigation. One such residue is Ser236 (Dictyostelium discoideum myosin II numbering) which was proposed to be involved in a hydrogen transfer network during {gamma}-phosphate hydrolysis of ATP, which would imply a critical function in ATP hydrolysis and motility. The S236A mutant protein shows a comparatively small decrease in hydrolytic activity and motility, and thus this residue does not appear to be essential. To understand better the contribution of Ser236 to the function of myosin, structural and kinetic studies have been performed on the S236A mutant protein. The structures of the D. discoideum motor domain (S1dC) S236A mutant protein in complex with magnesium pyrophosphate, MgAMPPNP, and MgADP{center_dot}vanadate have been determined. In contrast to the previous structure of wild-type S1dC, the S236A{center_dot}MgAMPPNP complex crystallized in the closed state. Furthermore, transient-state kinetics showed a 4-fold reduction of the nucleotide release step, suggesting that the mutation stabilizes a closed active site. The structures show that a water molecule approximately adopts the location of the missing hydroxyl of Ser236 in the magnesium pyrophosphate and MgAMPPNP structures. This study suggests that the S236A mutant myosin proceeds via a different structural mechanism than wild-type myosin, where the alternate mechanism is able to maintain near normal transient-state kinetic values.

Frye, Jeremiah J.; Klenchin, Vadim A.; Bagshaw, Clive R.; Rayment, Ivan (Leicester); (UW)

2010-09-22T23:59:59.000Z

208

Prospects for the hydrogen transition based on the network economic approach  

E-Print Network (OSTI)

: Portugal (2007)" #12;2 Introduction Hydrogen produced from renewable sources and used in fuel cells, without the infrastructure it is not likely that hydrogen and fuel cell technology can be diffused. Even though hydrogen production is still more costly than for other fuels--particularly gasoline

Paris-Sud XI, Université de

209

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy  

E-Print Network (OSTI)

S. Pshenichnikov and D. A. Wiersma, J. Phys. Chem. B, 2004,Dan Cringus, Douwe A. Wiersma and Maxim Mostovoy, Chem.

Huse, Nils

2009-01-01T23:59:59.000Z

210

E-Print Network 3.0 - anaerobic hydrogen producing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

a small percentage of hydrogen sulfide, water vapor, carbon... Technology Biomethane (biogas) is an alternative and renewable energy source produced through the anaerobic... are...

211

E-Print Network 3.0 - aerobic hydrogen accumulation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

accumulation in the system (9). If high concentrations... to be measured as total biogas pro- duction. Hydrogen gas does not ordinarily ... Source: Logan, Bruce E.- Department...

212

E-Print Network 3.0 - atomic hydrogen adsorbate Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

to cylindrical tanks, which do not package well in a vehicle. Materials-based storage Hydrogen atoms or molecules... FUEL CELL TECHNOLOGIES PROGRAM ... Source: DOE...

213

E-Print Network 3.0 - agency hydrogen powered Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Ris Energy Report 3...

214

E-Print Network 3.0 - autonomous solar hydrogen Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 A Feasibility Study of a...

215

E-Print Network 3.0 - advanced hydrogen utilization Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Ris Energy Report 3...

216

E-Print Network 3.0 - agency hydrogen implementing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Ris Energy Report 3...

217

E-Print Network 3.0 - application hydrogen storage Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Basic Energy SciencesBasic...

218

E-Print Network 3.0 - automotive hydrogen supply Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Ris Energy Report 3...

219

E-Print Network 3.0 - atomic hydrogen review Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

20 I-NERI ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

220

First Principle Study of Ethanol Adsorption and Formation of Hydrogen Bond on Rh(111) Ming-Mei Yang,, Xin-He Bao,*, and Wei-Xue Li*,,  

E-Print Network (OSTI)

reserves, alcohols are one of the most renewable resources for hydrogen production in fuel cell of alcohols from syngas (CO and H2).2 Despite the numerous studies conducted so far, microscopic understanding

Li, Weixue

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pillared Graphene: A New 3?D Innovative Network Nanostructure Augments Hydrogen Storage  

Science Journals Connector (OSTI)

Nowadays people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by?product is water. For hydrogen?powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States’ Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010.

Dimitrakakis K. Georgios; Tylianakis Emmanuel; Froudakis E. George

2009-01-01T23:59:59.000Z

222

E-Print Network 3.0 - alternative fuel hydrogen Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

>> 1 A U.S. Department of Energy laboratory managed by The University of Chicago Summary: energy carrier for fuel cells in the long term but until hydrogen is readily available,...

223

E-Print Network 3.0 - argon-seeded hydrogen sheet Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: argon-seeded hydrogen sheet Page: << < 1 2 3 4 5 > >> 1 2009 US-Japan Workshop on Advanced Simulation Methods in Plasma Physics Fast reconnection and...

224

Doped Carbon Nanotubes for Hydrogen Storage  

E-Print Network (OSTI)

Doped Carbon Nanotubes for Hydrogen Storage U. S. DOE Hydrogen Program Annual Review May, 2003 structure carbon nanotube systems ·Not restricted to physisorption or chemisorption (weak covalent bond structures of doped carbon nanotubes APPROACH Based on C-H bond Dihydrogen bond H H M = + charge = - charge

225

Bonding Tools  

Energy.gov (U.S. Department of Energy (DOE))

Bonds are one of the most common forms of financing used by state and local governments, because they are a low-cost source of capital available to most entities. State and local officials may consider using bonds for a variety of clean energy purposes, including...

226

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Energy Savers (EERE)

(DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

227

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum (DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

228

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

229

J. Mol. Biol. (1988) 201, 751-754 Aromatic Rings Act as Hydrogen  

E-Print Network (OSTI)

J. Mol. Biol. (1988) 201, 751-754 Aromatic Rings Act as Hydrogen Bond Acceptors Michael Levitt that there is a significant interaction between a hydrogen bond donor (like the > NH group) and the centre of a benzene ring, which acts as a hydrogen bond acceptor. This interaction, hvdrogen bond, which is about half as strong

Levitt, Michael

230

Hydrogenation of single-walled carbon nanotubes  

E-Print Network (OSTI)

Towards the development of a useful mechanism for hydrogen storage, we have studied the hydrogenation of single-walled carbon nanotubes with atomic hydrogen using core-level photoelectron spectroscopy and x-ray absorption spectroscopy. We find that atomic hydrogen creates C-H bonds with the carbon atoms in the nanotube walls and such C-H bonds can be com-pletely broken by heating to 600 oC. We demonstrate approximately 65+/-15 at % hydrogenation of carbon atoms in the single-walled carbon nanotubes which is equivalent to 5.1+/-1.2 weight % hydrogen capacity. We also show that the hydrogenation is a reversible process.

Anton Nikitin; Hirohito Ogasawara; David Mann; Reinhard Denecke; Zhiyong Zhang; Hongjie Dai; KJ Cho; Anders Nilsson

2005-10-14T23:59:59.000Z

231

Observation of a remarkable temperature effect in the hydrogen bonding structure and dynamics of the CN-(H2O) cluster  

SciTech Connect

The CN-(H2O) cluster represents a model diatomic monohydrate with multiple solvation sites. We report joint experimental and theoretical studies of its structure and dynamics using temperature-controlled photoelectron spectroscopy (PES) and ab-initio electronic structure calculations. The observed PES spectra of CN-(H2O) display a remarkable temperature effect, namely that the T=12 K spectrum shows an unexpectedly large blue shift of 0.25 eV in the electron binding energy relative to the Room Temperature (RT) spectrum. Extensive theoretical analysis of the potential energy function (PEF) of the cluster at the CCSD(T) level of theory reveal the existence of two nearly isoenergetic isomers corresponding to H2O forming a H-bond with either the C or the N atom, respectively. This results in four topologically distinct minima, i.e., CN-(HaOHb), CN-(HbOHa), NC-(HaOHb) and NC-(HbOHa). There are two main pathways connecting these minima: (i) CN- tumbling relative to water and (ii) water rocking relative to CN-. The relative magnitude of the barriers associated with these two motions reverses between low [pathway (i) is preferred] and high [pathway (ii) is preferred] temperatures. As a result, at T=12 K the cluster adopts a structure that is close to the minimum energy CN-(H2O) configuration, while at RT it can effectively access regions of the PEF close to the transition state for pathway (ii), explaining the surprisingly large spectral shift between the 12 K and RT PES spectra. This work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.

Wang, Xue B.; Werhahn, Jasper C.; Wang, Lai S.; Kowalski, Karol; Laubereau, Alfred; Xantheas, Sotiris S.

