National Library of Energy BETA

Sample records for hydrogen analysis h2a

  1. Hydrogen Analysis (H2A) | Open Energy Information

    Open Energy Info (EERE)

    Analysis (H2A) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Analysis (H2A) AgencyCompany Organization: National Renewable Energy Laboratory Sector: Energy...

  2. H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and ...

  3. H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Options Analysis Results - Interim Report | Department of Energy A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report An in-depth comparative analysis of promising infrastructure options for hydrogen delivery and distribution to refueling stations from central, semi-central, and distributed production

  4. Critical Updates to the Hydrogen Analysis Production Model (H2A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Presentation slides from the February 8, ...

  5. Critical Updates to the Hydrogen Analysis Production Model (H2A v3) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Presentation slides from the February 8, 2012, Fuel Cell Technologies Program webinar, "Critical Updates to the Hydrogen Analysis Production Model (H2A v3)." PDF icon Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Webinar Slides More Documents & Publications H2A Delivery Models and Results Hydrogen

  6. Hydrogen Analysis (H2A) Production Component Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    determine the hydrogen selling cost given a specified after-tax internal rate of return. ... Production model evaluates cost of hydrogen production from any primary energy source for ...

  7. H2A Hydrogen Production Analysis Tool (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  8. Webinar: Critical Updates to the Hydrogen Analysis Production Model (H2A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    v3) | Department of Energy Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Webinar: Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Below is the text version of the webinar titled "Critical Updates to the Hydrogen Analysis Production Model (H2A v3)," originally presented on February 8, 2012. In addition to this text version of the audio, you can access the presentation slides. Darlene Steward: So I have a little presentation here. The real

  9. Critical Updates to the Hydrogen Analysis Production Model (H2A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to Rath 2010 SMR Study (NETL) 28 Current SMR ITEM H2A V3 Rath 2010 NG feed 450 psia 450 psia Plant capacity factor 90% 90% Design Natural Gas Analysis 26-City Survey Nat. Ave. ...

  10. DOE H2A Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Analysis » DOE H2A Analysis DOE H2A Analysis Realistic assumptions, both market- and technology-based, are critical to an accurate analytical study. DOE's H2A Analysis Group develops the building blocks and frameworks needed to conduct rigorous and consistent analyses of a wide range of hydrogen technologies. Established in FY 2003, H2A (which stands for hydrogen analysis) brings together the analysis expertise in the hydrogen community, drawing from industry, academia, and DOE's

  11. H2A Delivery Components Model and Analysis

    Broader source: Energy.gov [DOE]

    Presentation on H2A Delivery Components Model and Analysis for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  12. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    SciTech Connect (OSTI)

    Ramsden, T.; Steward, D.; Zuboy, J.

    2009-09-01

    Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

  13. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    267 September 2009 Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2 T. Ramsden and D. Steward National Renewable Energy Laboratory J. Zuboy Independent Contractor National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for

  14. H2A Delivery Models and Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon wkshpstoragemintz.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California H2A ...

  15. Hydrogen Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  16. H2A Delivery Scenario Model and Analyses

    Broader source: Energy.gov [DOE]

    Presentation on H2A Delivery Scenario Model and Analysis for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  17. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect (OSTI)

    Francis, Todd M; Lichty, Paul R; Perkins, Christopher; Tucker, Melinda; Kreider, Peter B; Funke, Hans H; Lewandowski, A; Weimer, Alan W

    2012-10-24

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar-driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  18. PEM Electrolysis H2A Production Case Study Documentation

    SciTech Connect (OSTI)

    James, Brian; Colella, Whitney; Moton, Jennie; Saur, G.; Ramsden, T.

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  19. 2H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ......... 2-41 Capital and Operating Cost Estimate Costs 2.2.3.6 ... Station Components Percent of Initial Capital Investment ......

  20. H2A Production Model, Version 2 User Guide

    SciTech Connect (OSTI)

    Steward, D.; Ramsden, T.; Zuboy, J.

    2008-09-01

    The H2A Production Model analyzes the technical and economic aspects of central and forecourt hydrogen production technologies. Using a standard discounted cash flow rate of return methodology, it determines the minimum hydrogen selling price, including a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values--such as capital costs, operating costs, and capacity factor--from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs. This new version of the H2A Production Model features enhanced usability and functionality. Input fields are consolidated and simplified. New capabilities include performing sensitivity analyses and scaling analyses to various plant sizes. This User Guide helps users already familiar with the basic tenets of H2A hydrogen production cost analysis get started using the new version of the model. It introduces the basic elements of the model then describes the function and use of each of its worksheets.

  1. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  2. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  3. Hydrogen Delivery Analysis Models

    Broader source: Energy.gov [DOE]

    DOE H2A Delivery Models: Components Model (delivery system component costs and performance) and Scenario Model (for urban and rural/interstate markets and demand levels, market penetration)

  4. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  5. Hydrogen Delivery Infrastructure Option Analysis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Option Analysis Hydrogen Delivery Infrastructure Option Analysis Presentation on hydrogen delivery infrastructure option analysis prepared for DOE. PDF icon wkshpstoragechen.pdf...

  6. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  7. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  8. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth...

  9. Hydrogen Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Coal to Liquids Hydrogen Systems Analysis Hydrogen Systems Analysis ... and development programs and plans, technology options, and potential technical, ...

  10. Hydrogen Delivery Infrastructure Analysis, Options and Trade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis, Options and Trade-offs, Transition and Long-term Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term Presentation on Hydrogen ...

  11. Hydrogen Systems Analysis Workshop (SAW)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy sponsored a Hydrogen Systems Analysis Workshop (SAW) in Washington, DC, July 28-29, 2004. Attendees included government officials, analysts, and managers from DOE, the...

  12. Guidance for Filling Out a Detailed H2A Production Case Study | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Guidance for Filling Out a Detailed H2A Production Case Study Guidance for Filling Out a Detailed H2A Production Case Study Download presentation slides from the EERE Fuel Cell Technologies Office webinar, "Guidance for Filling Out a Detailed H2A Production Case Study," held July 9, 2013. PDF icon Guidance for Filling Out a Detailed H2A Production Case Study Webinar Slides More Documents & Publications Summary of Electrolytic Hydrogen Production: Milestone Completion

  13. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  14. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  15. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost characteristics of four PEC hydrogen production systems ...

  16. H2A Delivery: Forecourt Compression & Storage Optimization (Part II)

    Broader source: Energy.gov [DOE]

    Presentation by Matthew Hooks of TIAX at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  17. H2A Delivery: Miscellaneous Cost and H2 Losses

    Broader source: Energy.gov [DOE]

    Presentation by Matt Ringer of the National Renewable Energy Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  18. Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model

    Broader source: Energy.gov [DOE]

    Overview of H2A stationary model concept, results, strategy for analysis, Federal incentives for fuel cells, and summary of next steps

  19. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  20. Hydrogen Financial Analysis Scenario Tool (H2FAST) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Analysis Scenario Tool (H2FAST) Marc Melaina, Ph.D. Team Lead for Infrastructure Analysis Transportation and Hydrogen Systems Center, NREL H2FAST Team: Brian Bush, Melanie Caton, Jon Duckworth, Dan Getman, Sara Havig, Marc Melaina, Michael Penev HTAC Meeting - April 21-22, 2015 Arlington, Virginia NREL/PR-5400-64138 Overview * Hydrogen Financial Analysis Simulation Tool (H2FAST) * H2FAST is a standard financial accounting framework applied to the DOE's H2A cost analysis models * There

  1. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen ... More Documents & Publications 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - ...

  2. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis ...

  3. Cost Analysis of Hydrogen Storage Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Systems Cost Analysis of Hydrogen Storage Systems Presentation by Stephen Lasher on cost analysis of hydrogen storage systems. PDF icon wkshpstoragelasher.pdf ...

  4. Agenda for the Hydrogen Delivery and Onboard Storage Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage ...

  5. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Hydrogen Delivery Analysis Models Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests Joint Meeting on Hydrogen...

  6. NREL: Energy Analysis - Hydrogen and Fuel Cells Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Technology Analysis NREL's hydrogen systems analysis activities provide direction, insight, and support for the development, demonstration, and deployment of a broad range of hydrogen technologies. Analysis focuses on hydrogen production, storage, and delivery systems for fuel cell electric vehicles (FCEVs) as well as stationary fuel cells and emerging-market applications such as material handling and backup power. NREL's hydrogen systems analysts evaluate R&D goals

  7. H2A Delivery: Forecourt Compression & Storage Optimization (Part...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery: Forecourt Compression & Storage Optimization (Part II) H2A Delivery: Forecourt Compression & Storage Optimization (Part II) Presentation by Matthew Hooks of TIAX at the...

  8. Final Report- Hydrogen Delivery Infrastructure Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides in-depth analysis of various hydrogen delivery options to determine the most cost effective infrastructure and R&D efforts for the long term.

  9. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    SciTech Connect (OSTI)

    Saur, G.; Jalalzadeh, A.

    2010-12-01

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs, and pipeline delivery specifications.

  10. Hydrogen and Water: An Engineering, Economic and Environmental Analysis

    SciTech Connect (OSTI)

    Simon, A J; Daily, W; White, R G

    2010-01-06

    The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved solids) is used inside boilers, reactors or electrolyzers because as it changes phase or is consumed, it leaves very little residue behind. Pre-treatment of 'raw' source water to remove impurities not only enables efficient hydrogen production, but also reduces maintenance costs associated with component degradation due to those impurities. Cooling water has lower overall quality specifications, though it is required in larger volumes. Cooling water has distinct quality requirements aimed at preserving the cooling equipment by reducing scaling and fouling from untreated water. At least as important as the quantity, quality and cost of water inputs to a process are the quantity, quality and cost of water discharge. In many parts of the world, contamination from wastewater streams is a far greater threat to water supply than scarcity or drought (Brooks, 2002). Wastewater can be produced during the pre-treatment processes for process and cooling water, and is also sometimes generated during the hydrogen production and cooling operations themselves. Wastewater is, by definition, lower quality than supply water. Municipal wastewater treatment facilities can handle some industrial wastewaters; others must be treated on-site or recycled. Any of these options can incur additional cost and/or complexity. DOE's 'H2A' studies have developed cost and energy intensity estimates for a variety of hydrogen production pathways. These assessments, however, have not focused on the details of water use, treatment and disposal. As a result, relatively coarse consumption numbers have been used to estimate water intensities. The water intensity for hydrogen production ranges between 1.5-40 gallons per kilogram of hydrogen, including the embedded water due to electricity consumption and considering the wide variety of hydrogen production, water treatment, and cooling options. Understanding the consequences of water management choices enables stakeholders to make informed decisions regarding water use. Water is a fundamentally regional commodity. Water resources vary in quality and qu

  11. Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results This presentation by ...

