Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Hydrogen Analysis Repository: H2A Production Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Model Project Summary Full Title: H2A Hydrogen Production Cost Analysis Model Project ID: 219 Principal Investigator: Todd Ramsden Brief Description: The H2A Production...

2

Hydrogen Analysis (H2A) | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Analysis (H2A) Hydrogen Analysis (H2A) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Analysis (H2A) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Economic Development Topics: Policies/deployment programs Website: www.nrel.gov/hydrogen/energy_analysis.html#h2a OpenEI Keyword(s): EERE tool Language: English References: H2A Analysis[1] Perform economic analysis of forecourt (distributed) and central hydrogen production systems using various energy resources, including renewables, coal, natural gas, and biomass; calculate the delivered cost of hydrogen for a particular delivery component. H2A, which stands for Hydrogen Analysis, was initiated to better leverage the combined talents and capabilities of analysts working on hydrogen

3

H2A Hydrogen Production Analysis Tool (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Analyses Darlene Steward, NREL H2A Overview * Discounted cash flow analysis tool for production of hydrogen from various feedstocks - Inputs are; * Capital costs * Operating...

4

DOE Hydrogen Analysis Repository: H2A Delivery Scenario Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis Model (HDSAM) Project Summary Full Title: H2A Delivery Scenario Analysis Model (HDSAM) Project ID: 218 Principal Investigator: Marianne Mintz Keywords: Models;...

5

DOE Hydrogen and Fuel Cells Program: DOE H2A Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Production Delivery Fuel Cell Power Comments Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > DOE H2A Analysis Printable Version DOE H2A Analysis The Hydrogen Analysis (H2A) Project H2A Basic Model Architecture H2A Standard Economic Assumptions H2A Production Analysis H2A Delivery Analysis Fuel Cell Power Analysis The Hydrogen Analysis (H2A) Project Research and programmatic decisions should be informed by sound analysis - not only a comparative analysis of costs, but also of the energy and

6

Hydrogen Technology Analysis: H2A Production Model Update (Presentation)  

DOE Green Energy (OSTI)

This presentation by Todd Ramsden at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's hydrogen technology analysis activities.

Ramsden, T.

2007-05-15T23:59:59.000Z

7

Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Analysis Using the H2A v3 Model (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on AddThis.com...

8

DOE Hydrogen Analysis Repository: H2A Delivery Components Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigator: Matt Ringer Keywords: Hydrogen delivery; tube trailers; costs; pipelines Performer Principal Investigator: Matt Ringer Organization: National Renewable...

9

Critical Updates to the Hydrogen Analysis Production Model (H2A v3)  

NLE Websites -- All DOE Office Websites (Extended Search)

Critical Updates to the Hydrogen Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Darlene Steward NREL Thursday, February 9, 2012 3:00 PM - 4:30 PM EST Darlene.steward@nrel.gov (303) 275 3837 NREL/PR-5600-54276 NATIONAL RENEWABLE ENERGY LABORATORY Outline 2 Introduction - Sara Dillich Overview of the H2A Model H2A Version 3 Changes Case Study Walkthrough Resources 1 2 3 4 NATIONAL RENEWABLE ENERGY LABORATORY Outline 3 Introduction - Sara Dillich Overview of the H2A Model H2A Version 3 Changes Case Study Walkthrough Resources 1 2 3 4 NATIONAL RENEWABLE ENERGY LABORATORY Overview of H2A Model 4 H2A Model Structure Getting Around Key Worksheets Do's and Don'ts - Do * Enter values in orange cells * Use the light green cells for notes and side calculations

10

DOE Hydrogen Analysis Repository: H2A Case Study: Future Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

performance from projections and quotes. Models Used: H2A Production Model; H2A Delivery Scenario Analysis Model Timeframe Studied: 2025 ProductsDeliverables Description:...

11

DOE Hydrogen Analysis Repository: H2A Case Study: Current Central...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal without Sequestration Project Summary Full Title: H2A Case Study: Current (2005) Hydrogen from Coal without CO2 Capture and Sequestration Project ID: 231 Principal...

12

Critical Updates to the Hydrogen Analysis Production Model (H2A...  

NLE Websites -- All DOE Office Websites (Extended Search)

sources H2A Calculations *Cost escalation *Plant scaling *Financial calculations *Cash flow calculations and levelized cost of hydrogen NATIONAL RENEWABLE ENERGY LABORATORY...