2009-09-03T23:59:59.000Z

232

Stability of hydrogenated amorphous silicon deposited at high temperatures with a remote hydrogen plasma  

Science Journals Connector (OSTI)

It is demonstrated that the stability of hydrogenated amorphous silicon (a?Si:H) is improved by deposition under the combined conditions of high substrate temperature (e.g. T D =400?°C) and high hydrogen dilution as are readily achieved in a remote hydrogen plasma reactor. In comparison with optimized films from conventional rfglow dischargedeposition (e.g. silane 230?°C 2 W) undoped high T D films possess a lower midgap defect density the dark dc conductivity in n?type (phosphorus?doped) films displays higher equilibration temperatures and longer relaxation times at a given temperature with an activation energy of 1.0 eV and undoped high T D films have a lower saturated density of light?induced defects. It is proposed that the ability to achieve the improved stability is a consequence of two effects: (1) the use of hydrogen dilution during deposition to maintain the hydrogen concentration in the film near 10 at.?% even at 400?°C and (2) the possibility that at high T D ’s the hydrogen is more stably incorporated in the random network and/or that the density of weak Si—Si bonds is smaller.

N. M. Johnson; C. E. Nebel; P. V. Santos; W. B. Jackson; R. A. Street; K. S. Stevens; J. Walker

1991-01-01T23:59:59.000Z

233

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

234

Polymer system for gettering hydrogen  

DOE Patents (OSTI)

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

235

Polymer formulations for gettering hydrogen  

DOE Patents (OSTI)

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

236

Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network Network Facts & Stats Engineering Services The Network Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata...

237

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

238

Private Activity Bond Allocation (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Allocation (Missouri) Bond Allocation (Missouri) Private Activity Bond Allocation (Missouri) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate Total Program Cap 2012: $571,015,360 Program Info State Missouri Program Type Bond Program Provider Missouri Department of Economic Development The Private Activity Bond Allocation Program provides low-interest financing through tax-exempt bonds for certain types of projects, including electric and gas utility projects. Eligible applicants include certain state agencies, cities, counties and industrial development authorities

239

A supra­molecular ladder-like network from trimesic acid and pyrazine N,N'-dioxide  

Science Journals Connector (OSTI)

Cocrystallized trimesic acid (TMA) and pyrazine N,N'-dioxide (PNO) mol­ecules form strong O-HO hydrogen bonds, but also important weak C-HO and dipole-dipole inter­molecular inter­actions, to generate a densely packed three-dimensional network.

Yadav, V.N.

2013-12-07T23:59:59.000Z

240

Simultaneous adsorption of carbon and hydrogen on Ni(100). Nature of new forms of hydrogen absorption  

SciTech Connect

The authors have analyzed the form of hydrogen adsorption on Ni(100) upon simultaneous adsorption of carbon and hydrogen in the cluster approximation using the nonempirical Hartree-Fock method with subsequent allowance for electron correlation energy. The effect of carbon on the adsorbed hydrogen layer is indirect, through the surface metal atoms; and this perturbation is so great that it leads to substantial change in the type of bonding of the hydrogen to the surface. The calculations predict two types of adsorbed hydrogen on Ni(100). In the symmetric state /sup 2/A', the hydrogen has a modified four-coordinate bond with surface nickel atoms (the B/sub 4/ state) at a short distance to the surface (R/sub perpendicular to/ approx. 0.05 A). In this state, the adsorbed hydrogen tends to penetrate into the volume. In the other antisymmetry state /sup 2/A'', the hydrogen has a bridge bond (the B/sub 2/ state). The calculations predict that in this state the strength of the bond between hydrogen and the surface is greater than in the B/sub 4/ state. The bridge structure for hydrogen is not subject to a strong effect from adsorbed carbon. On the basis of an analysis of the calculated vibrational frequencies of the hydrogen-surface bond and other electronic parameters, they propose possible surface structures for hydrogen and carbon when they are simultaneously adsorbed on Ni(100)

Avdeev, V.I.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen Highways  

E-Print Network (OSTI)

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

242

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

243

Optical and electrochemical properties of hydrogen-bondedphenol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical and electrochemical properties of hydrogen-bonded phenol-pyrrolidino60fullerenes Authors: Moore, G. F., Megiatto, J. D., Hambourger, M., Gervaldo, M., Kodis, G., Moore,...

244

Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network  

E-Print Network (OSTI)

emissions [19]. Hence, hydrogen can be produced on large scale from biomass feedstocks in centralized facilities and subsequently distributed at fueling stations and/or community locations as a universal clean fuel for transportation and power...

Damodharan, Shalini

2012-07-16T23:59:59.000Z

245

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

246

Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers  

Science Journals Connector (OSTI)

Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness however this relationship has not been quantified. This article explicitly correlates the bond quality which is quantified by the apparent bonding energy and the surface morphology via the bearing ratio which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE HF:NH 4 F =1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished “monitor” wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ?1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

N. Miki; S. M. Spearing

2003-01-01T23:59:59.000Z

247

Nature of Bridging Bonds in Lithium and Potassium Acetate Dimers  

Science Journals Connector (OSTI)

The structures of lithium and potassium acetates were studied by the RHF/6-31G*...3COOLi)2 and (CH3COOK)2 are electrostatic in nature. The bridging lithium bond is intermediate between hydrogen and ionic, ... of ...

I. A. Panteleev; S. G. Semenov; D. N. Glebovskii

248

FOCUS: HYDROGEN EXCHANGE AND COVALENT MODIFICATION ACCOUNT AND PERSPECTIVE  

E-Print Network (OSTI)

hydrogen exchange behavior, understand the underlying chemistry and structural physics of hydrogen exchange-protected by their H-bonding interactions, they engage in continual ex- change with the hydrogens of solvent water of the underlying chemistry and structural phys- ics of protein HX processes. The study of protein hydrogen exchange

Englander, S. Walter

249

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

250

Tax-Exempt Bond Financing (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Financing (Delaware) Bond Financing (Delaware) Tax-Exempt Bond Financing (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Bond Program Provider Delaware Economic Development Office The Delaware Economic Development Authority provides tax-exempt bond financing for financial assistance to new or expanding businesses, governmental units and certain organizations that are exempt from federal

251

Bond and Loan Program (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond and Loan Program (Arkansas) Bond and Loan Program (Arkansas) Bond and Loan Program (Arkansas) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Arkansas Program Type Bond Program Loan Program Provider Department of Finance and Administration The Bond and Loan programs of Arkansas are four programs designed to

252

FTIR Difference Spectroscopy Studies of Residue Roles at the Mn4Ca Cluster and the Hydrogen Bonding Network in Photosystem II  

E-Print Network (OSTI)

the Photosynthetic Oxygen- Evolving Center Coord. Chem. Rev.the Photosynthetic Oxygen-Evolving Center, Coord. Chem. Rev.Photosynthetic Oxygen- Evolving Center, Coord. Chem. Rev.

Service, Rachel J.

2011-01-01T23:59:59.000Z

253

Local Government Revenue Bonds (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Revenue Bonds (Montana) Government Revenue Bonds (Montana) Local Government Revenue Bonds (Montana) < Back Eligibility Utility Commercial Investor-Owned Utility Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Bond Program Provider Any interested county or municipality. Limited obligation local government bonds ("special revenue bonds") may be issued for qualified electric energy generation facilities, including those powered by renewables. These bonds generally are secured by the project itself. The taxing power or general credit of the government may not be used to secure the bonds. Local governments may not operate any project

254

Major Business Expansion Bond Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expansion Bond Program (Maine) Expansion Bond Program (Maine) Major Business Expansion Bond Program (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Bond Program Provider Finance Authority of Maine The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000,000 is available for businesses which expand their manufacturing services. The bond proceeds may be used to acquire real estate, machinery, equipment, or rehabilitate or expand an existing facility. The interest rate is determined by market forces at the time of the bond sale

255

Pooled Bond Program (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Bond Program Provider South Dakota Governor's Office of Economic Development The Pooled Bond Program offered by the Economic Development Finance Authority is designed for capital intensive projects, providing small businesses access to larger capital markets for tax-exempt or taxable bond issuances. Bond proceeds can be used to finance 80 percent of new construction, and 75 percent of new equipment costs, with no greater than 25 percent of the bond proceeds being used for ancillary activities such as

256

Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revenue Bond Issuance Cost Assistance (Wisconsin) Revenue Bond Issuance Cost Assistance (Wisconsin) Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) < Back Eligibility Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Bond Program Provider Wisconsin Economic Development Corporation Industrial Revenue Bonds (IRB) are tax-exempt bonds that can be used to stimulate capital investment and job creation by providing private borrowers with access to financing at interest rates that are lower than conventional bank loans. The IRB process involves five separate entities - the borrower, lender, bond attorney, issuer, and WEDC. WEDC allocates the bonding authority or the volume cap for the program under Wis. Stat. §

257

Hydrogen’s Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

258

Communicating Hydrogen: Matching Message with Media  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by DOE's Christy Cooper was given at the State/Regional Hydrogen and Fuel Cell Initiatives Networking Meeting in March 2007.