  12. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) ...

  13. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Access the recording and download ...

  14. Hydrogen Storage Testing and Analysis Research and Development

    Broader source: Energy.gov [DOE]

    DOE's hydrogen storage R&D activities include testing, analysis, and developing recommended best practices. The status of hydrogen storage testing and analysis projects is detailed in the...

  15. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Report documenting the ...

  16. Job Creation Analysis in the Hydrogen and Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creation Analysis in the Hydrogen and Fuel Cell Industry Job Creation Analysis in the Hydrogen and Fuel Cell Industry Presented by Paul Aresta at the Connecticut Center for ...

  17. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attendees List Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List Attendee list from the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May...

  18. Geographically Based Hydrogen Demand and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  19. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Energy Savers [EERE]

    Resolved Energy and Environment Tool (STREET) Model PDF icon UC Davis Models: Geospatial Station Network Design Tool and Hydrogen Infrastructure Rollout Economic Analysis ...

  20. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  1. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Hydrogen ...

  2. Agent-Based Modeling and Simulation for Hydrogen Transition Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Transition Analysis Workshop US Department of Energy January 26, 2006 Objectives and Scope for Phase 1 2 Analyze the hydrogen infrastructure development as a complex ...

  3. Process Analysis Work for the DOE Hydrogen Program- 2001

    Broader source: Energy.gov [DOE]

    Technical paper on the process analysis of DOE hydrogen research projects presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

  4. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern ...

  5. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    competitive prices-to fuel FCEVs. PDF icon Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis More Documents & Publications Hawaii Renewable Hydrogen Program ...

  6. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Paper Analysis of the Hydrogen NRELCP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and...

  7. Discrete Choice Analysis: Hydrogen FCV Demand Potential | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Hydrogen Policy and Analyzing the Transition Status and Prospects of the ...

  8. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout in Southern California | Department of Energy a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Presentation at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_nicholas.pdf More Documents & Publications Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January

  9. Hydrogen Infrastructure Transition Analysis: Milestone Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Milestone Report NREL/TP-540-38351 January 2006 Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Prepared under Task No. HY55.2200 Milestone Report NREL/TP-540-38351 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest

  10. Examination of Terminal Land Requirements for Hydrogen Delivery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Examination of Terminal Land Requirements for Hydrogen Delivery Examination of Terminal Land Requirements for Hydrogen Delivery Presentation by Jerry Gillette of Argonne National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_gillette_landreq.pdf More Documents & Publications Hydrogen Delivery Analysis Models H2A Delivery Models and Results Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and

  11. Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis workshop. PDF icon wkshp_storage_agenda.pdf More Documents & Publications DOE and FreedomCAR and Fuels Partnership: Analysis Workshop DOE and FreedomCAR and Fuel Partnership Analysis Workshop Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda

  12. Screening analysis of solar thermochemical hydrogen concepts.

    SciTech Connect (OSTI)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  13. NREL: Hydrogen and Fuel Cells Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis Graphic showing a map and chart. Hydrogen infrastructure simulation models focus on the spatial and temporal deployment of vehicles and fueling infrastructure to provide insights into investment decisions and policy support options. Image of a generic bar graph. H2FAST: Hydrogen Financial Analysis Scenario Tool Delivers in-depth financial analysis for hydrogen fueling stations. NREL's hydrogen systems analysis activities provide direction, insight, and support for the

  14. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" held on February 25, 2016. PDF icon Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Slides More Documents &

  15. H2A Delivery: GH2 and LH2 Forecourt Land Areas

    Broader source: Energy.gov [DOE]

    Presentation by Matthew Hooks of TIAX at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  16. Joint Meeting on Hydrogen Delivery Modeling and Analysis, May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis, May 8-9, 2007, Discussion Session Highlights, Comments, and Action Items Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007, Discussion...

  17. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint PDF icon 34851.pdf More Documents ...

  18. Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005

    Broader source: Energy.gov [DOE]

    This report highlights DOE’s systems analysis work related to hydrogen storage materials and process development, with a focus on models of on-board and off-board hydrogen storage systems.

  19. Hydrogen Storage Systems Analysis Meeting: Summary Report, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report highlights DOE's systems analysis work related to hydrogen storage materials and process development, with a focus on models of on-board and off-board hydrogen storage ...

  20. Hydrogen Delivery Scenario Analysis Model (HDSAM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    platform for comparing the cost of alternative hydrogen delivery and refueling options. Identify cost drivers of current hydrogen delivery and refueling technologies for various ...

  1. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    is a promising renewable energy technology for generation of hydrogen for use in the future hydrogen economy. PEC systems use solar photons to generate a voltage in an...

  2. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  3. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2010-06-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  4. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for

    Energy Savers [EERE]

    Electrical Energy Storage | Department of Energy Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy

  5. DOE Hydrogen Transition Analysis Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition Analysis Workshop DOE Hydrogen Transition Analysis Workshop The U.S. Department of Energy (DOE) sponsored a Hydrogen Transition Analysis Workshop in Washington, D.C., on January 26, 2006. Attendees included automobile and energy company representatives, industrial gas company representatives, analysts, national laboratories, and DOE program managers. The purpose of the workshop was to gather input and feedback on the hydrogen transition models currently being funded by DOE. Agenda,

  6. Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis

    Broader source: Energy.gov [DOE]

    Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  7. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report

    Broader source: Energy.gov [DOE]

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes.

  8. Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests Presentation at the Joint...

  9. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF ...

  10. Community Energy: Analysis of Hydrogen Distributed Energy Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling D. Steward National Renewable Energy Laboratory J. ...

  11. Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results

    Broader source: Energy.gov [DOE]

    This presentation by Amgad Elgowainy of Argonne National Laboratory was given at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007.

  12. Hydrogen for Energy Storage Analysis Overview (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  13. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  14. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  15. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    SciTech Connect (OSTI)

    James, Brian D.; Baum, George N.; Perez, Julie; Baum, Kevin N.

    2009-12-01

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  16. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  17. NREL: Hydrogen and Fuel Cells Research - Energy Analysis and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis and Tools NREL offers energy analysis tools, models, and other resources for researchers, developers, investors, and others interested in the viability, analysis, and development of hydrogen and fuel cell technologies and systems. Learn about NREL's hydrogen and fuel cell system analysis projects. ADOPT: Automotive Deployment Options Projection Tool Modeling tool that predicts consumer demand for different vehicle types based on income distribution and other demographic

  18. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

  19. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  20. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells. View the Overview Fact Sheet and

  1. Hydrogen Financial Analysis Scenario Tool (H2FAST)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2FAST National Renewable Energy Laboratory The Hydrogen Financial Analysis Scenario Tool, H2FAST, provides a quick and convenient in-depth financial analysis for hydrogen fueling stations. H2FAST is available in two formats: an interactive online tool and a downloadable Excel spreadsheet. The spreadsheet version of H2FAST offers basic and advanced user interface modes for modeling individual stations or groups of up to 10 stations. It provides users with detailed annual finance projections in

  2. Hydrogen Technical Analysis -- Dissemination of Information

    SciTech Connect (OSTI)

    George Kervitsky, Jr.

    2006-03-20

    SENTECH is a small energy and environmental consulting firm providing technical, analytical, and communications solutions to technology management issues. The activities proposed by SENTECH focused on gathering and developing communications materials and information, and various dissemination activities to present the benefits of hydrogen energy to a broad audience while at the same time establishing permanent communications channels to enable continued two-way dialog with these audiences in future years. Effective communications and information dissemination is critical to the acceptance of new technology. Hydrogen technologies face the additional challenge of safety preconceptions formed primarily as a result of the crash of the Hindenburg. Effective communications play a key role in all aspects of human interaction, and will help to overcome the perceptual barriers, whether of safety, economics, or benefits. As originally proposed SENTECH identified three distinct information dissemination activities to address three distinct but important audiences; these formed the basis for the task structure used in phases 1 and 2. The tasks were: (1) Print information--Brochures that target the certain segment of the population and will be distributed via relevant technical conferences and traditional distribution channels. (2) Face-to-face meetings--With industries identified to have a stake in hydrogen energy. The three industry audiences are architect/engineering firms, renewable energy firms, and energy companies that have not made a commitment to hydrogen (3) Educational Forums--The final audience is students--the future engineers, technicians, and energy consumers. SENTECH will expand on its previous educational work in this area. The communications activities proposed by SENTECH and completed as a result of this cooperative agreement was designed to compliment the research and development work funded by the DOE by presenting the technical achievements and validations of hydrogen energy technologies to non-traditional audiences. These activities were also designed to raise the visibility of the DOE Hydrogen Program to new audiences and to help the program continue to advance its mission and vision. We believe that the work conducted under this cooperative agreement was successful at meeting the objectives presented and funded over the period of performance. During Phase 1, SENTECHs activities resulted in the development and distribution of two glossy brochures that target the on-site distributed generation and public transit markets for hydrogen energy technologies; face-to-face industry outreach meetings with various firms with an interest in hydrogen energy, but who may not have made a commitment to be involved; and implementation of two educational forums on hydrogen for students - the future engineers, technicians, and energy consumers. The educational forums were conducted with in-kind cost-shared contributions from NHA and Dr. Robert Reeves, Professor Emeritus, Rensealler During Phase 2, SENTECH activities initially were focused on the development of additional brochures and the development of a series of training modules. This set of information dissemination activities built on the experience demonstrated in our phase one activities, and focused the effort within two critical issue areas facing the development of hydrogen as an energy carrier--effective communications and information dissemination on codes and standards. SENTECH joined with the National Fire Protection Association (NFPA) to scope out the training modules and identified a series of 12 that could be used to train a variety of audiences. The NFPA is an international nonprofit corporation, which has developed a reputation as a worldwide leader in providing fire, electrical, and life safety to the public since 1896. Its membership totals more than 75,000 individuals from around the world and in more than 80 national trade and professional organizations.

  3. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte ...

  4. Webinar: Guidance for Filling Out a Detailed H2A Production Case Study |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Guidance for Filling Out a Detailed H2A Production Case Study Webinar: Guidance for Filling Out a Detailed H2A Production Case Study Below is the text version of the webinar titled "Guidance for Filling Out a Detailed H2A Production Case Study," originally presented on July 9, 2013. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: Thanks so much for joining today's webinar. Just to go through a few housekeeping

  5. Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)

    SciTech Connect (OSTI)

    Steward, D.

    2010-02-11

    Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

  6. Hydrogen Supply: Cost Estimate for Hydrogen Pathways—Scoping Analysis. January 22, 2002—July 22, 2002

    Broader source: Energy.gov [DOE]

    A report showing a comparative scooping economic analysis of 19 pathways for producing, handling, distributing, and dispensing hydrogen for fuel cell vehicle applications.