13

DOE Hydrogen Analysis Repository: H2A Case Study: Current Central Natural  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Reforming without Sequestration Natural Gas Reforming without Sequestration Project Summary Full Title: H2A Case Study: Current (2005) Central Hydrogen from Natural Gas without CO2 Capture and Sequestration Project ID: 233 Principal Investigator: Darlene Steward Keywords: Hydrogen production; steam methane reforming; natural gas Purpose Steam reforming of hydrocarbons continues to be the most efficient, economical, and widely used process for production of hydrogen and hydrogen/carbon monoxide mixtures. The purpose of this analysis is to assess the economic production of hydrogen from the steam reforming of natural gas. Performer Principal Investigator: Darlene Steward Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401-3393 Telephone: 303-275-3837

14

2H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report  

NLE Websites -- All DOE Office Websites (Extended Search)

H2A Hydrogen Delivery Infrastructure Analysis Models and H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results DE-FG36-05GO15032 Interim Report Nexant, Inc., Air Liquide, Argonne National Laboratory, Chevron Technology Venture, Gas Technology Institute, National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and TIAX LLC May 2008 Contents Section Page Executive Summary ................................................................................................................... 1-9 Delivery Options ...................................................................................................................... 1-9 Evaluation of Options 2 and 3 ................................................................................................. 1-9

15

DOE Hydrogen and Fuel Cells Program: DOE H2A Delivery Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery Carrier Components Overview Version 1.0 (PDF 415 KB) H2A Current (2010) Delivery Scenario Analysis Model Version 2.3 (Excel 8.6 MB) H2A Future (2020) Delivery Scenario...

16

DOE Hydrogen Analysis Repository: H2A Case Study: Current Distributed  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Steam Reformer Natural Gas Steam Reformer Project Summary Full Title: H2A Case Study: Current (2005) Steam Methane Reformer (SMR) at Forecourt 1500 kg/day Project ID: 236 Principal Investigator: Brian James Keywords: Hydrogen production; forecourt; steam methane reforming; natural gas; distributed Purpose The purpose of this analysis is to determine a baseline delivered cost of hydrogen for the forecourt production of hydrogen from natural gas steam reforming. Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: Brian_James@DirectedTechnologies.com Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/HFCIT Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov

17

DOE Hydrogen Analysis Repository: H2A Case Study: Future Distributed  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Steam Reformer Natural Gas Steam Reformer Project Summary Full Title: H2A Case Study: Future (2025) Natural Gas Steam Reformer (SMR) at Forecourt 1500 kg/day Project ID: 243 Principal Investigator: Brian James Keywords: Hydrogen production; forecourt; distributed; ethanol; steam reforming Purpose The purpose of this analysis is to determine a baseline delivered cost of hydrogen for the forecourt production of hydrogen from ethanol steam reforming. Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: Brian_James@DirectedTechnologies.com Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/HFCIT Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov

18

DOE Hydrogen Analysis Repository: H2A Case Study: Current Central Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Central Biomass Current Central Biomass Project Summary Full Title: H2A Case Study: Current (2005) Hydrogen from Biomass via Gasification and Catalytic Steam Reforming Project ID: 229 Principal Investigator: Darlene Steward Keywords: Biomass; pressure swing adsorption (PSA); water gas shift reaction (WGSR); costs; hydrogen production; gasifier Purpose The purpose of this analysis was to determine the production cost of hydrogen from biomass via the FERCO indirectly-heated gasifier. Performer Principal Investigator: Darlene Steward Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401-3393 Telephone: 303-275-3837 Email: Darlene_Steward@nrel.gov Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/HFCIT Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov

19

DOE Hydrogen Analysis Repository: H2A Case Study: Future Central...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal without Sequestration Project Summary Full Title: H2A Case Study: Longer-Term (2020-2030) Hydrogen from Coal without CO2 Capture and Sequestration Project ID: 238 Principal...