259

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

260

Nuclear Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Economic Development Bond Program (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Program (Iowa) Bond Program (Iowa) Economic Development Bond Program (Iowa) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Iowa Finance Authority State Iowa Program Type Bond Program Provider Iowa Finance Authority Through its Economic Development Bond Program, the Iowa Finance Authority (IFA) issues tax-exempt bonds on behalf of private entities or organizations for eligible purposes. The responsibility for repayment of the bonds rests with the applicant. Neither IFA nor the State of Iowa has

262

Single-Issue Industrial Revenue Bond Program (Missouri) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) < Back Eligibility Commercial Construction Industrial Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Missouri Program Type Bond Program Provider Missouri Development Finance Board The Missouri Development Finance Board administers a Single-Issue Tax-Exempt Industrial Revenue Bond Program as well as a Taxable Industrial Revenue Bond Program. The Tax-Exempt Program finances (i) the acquisition, construction and equipping of qualified manufacturing production facilities and/or equipment, and (ii) refinances outstanding tax-exempt bonds. It

263

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

264

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

265

Nuclear magnetic resonance studies of hydrogen in amorphous silicon  

SciTech Connect

Proton and deuteron NMR in hydrogenated amorphous silicon yield quantitative measures of species-specific structural configurations and their dynamics. Populations of silicon-bonded and molecular hydrogens correlate with photovoltaic quality, doping, illumination/dark anneal sequences, and with infrared and other characterizations. High quality films contain substantial populations of nanovoid-trapped molecular hydrogen.

Norberg, R.E.; Fedders, P.A.; Leopold, D.J. [Washington Univ., St. Louis, MO (United States). Dept. of Physics

1996-12-31T23:59:59.000Z

266

Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals  

SciTech Connect

Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion shows that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.

Dharmawardhana, C.C. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)] [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Misra, A. [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States)] [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Aryal, S.; Rulis, P. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)] [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Ching, W.Y., E-mail: ccdxz8@mail.umkc.edu [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)

2013-10-15T23:59:59.000Z

267

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

268

AdhesiveBonding.qrk  

NLE Websites -- All DOE Office Websites (Extended Search)

Adhesive Bonding Adhesive Bonding Manufacturing Technologies Understanding and controlling the factors that affect adhesion is vital for ensuring consistent successful bonding operations. The Manufacturing Science and Technology Center's research into adhesion is focused on achieving a good initial bond and then understanding the mechanisms leading to eventual bond failure. The department is working to understand crack propagation at the interface and has developed a variety of mechanical testing techniques to evalu- ate this failure mode. The factors affecting wetting and formation of the bond (e.g., contamination, surface roughness) are being explored to further our knowledge. In addition to research into adhesion, we bond and join components for our cus- tomers. Researchers have formulated new

269

Polymer formulations for gettering hydrogen  

DOE Patents (OSTI)

A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

Shepodd, Timothy J. (330 Thrasher Ave., Livermore, CA 94550); Even, Jr., William R. (4254 Drake Way, Livermore, CA 94550)

2000-01-01T23:59:59.000Z

270

Diffusion and effusion of hydrogen in microcrystalline silicon  

SciTech Connect

The diffusion and effusion of hydrogen in hydrogenated microcrystalline silicon films deposited in an electron cyclotron resonance reactor were studied for various deposition temperatures T{sub s}. For deposition temperatures below 250 C, hydrogen effusion is found to be dominated by desorption of hydrogen from internal surfaces followed by rapid out-diffusion of H{sub 2}. Higher substrate temperatures result in an increased hydrogen stability suggesting the growth of a more compact material. For this latter type of samples, a hydrogen diffusion coefficient similar as in compact plasma-grown a-Si:H films is found despite a different predominant bonding of hydrogen according to infrared absorption.

Beyer, W.; Hapke, P.; Zastrow, U.

1997-07-01T23:59:59.000Z

271

Private Activity Revenue Bonds (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

Private Activity Revenue Bonds are available in the form of both taxable bonds and tax-exempt bonds. Both types of bonds provide access to long-term capital markets for fixed asset financing....

272

Hydrogen Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

273

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

274

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

275

The Ohio Enterprise Bond Fund (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Fund (Ohio) Bond Fund (Ohio) The Ohio Enterprise Bond Fund (Ohio) < Back Eligibility Commercial State/Provincial Govt Industrial Local Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $10 million Program Info Funding Source Ohio Treasurer of State Start Date 1988 State Ohio Program Type Bond Program The Ohio Enterprise Bond Fund (OEBF) was created in 1988 to promote economic development, create and retain quality jobs and assist governmental operations. The program enables non-profit and for-profit borrowers to access the national capital markets through bonds issued through OEBF. The program is administered by the Ohio Department of Development and financing is provided by the Ohio Treasurer of State.

276

Reliability of Bonded Interfaces  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

277

Hydrogen Cryomagnetics  

E-Print Network (OSTI)

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4     Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

278

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

279

Effects of the H-bond bridge geometry on the vibrational spectra of water: The simplest models of the H-bond potential  

Science Journals Connector (OSTI)

The approach suggested in this work within the fluctuation theory of the hydrogen bond allows one to correlate the vibrational band shape with the statistical distribution of the geometrical parameters of the O-H

Yu. Ya. Efimov

2008-03-01T23:59:59.000Z

280

Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Feedback: info@es.net About ESnet A Nationwide Platform for Science Discovery The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to...

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

282

Hydrogen dynamics and light-induced structural changes in hydrogenated amorphous silicon T. A. Abtew* and D. A. Drabold  

E-Print Network (OSTI)

Hydrogen dynamics and light-induced structural changes in hydrogenated amorphous silicon T. A first-principles methods to study the network dynamics of hydrogenated amorphous silicon, including the motion of hydrogen. In addition to studies of atomic dynamics in the electronic ground state, we also

Drabold, David

283

Ga configurations in hydrogenated amorphous silicon as studied by x-ray photoemission spectroscopy  

Science Journals Connector (OSTI)

Samples of crystalline silicon and glow-discharge-deposited hydrogenated amorphous silicon were doped with gallium by low-energy (4-keV) ion implantation. X-ray photoemission spectroscopy was used to study the chemical-bonding states of the Ga. From Ga 3d core-level studies, we found that elementary interstitial, threefold-coordinated, and fourfold-coordinated Ga coexist in the ion-implanted and annealed amorphous silicon network. The percentage of activated threefold- and fourfold-coordinated Ga atoms is found to increase with increasing annealing temperature, prior to crystallization. The energy released by the amorphous silicon lattice upon annealing contributes to the activation of the gallium from the elementary state to the threefold- or fourfold-coordinated state. No evidence of Ga-H bond formation is found. The percentage of fourfold-coordinated Ga, which we call the doping efficiency, ranges from 5% to 10%, depending upon the thermal treatment.

Z. H. Lu; S. Poulin-Dandurand; E. Sacher; A. Yelon

1990-09-15T23:59:59.000Z

284

New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces  

SciTech Connect

This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.

Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

2014-08-14T23:59:59.000Z

285

Qualified Energy Conservation Bonds  

Energy.gov (U.S. Department of Energy (DOE))

A Qualified Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal, and local government issuers to borrow money at attractive rates to fund energy conservation projects (it is important to note that QECBs are not grants). A QECB is among the lowest-cost public financing tools because the U.S. Department of the Treasury subsidizes the issuer's borrowing costs.

286

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

287

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

288

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

289

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

290

Changes in hydrogen utilization with temperature during direct coal liquefaction  

SciTech Connect

A reliable means of monitoring the major pathways of hydrogen utilization, in contrast to only measuring net hydrogen comsumption, would be very useful for process optimization. The goal of this work was to develop an analytical approach for quantitatively distinguishing hydrogen consumed in hydrogenation from that utilized to stabilize thermolysis fragments. The approach outlined yields a rather detailed description of the net utilization of hydrogen during direct liquefaction, partitioning it into contributions from gas generation, heteroatom removal, hydrogenation, and matrix breakdown. Preliminary results indicate that internal hydrogen reorganization, with little consumption, predominates at low temperatures, with hydrogenation being compensated for by the hydrogen liberated in condensations. As the temperature is increased, bond cleavage reactions and aromatization reactions appear to become more important, and the net hydrogen consumption increases. (3 tables 1 figs., 11 refs.)

Finseth, D.H.; Bockrath, B.C.; Cillo, D.L.; Illig, E.G.; Sprecher, R.F., Retcofsky, H.L.; Lett, R.G.