  7. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  8. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  9. ANALYSIS OF AVAILABLE HYDROGEN DATA & ACCUMULATION OF HYDROGEN IN UNVENTED TRANSURANIC (TRU) DRUMS

    SciTech Connect (OSTI)

    DAYLEY, L

    2004-06-24

    This document provides a response to the second action required in the approval for the Justification for Continued Operations (JCO) Assay and Shipment of Transuranic (TRU) Waste Containers in 218-W-4C. The Waste Management Project continues to make progress toward shipping certified TRU waste to the Waste Isolation Pilot Plant (WIPP). As the existing inventory of TRU waste in the Central Waste Complex (CWC) storage buildings is shipped, and the uncovered inventory is removed from the trenches and prepared for shipment from the Hanford Site, the covered inventory of suspect TRU wastes must be retrieved and prepared for processing for shipment to WIPP. Accumulation of hydrogen in unvented TRU waste containers is a concern due to the possibility of explosive mixtures of hydrogen and oxygen. The frequency and consequence of these gas mixtures resulting in an explosion must be addressed. The purpose of this study is to recommend an approach and schedule for venting TRU waste containers in the low-level burial ground (LLBG) trenches in conjunction with TRU Retrieval Project activities. This study provides a detailed analysis of the expected probability of hydrogen gas accumulation in significant quantities in unvented drums. Hydrogen gas accumulation in TRU drums is presented and evaluated in the following three categories: Hydrogen concentrations less than 5 vol%; Hydrogen between 5-15 vol%; and Hydrogen concentrations above 15 vol%. This analysis is based on complex-wide experience with TRU waste drums, available experimental data, and evaluations of storage conditions. Data reviewed in this report includes experience from the Idaho National Environmental Engineering Laboratories (INEEL), Savannah River Site (SRS), Los Alamos National Laboratories (LANL), Oak Ridge National Laboratories, (ORNL), Rocky Flats sites, Matrix Depletion Program and the National Transportation and Packaging Program. Based on this analysis, as well as an assessment of the probability and frequency of postulated credible accident scenarios, this study presents a plan and schedule for accomplishing necessary venting for segregated unvented TRU drums. A recommended method for venting TRU drums is proposed. Upon revision of the authorization basis document to include TRU drum venting, and successful completion of readiness activities; TRU drum venting will be implemented in the LLBG.

  10. Analysis of Hybrid Hydrogen Systems: Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Rate Improvement Potential at Coal- Fired Power Plants May 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Analysis of Heat Rate Improvement Potential at Coal-Fired Power Plants i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  11. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a “bottom-up” costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  12. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NRELFS-5600-48437 * Revised December 2010 Hydrogen electrical energy storage and dispatch scenario Electricity Hydrogen Storage Electrolyzer Fuel Cell Electricity Hydrogen Storage ...

  13. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell ...

  14. DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda DOE Hydrogen ...

  15. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by ...

  16. Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term

    Broader source: Energy.gov [DOE]

    Presentation on Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  17. U.S. OpenLabs - Policy and Program Analysis | Open Energy Information

    Open Energy Info (EERE)

    The NRELDOE Approach Feed-in Tariffs: Best Practices and Application in the U.S. Hydrogen Analysis (H2A) Innovative Feed-In Tariff Designs that Limit Policy Costs NREL...

  18. Techno-Economic Analysis of Traditional Hydrogen Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traditional Hydrogen Transmission and Distribution Options Amgad Elgowainy Argonne National Laboratory Hydrogen Transmission and Distribution Workshop National Renewable Energy ...

  19. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool HYDRA Program PDF icon hydra_joseck.pdf More Documents & Publications Pathway and Resource Overview Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Delivering Renewable Hydrogen: A Focus on Near-Term Applications

  20. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report

    Broader source: Energy.gov [DOE]

    This report updates the 1999 economic analysis of NREL’s photobiological hydrogen production from Chlamydomonas reinhardtii.

  1. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page1 Hierarchy of Various Models Used for Hydrogen and Fuel Cell Analyses Analysis Models and Tools Systems Analysis of Hydrogen & Fuel Cells With a multitude of end-uses-such as distributed power for back-up, primary, and combined heat-and- power systems; automobiles, buses, forklifts and other specialty vehicles; and auxiliary power units and portable electronics-fuel cell applications hold potential to dramatically impact the 21st century clean energy economy. Fuel cells can efficiently

  2. Insights from Hydrogen Refueling Station Manufacturing Competitiveness Analysis

    SciTech Connect (OSTI)

    Mayyas, Ahmad

    2015-12-18

    In work for the Clean Energy Manufacturing Analysis Center (CEMAC), NREL is currently collaborating with Great Lakes Wind Network in conducting a comprehensive hydrogen refueling stations manufacturing competitiveness and supply chain analyses. In this project, CEMAC will be looking at several metrics that will facilitate understanding of the interactions between and within the HRS supply chain, such metrics include innovation potential, intellectual properties, learning curves, related industries and clustering, existing supply chains, ease of doing business, and regulations and safety. This presentation to Fuel Cell Seminar and Energy Exposition 2015 highlights initial findings from CEMAC's analysis.

  3. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  4. Hydrogen Demand and Resource Analysis (HyDRA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    users to view, download, and analyze hydrogen demand, resource, and infrastructure ... HyDRA contains more than 100 datasets, including resource cost and availability, hydrogen ...

  5. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Infrastructure Meeting | Department of Energy 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_agenda1_07.pdf More Documents & Publications 2010 - 2025 Scenario Analysis

  6. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen resources necessary to support the committee's hydrogen vehicle penetration scenario, or another similar demand scenario (NAS, 2004, p. 4).' Each of the scenarios was extensively discussed at the stakeholder meetings and each received support from industry. Although there was no consensus on a particular vehicle penetration rate, it was agreed that this set of scenarios is inclusive of industry expectations and could provide a basis to interpolate or extrapolate the results to other cases. The purpose of the DOE study was not to select any one scenario but to assess the costs and impacts of achieving each.

  7. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect (OSTI)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  8. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Final List of Attendees | Department of Energy Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees PDF icon scenario_analysis_attendees.pdf More Documents & Publications Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31,

  9. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure | Department of Energy Systems Analysis » 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be highest in the near-term, when markets are very small and the technology and infrastructure are immature.

  10. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model | Department of Energy Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems. PDF icon fuel_cycle_comparison_forklifts_presentation.pdf More Documents & Publications Fuel Cell Comparison of Distributed Power Generation Technologies

  11. Controlled Hydrogen Fleet & Infrastructure Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1_wipke.pdf More Documents & Publications Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning Demonstration Status

  12. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009)

    Broader source: Energy.gov [DOE]

    Presentation by Brian James, Strategic Analysis Inc., at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  13. DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda, held February 8-9, 2005 by Argonne National Laboratory

  14. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Broader source: Energy.gov [DOE]

    Objectives: Identify business opportunities and valuation of strategic options for the natural gas industry as hydrogen energy systems evolve.

  15. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Geospatial Toolkits Geothermal Hydrogen International Marine & Hydrokinetic Solar Wind Data Visualization & Geospatial Tools Geospatial Team Publications Contact Us...

  16. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Maps Below are some examples of how geographic information system (GIS) modeling is used in hydrogen infrastructure, demand, market and resource analyses. The JPG images are samples of the maps available in the following PDFs. Refer to the report for further information. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Map of U.S. Hydrogen Infrastructure Demand - Consumer Strategy U.S. Hydrogen Infrastructure Demand - Consumer Strategy (JPG 129

  17. Atomospheric monitoring for hydrogen sulfide by photorateometric analysis

    SciTech Connect (OSTI)

    Kimbell, C.L.

    1981-08-01

    A new method for analysis of the hydrogen sulfide (H/sub 2/S) content of the atmosphere is by photorateometric measurement. This detection method consists of a surface chemically treated with lead acetate enclosed in the chamber. Reaction with H/sub 2/S causes a color change. A photocell response is produced by ''rate of change'' electronics, the output of which is proportional to the first derivative of the photocell output. This first derivative signal is a measure of H/sub 2/S concentration. An output linear with concentration is obtained. A range of measurement may be obtained in parts per million (ppm) and parts per billion (ppb) with extreme accuracy. Response time using the rateometric technique is sufficiently fast to allow plume characterization using surface vehicle or aircraft mounted analyzers.

  18. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    Broader source: Energy.gov [DOE]

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  19. Job Creation Analysis in the Hydrogen and Fuel Cell Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will be required by all global consumers as traditional fuel prices increase, ... compared to potential applications of a mature market. * In 2007, Connecticut's hydrogen ...

  20. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20% postconsumer waste iii Executive Summary As ... cell H 2 hydrogen ICE internal combustion engine IGCC integrated ... gas turbines, 2 heat recovery steam generators, ...

  1. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    Broader source: Energy.gov [DOE]

    This feasibility report assesses the technical and economic feasibility of deploying a hydrogen fueling station at the Fort Armstrong site in Honolulu.

  2. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect (OSTI)

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  3. Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.

    SciTech Connect (OSTI)

    Mahalik, M.; Stephan, C.

    2011-01-18

    Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they become worried that they would run out of fuel before encountering a facility, their motivation to purchase a hydrogen-powered vehicle decreases. At vehicle purchase time, they weigh this experience, as well as other factors such as social influence by their peers, fuel cost, and capital cost of a hydrogen vehicle. Investor agents build full-service hydrogen fueling stations (HFSs) at different locations along the highway network. They base their decision to build or not build a station on their (imperfect) estimates of the sales the station would immediately generate (based on hydrogen-powered vehicle traffic past the location and other factors), as well as the growth in hydrogen sales they could expect throughout their investment horizon. The interaction between driver and investor agents provides the basis for growth in both the number of hydrogen vehicles and number of hydrogen stations. For the present report, we have added to this mix smaller, 'bare-bones' hydrogen dispensing facilities (HDFs) of the type that owners of CHHP facilities could provide to the public. The locations of these stations were chosen to match existing facilities that might reasonably incorporate CHHP plants in the future. Unlike the larger commercial stations, these facilities are built according to exogenously supplied timetables, and no attempt has been made to model the financial basis for the facilities. Rather, our objective is to understand how the presence of these additional stations might facilitate the petroleum-to-hydrogen transition. We discuss a base case in which the HDFs are not present, and then investigate the effects of introducing HDFs in various numbers; according to different timetables; with various production capacities; and with hydrogen selling at prices above, equal to, and below the commercial stations selling price. We conclude that HDFs can indeed be helpful in accelerating a petroleum-to-hydrogen transition. Placed in areas where investors might not be willing to install large for-profit HFSs, HDFs can serve as a bridge until demand for hydrogen increases to the point where l

  4. Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2006-10-01

    In FY 2004 and 2005, NREL developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. This report identifies key metropolitan areas and regions on which to focus infrastructure efforts during the early hydrogen transition.