20

DOE Hydrogen Analysis Repository: H2A Case Study: Future Central Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Project Summary Full Title: H2A Case Study: Longer-Term (2020-2030) Advanced Nuclear Energy - High Temperature (Steam) Electrolysis Project ID: 237 Principal Investigator: Dan Mears Keywords: Hydrogen production; nuclear; electrolysis; water Purpose The purpose of this analysis was to analyze the technical and economic aspects of a process for production of hydrogen from the high-temperature electrolysis of water using advance nuclear technology. Performer Principal Investigator: Dan Mears Organization: Technology Insights Address: 6540 Lusk Blvd., Suite C-102 San Diego, CA 92121 Telephone: 858-455-9500 Email: mears@ti-sd.com Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/HFCIT Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Period of Performance

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydrogen Delivery Model for H2A Analysis: A Spreadsheet Model For Hydrogen Delivery Scenarios  

E-Print Network (OSTI)

FINAL REPORT HYDROGEN DELIVERY MODEL FOR H2AA SPREADSHEET MODEL FOR HYDROGEN DELIVERY SCENARIOS Joan M.Department of Energy Hydrogen, Fuel Cells and Infrastructure

Ogden, Joan

2004-01-01T23:59:59.000Z

22

Hydrogen Delivery Model for H2A Analysis: A Spreadsheet Model for Hydrogen Delivery Scenarios  

E-Print Network (OSTI)

FINAL REPORT HYDROGEN DELIVERY MODEL FOR H2AA SPREADSHEET MODEL FOR HYDROGEN DELIVERY SCENARIOS Joan M.Department of Energy Hydrogen, Fuel Cells and Infrastructure

Ogden, Joan M

2004-01-01T23:59:59.000Z

23

DOE Hydrogen Analysis Repository: H2A Case Study: Future Central Natural  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Reforming without Sequestration Natural Gas Reforming without Sequestration Project Summary Full Title: H2A Case Study: Longer-Term (2020-2030) Hydrogen from Natural Gas without CO2 Capture and Sequestration Project ID: 240 Principal Investigator: Darlene Steward Keywords: Hydrogen production; steam methane reforming; natural gas Purpose Steam reforming of hydrocarbons continues to be the most efficient, economical, and widely used process for production of hydrogen and hydrogen/carbon monoxide mixtures. The process involves a catalytic conversion of the hydrocarbon and steam to hydrogen and carbon oxides. Since the process works only with light hydrocarbons that can be vaporized completely without carbon formation, the feedstocks used range from methane (natural gas) to naphtha to No. 2 fuel oil.

24

FCT Systems Analysis: DOE H2A Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

H2A Analysis to someone by H2A Analysis to someone by E-mail Share FCT Systems Analysis: DOE H2A Analysis on Facebook Tweet about FCT Systems Analysis: DOE H2A Analysis on Twitter Bookmark FCT Systems Analysis: DOE H2A Analysis on Google Bookmark FCT Systems Analysis: DOE H2A Analysis on Delicious Rank FCT Systems Analysis: DOE H2A Analysis on Digg Find More places to share FCT Systems Analysis: DOE H2A Analysis on AddThis.com... Home Analysis Methodologies DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Contacts DOE H2A Analysis Realistic assumptions, both market- and technology-based, are critical to an accurate analytical study. DOE's H2A Analysis Group develops the

25

DOE Hydrogen Analysis Repository: H2A Case Study: Future Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam Reformer Project Summary Full Title: H2A Case Study: Future (2025) Ethanol Steam Reformer (SR) at Forecourt 1500 kgday Project ID: 241 Principal Investigator: Brian James...

26

DOE Hydrogen Analysis Repository: H2A Case Study: Current Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reformer Project Summary Full Title: H2A Case Study: Current (2005) Ethanol Steam Reformer (SR) at Forecourt 1500 kgday Project ID: 234 Principal Investigator: Brian James...

27

DOE Hydrogen and Fuel Cells Program: DOE H2A Analysis Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Assumptions and Ground Rules Assumptions and Ground Rules The following common cost assumptions are applied for all H2A Central and Forecourt supply options, unless a case for any different values is provided otherwise: Analysis Methodology - Discounted Cash Flow (DCF) model that calculates a levelized H2 price that yields prescribed IRR Reference Financial Structure - 100% equity with 10% IRR - Include levelized H2 price plot for 0 to 25% IRR - Model allows debt financing Reference Year Dollars - 2005, to be adjusted at half-decade increments (e.g., 2005, 2010) Technology Development Stage - All Central and Forecourt cost estimates are based on mature, commercial facilities Inflation Rate - 1.9%, but with resultant price of H2 in reference year constant dollars Income Taxes - 35% Federal; 6% State; 38.9% Effective

28

DOE Hydrogen Analysis Repository: H2A Case Study: Current Central...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the electrolyte in the system. The system includes the follwing equipment: Transformer, Thyristor, Electrolyzer Unit, Lye Tank, Feed Water Demineralizer, Hydrogen...