1983-01-01T23:59:59.000Z

291

A New and Simple Approach to Determine the Abundance of Hydrogen Molecules on Interstellar Ice Mantles  

E-Print Network (OSTI)

Water is usually the main component of ice mantles, which cover the cores of dust grains in cold portions of dense interstellar clouds. When molecular hydrogen is adsorbed onto an icy mantle through physisorption, a common assumption in gas-grain rate equation models is to use an adsorption energy for molecular hydrogen on a pure water substrate. However, at high density and low temperature, when H2 is efficiently adsorbed onto the mantle, its surface abundance can be strongly overestimated if this assumption is still used. Unfortunately, the more detailed microscopic Monte Carlo treatment cannot be used to study the abundance of H2 in ice mantles if a full gas-grain network is utilized. We present a numerical method adapted for rate-equation models that takes into account the possibility that an H2 molecule can, while diffusing on the surface, find itself bound to another hydrogen molecule, with a far weaker bond than the H2-water bond, which can lead to more efficient desorption. We label the ensuing desorp...

Hincelin, Ugo; Herbst, Eric

2014-01-01T23:59:59.000Z

292

Renewable Energy Project Bond Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Bond Program Project Bond Program Renewable Energy Project Bond Program < Back Eligibility Commercial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Idaho Program Type State Bond Program Provider Idaho Energy Resources Authority Legislation enacted in Idaho in April 2005 ([http://legislature.idaho.gov/legislation/2005/S1192.html Senate Bill 1192]) allows independent (non-utility) developers of renewable energy projects in the state to request financing from the Idaho Energy Resources Authority, a state bonding authority created in March 2005 by the Environment, Energy and Technology Energy Resources Authority Act (House Bill 106). The authority was created to finance the construction of

293

Characterization of the sp2 bonds network in a-C:H layers with nuclear magnetic resonance, electron energy loss spectroscopy and electron spin resonance  

Science Journals Connector (OSTI)

a-C:H layers prepared at different ion energies have been investigated by several methods including 13C nuclear magnetic resonance (NMR), electron energy loss spectroscopy (EELS) and electron spin resonance (ESR). The sp2 fraction of the samples rose from 27% to about 60 at.% with increasing ion energies from 30 eV to 170 eV. In the EELS spectra of these layers the intensity of the ? ? ?? transition between 4 and 7 eV showed no significant variation. But a shift of the peak is observed from 7 eV to lower energy losses with increasing ion energies indicating an enhanced formation of larger sp2 cluster sizes. This shift is accompanied by a broadening of the energy loss peak, suggesting a broadening of the cluster size distribution. The ESR spectra showed an increase of the spin density by more than one order of magnitude with increasing ion energies. Simultaneously the linewidth of the ESR signal gets narrower. This can also be interpreted as an increasing cluster size from single benzene rings to three and four fused six-fold rings. Hence, the EELS and ESR spectra lead to the same conclusions with respect to the microstructure of the a-C:H network.

R. Kleber; K. Jung; H. Ehrhardt; I. Mühling; K. Breuer; H. Metz; F. Engelke

1991-01-01T23:59:59.000Z

294

Wafer-Level Thermocompression Bonds  

E-Print Network (OSTI)

Thermocompression bonding of gold is a promising technique for achieving low temperature, wafer-level bonding without the application of an electric field or complicated pre-bond cleaning procedure. The presence of a ductile ...

Tsau, Christine H.

295

Characterization of anodic bonding  

E-Print Network (OSTI)

Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

Tudryn, Carissa Debra, 1978-

2004-01-01T23:59:59.000Z

296

The New Chemical Bond  

NLE Websites -- All DOE Office Websites (Extended Search)

off when the first convincing experimental evidence of the phi bond showed up for the thorium sandwich complex, as revealed by its elaborate, never-before-seen symmetry. The...

297

Qualified Energy Conservation Bonds  

Energy.gov (U.S. Department of Energy (DOE))

Provides an in-depth description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author: Energy Programs Consortium

298

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

299

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

300

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

302

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

303

A linear-scaling self-consistent generalization of the multistate empirical valence bond method for multiple excess protons in aqueous  

E-Print Network (OSTI)

Grot- thuss who proposed a hydrogen­oxygen shuttling mecha- nism to explain electrolysis of water.20 multiple excess protons within the context of molecular-dynamics simulation. The computational cost molecule and forms a valence bond with that oxygen atom. Meanwhile, one of the valence-bonded hydrogen

Simons, Jack

304

Stocks, bonds and the  

Science Journals Connector (OSTI)

In this paper, we investigate the relative performance of stocks and bonds for various investment horizons on the French market. We use a new matched block bootstrap approach to take account of estimation risk. Furthermore, in the light of non-normality of returns, we use two different risk approaches as inputs in portfolio optimization: the traditional variance, and a downside risk measure, the semi-variance. Our results suggest that an investor should avoid bonds in the long run due to the time diversification effect.

Gilles Sanfilippo

2003-01-01T23:59:59.000Z

305

Donor Newsletter June 2008 Issue 4 Collaboration powers hydrogen  

E-Print Network (OSTI)

Donor Newsletter June 2008 Issue 4 Collaboration powers hydrogen and fuel cell research The Difference How your gifts have helped... There is already demonstrable evidence of Birmingham's hydrogen the first of a new network of hydrogen gas fuelling stations, attracting national and international interest

Birmingham, University of

306

Hydrogen program overview  

SciTech Connect

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

307

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

308

Photochemical tissue bonding  

DOE Patents (OSTI)

Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

Redmond, Robert W. (Brookline, MA); Kochevar, Irene E. (Charlestown, MA)

2012-01-10T23:59:59.000Z

309

Thread bonds in molecules  

E-Print Network (OSTI)

Unusual chemical bonds are proposed. Each bond is almost covalent but is characterized by the thread of a small radius $\\sim 0.6\\times 10^{-11}$cm, between two nuclei in a molecule. The main electron density is concentrated outside the thread as in a covalent bond. The thread is formed by the electron wave function which has a tendency to be singular on it. The singularity along the thread is cut off by electron "vibrations" due to the interaction with zero point electromagnetic oscillations. The electron energy has its typical value of (1-10)eV. Due to the small tread radius the uncertainty of the electron momentum inside the thread is large resulting in a large electron kinetic energy $\\sim 1 MeV$. This energy is compensated by formation of a potential well due to the reduction of the energy of electromagnetic zero point oscillations. This is similar to formation of a negative van der Waals potential. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

Ivlev, B

2015-01-01T23:59:59.000Z

310

Hydrogen Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

311

Hydrogen Technologies Group  

SciTech Connect

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

312

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from "http:en.openei.orgwindex.php?titleHydrogen&oldid271963...

313

The Hype About Hydrogen  

E-Print Network (OSTI)

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

314

Overview of interstate hydrogen pipeline systems.  

SciTech Connect

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

315

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

316

Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kevin Kenny Sprint Nextel 12000 Sunrise Valley Drive MS: VARESQ0401-E4064 Reston, VA 20191 Phone: (703) 592-8272 Email: kevin.p.kenny@sprint.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: James Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: EE-0000486 Project Partners: * Air Products & Chemicals, Inc., Allentown, PA (Fuel Project Partner) * Altergy Systems, Folsum, CA (PEM Fuel Cell Project Partner) * Black & Veatch Corporation, Overland Park, KS (A&E

317

Albert Bond | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond - Project Officer, Golden Field Office Albert Bond is a Project Officer at the Golden Field Office. Most Recent New Choctaw Nation Recycling Center Posts Quick Results March 8...

318

Opportunities in Bond Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities in Bond Financing Opportunities in Bond Financing James Dack Vice President Alternative Energy Finance Group Stern Brothers & Co. Seattle, WA 98101 Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 11-13, 2012 2 INTRODUCTION * Stern Brothers, founded in 1917 and headquartered in St. Louis, is an investment banking firm that is focused on project financing (taxable and tax-exempt) for renewable energy, real estate, higher education and healthcare. * Stern's Alternative Energy Finance Group structures and places tax- exempt and taxable debt, and provides financial advisory services for renewable energy projects in the U.S. * Waste-to-energy, second generation biofuels, biochemicals, biomass, solar, wind, landfill gas-to-energy, cogen, CHP, hydro,

319

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

320

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Energy.gov (U.S. Department of Energy (DOE))

Overview of the U.S. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program, including technical targets and research and development needs for hydrogen storage and delivery.

322

Femtosecond Infrared Studies of Silane Silicon-Hydrogen Bond Activation  

E-Print Network (OSTI)

) Lian, T.; Bromberg, S. E.; Yang, H.; Proulx, G.; Bergman, R. G.; Harris, C. B. J. Am. Chem. Soc. 1996. Asplund, and C. B. Harris* Department of Chemistry, UniVersity of California Berkeley, California 94720 (D, Figure * Author to whom correspondence should be addressed. (1) Palmer, B. J.; Hill, R. S. Can. J

Harris, Charles B.