  5. Hydrogen engine performance analysis project. Second annual report

    SciTech Connect (OSTI)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  6. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect (OSTI)

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

  7. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    SciTech Connect (OSTI)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

  8. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  9. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting | Department of Energy Delivery High-Pressure Tanks and Analysis Project Review Meeting DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting On February 8-9, 2005, the Department of Energy held the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting at Argonne National Laboratory. The purpose of the meeting was to review the progress and plans of the R&D projects and to facilitate collaboration among researchers. The

  10. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 1 Summary Presentation | Department of Energy 1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis Meeting Discussion Group 1 Summary Presentation PDF icon group_1_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2

  11. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 2 Summary Presentation | Department of Energy 2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis Meeting Discussion Group 2 Summary Presentation PDF icon group_2_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1

  12. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Broader source: Energy.gov [DOE]

    Presentation by 12-Richards to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  13. Analysis of Potential Hydrogen Risk in the PWR Containment

    SciTech Connect (OSTI)

    Deng Jian; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

    2006-07-01

    Various studies have shown that hydrogen combustion is one of major risk contributors to threaten the integrity of the containment in a nuclear power plant. That hydrogen risk should be considered in severe accident strategies in current and future NPPs has been emphasized in the latest policies issued by the National Nuclear Safety Administration of China (NNSA). According to a deterministic approach, three typical severe accident sequences for a PWR large dry containment, such as the large break loss-of-coolant (LLOCA), the station blackout (SBO), and the small break loss-of-coolant (SLOCA) are analyzed in this paper with MELCOR code. Hydrogen concentrations in different compartments are observed to evaluate the potential hydrogen risk. The results show that there is a great amount of hydrogen released into the containment, which causes the containment pressure to increase and some potential in-consecutive burning. Therefore, certain hydrogen management strategies should be considered to reduce the risk to threaten the containment integrity. (authors)

  14. Guidance for Filling Out a Detailed H2A Production Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Replacement Costs Capital Costs Plant Scaling System Inputs Results Tornado Chart Sensitivity Analysis Cash Flow Analysis Results Energy Feed & Utility Prices Non-Energy Material ...

  15. Participant List for the 2010-2025 Scenario Analysis for Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31, 2007 Participant List for the 2010-2025 Scenario ...

  16. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect (OSTI)

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  17. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  18. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  19. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  20. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

  1. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne ... update the GREET model * Conduct WTW or fuel-cycle simulations with GREET * Analyze and ...

  2. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report

    SciTech Connect (OSTI)

    Amos, W. A.

    2004-01-01

    This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are also included in this study. Based on this analysis, the estimated future selling price of hydrogen produced from algae ranges $0.57/kg to $13.53/kg.

  3. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  4. Fuel Cell Tri-Generation System Case Study using the H2A Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Economics and Performance Analysis Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Expanding the Use of Biogas with Fuel Cell Technologies

  5. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  6. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  7. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    SciTech Connect (OSTI)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  8. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  9. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  10. Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007, Discussion Session Highlights, Comments, and Action Items

    Broader source: Energy.gov [DOE]

    This summary highlights the disussion session, comments, and action items from the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007.

  11. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and

  12. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    SciTech Connect (OSTI)

    Bush, B.; Penev, M.; Melaina, M.; Zuboy, J.

    2015-05-11

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  13. NREL: Hydrogen and Fuel Cells Research - Webinar August 11: Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak Building Energy August 5, 2015 The Energy Department's Fuel Cell Technologies Office will present a live webinar...

  14. Joint Meeting on Hydrogen Delivery Modeling and Analysis, May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This will be discussed with System Analysis 3. Refueling Station Size Distribution? ... information (personal income, etc.) to determine demand for fuel cell vehicles? ...

  15. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  16. Hydrogen Scenarios

    Broader source: Energy.gov [DOE]

    Presentation by Frances Wood of OnLocation Inc. at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  17. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  18. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Bush, Brian; Penev, Michael

    2015-05-12

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  19. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings Preprint C.D. Barley, K. Gawlik, J. Ohi, and R. Hewett National Renewable Energy Laboratory To be presented at the 2 nd International Conference on Hydrogen Safety San Sebastian, Spain September 11-13, 2007 Conference Paper NREL/CP-550-41081 August 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research

  20. Numerical analysis of the influence of scale effects and microstructure on hydrogen diffusion in polycrystalline aggregates

    SciTech Connect (OSTI)

    Legrand, Esaie; Bouhattate, Jamaa; Feaugas, Xavier; Touzain, S.; Garmestani, Hamid; Khaleel, Mohammad A.; Li, Dongsheng

    2013-04-01

    Predicting resistance to environmental degradation, especially hydrogen embrittlement (HE) has become a major concern for life assessment and risk analysis of structural materials. The microstructure of the materials plays a significant role in HE. Despite the large documentation about the subject, the contribution of hydrogen diffusion on this process stays unclear. In this work, we analyze the effects of the microstructure on hydrogen diffusion, especially the influence of grain boundaries considered as high diffusivity paths and possible sites of damage occurrence. Electrochemical permeation was simulated using finite elements method (FEM). Scale effects between the RVE (Representative Volume Element) and the size of the membrane are discussed. Domains of applicability for standard homogenization methods, especially Hashin Shtrikman model are studied using results from microstructural based FEM. Domains of invariance of diffusion behavior and concentration profiles for grain shapes and the size of the membrane are also analyzed. Thus, the difficulty to extract diffusion properties by permeation test for heterogeneous microstructures is highlighted and discussed.

  1. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    SciTech Connect (OSTI)

    Petitpas, G; Benard, P; Klebanoff, L E; Xiao, J; Aceves, S M

    2014-07-01

    While conventional low-pressure LH? dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H? density and dormancy. We start by reviewing some basic aspects of LH? properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~58 kg H?, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined hybrid system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H? capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.

  2. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnash, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-14

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself.

  3. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

  4. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Power-to-Gas Economic Analysis CHBC Summer Summit Josh Eichman, PhD Downey, California 7/30/2015 NREL/PR-5400-64833 2 Outline * Opportunity for HES / P2G * Markets considered * Market valuation results * Future market expectations * Additional projects 3 Complementary Hydrogen Systems Electric Grid Hydrogen Pipeline Injection Water Water Electrolyzer Reformer Fuel Cell or Turbine Chemical and Industrial Processes Hydrogen Storage Natural Gas Grid Source: (from top left by row), Warren Gretz,

  5. Fuel Cell Power Model for CHHP System Economics and Performance Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Model for CHHP System Economics and Performance Analysis Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_steward.pdf More Documents & Publications Biogas Opportunities Roadmap Progress Report Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model Project Reports for Tulalip Tribes - 2003

  6. Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego

    2010-05-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

  7. DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop

    Broader source: Energy.gov [DOE]

    On January 25, 2006, the U.S. Department of Energy, together with the FreedomCAR & Fuel Partnership, held a workshop to review and discuss ongoing hydrogen storage and delivery analysis efforts...

  8. Compact Detection System for High Sensitivity Hydrogen Profiling of Materials by Nuclear Reaction Analysis

    SciTech Connect (OSTI)

    Marble, Daniel Keith; Urban, Ben; Pacheco, Jose

    2009-03-10

    Hydrogen is a ubiquitous contaminant that is known to have dramatic effects on the electrical, chemical, and mechanical properties of many types of materials in even minute quantities. Thus, the detection of hydrogen in materials is of major importance. Nuclear Reaction Analysis (NRA) is a powerful technique for nondestructive profiling hydrogen in materials. However, NRA has found only limited use in many applications because of poor sensitivity due to cosmic ray background (CSRB). Most attempts to eliminate CSRB to achieve ppm detection levels using higher energy nuclear reactions or tons of passive shielding are not compatible with commercial ion beam analysis space and equipment requirements Zimmerman, et al. have previously reported upon a coincidence detector that meets IBA space requirements and reduces the cosmic ray background, but the detector suffers from lower detection efficiency and small sample size. We have replaced the BGO well detector in the Zimmerman coincidence detection scheme with a larger Nal well detector and used faster timing electronics to produce a detector that can handle larger samples with higher detection efficiency, and still eliminate cosmic ray background.

  9. DOE Annual Progress Report: Water Needs and Constraints for Hydrogen Pathways

    SciTech Connect (OSTI)

    Simon, A; Daily, W

    2009-07-02

    Water is a critical feedstock in the production of hydrogen. In fact, water and many of the energy transformations upon which society depends are inextricably linked. Approximately 39% of freshwater withdrawals are used for cooling of power plants, and another 8% are used in industry and mining (including oil and gas extraction and refining). Major changes in the energy infrastructure (as envisioned in a transformation to a hydrogen economy) will necessarily result in changes to the water infrastructure. Depending on the manner in which a hydrogen economy evolves, these changes could be large or small, detrimental or benign. Water is used as a chemical feedstock for hydrogen production and as a coolant for the production process. Process and cooling water must meet minimum quality specifications (limits on mineral and organic contaminants) at both the inlet to the process and at the point of discharge. If these specifications are not met, then the water must be treated, which involves extra expenditure on equipment and energy. There are multiple options for water treatment and cooling systems, each of which has a different profile of equipment cost and operational requirements. The engineering decisions that are made when building out the hydrogen infrastructure will play an important role in the cost of producing hydrogen, and those decisions will be influenced by the regional and national policies that help to manage water resources. In order to evaluate the impacts of water on hydrogen production and of a hydrogen economy on water resources, this project takes a narrowly-scoped lifecycle analysis approach. We begin with a process model of hydrogen production and calculate the process water, cooling, electricity and energy feedstock demands. We expand beyond the production process itself by analyzing the details of the cooling system and water treatment system. At a regional scale, we also consider the water use associated with the electricity and fuel that feed hydrogen production and distribution. The narrow scope of the lifecycle analysis enables economic optimization at the plant level with respect to cooling and water treatment technologies. As water withdrawal and disposal costs increase, more expensive, but more water-efficient technologies become more attractive. Some of the benefits of these technologies are offset by their increased energy usage. We use the H2A hydrogen production model to determine the overall cost of hydrogen under a range of water cost and technology scenarios. At the regional level, we are planning on following the hydrogen roll-out scenarios envisioned by Greene and Leiby (2008) to determine the impact of hydrogen market penetration on various watersheds. The economics of various water technologies will eventually be incorporated into the temporal and geographic Macro System Model via a water module that automates the spreadsheet models described. At the time of this progress report, the major achievement for FY2009 has been the completion of the framework and analytical results of the economic optimization of water technology for hydrogen production. This accomplishment required the collection of cost and performance data for multiple cooling and water treatment technologies, as well as the integration of a water and energy balance model with the H2A framework. 22 (twenty-two) different combinations of production method (SMR, electrolysis), scale (centralized, forecourt), cooling (evaporative tower, dry) and water treatment (reverse osmosis, ion exchange) were evaluated. The following data were collected: water withdrawal, water discharge, electricity consumption, equipment footprint, equipment cost, installation cost, annual equipment and material costs and annual labor costs. These data, when consolidated, fit into a small number of input cells in H2A. Items such as capital cost end up as line-items for which there is space in the existing H2A spreadsheets. Items such as electricity use are added to the values that already exist in H2A. Table 1 lists eight potential technology combina

  10. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  11. Technical Analysis of Projects Being Funded by the DOE Hydrogen Program

    SciTech Connect (OSTI)

    Edward G. Skolnik

    2006-02-10

    In July 2000, Energetics began a project in which we performed site-visit based technical analyses or evaluations on hydrogen R&D projects for the purpose of providing in-depth information on the status and accomplishments of these projects to the public, and especially to hydrogen stakeholders. Over a three year period, 32 site-visit analyses were performed. In addition two concepts gleaned from the site visits became subjects of in depth techno-economic analyses. Finally, Energetics produced a compilation document that contains each site-visit analysis that we have performed, starting in 1996 on other contracts through the end of Year One of the current project (July 2001). This included 21 projects evaluated on previous contracts, and 10 additional ones from Year One. Reports on projects visited in Years One and Two were included in their respective Annual Reports. The Year Two Report also includes the two In-depth Analyses and the Compilation document. Reports in Year three began an attempt to perform reviews more geared to hydrogen safety. This Final Report contains a summary of the overall project, all of the 32 site-visit analyses and the two In-depth Analyses.

  12. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    SciTech Connect (OSTI)

    Khalil, Y. F

    2015-01-05

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  13. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  14. Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31, 2007

    Broader source: Energy.gov [DOE]

    This list describes the participants at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Controlled Hydrogen Fleet & Infrastructure Analysis National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning ...

  16. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: Energy.gov (indexed) [DOE]

    tv03veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

  17. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  18. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  19. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 32525.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Hydrogen Delivery ...

  20. Ion Beam Analysis of the Thermal Stability of Hydrogenated Diamond-Like Carbon Thin Films on Si Substrate

    SciTech Connect (OSTI)

    Nandasiri, M. I.; Moore, A.; Garratt, E.; Wickey, K. J.; AlFaify, S.; Gao, X.; Kayani, A.; Ingram, D.

    2009-03-10

    Unbalanced magnetron sputtering deposition of C-H films has been performed with various levels of negative substrate bias and with a fixed flow rate of hydrogen. Argon was used as a sputtering gas and formed the majority of the gas in the plasma. The effect of hydrogenation on the final concentration of trapped elements and their thermal stability with respect to hydrogen content is studied using ion beam analysis (IBA) techniques. The elemental concentrations of the films were measured in the films deposited on silicon substrates with a 2.5 MeV of H{sup +} beam, which is used to perform Rutherford Backscattering Spectrometry (RBS) and Non-Rutherford Backscattering spectrometry (NRBS) and with 16 MeV of O{sup 5+} beam, used to perform Elastic Recoil Detection Analysis (ERDA). Effect of bias on the thermal stability of trapped hydrogen in the films has been studied. As the films were heated in-situ in vacuum using a non-gassy button heater, hydrogen was found to be decreasing around 400 deg. C.

  1. Economic analysis of large-scale hydrogen storage for renewable utility applications.

    SciTech Connect (OSTI)

    Schoenung, Susan M.

    2011-08-01

    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

  2. Neutron scattering studies of the H2a-H2b and (H3-H4)/sub 2/ histone complexes

    SciTech Connect (OSTI)

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4)/sub 2/ and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)/sub 2/ tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table.

  3. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  4. An analysis of quantum effects on the thermodynamic properties of cryogenic hydrogen using the path integral method

    SciTech Connect (OSTI)

    Nagashima, H.; Tsuda, S.; Tsuboi, N.; Koshi, M.; Hayashi, K. A.; Tokumasu, T.

    2014-04-07

    In this paper, we describe the analysis of the thermodynamic properties of cryogenic hydrogen using classical molecular dynamics (MD) and path integral MD (PIMD) method to understand the effects of the quantum nature of hydrogen molecules. We performed constant NVE MD simulations across a wide densitytemperature region to establish an equation of state (EOS). Moreover, the quantum effect on the difference of molecular mechanism of pressurevolumetemperature relationship was addressed. The EOS was derived based on the classical mechanism idea only using the MD simulation results. Simulation results were compared with each MD method and experimental data. As a result, it was confirmed that although the EOS on the basis of classical MD cannot reproduce the experimental data of saturation property of hydrogen in the high-density region, the EOS on the basis of PIMD well reproduces those thermodynamic properties of hydrogen. Moreover, it was clarified that taking quantum effects into account makes the repulsion force larger and the potential well shallower. Because of this mechanism, the intermolecular interaction of hydrogen molecules diminishes and the virial pressure increases.

  5. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  6. Microstructure from joint analysis of experimental data and ab initio interactions: Hydrogenated amorphous silicon

    SciTech Connect (OSTI)

    Biswas, Parthapratim; Drabold, D. A.; Atta-Fynn, Raymond

    2014-12-28

    A study of the formation of voids and molecular hydrogen in hydrogenated amorphous silicon is presented based upon a hybrid approach that involves inversion of experimental nuclear magnetic resonance data in conjunction with ab initio total-energy relaxations in an augmented solution space. The novelty of this approach is that the voids and molecular hydrogen appear naturally in the model networks unlike conventional approaches, where voids are created artificially by removing silicon atoms from the networks. Two representative models with 16 and 18 at.?% of hydrogen are studied in this work. The result shows that the microstructure of the a-Si:H network consists of several microvoids and few molecular hydrogen for concentration above 15 at.?% H. The microvoids are highly irregular in shape and size, and have a linear dimension of 57?. The internal surface of a microvoid is found to be decorated with 49 hydrogen atoms in the form of monohydride SiH configurations as observed in nuclear magnetic resonance experiments. The microstructure consists of (0.91.4)% hydrogen molecules of total hydrogen in the networks. These observations are consistent with the outcome of infrared spectroscopy, nuclear magnetic resonance, and calorimetry experiments.

  7. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; Buchenauer, D. A.; Wirth, B. D.

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, wemore » find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less

  8. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    SciTech Connect (OSTI)

    Feng, Zhili; Zhang, Wei; Wang, Jy-An John; Ren, Fei

    2012-09-01

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the industry-standard pressure vessel technology. The real-world performance data of SCCV under actual operating conditions is imperative for this new technology to be adopted by the hydrogen industry for stationary storage of CGH2. Therefore, the key technology development effort in FY13 and subsequent years will be focused on the fabrication and testing of SCCV mock-ups. The static loading and fatigue data will be generated in rigorous testing of these mock-ups. Successful tests are crucial to enabling the near-term impact of the developed storage technology on the CGH2 storage market, a critical component of the hydrogen production and delivery infrastructure. In particular, the SCCV has high potential for widespread deployment in hydrogen fueling stations.

  9. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

  10. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buoyancy-Driven Ventilation of Hydrogen from Buildings C. Dennis Barley, Keith Gawlik, Jim Ohi, Russell Hewett National Renewable Laboratory U.S. DOE Hydrogen Safety, Codes & Standards Program Presented at 2 nd ICHS, San Sebastián, Spain September 11, 2007 NREL/PR-550-42289 Scope of Work * Safe building design * Vehicle leak in residential garage * Continual slow leak * Passive, buoyancy-driven ventilation (vs. mechanical) * Steady-state concentration of H 2 vs. vent size Prior Work *

  11. DATA COLLECTION, QUALITY ASSURANCE, AND ANALYSIS PLAN FOR THE 2008/2009 HYDROGEN AND FUEL CELLS KNOWLEDGE AND OPINIONS SURVEYS

    SciTech Connect (OSTI)

    Schmoyer, Richard L; Truett, Lorena Faith; Diegel, Susan W

    2008-09-01

    The 2008/2009 Knowledge and Opinions Survey, conducted for the Department of Energy's Hydrogen Program will measure the levels of awareness and understanding of hydrogen and fuel cell technologies within five target populations: (1) the general public, (2) students, (3) personnel in state and local governments, (4) potential end users of hydrogen fuel and fuel cell technologies in business and industry, and (5) safety and code officials. The ultimate goal of the surveys is a statistically valid, nationally based assessment. Distinct information collections are required for each of the target populations. Each instrument for assessing baseline knowledge is targeted to the corresponding population group. While many questions are identical across all populations, some questions are unique to each respondent group. The biggest data quality limitation of the hydrogen survey data (at least of the general public and student components) will be nonresponse bias. To ensure as high a response rate as possible, various measures will be taken to minimize nonresponse, including automated callbacks, cycling callbacks throughout the weekdays, and availability of Spanish speaking interviewers. Statistical adjustments (i.e., sampling weights) will also be used to account for nonresponse and noncoverage. The primary objective of the data analysis is to estimate the proportions of target population individuals who would respond to the questions in the various possible ways. Data analysis will incorporate necessary adjustments for the sampling design and sampling weights (i.e., probability sampling). Otherwise, however, the analysis will involve standard estimates of proportions of the interviewees responding in various ways to the questions. Sample-weight-adjusted contingency table chi-square tests will also be computed to identify differences between demographic groups The first round of Knowledge and Opinions Surveys was conducted in 2004. Analysis of these surveys produced a baseline assessment of technical knowledge about hydrogen and fuel cells and a statistically valid description of opinions about safety and potential usage in the United States. The current surveys will repeat the process used in 2004. In addition the 2008/2009 survey results will be compared with the 2004 baseline results to assess changes in knowledge levels and opinions. In 2011/2012, the surveys will be repeated, and changes in knowledge and opinions will again be assessed. The information gained from these surveys will be used to enhance and update the DOE Hydrogen Program's education efforts.

  12. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.

    2009-06-10

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  13. Batch methods for enriching trace impurities in hydrogen gas for their further analysis

    DOE Patents [OSTI]

    Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

    2014-07-15

    Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

  14. Atomic line emission analyzer for hydrogen isotopes (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Atomic line emission analyzer for hydrogen isotopes Title: Atomic line emission analyzer for hydrogen isotopes Apparatus for isotopic analysis of hydrogen comprises a low pressure ...