323

Introduction Although hydrogen-bonded aggregatesbasedon the cyanuric  

E-Print Network (OSTI)

. and it is necessaryto find a measureof relative stabilities that does not require absolute energies. Second, the correct,905. (3) Seto,C. T.; Whitesides,G. M.l. Am. Chem.Soc.1993,lI5,1321. (4) Clark, T. A Handbook these computations are intended to go hand-in-hand with an experi- mental program, and to be useful to physical

Prentiss, Mara

324

Low Barrier Hydrogen Bonds in Acyclic Tertiary Diamines  

E-Print Network (OSTI)

B: synthesis of diamide with phosphorous pentoxide, and C:synthesis uses phosphorous pentoxide and dimethylformamide (B: synthesis of diamide with phosphorous pentoxide, and C:

Khodagholian, Sevana

2010-01-01T23:59:59.000Z

325

Molecular dynamics of gas phase hydrogen-bonded complexes  

E-Print Network (OSTI)

---HF are compared with previously determined values using microwave absolute intensity measurements and ab-initio molecular orbital calculations. Current work D /kJ mole -1 20. 77(22) De/kJ mole 28. 77(45) Rovibrational band information available for HCN... ? -RF 2 ?1 4 5 6 7 1 -116. 9(1) 8. 025(7) 4. 216&5) -51. 26&1) -14. 61(22) -D. lgl(1) -18. 98(2) -0. 408&2& -10. 45(38) -3. 61(22) -0. 61(2& -2. 01(1) 2. 61(5) -21. 61&18& 1. 00(5) Ixlgl, I lgl, I 15I, lxggl assam IX341, IX361 assumed 63 cm ' Ix...

Wofford, Billy Alan

2012-06-07T23:59:59.000Z

326

THE TOPOLOGY OF HYDROGEN BONDING IN BRANDTITE, COLLINSITE AND FAIRFIELDITE  

Science Journals Connector (OSTI)

...and the structure of the isostructural talmessite was refined by Catti et al.(1977...AsO4)2(H2O)2 (wendwilsonite and talmessite), Ca2Co(AsO4)2(H2O)2 (roselite...Parabrandtite, the manganese analogue of talmessite, from Sterling Hill, Ogdensburg...

Sasha Herwig; Frank C. Hawthorne

327

Hydrogen Analysis Group  

SciTech Connect

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

328

The Hype About Hydrogen  

E-Print Network (OSTI)

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

329

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

330

Hydrogenation enabled scrolling of graphene This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

Hydrogenation enabled scrolling of graphene This article has been downloaded from IOPscience.1088/0022-3727/46/7/075301 Hydrogenation enabled scrolling of graphene Shuze Zhu and Teng Li Department of Mechanical Engineering.iop.org/JPhysD/46/075301 Abstract Hydrogenation of graphene leads to local bond distortion of each hydrogenated

Li, Teng

331

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

332

Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage  

Science Journals Connector (OSTI)

The adsorption of molecular hydrogen on boron nitride nanotubes is studied with the use of the pseudopotential density functional method. The binding energy and distance of adsorbed hydrogen is particularly calculated. It is found that the binding energy of hydrogen on boron nitride nanotubes is increased by as much as 40% compared to that on carbon nanotubes, which is attributed to heteropolar bonding in boron nitride. The effect of substitutional doping and structural defects on hydrogen adsorption is also studied and we find a substantial enhancement of the binding energy from that on perfect boron nitride. The current study demonstrates a pathway to the finding of proper media that can hold hydrogen at ambient conditions through physisorption.

Seung-Hoon Jhi and Young-Kyun Kwon

2004-06-22T23:59:59.000Z

333

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

334

Advanced Hydrogen Turbine Development  

SciTech Connect

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

335

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents (OSTI)

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

1991-01-01T23:59:59.000Z

336

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents (OSTI)

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

1990-01-01T23:59:59.000Z

337

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents (OSTI)

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

Lilga, M.A.; Hallen, R.T.

1990-08-28T23:59:59.000Z

338

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents (OSTI)

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

Lilga, M.A.; Hallen, R.T.

1991-10-15T23:59:59.000Z

339

Process for manufacture of thick film hydrogen sensors  

DOE Patents (OSTI)

A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

Perdieu, Louisa H. (Overland Park, KS)

2000-09-09T23:59:59.000Z

340

Business Incentive Loans and Bonds (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Business Incentive Loans and Bonds (Georgia) Business Incentive Loans and Bonds (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate Unlimited but generally should not exceed 20% of the asset needs of the company's Gerogia location. Program Info State Georgia Program Type Bond Program Loan Program Provider Georgia Department of Community Affairs The Strategic Industries Loan Fund (SILF) is a program offered by the

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

342

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

343

Vacuum fusion bonding of glass plates  

DOE Patents (OSTI)

An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

2001-01-01T23:59:59.000Z

344

Vacuum fusion bonding of glass plates  

DOE Patents (OSTI)

An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

2000-01-01T23:59:59.000Z

345

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

346

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network (OSTI)

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

347

Infrared absorption of hydrogen-related defects in strontium titanate M. C. Tarun and M. D. McCluskeya)  

E-Print Network (OSTI)

in perovskite oxides, an important issue in fuel cells.16 In as- grown SrTiO3, isolated hydrogen forms a bondInfrared absorption of hydrogen-related defects in strontium titanate M. C. Tarun and M. D. Mc 2011) Hydrogen has a significant impact on the structural and electronic properties of metals

McCluskey, Matthew

348

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network (OSTI)

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

349

Spatial development of hydrogen economy in a low-carbon UK energy system  

Science Journals Connector (OSTI)

Hydrogen technologies and infrastructures might play a significant role in meeting ambitious climate and energy policy goals of the UK Government. Nonetheless, studies on hydrogen are either limited in scope in that they do not take into account the relationships with the wider energy system drivers and constraints or do not consider how a hydrogen network might develop geographically. This paper presents a framework where a spatially explicit hydrogen module is embedded in the UK MARKAL Energy System model to explore energy system trade-offs for the production, delivery and use of hydrogen at the sub-national level. A set of illustrative scenarios highlight the competitiveness of hydrogen related infrastructures and technologies as well as imported liquid hydrogen against a stringent emissions reduction target; the effect of emissions reduction trajectory on the development of hydrogen network; the intense resource competition between low carbon hydrogen production and electricity generation, and the importance of economies of scale in hydrogen supply and distribution.

Nazmiye Balta-Ozkan; Elizabeth Baldwin

2013-01-01T23:59:59.000Z

350

Tax credits, exempt bonds hit  

Science Journals Connector (OSTI)

Tax credits, exempt bonds hit ... A tax credit permits a taxpayer to deduct a certain amount from his final tax bill. ...

1967-03-06T23:59:59.000Z

351

Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service  

Energy.gov (U.S. Department of Energy (DOE))

Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery

352
353

E-Print Network 3.0 - action project surface Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

provided through NSF Grant DMR-0079992 Summary: , some fundamental of the subject, mainly surface tension and capillary action. Most part... an inquiry system. Hydrogen bond is...

354

DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network

355

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

356

The Transition to Hydrogen  

E-Print Network (OSTI)

above, not all hydrogen production methods are equal inrealize hydrogen’s bene- ?ts fully, production methods thathydrogen vary depending on which primary source produces it and which production method

Ogden, Joan M

2005-01-01T23:59:59.000Z

357

The Hydrogen Economy  

Science Journals Connector (OSTI)

The hydrogen economy is a vision for a future in which hydrogen replaces fossil fuels. There are a variety ... of methods for generating, storing and delivering hydrogen since no single method has yet proven supe...

2009-01-01T23:59:59.000Z

358

Hydrogen storage methods  

Science Journals Connector (OSTI)

Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today’s ...

Andreas Züttel

2004-04-01T23:59:59.000Z

359

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

360

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogen Permeation Barrier Coatings  

SciTech Connect

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

362

Technology: Hydrogen and hydrates  

Science Journals Connector (OSTI)

... . 2249–2258 (2004). US Department of Energy Hydrogen Posture Plan http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_posture_plan.pdf Kuhs, W. F. , Genov, ...

Ferdi Schüth

2005-04-06T23:59:59.000Z

363

Hydrogen Pipeline Working Group  

Energy.gov (U.S. Department of Energy (DOE))

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

364

Hydrogen and fuel taxation.  

E-Print Network (OSTI)

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and… (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

365

Bond Programs | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Bond Programs Jump to: navigation, search Bonds allow governments (and corporations) to raise money by borrowing. A few states and local governments have established bond programs to support energy efficiency and renewable energy for government-owned facilities. After a government has raised an authorized sum of money through the sale of bonds, the money collected is used to improve energy efficiency or to install renewable energy systems on government facilities. The bonding authority is usually reimbursed using the energy savings resulting from these projects. [1]

366

Communication protocols, queuing and scheduling delay analysis in CANDU SCWR hydrogen co-generation model.  