  15. Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations

    SciTech Connect (OSTI)

    Ted Barnes; William Liss

    2008-11-14

    This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage – in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

  16. Isotopic hydrogen analysis via conventional and surface-enhanced fiber optic Raman spectroscopy

    SciTech Connect (OSTI)

    LASCOLA, ROBERT

    2004-09-23

    This report describes laboratory development and process plant applications of Raman spectroscopy for detection of hydrogen isotopes in the Tritium Facilities at the Savannah River Site (SRS), a U.S. Department of Energy complex. Raman spectroscopy provides a lower-cost, in situ alternative to mass spectrometry techniques currently employed at SRS. Using conventional Raman and fiber optics, we have measured, in the production facility glove boxes, process mixtures of protium and deuterium at various compositions and total pressures ranging from 1000-4000 torr, with detection limits ranging from 1-2 percent for as low as 3-second integration times. We are currently investigating fabrication techniques for SERS surfaces in order to measure trace (0.01-0.1 percent) amounts of one isotope in the presence of the other. These efforts have concentrated on surfaces containing palladium, which promotes hydrogen dissociation and forms metal hydride bonds, essentially providing a chemical enhancement mechanism.

  17. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California ...

  18. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  19. Costs of Storing and Transporting Hydrogen

    Broader source: Energy.gov [DOE]

    An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen.

  20. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  1. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  2. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect (OSTI)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  3. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  4. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis Meeting Discussion Group 2 Summary Presentation PDF icon ...

  5. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis Meeting Discussion Group 1 Summary Presentation PDF icon ...

  6. FUNDAMENTAL ENVIRONMENTAL REACTIVITY TESTING AND ANALYSIS OF THE HYDROGEN STORAGE MATERIAL 2LIBH4 MGH2

    SciTech Connect (OSTI)

    James, C.; Anton, D.; Cortes-Concepcion, J.; Brinkman, K.; Gray, J.

    2012-01-10

    While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions.

  7. Chemical kinetic analysis of hydrogen-air ignition and reaction times

    SciTech Connect (OSTI)

    Rogers, R.C.; Schexnayder, C.J. Jr.

    1981-07-01

    An anaytical study of hydrogen air kinetics was performed. Calculations were made over a range of pressure from 0.2 to 4.0 atm, temperatures from 850 to 2000 K, and mixture equivalence ratios from 0.2 to 2.0. The finite rate chemistry model included 60 reactions in 20 species of the H2-O2-N2 system. The calculations also included an assessment of how small amounts of the chemicals H2O, NOx, H2O2, and O3 in the initial mixture affect ignition and reaction times, and how the variation of the third body efficiency of H2O relative of N2 in certain key reactions may affect reaction time. The results indicate that for mixture equivalence ratios between 0.5 and 1.7, ignition times are nearly constant however, the presence of H2O and NO can have significant effects on ignition times, depending on the mixture temperature. Reaction time is dominantly influenced by pressure but is nearly independent of initial temperature, equivalence ratio, and the addition of chemicals. Effects of kinetics on reaction at supersonic combustor conditions are discussed.

  8. Metal-Oxo Catalysts for Generating Hydrogen from Water - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Metal-Oxo Catalysts for Generating Hydrogen from Water Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have developed an inexpensive, highly efficient catalyst that can be used in the electrolysis of water to generate H2-a source of clean fuel, a reducing agent for metal ores, and a reactant used to produce hydrochloric acid

  9. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  10. Hydrogen sensor (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Hydrogen sensor Title: Hydrogen sensor A hydrogen sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites ...

  11. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  12. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  13. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  14. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  15. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  16. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for ...

  17. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  18. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  19. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Photoelectrochemical (PEC) Hydrogen can be produced directly from water using sunlight and a special class of semiconductor materials. These highly specialized semiconductors ...

  20. Hydrogen Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-7 European Installations 4-6 Japanese Installations India Program ESA French Guiana (South America) 4 Satisfies ASME J-2719 (hydrogen fuel quality) ...

  1. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

  2. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  3. Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

    2010-12-01

    It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

  4. Hydrogen Bibliography

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  5. Feasibility Study of Hydrogen Production at Existing Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. ...

  6. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen ... Team Research Review Cost Analysis of Bio-Derived Liquids Reforming (Presentation) ...

  7. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  8. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam methane reforming for a unit of H{sub 2} delivered at refueling stations. In particular, 73-98% of GHG emissions and 81- 99% of fossil energy use are reduced by nuclear-based H{sub 2} relative to natural gas-based H{sub 2}, depending on the uranium enrichment technology and type of nuclear reactor used. When H{sub 2} is applied to FCVs, the WTW results also show large benefit in reducing fossil energy use and GHG emissions. (authors)

  9. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy U.S. Department of Energy Hydrogen Program Hydrogen Program Hydrogen Program HyDRA - Hydrogen Demand and Resource Analysis Tool Presentation to the State ...

  10. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  12. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect (OSTI)

    Ayers, Katherine; Dalton, Luke; Roemer, Andy; Carter, Blake; Niedzwiecki, Mike; Manco, Judith; Anderson, Everett; Capuano, Chris; Wang, Chao-Yang; Zhao, Wei

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  13. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen ...

  14. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to their hydride form. In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS) that could be used to define the mechanisms of the electrochemical hydrogenation reactions. The EIS technique is capable of probing complex chemical and electrochemical reactions, and our model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes. Finally, electrochemical methods for hydrogenating organic and metallo-organic materials have been explored.

  15. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials...

  16. Hydrogen Delivery Options and Issues

    Broader source: Energy.gov [DOE]

    Presentation by DOE's Mark Paster at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  17. Policy Option for Hydrogen Vehicles and Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  18. Potential Carriers and Approaches for Hydrogen Delivery

    Broader source: Energy.gov [DOE]

    Presentation by Matthew Hooks of TIAX at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  19. HyPro: Modeling the Hydrogen Transition

    Broader source: Energy.gov [DOE]

    Presentation by Brian James of Directed Technologies at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  20. Webinar: Potential Strategies for Integrating Solar Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eastern Standard Time (EST). An analysis conducted by Sandia National Laboratories explored potential synergies that may be realized by integrating solar hydrogen production and ...

  1. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January ...

  2. Large-Scale Liquid Hydrogen Handling Equipment

    Broader source: Energy.gov [DOE]

    Presentation by Jerry Gillette of Argonne National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  3. Activated aluminum hydride hydrogen storage compositions and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic...

  4. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  5. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  6. Hydrogen Production: Photobiological

    Broader source: Energy.gov [DOE]

    The photobiological hydrogen production process uses microorganisms and sunlight to turn water, and sometimes organic matter, into hydrogen.

  7. Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen

    SciTech Connect (OSTI)

    Benemann, J.R.

    1998-03-31

    This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that these are highly preliminary, incomplete, and optimistic estimates. Biophotolysis processes, indirect or direct, clearly require considerable basic and applied R and D before a more detailed evaluation of their potential and plausible economics can be carried out. For example, it is not yet clear which type of algae, green algae, or cyanobacteria, would be preferred in biophotolysis. If lower-cost photobioreactors can be developed, then small-scale (<1 ha) single-stage biophotolysis processes may become economically feasible. A major basic and applied R and D effort will be required to develop such biophotolysis processes.

  8. Hydrogen scavengers

    DOE Patents [OSTI]

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  9. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  10. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    SciTech Connect (OSTI)

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H? at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N?O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  11. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  12. Proceedings of the 1992 DOE/NREL hydrogen program review

    SciTech Connect (OSTI)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  13. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    None, None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  14. Hydrogen detector

    DOE Patents [OSTI]

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  15. High Throughput/Combinatorial Screening of Hydrogen Storage Materials: UOP Approaches

    Broader source: Energy.gov [DOE]

    Presentation by Adriaan Sachtler from the High Throughput/ Combinatorial Analysis of Hydrogen Storage Materials Meeting

  16. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The ...

  17. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of ...

  18. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline ...

  19. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    Open Energy Info (EERE)

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  20. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    Cho, KT; Albertus, P; Battaglia, V; Kojic, A; Srinivasan, V; Weber, AZ

    2013-10-07

    For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability.

  1. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  2. A Brief Overview of Hydrogen Storage Issues and Needs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A Brief Overview of Hydrogen Storage Issues and Needs A Brief Overview of Hydrogen Storage Issues and Needs Presentation by George Thomas at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_thomas.pdf More Documents & Publications On-Board Storage Systems Analysis The U.S. National Hydrogen Storage Project Overview (presentation) DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected

  3. Analyses of Hydrogen Storage Materials and On-Board Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydrogen Storage Materials and On-Board Systems Analyses of Hydrogen Storage Materials and On-Board Systems Presentation by Stephen Lasher of TIAX for Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007. PDF icon deliv_analysis_lasher.pdf More Documents & Publications Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Cost Analysis of Hydrogen Storage Systems Technical Assessment of Cryo-Compressed Hydrogen

  4. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Energy Savers [EERE]

    Project | Department of Energy Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_03_veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE

  6. DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells. ...

  7. DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of Hydrogen Storage, Steve Lasher, TIAX LLC Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology, Salvador Aceves and Gene Berry, Lawrence ...

  8. Proceedings of the 2000 U.S. DOE Hydrogen Program Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Analysis Work for the DOE Hydrogen Program - 2001 Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and Other Applications High Pressure Ethanol ...

  9. Sandia Energy - Key Hydrogen Report Now Available on OpenEnergyInfo...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Hydrogen Report Now Available on OpenEnergyInfo Wiki Site Home Energy CRF Facilities News Energy Efficiency News & Events Systems Analysis Systems Engineering Key Hydrogen...

  10. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

  11. National Renewable Energy Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Place to Live HARP Opt HOMER Handbook for Handling, Storing, and Dispensing E85 High Performance Commercial Buildings Technology Roadmap Hydrogen Analysis (H2A) Hydrogen...

  12. Hydrogen Technologies Safety Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  13. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel ... Refueling Infrastructure 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - ...

  14. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  15. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  16. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  17. Hydrogen Compatibility of Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... establishes suitability Hydrogen suitability is the management and control of these variables 7 Example: hydrogen embrittlement in diaphragm compressor High-volume, ...

  18. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  19. Hydrogen Production Basics

    Broader source: Energy.gov [DOE]

    Hydrogen is an energy carrier, not an energy source—it stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds.

  20. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Hydrogen Companies Loading map... "format":"googlemaps3","type":"SATELLITE","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":1000,"o...

  1. Analysis Repository

    SciTech Connect (OSTI)

    DOE

    2012-03-16

    The Analysis Repository is a compilation of analyses and analytical models relevant to assessing hydrogen fuel and fuel cell issues. Projects in the repository relate to: hydrogen production, delivery, storage, fuel cells, and hydrogen vehicle technology; hydrogen production feedstock cost and availability; electricity production, central and distributed; energy resource estimation and forecasting.

  2. U.S. Department of Energy Hydrogen Program

    Broader source: Energy.gov [DOE]

    Presentation on DOE Hydrogen Program for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  3. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; Gamalski, Andrew D.; Vovchok, Dimitry; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, José A.; et al

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystalmore » growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less

  4. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop

  5. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  6. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  7. Hydrogen Delivery Roadmap

    Broader source: Energy.gov [DOE]

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  8. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  9. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  10. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

  11. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  12. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop ...

  13. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE ...

  14. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of ...

  15. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  16. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen Release Behavior Overview of HyRAM (Hydrogen Risk Assessment Models) Software for Science-Based Safety, Codes, ...

  17. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  18. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous hydrogen via

  19. Low-Cost Precursors to Novel Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities. Process analysis of several leading routes to AB (Purdue's formate-based metathesis route and PNNL's NH{sub 4}BH{sub 4}-based route) indicated the cost to produce first-fill AB to be on the order of $9-10/kg AB, assuming a NaBH{sub 4} cost of $5/kg for a 10,000 metric tons/year sized AB plant. The analysis showed that the dominant cost component for producing first-fill AB is the cost of the NaBH4 raw material. At this AB cost and assuming 2.5 moles hydrogen released per mole of AB, it may be possible to meet DOE's 2010 storage system cost target, but the 2015 target will likely require lower cost AB and demonstrates the importance of having a low-cost route to NaBH{sub 4}. Substantial progress has also been made to define feasible pathways for the regeneration of spent ammonia borane fuel.

  20. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    Satyapal, Sunita

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  1. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  2. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

  3. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  4. Renewable Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Renewable Hydrogen Welcoming presentations at the Delivering Renewable Hydrogen Workshop: A Focus on Near-Term Applications, Nov. 16, 2009, Palm Springs, CA PDF icon ...

  5. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  6. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  7. Hydrogen and FCV Implementation Scenarios, 2010- 2025

    Broader source: Energy.gov [DOE]

    Presentation by DOE's Sig Gronich at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  8. Redirection of metabolism for hydrogen production

    SciTech Connect (OSTI)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and to hydrogen. Also R. palustris cells remain viable in a non-growing state for long periods of time.

  9. Wind to Hydrogen in California: Case Study

    SciTech Connect (OSTI)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  10. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications On November 16, 2009, the National Renewable Energy Laboratory and the California Fuel Cell Partnership conducted a workshop on near-term applications of renewable hydrogen. Held in Palm Springs, California, the workshop consisted of several presentations in addition to a special show-and-tell session on hydrogen systems analysis models.

  11. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  12. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  13. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  14. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  15. An uncertainty analysis of the hydrogen source term for a station blackout accident in Sequoyah using MELCOR 1.8.5

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Bixler, Nathan E.; Wagner, Kenneth Charles

    2014-03-01

    A methodology for using the MELCOR code with the Latin Hypercube Sampling method was developed to estimate uncertainty in various predicted quantities such as hydrogen generation or release of fission products under severe accident conditions. In this case, the emphasis was on estimating the range of hydrogen sources in station blackout conditions in the Sequoyah Ice Condenser plant, taking into account uncertainties in the modeled physics known to affect hydrogen generation. The method uses user-specified likelihood distributions for uncertain model parameters, which may include uncertainties of a stochastic nature, to produce a collection of code calculations, or realizations, characterizing the range of possible outcomes. Forty MELCOR code realizations of Sequoyah were conducted that included 10 uncertain parameters, producing a range of in-vessel hydrogen quantities. The range of total hydrogen produced was approximately 583kg 131kg. Sensitivity analyses revealed expected trends with respected to the parameters of greatest importance, however, considerable scatter in results when plotted against any of the uncertain parameters was observed, with no parameter manifesting dominant effects on hydrogen generation. It is concluded that, with respect to the physics parameters investigated, in order to further reduce predicted hydrogen uncertainty, it would be necessary to reduce all physics parameter uncertainties similarly, bearing in mind that some parameters are inherently uncertain within a range. It is suspected that some residual uncertainty associated with modeling complex, coupled and synergistic phenomena, is an inherent aspect of complex systems and cannot be reduced to point value estimates. The probabilistic analyses such as the one demonstrated in this work are important to properly characterize response of complex systems such as severe accident progression in nuclear power plants.

  16. Webinar January 21: Potential Strategies for Integrating Solar Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production and Concentrating Solar Power: A Systems Analysis | Department of Energy 1: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar January 21: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis January 14, 2016 - 12:00pm Addthis The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production

  17. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  18. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

  19. Hydrogen Infrastructure Strategies

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  20. Hydrogen Production Infrastructure Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Model is written in MATLAB. * Model will allow interaction with other models. ... method is on a separate worksheet tab. * MATLAB program reads tabs and extracts necessary ...

  1. Purification of Hydrogen

    DOE Patents [OSTI]

    Newton, A.S.

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  2. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  3. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  4. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  5. High Throughput/Combinatorial Screening of Hydrogen Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Adriaan Sachtler from the High Throughput Combinatorial Analysis of Hydrogen Storage Materials Meeting PDF icon sachtler.pdf More Documents & Publications ...

  6. Nuclear Hydrogen R&D Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nuclear Hydrogen R&D Plan Analysis Activities at Idaho National Engineering & Environmental Laboratory International Nuclear Energy Research ...

  7. Summary of Electrolytic Hydrogen Production: Milestone Completion Report

    Broader source: Energy.gov [DOE]

    This report provides an overview of the current state of electrolytic hydrogen production techonologies and an economic analysis of the processes and systems available as of December 2003.

  8. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life ... Analysis Activities at National Renewable Energy Laboratory Life Cycle Assessment of ...

  9. Sandia Energy - Linde, Sandia Partnership Looks to Expand Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network Home Energy Transportation Energy Facilities Partnership News News & Events Systems Analysis Energy Storage...

  10. New Materials for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

  11. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  12. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  13. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool HYDRA Program PDF icon...

  14. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  15. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4: Perform research on the Proton Exchange membrane

  16. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  17. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  18. Hydrogenation of carbonaceous materials

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  19. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  20. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  1. HYDROGEN ISOTOPE TARGETS

    DOE Patents [OSTI]

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  2. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  3. Hydrogen Generator Appliance

    Broader source: Energy.gov [DOE]

    Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  4. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  5. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, Joseph C.; Brehm, William F.

    1982-01-01

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  6. Hydrogen Release Behavior

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. Hydrogen Delivery Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (United States Driving Research and Innovation for Vehicle efficiency and Energy ... In addition, the need for lower-cost, more reliable, and more durable hydrogen central ...

  8. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  9. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research ...

  10. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  11. Hydrogen Industrial Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  12. Hawaii Hydrogen Energy Park

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. HYDROGEN TO THE HIGHWAYS

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  15. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... committees of ASME, SAE and ISO * Hydrogen has been used ... "approval" by the code official is required before ... or as meeting a standard. Listed - Equipment, ...

  16. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  17. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  18. Electrochemical Hydrogen Compression (EHC)

    Broader source: Energy.gov [DOE]

    This presentation by Pinakin Patel and Ludwig Lipp of Fuel Cell Energy was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 20, 2013.

  19. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  20. Hydrogen Safety Sensors

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Hydrogen Education in Texas

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  3. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  4. Massachusetts Hydrogen Coalition | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name: Massachusetts Hydrogen Coalition Address: 100 Cummings Center Place: Beverly,...

  5. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  6. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  7. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  8. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  9. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  10. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company Jump to: navigation, search Logo: Green Hydrogen Company Name: Green Hydrogen Company Abbreviation: GH2 Address: Green Hydrogen Company, Head Office, 9...

  11. Safe Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  12. Hydrogen Car Co | Open Energy Information

    Open Energy Info (EERE)

    Car Co Jump to: navigation, search Name: Hydrogen Car Co Place: Los Angeles, California Zip: 90036 Sector: Hydro, Hydrogen Product: The Hydrogen Car Company produces hydrogen...

  13. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  14. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  15. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines

    Broader source: Energy.gov [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

  16. Environmental Analysis

    Broader source: Energy.gov [DOE]

    Environmental Analysis is used by the Program to quantify the environmental impacts of hydrogen technologies. Specifically, life cycle assessment is used to identify and evaluate the emissions,...

  17. Delivery Analysis

    Broader source: Energy.gov [DOE]

    Delivery Analysis identifies the most economic options for delivering hydrogen, and provides a foundation for additional research on alternative storage and transportation options. Additionally,...

  18. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  19. The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy Presentation given by Newton Pimenta and Cristiano Pinto of the State University of Campinas at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 PDF icon cng_h2_workshop_12_ohi.pdf More Documents & Publications Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  20. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  1. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  2. Physical Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Physical storage is the most mature hydrogen storage technology. The current near-term technology for onboard automotive physical hydrogen storage is 350 and 700 bar (5,000 and 10,000 psi) nominal working-pressure compressed gas vessels—that is, "tanks."

  3. Hydrogen evolution reaction catalyst

    DOE Patents [OSTI]

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  4. Why Hydrogen? Hydrogen from Diverse Domestic Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program President's Hydrogen Fuel Initiative Hydrogen Posture Plan: An Integrated Research, Development and...

  5. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

  6. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  7. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  8. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  9. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  10. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  11. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  12. Findings of Hydrogen Internal Combustion Engine Durability

    SciTech Connect (OSTI)

    Garrett Beauregard

    2010-12-31

    Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

  13. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  14. Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Hydrogen Energy Place: Surrey, England, United Kingdom Zip: KT13 0NY Sector: Carbon, Hydro, Hydrogen Product: Surrey-based BP subsidiary...

  15. Hydrogen Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Hydrogen Ventures Name: Hydrogen Ventures Address: 1219 N. Studabaker Road Place: Long Beach, California Zip: 90811 Region: Southern CA...

  16. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  17. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost models assume a natural gas cost of $5/MMBtu (HHV). Praxair has, in Phases I and II of this program, shown that significant improvements in cost, plant layout, system integration and overall system optimization are achievable. Phase III of the program, submitted in January 2007, was to focus on demonstrating both the technical feasibility and economic viability of the design developed in Phases I and II through a full-scale prototype design, construction, installation, analysis and operation at a hydrogen fueling station. Due to funding limitations, Phase III of the program was not approved by the DOE.

  18. Analysis of palladium coatings to remove hydrogen isotopes from zirconium fuel rods in Canada deuterium uranium-pressurized heavy water reactors; Thermal and neutron diffusion effects

    SciTech Connect (OSTI)

    Stokes, C.L.; Buxbaum, R.E. )

    1992-05-01

    This paper reports that, in pressurized heavy water nuclear reactors of the type standardly used in Canada (Canada deuterium uranium-pressurized heavy water reactors), the zirconium alloy pressure tubes of the core absorb deuterium produced by corrosion reactions. This deuterium weakens the tubes through hydrogen embrittlement. Thin palladium coatings on the outside of the zirconium are analyzed as a method for deuterium removal. This coating is expected to catalyze the reaction D{sub 2} + 1/2O{sub 2} {r reversible} D{sub 2}O when O{sub 2} is added to the annular (insulating) gas in the tubes. Major reductions in the deuterium concentration and, hence, hydrogen embrittlement are predicted. Potential problems such as plating the tube geometry, neutron absorption, catalyst deactivation, radioactive waste production, and oxygen corrosion are shown to be manageable. Also, a simple set of equations are derived to calculate the effect on diffusion caused by neutron interactions. Based on calculations of ordinary and neutron flux induced diffusion, a palladium coating of 1 {times} 10{sup {minus}6} m is recommended. This would cost approximately $60,000 per reactor unit and should more than double reactor lifetime. Similar coatings and similar interdiffusion calculations might have broad applications.