E-Print Network (OSTI)

??Industrial dynamical, Networked Control Systems (NCSs) are controlled over a communication network. We study a continuous-time CANada Deuterium Uranium-Super Critical Water Reactor (CANDU-SCWR) hydrogen plant… (more)

Ahmed, Fayyaz

2011-01-01T23:59:59.000Z

367

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network (OSTI)

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

368

Electrochemical Hydrogen Compressor  

SciTech Connect

The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

David P. Bloomfield; Brian S. MacKenzie

2006-05-01T23:59:59.000Z

369

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

370

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

371

Hydrogen Energy Technology Geoff Dutton  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

372

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

373

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

374

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

SciTech Connect

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

375

Method for vacuum fusion bonding  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2001-01-01T23:59:59.000Z

376

Fusion bonding and alignment fixture  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2000-01-01T23:59:59.000Z

377

Hydrogen Compatibility of Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

378

Hydrogen Delivery Liquefaction & Compression  

E-Print Network (OSTI)

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

379

Metallization of fluid hydrogen  

Science Journals Connector (OSTI)

...P. Tunstall Metallization of fluid hydrogen W. J. Nellis 1 A. A. Louis 2 N...The electrical resistivity of liquid hydrogen has been measured at the high dynamic...which structural changes are paramount. hydrogen|metallization of hydrogen|liquid...

1998-01-01T23:59:59.000Z

380

Safetygram #9- Liquid Hydrogen  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Composition for absorbing hydrogen  

DOE Patents (OSTI)

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

382

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

383

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

384

AC03CH05-Levinger ARI 11 February 2010 22:19 Analysis of Water in Confined  

E-Print Network (OSTI)

of hydrogen fuel cells. Water's unique properties can be traced to its formation of an extended hydrogen micelles, nanoscopically confined water, hydrogen bond dynamics, orientational dynamics Abstract The properties of water depend on its extended hydrogen bond network and thecontinualpicosecond

Fayer, Michael D.

385

New Clean Renewable Energy Bonds | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Clean Renewable Energy Bonds New Clean Renewable Energy Bonds New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital...

386

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...  

Energy Savers (EERE)

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New...

387

Hydrogen catalysis and scavenging action of Pd-POSS nanoparticles  

SciTech Connect

Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report Density Functional Theory (DFT) results on POSS binding energies to the Pd(110) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.

Maiti, A; Gee, R H; Maxwell, R; Saab, A

2007-02-01T23:59:59.000Z

388

In-situ monitoring of surface hydrogen on the a-SiGe:H films  

SciTech Connect

The bonded hydrogen on the growing surface of hydrogenated amorphous silicon germanium (a-SiGe:H) alloy films has been investigated by use of infrared reflection absorption spectroscopy (IR-RAS). When the alloy films are Si-rich, the surface hydrogen bonded to Si atoms is found to behave in a similar way to those on the hydrogenated amorphous silicon (a-Si:H) films. This means that the thermal desorption stability of surface Si hydride species is not significantly affected by the coexistence of a small amount (typically 20 at.%) of Ge. On the contrary, the desorption behavior of surface hydrogen depends on the alloy composition when the a-SiGe:H films are Ge-rich. A surface reaction scheme is provided in an attempt to explain this series of behavior in surface hydrogen on the a-SiGe:H films.

Toyoshima, Y.; Ganguly, G.; Ikeda, T.; Saitoh, K.; Kondo, M.; Matsuda, A.

1997-07-01T23:59:59.000Z

389

Covalent Bonding in Actinide Sandwich Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide...

390

Magnetic Testing of Bonded Magnets  

Science Journals Connector (OSTI)

Many techniques exist to characterize the magnetic properties of bonded magnets. We will review the common and not so common techniques in use, with emphasis on the advantages and disadvantages of each one, an...

S. R. Trout

2003-01-01T23:59:59.000Z

391

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

392

Digital Bond Fact Sheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cost-shared effort between industry and cost-shared effort between industry and Cyber Security Audit and Attack Detection Toolkit Cyber Security Audit and Attack Detection Toolkit Bandolier Audit Files for optimizing security configurations and the Portaledge event detection capability for energy control systems Bandolier Audit Files for optimizing security configurations and the Portaledge event detection capability for energy control systems Cyber Security for Energy Delivery Systems Electricity Delivery & Energy Reliability Project Lead: Digital Bond Partners: OSIsoft Tenable Network Security PacifiCorp Tennessee Valley Authority Other Participating Vendors: ABB AREVA Emerson Matrikon SNC Telvent Bandolier and Portaledge The Concept Bandolier-The Approach By building configuration audit and attack detection capabilities into tools already

393

Hydrogen density of states and defects densities in a-Si:H  

SciTech Connect

The properties of hydrogenated amorphous silicon (a-Si:H) and its devices depend fundamentally on the density of states (DOS) in the gap due to dangling bonds. It is generally believed that the density of dangling bonds is controlled by a chemical equilibrium with the weak Si-Si bonds which form the localized valence band tail states. Further details are given of a unified model of the hydrogen density of states and defect pool of a-Si:H. The model is compared to other defect models and extended to describe a-Si alloys and the creation of valence band tail states during growth.

Deane, S.C.; Powell, M.J. [Philips Research Labs., Redhill, Surrey (United Kingdom); Robertson, J. [Cambridge Univ. (United Kingdom). Engineering Dept.

1996-12-31T23:59:59.000Z

394

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies  

E-Print Network (OSTI)

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

395

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

Azad, Abdul-Majeed

396

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

397

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

398

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

399

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main ThemesCaveats Bulk...

400

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

L. Simpson. (2010) Contact: Thomas Gennett 303-384-6628 Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery Hydrogen Storage...

402

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

403

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

404

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

produce hydrogen in a centralized coal based operation for .79kg at the plant gate with carbon sequestration. Develop advanced OTM, HTM, technology, advanced reforming and shift...

405

Resource Assessment for Hydrogen Production: Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration ERR Estimated Recoverable Reserves FCEV fuel cell electric vehicle GHG greenhouse gas GW gigawatt GWh gigawatt-hour GWdt gigawatt-days thermal H2A Hydrogen...

406

Hydrogen-induced disintegration of fullerenes and nanotubes: An ab initio study Savas Berber1,2 and David Tomnek1  

E-Print Network (OSTI)

Hydrogen-induced disintegration of fullerenes and nanotubes: An ab initio study Savas Berber1 hydrogen-induced disintegration of single-wall and multiwall carbon fullerenes and nanotubes. Our results indicate that hydrogen atoms preferentially chemisorb along lines in sp2 bonded carbon nanostructures

407

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2008 Annual Progress Report IX. Education This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on education. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Education Sub-Program Overview, Christy Cooper, U.S. Department of Energy (PDF 181 KB) Hydrogen Knowledge and Opinions Assessment, Rick Schmoyer, Oak Ridge National Laboratory (PDF 257 KB) Hydrogen Safety: First Responder Education, Marylynn Placet, Pacific Northwest National Laboratory (PDF 270 KB) Hydrogen Education for Code Officials, Melanie Caton, National Renewable Energy Laboratory (PDF 261 KB) Increasing "H2IQ": A Public Information Program , Henry Gentenaar, The Media Network (PDF 70 KB)

408

Hydrogen storage gets new hope  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

409

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

410

Mechanism of methanol synthesis from carbon monoxide and hydrogen on copper catalysts  

SciTech Connect

The authors examine possible mechanisms of methanol synthesis from carbon monoxide and hydrogen on supported copper catalysts. Two broad categories of reaction mechanism can be identified: (a) Type I: Carbon monoxide, adsorbed on the copper surface, is hydrogenated by the addition of hydrogen atoms while the C-O bond remains intact. A second C-O bond is neither formed nor broken. (b) Type II: Carbon monoxide (or a partially hydrogenated intermediate, e.g., HCO) reacts with an oxygen atom on the catalyst surface to give an intermediate, typically a formate, which contains two C-O bonds. Subsequent reaction leads overall to methanol and the reformation of the surface oxygen atom. Both mechanisms are discussed.

Fakley, M.E.; Jennings, J.R.; Spencer, M.S. (ICI Chemicals and Polymers Ltd, Billingham, Cleveland (England))

1989-08-01T23:59:59.000Z

411

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

412

FCT Hydrogen Production: Hydrogen Production R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

413

Catalyzed Hydrogen Spillover for Hydrogen Storage  

Science Journals Connector (OSTI)

Catalyzed Hydrogen Spillover for Hydrogen Storage ... Storing sufficient H on-board a wide range of vehicle platforms, while meeting all consumer requirements (driving range, cost, safety, performance, etc.), without compromising passenger or cargo space, is a tremendous tech. ... The authors show that for the 1st time significant amts. of H can be stored in MOF-5 and IRMOF-8 at ambient temp. ...

Ralph T. Yang; Yuhe Wang

2009-02-27T23:59:59.000Z

414

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network (OSTI)

· To develop suitable welding technology for H2 pipeline construction and repair · To develop technical basisHydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J pressure permeation test · Edison Welding Institute - Pipeline materials · Lincoln Electric Company

415

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

416

BP and Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

417

Hydrogen Production- Current Technology  

Energy.gov (U.S. Department of Energy (DOE))

The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

418

A Hydrogen Economy  

Science Journals Connector (OSTI)

The history of the “hydrogen economy” may be broken down into three parts ... is the history of the founding of the Hydrogen Energy Society which took place in Miami,...

J. O’M. Bockris

1981-01-01T23:59:59.000Z

419

Solar Hydrogen Production  

Science Journals Connector (OSTI)

The common methods of hydrogen production impose many concerns regarding the decline in...2...emission, and ecological impacts. Subsequently, all the downstream industries that consume hydrogen involve the aforem...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

420

Hydrogen Fuel Quality (Presentation)  

SciTech Connect

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Webinar: Hydrogen Refueling Protocols  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

422

The Hydrogen Economy  

Science Journals Connector (OSTI)

Before describing the characteristics of an economy in which hydrogen is the medium of energy, let us...

J. O’M. Bockris; Z. Nagy

1974-01-01T23:59:59.000Z

423

Hydrogen Technologies Safety Guide  

SciTech Connect

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

424

National Hydrogen Energy Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

425

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage ... Use of hydrogen for transportation applications requires materials that not only store hydrogen at high density but that can operate reversibly at temperatures and pressures below approximately 100 °C and 10 bar, respectively. ... This composition is based on assuming the following complete hydrogenation reaction:which stores 2.6 wt % hydrogen. ...

Wen Li; John J. Vajo; Robert W. Cumberland; Ping Liu; Son-Jong Hwang; Chul Kim; Robert C. Bowman, Jr.

2009-11-06T23:59:59.000Z

426

Gaseous Hydrogen Delivery Breakout  

E-Print Network (OSTI)

or reduce the likelihood of hydrogen embrittlement Test existing high strength steel alloys for use in largeGaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 compression. Safety, integrity, reliability: Metal embrittlement, no H2 odorant, low ignition energy

427

Periodic Hartree-Fock study of a weakly bonded layer structure: Brucite Mg(OH)2  

Science Journals Connector (OSTI)

The layered mineral brucite Mg(OH)2 is investigated theoretically using an ab initio all-electron linear combination of atomic orbitals Hartree-Fock (HF) approximation. At the HF level, the interlayer interaction is weak and the interlayer distance is larger than the experimental one. Bonding is discussed on the basis of density of states and charge-density maps. No hydrogen bond is characterized. A posteriori correction of the energy for the correlation error is performed by use of the functional approach. The three semilocal functional formulas used yield similar results. This brings in extra interlayer bonding interaction, and yields a calculated geometry in agreement with experiments. The analysis of the interlayer bondings shows that it is mainly of dispersion type, and that the used functionals account for dispersion, in particular at short interatomic distances.

Philippe D’Arco; Mauro Causà; Carla Roetti; Bernard Silvi

1993-02-15T23:59:59.000Z

428

DOE Hydrogen Program U.S. Department of Energy Hydrogen Program  

E-Print Network (OSTI)

and more sustainable transportation future. The development of a network of hydrogen-dispensing fueling is a new and different fuel for vehicles, it is used extensively in other applications, such as a chemical. G-095- 2004. 236 p. An American National Standard, comprehensive specific information and guidelines

429

Hydrogen Delivery Liquefaction and Compression  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

430

New Materials for Hydrogen Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

431

Hydrogen separation process  

DOE Patents (OSTI)

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

432

Anti-Hydrogen Jonny Martinez  

E-Print Network (OSTI)

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

433

Non-bonded ultrasonic transducer  

DOE Patents (OSTI)

A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

Eoff, J.M.

1984-07-06T23:59:59.000Z

434

Hydrogen peroxide safety issues  

SciTech Connect

A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors.

Conner, W.V.

1993-04-14T23:59:59.000Z

435

Hydrogen Use and Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

436

Computational Study of Bond Dissociation Enthalpies for Substituted $\\beta$-O-4 Lignin Model Compounds  

SciTech Connect

The biopolymer lignin is a potential source of valuable chemicals. Phenethyl phenyl ether (PPE) is representative of the dominant $\\beta$-O-4 ether linkage. Density functional theory (DFT) is used to calculate the Boltzmann-weighted carbon-oxygen and carbon-carbon bond dissociation enthalpies (BDEs) of substituted PPE. These values are important in order to understand lignin decomposition. Exclusion of all conformers that have distributions of less than 5\\% at 298 K impacts the BDE by less than 1 kcal mol$^{-1}$. We find that aliphatic hydroxyl/methylhydroxyl substituents introduce only small changes to the BDEs (0-3 kcal mol$^{-1}$). Substitution on the phenyl ring at the $ortho$ position substantially lowers the C-O BDE, except in combination with the hydroxyl/methylhydroxyl substituents, where the effect of methoxy substitution is reduced by hydrogen bonding. Hydrogen bonding between the aliphatic substituents and the ether oxygen in the PPE derivatives has a significant influence on the BDE. CCSD(T)-calculated BDEs and hydrogen bond strengths of $ortho$-substituted anisoles when compared with M06-2X values confirm that the latter method is sufficient to describe the molecules studied and provide an important benchmark for lignin model compounds.

Younker, Jarod M [ORNL; Beste, Ariana [ORNL; Buchanan III, A C [ORNL

2011-01-01T23:59:59.000Z

437

The Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network Engineering Services The Network Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network...

438

DOE Hydrogen Analysis Repository: Hydrogen Production by  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

439

Hydrogen Material Compatibility for Hydrogen ICE | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pm04smith.pdf More Documents & Publications Hydrogen Materials Compatibility for the H-ICE...

440

Long Range Bond-Bond Correlations in Dense Polymer Solutions  

Science Journals Connector (OSTI)

The scaling of the bond-bond correlation function P1(s) along linear polymer chains is investigated with respect to the curvilinear distance s along the flexible chain and the monomer density ? via Monte Carlo and molecular dynamics simulations. Surprisingly, the correlations in dense three-dimensional solutions are found to decay with a power law P1(s)?s-? with ?=3/2 and the exponential behavior commonly assumed is clearly ruled out for long chains. In semidilute solutions, the density dependent scaling of P1(s)?g-?0(s/g)-? with ?0=2-2?=0.824 (?=0.588 being Flory's exponent) is set by the number of monomers g(?) in an excluded volume blob. Our computational findings compare well with simple scaling arguments and perturbation calculation. The power-law behavior is due to self-interactions of chains caused by the chain connectivity and the incompressibility of the melt.

J. P. Wittmer; H. Meyer; J. Baschnagel; A. Johner; S. Obukhov; L. Mattioni; M. Müller; A. N. Semenov

2004-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U.S Department of Energy NREL H 2 /FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 * Goal: Research, develop and demonstrate technologies and processes that reduce the cost of components and systems for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base. * Challenge: Move hydrogen and fuel cells from laboratory-scale production into high-volume, low-cost manufacturing. 2 Goal of Manufacturing sub-program U.S. DOE 8/10/11 3 Budget EMPHASIS  Develop novel, robust, ultrasonic bonding processes for MEAs to reduce MEA-pressing cycle time  Develop real-time, online measurement tools to reduce/eliminate ex situ

442

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

443

State Bond Program | Open Energy Information  

Open Energy Info (EERE)

Bonds allow governments (and corporations) to raise money by borrowing. A Bonds allow governments (and corporations) to raise money by borrowing. A few states and local governments have established bond programs to support energy efficiency and renewable energy for government-owned facilities. After a government has raised an authorized sum of money through the sale of bonds, the money collected is used to improve energy efficiency or to install renewable energy systems on government facilities. The bonding authority is usually reimbursed using the energy savings resulting from these projects. [1] State Bond Program Incentives CSV (rows 1 - 7) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Energy Efficiency & Renewable Energy Bond Program (New Mexico) State Bond Program New Mexico Schools

444

The Market for Borrowing Corporate Bonds  

E-Print Network (OSTI)

This paper describes the market for borrowing corporate bonds using a comprehensive data set from a major lender. The cost of borrowing corporate bonds is comparable to the cost of borrowing stock, between 10 and 20 basis ...