  19. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  20. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  1. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  2. Thermochemical method for producing hydrogen from hydrogen sulfide

    SciTech Connect (OSTI)

    Herrington, D.R.

    1984-02-21

    Hydrogen is produced from hydrogen sulfide by a 3-step, thermochemical process comprising: (a) contacting hydrogen sulfide with carbon dioxide to form carbonyl sulfide and water, (b) contacting the carbonyl sulfide produced in (a) with oxygen to form carbon monoxide and sulfur dioxide, and (c) contacting the carbon monoxide produced in (b) with water to form carbon dioxide and hydrogen.

  3. Advancing the hydrogen safety knowledge base

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weiner, S. C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  4. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  5. Hydrogen Sensor Workshop Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the Hydrogen Sensor Workshop held June 8, 2011, in Chicago, Illinois.The workshop was hosted by the U.S. Department of Energy's National Renewable Energy Laboratory.

  6. Hydrogen Compatible Materials Workshop

    Broader source: Energy.gov [DOE]

    Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

  7. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  8. DOE Hydrogen Program Overview

    Broader source: Energy.gov [DOE]

    Presentation by 01-Paster to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  9. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  10. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  11. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  12. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  13. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... H 2 s, T 125-200C) * high hydrogen selectivities (S ... 3.2 kg Media H 2 Density mat ) ( m )( mat ) kg H 2 L 0.07 * HD polyethylene tank 6.2 kg ...

  14. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.

  15. Bacterial Fermentative Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  16. Biological Hydrogen Production Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24–25, 2013, in Golden, Colorado. The workshop...

  17. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    SciTech Connect (OSTI)

    Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

    1990-10-01

    The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

  18. Hydrogen-Induced Cracking of the Drip Shield

    SciTech Connect (OSTI)

    F. Hua

    2004-09-07

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  19. Hydrogen Storage Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. PDF icon Hydrogen Storage More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future

  20. Advanced Hydrogen Liquefaction Process

    SciTech Connect (OSTI)

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  1. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  2. Safetygram Gaseous Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is a colorless, odorless, tasteless, highly flammable gas. It is also the lightestweight gas. Since hydrogen is noncorrosive, special materials of construction are not usually required. The American Society of Mechanical Engineers (ASME) code and the American National Standards Institute (ANSI) Pressure Piping code specify vessel and piping design requirements for the pressures and temperatures involved. Applicable Dangerous Goods regulations specify requirements for vessels used for transportation.

  3. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  4. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  5. Cryogenic hydrogen release research.

    SciTech Connect (OSTI)

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  6. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  7. Policy and Program Design Toolkit | Open Energy Information

    Open Energy Info (EERE)

    of Diesel Buses to Compressed Natural Gas How to implement renewable energy and energy efficiency options Support for South African local government Hydrogen Analysis (H2A)...

  8. Examining hydrogen transitions.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  9. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  10. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  11. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  12. DOE Hydrogen and Fuel Cells Program Annual Progress Report

    SciTech Connect (OSTI)

    2012-04-11

    These progress reports summarize the year's hydrogen and fuel cell R&D and analysis activities and accomplishments. This work was conducted by industry, academia, and national laboratories for the DOE Hydrogen and Fuel Cells Program and the offices of Energy Efficiency and Renewable Energy (EERE), Fossil Energy, Nuclear Energy, and Science.

  13. Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Hydrogen Delivery A viable hydrogen infrastructure requires that hydrogen be able to be delivered from where it's produced to the point of end-use, such as a dispenser at a refueling station or stationary power site. Infrastructure includes the pipelines, trucks, storage facilities, compressors, and dispensers involved in the process of delivering fuel. Delivery technology for hydrogen infrastructure is currently available commercially, and several U.S. companies deliver bulk hydrogen

  14. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  15. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  16. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  17. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  18. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, John P.; Way, J. Douglas

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  19. Hydrogen-Selective Membrane

    DOE Patents [OSTI]

    Collins, John P.; Way, J. Douglas

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  20. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  1. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  2. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  3. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  4. Hydrogen Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen Production Hydrogen Production Hydrogen is the simplest element on earth-it consists of only one proton and one electron-and it is an energy carrier, not an energy source. Hydrogen can store and deliver usable energy, but it doesn't typically exist by itself in nature and must be produced from compounds that contain it. WHY STUDY HYDROGEN PRODUCTION Hydrogen can be used in fuel cells to generate power using a chemical reaction rather than combustion, producing only water and

  5. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  6. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  7. 2010 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2010-12-01

    This report summarizes comments from the Peer Review Panel at the 2010 DOE Hydrogen Program Annual Merit Review, held on June 7-11, 2010, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; and systems analysis.

  8. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  9. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2013-10-01

    This report summarizes comments from the Peer Review Panel at the 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 13-17, 2013, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  10. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  11. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2015-10-01

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  12. 2008 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2008-06-13

    This report summarizes comments from the Peer Review Panel at the 2008 DOE Hydrogen Program Annual Merit Review, held on June 9-13, 2008, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes, and standards; education; systems analysis; and manufacturing.

  13. 2009 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    Satyapal, S.

    2009-10-01

    This report summarizes comments from the Peer Review Panel at the 2009 DOE Hydrogen Program Annual Merit Review, held on May 18-22, 2009, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; education; safety, codes, and standards; technology validation; systems analysis; and manufacturing R&D.

  14. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  15. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results ...

  16. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  17. Renewable Hydrogen: The Environmental Perspective | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen: The Environmental Perspective Renewable Hydrogen: The Environmental Perspective Presentation at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF ...

  18. Florida Hydrogen Initiative Inc | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Initiative Inc Jump to: navigation, search Name: Florida Hydrogen Initiative Inc Place: Florida Sector: Hydro, Hydrogen Product: Provides grants to aid the development of...

  19. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  20. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions...

  1. Hydrogen Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Ltd Jump to: navigation, search Name: Hydrogen Solar Ltd Place: Guildford, United Kingdom Zip: GU2 7YG Sector: Hydro, Hydrogen, Solar Product: Hydrogen Solar Ltd is...

  2. Nanolipoprotein Particles for Hydrogen Production - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Nanolipoprotein Particles for Hydrogen Production Lawrence Livermore National Laboratory Contact...

  3. National Hydrogen Association | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association Jump to: navigation, search Name: National Hydrogen Association Place: Washington, Washington, DC Zip: 20036 Sector: Hydro, Hydrogen Product: The source for...

  4. Highline Hydrogen Hybrids | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hybrids Jump to: navigation, search Name: Highline Hydrogen Hybrids Place: farmington, Arkansas Zip: 72730-1500 Sector: Hydro, Hydrogen, Vehicles Product: US-based...

  5. Chevron Hydrogen Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  6. The London Hydrogen Partnership | Open Energy Information

    Open Energy Info (EERE)

    London Hydrogen Partnership Jump to: navigation, search Name: The London Hydrogen Partnership Place: London, United Kingdom Zip: SE1 2AA Sector: Hydro, Hydrogen Product: The London...

  7. High Capacity Hydrogen Storage Nanocomposite - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Capacity Hydrogen...

  8. Hunterston Hydrogen Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hunterston Hydrogen Ltd Jump to: navigation, search Name: Hunterston Hydrogen Ltd Place: Anglesey, United Kingdom Zip: LL65 4RJ Sector: Hydro, Hydrogen, Wind energy Product:...

  9. German Hydrogen Association DWV | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association DWV Jump to: navigation, search Name: German Hydrogen Association (DWV) Place: Berlin, Germany Zip: 12205 Sector: Hydro, Hydrogen Product: String...

  10. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  11. Hydrogen Transition Sensitivity Studies using H2Sim

    Broader source: Energy.gov [DOE]

    Presentation by Brian James, Julie Perez, and Peter Schmidt at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  12. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary, portable, or transportation applications, cost-effective, high-density energy storage is necessary for enabling the technologies that can change our energy future and reduce greenhouse gas emissions. Hydrogen can play an important role in transforming our energy future if hydrogen storage technologies are improved. With

  13. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  14. Validation of an Integrated Hydrogen Energy Station

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2012-10-26

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: • Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). • Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. • Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. • Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. • Maintain safety as the top priority in the system design and operation. • Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

  15. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    SciTech Connect (OSTI)

    Sofronis, Petros; Robertson, Ian M

    2013-08-01

    Fundamental studies of hydrogen embrittlement of materials using both experimental observations and numerical simulations of the hydrogen/deformation interactions have been conducted. Our approach integrates mechanical property testing at the macro-scale, microstructural analyses and TEM observations of the deformation processes at the micro- and nano-scale, first-principles calculations of interfacial cohesion at the atomic scale, and finite element simulation and modeling at the micro- and macro-level. Focused Ion Beam machining in conjunction with Transmission Electron Microscopy were used to identify the salient micro-mechanisms of failure in the presence of hydrogen. Our analysis of low strength ferritic steels led to the discovery that “quasi-cleavage” is a dislocation plasticity controlled failure mode in agreement with the hydrogen enhanced plasticity mechanism. The microstructure underneath the fracture surface of 304 and 316 stainless steels was found to be significantly more complex than would have been predicted by the traditional models of fatigue. The general refinement of the microstructure that occurred near the fracture surface in the presence of hydrogen was such that one may argue that hydrogen stabilizes microstructural configurations to an extent not achievable in its absence. Finite element studies of hydrogen and deformation field similitude for cracks in real-life pipelines and laboratory fracture specimens yielded that the Single Edge Notch Tension specimen can be used to reliably study hydrogen material compatibility for pipeline structures. In addition, simulation of onset of crack propagation in low strength ferritic systems by void growth indicated that hydrogen can reduce the fracture toughness of the material by as much as 30%. Both experimental observations and numerical studies of hydrogen transport on hydrogen accumulations ahead of a crack tip yielded that dislocation transport can markedly enhance hydrogen populations which in turn can trigger fracture initiation.

  16. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  17. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  18. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  19. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. ...

  20. DOE Hydrogen Program: 2005 Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    Chalk, S. G.

    2005-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2005 DOE Hydrogen Program Annual Merit Review, held on May 23-26, 2005, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.