Asquith, Paul

445

Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator  

Energy.gov (U.S. Department of Energy (DOE))

Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

446

Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator  

SciTech Connect

Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

2012-08-01T23:59:59.000Z

447

Study of bump bonding technology  

SciTech Connect

Pixel detectors proposed for the new generation of hadron collider experiments will use bump-bonding technology based on either indium or Pb/Sn solder to connect the front-end readout chips to the silicon pixel sensors. We have previously reported large-scale tests of the yield using both indium and Pb/Sn solder bump [1]. The conclusion is that both seem to be viable for pixel detectors. We have also carried out studies of various effects (e.g. storage over long period, effect of heating and cooling, and radiation) on both types of bump bonds using daisy-chained parts on a small scale [2], [3]. Overall, these tests showed little changes in the integrity of the bump connections. Nevertheless, questions still remain on the long-term reliability of the bumps due to thermal cycle effects, attachment to a substrate with a different coefficient of thermal expansion (CTE), and radiation.

Selcuk Cihangir et al.

2003-10-17T23:59:59.000Z

448

Bonded, walk-off compensated optical elements  

DOE Patents (OSTI)

A bonded, walk-off compensated crystal, for use with optical equipment, and methods of making optical components including same.

Ebbers, Christopher A. (Livermore, CA)

2003-04-08T23:59:59.000Z

449

Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis  

SciTech Connect

Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

Thorn, David [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

450

Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

451

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

452

Hydrogen Based Bacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Based Bacteria Hydrogen Based Bacteria Name: Ellen Location: N/A Country: N/A Date: N/A Question: i was in my Biology class and a very respectable someone mentioned something about the discovery of a hydrogen based bacteria. my teacher wasnt aware of this study, and assigned me to find out about it. so i thought i would Email you and see if you people knew anything about it. Awaiting your repsonse Replies: I'm not quite sure what you mean by hydrogen based bacteria but I will take a stab that you mean bacteria that use hydrogen for energy. Some bacteria are chemolithotrophs which mean that they are autrophs but don't use the sun as their energy source; they get their energy from chemical sources. There are bacteria that use hydrogen as their energy source. They are diverse as a group and are all facultative. The overall chemical reaction looks like this:

453

Hydrogenation of carbonaceous materials  

DOE Patents (OSTI)

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

454

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network (OSTI)

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

455

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Issues for H2 Service Materials of Construction Hydrogen Embrittlement Presence of atomic hydrogen susceptible to Hydrogen Embrittlement. #12;Pipeline Transmission of Hydrogen --- 7 Copyright: H2 Induced, characteristic of hydrogen embrittlement. Photo Courtesy of NASA/Kennedy Space Center Materials Lab #12;Pipeline

456

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network (OSTI)

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

457

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network (OSTI)

Hydrogen Storage - Overview George Thomas, Hydrogen Consultant to SNL* and Jay Keller, Hydrogen volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen and cost-effective hydrogen storage? #12;4/14/03 3 Sandia National Laboratories From George Thomas, BES

458

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

459

Catalytic gasification of automotive shredder residues with hydrogen generation  

Science Journals Connector (OSTI)

Hydrogen is a clean and new energy carrier to generate power through the Proton exchange membrane fuel cell (PEMFC) system. Hydrogen can be effectively turned out through the catalytic gasification of organic material such as automotive shredder residues (ASR). The main objective of this manuscript is to present an analysis of the catalytic gasification of ASR for the generation of high-purity hydrogen in a lab-scale fixed-bed downdraft gasifier using 15 wt.% NiO/Al2O3 catalysts at 760–900 K. In the catalytic gasification process, reduction of Ni(II) catalyst into Ni(0) has been confirmed through XANES spectra and consequently EXAFS data shows that the central Ni atoms have Ni–O and Ni–Ni bonds with bond distances of 2.03 ± 0.05 and 2.46 ± 0.05 Ć, respectively. ASR is partially oxidized and ultimately converts into hydrogen rich syngas (CO and H2) and increases of the reaction temperature are favored the generation of hydrogen with decomposition of the CO. As well, approximately 220 kg h?1 of ASR would be catalytically gasified at 760–900 K and 46.2 atm with the reactor volume 0.27 m3 to obtain approximately 3.42 Ś 105 kcal h?1 of thermal energy during over 87% syngas generation with the generation of 100 kW electric powers.

Kuen-Song Lin; Sujan Chowdhury; Ze-Ping Wang

2010-01-01T23:59:59.000Z

460

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen Generation by Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

462

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

463

Hydrogen Generator Appliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lAbOrAtOry NG Workshop summary report - appeNDIX J slide presentation: hydrogen Generator appliance Gus Block, Nuvera Fuel Cells...

464

Module 2: Hydrogen Use  

Energy.gov (U.S. Department of Energy (DOE))

This course covers the processes by which hydrogen is extracted, how it is stored and transported, and the inherent advantages and disadvantages of each method

465

Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

466

Hydrogen Production & Delivery  

Energy Savers (EERE)

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

467

Renewable Hydrogen (Presentation)  

SciTech Connect

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

468

Hydrogen Production & Delivery  

Energy.gov (U.S. Department of Energy (DOE))

"2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2 and Fuel Cells Plenary "

469

Hydrogen Release Behavior  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

470

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

471

President's Hydrogen Fuel Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

472

Hydrogen Safety Knowledge Tools  

SciTech Connect

With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

Fassbender, Linda L.

2011-01-31T23:59:59.000Z

473

Hydrogen ion microlithography  

DOE Patents (OSTI)

Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

Tsuo, Y.S.; Deb, S.K.

1990-10-02T23:59:59.000Z

474

Detroit Commuter Hydrogen Project  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

475

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

476

Department of Energy - Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

477

Thin film hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

478

Alternative Fuels Data Center: Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Hydrogen is a potentially emissions-free alternative fuel that can be produced from diverse domestic energy sources. Research is under way to make hydrogen vehicles practical for widespread use.

479

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

480

Hydrogen Threshold Cost Calculation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Threshold Cost Calculation Hydrogen Threshold Cost Calculation DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and...

Note: This page contains sample records for the topic "hydrogen bond network" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

high-pressure stationary hydrogen storage tanks. The storagehigh-pressure gaseous hydrogen storage containers, and atrailer Compressed hydrogen storage High-pressure hydrogen

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

482

Hydrogen Delivery - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

483

NREL: Hydrogen and Fuel Cells Research - Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable...

484

Combination moisture and hydrogen getter  

DOE Patents (OSTI)

A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

Harrah, L.A.; Mead, K.E.; Smith, H.M.

1983-09-20T23:59:59.000Z

485

Electrochemical hydrogen Storage Systems  

SciTech Connect

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

486

Dynamics of water and aqueous protons studied using ultrafast multi-dimensional infrared spectroscopy  

E-Print Network (OSTI)

Liquid water consists of a highly dynamic network of hydrogen bonds, which evolves on timescales ranging from tens of femtoseconds to a few picoseconds. The fast structural evolution of water's hydrogen bond network is at ...

Ramasesha, Krupa

2013-01-01T23:59:59.000Z

487

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

488

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

489

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

490

RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride  

DOE Patents (OSTI)

A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

Jeffery, F.R.; Shanks, H.R.

1980-08-26T23:59:59.000Z

491

Plasma post-hydrogenation of hydrogenated amorphous silicon and germanium  

SciTech Connect

Incorporation and kinetics of hydrogen during plasma post-hydrogenation and thermal treatment are discussed for a-Si:H and a-Ge:H films. For material of low hydrogen content, the hydrogen surface concentration reached by plasma treatment equals the hydrogen concentration obtained by deposition at the same temperature and under similar plasma conditions. Enhancements of the hydrogen diffusion coefficient and of hydrogen solubility observed for plasma treatment at temperatures {le}400 C and {le}300 C for a-Si:H and a-Ge:H, respectively, are attributed to a plasma induced rise of the surface hydrogen chemical potential.

Beyer, W.; Zastrow, U. [Forschungszentrum Juelich (Germany). Inst. fuer Schicht- und Ionentechnik

1996-12-31T23:59:59.000Z

492

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

493

NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component...  

NLE Websites -- All DOE Office Websites (Extended Search)

other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric...

494

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Cost adjusted to 2007 dollars, accurate to two significant figures. Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery...

495

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Program Record Record : 5037 Date: May 22, 2006 Title: Hydrogen Storage Materials - 2004 vs 2006 Originator: Sunita Satyapal Approved by: JoAnn Milliken...

496

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

497

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...from outside: the infrastructure they need to...existing electricity grid or natural gas...massive new hydrogen infrastructure to deliver the...development of hybrid cars, critics...out on page 974 , hybrid electric vehicles...separate hydrogen infrastructure. Near-term help...

Robert F. Service

2004-08-13T23:59:59.000Z

498

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...paces, 200 fuel cells under...Switching from fossil fuels to hydrogen...reduce urban air pollution, lower dependence...cleaner air, lower greenhouse...cost of the fuel drops to $1.50...hydrogen from fossil fuels, DOE...none of these solutions is up to...

Robert F. Service

2004-08-13T23:59:59.000Z

499

Hydrogen Delivery- Current Technology  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

500

Hydrogen, Fuel Infrastructure  

E-Print Network (OSTI)

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could