29

DOE Hydrogen Analysis Repository: H2A Case Study: Current Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the electrolyte in the system. The system includes the follwing equipment: Transformer, Thyristor, Electrolyzer Unit, Lye Tank, Feed Water Demineralizer, Hydrogen...

30

DOE Hydrogen Analysis Repository: H2A Case Study: Future Central...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the electrolyte in the system. The system includes the follwing equipment: Transformer, Thyristor, Electrolyzer Unit, Lye Tank, Feed Water Demineralizer, Hydrogen...

31

DOE Hydrogen and Fuel Cells Program: DOE H2A Production Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

filling-station) facilities. Required input to the models includes capital and operating costs for the hydrogen production process, fuel type and use, and financial parameters...

32

DOE Hydrogen Analysis Repository: H2A Case Study: Future Central...  

NLE Websites -- All DOE Office Websites (Extended Search)

230 Principal Investigator: Darlene Steward Keywords: Biomass; hydrogen production; gasifier; water gas shift (WGS); catalytic steam reforming Purpose The purpose of this...

33

Argonne Transportation - DOE H2A Delivery Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE H2A Delivery Analysis Hydrogen delivery is an essential component of any future hydrogen energy infrastructure. Hydrogen must be transported from the point of production to the...

34

Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2  

DOE Green Energy (OSTI)

Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

Ramsden, T.; Steward, D.; Zuboy, J.

2009-09-01T23:59:59.000Z

35

H2A Delivery Components Model and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

- Replacement capital includes for some components H2A Delivery Component Economic Analysis * The economic results presented assume specific scenario - Scenario refers to...

36

Hydrogen Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

37

Hydrogen Sintering of TiH 2 A Novel Method for Powder Metallurgy ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Titanium Alloys for Demanding Applications. Presentation Title, Hydrogen...

38

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

39

DOE Hydrogen and Fuel Cells Program: Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems...

40

Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis  

DOE Green Energy (OSTI)

There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar?driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

Todd M. Francis, Paul R. Lichty, Christopher Perkins, Melinda Tucker, Peter B. Kreider, Hans H. Funke, Allan Lewandowski, and Alan W. Weimer

2012-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cell Technologies Office: Critical Updates to the Hydrogen Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Critical Updates to Critical Updates to the Hydrogen Analysis Production Model (H2A v3) (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Critical Updates to the Hydrogen Analysis Production Model (H2A v3) (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Critical Updates to the Hydrogen Analysis Production Model (H2A v3) (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Critical Updates to the Hydrogen Analysis Production Model (H2A v3) (Text Version) on Google Bookmark Fuel Cell Technologies Office: Critical Updates to the Hydrogen Analysis Production Model (H2A v3) (Text Version) on Delicious Rank Fuel Cell Technologies Office: Critical Updates to the Hydrogen Analysis Production Model (H2A v3) (Text Version) on Digg

42

Hydrogen Analysis Group  

DOE Green Energy (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

43

H2A Production Model, Version 2 User Guide  

DOE Green Energy (OSTI)

The H2A Production Model analyzes the technical and economic aspects of central and forecourt hydrogen production technologies. Using a standard discounted cash flow rate of return methodology, it determines the minimum hydrogen selling price, including a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values--such as capital costs, operating costs, and capacity factor--from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs. This new version of the H2A Production Model features enhanced usability and functionality. Input fields are consolidated and simplified. New capabilities include performing sensitivity analyses and scaling analyses to various plant sizes. This User Guide helps users already familiar with the basic tenets of H2A hydrogen production cost analysis get started using the new version of the model. It introduces the basic elements of the model then describes the function and use of each of its worksheets.

Steward, D.; Ramsden, T.; Zuboy, J.

2008-09-01T23:59:59.000Z

44

DOE Hydrogen Analysis Repository: Hydrogen Refueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Refueling Infrastructure Cost Analysis Project Summary Full Title: Hydrogen Refueling Infrastructure Cost Analysis Project ID: 273 Principal Investigator: Marc Melaina...

45

DOE Hydrogen Analysis Repository: Hydrogen Infrastructure Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Infrastructure Market Readiness Analysis Project Summary Full Title: Hydrogen Infrastructure Market Readiness Analysis Project ID: 268 Principal Investigator: Marc Melaina...

46

FCT Systems Analysis: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis: Contacts on AddThis.com... Home Analysis Methodologies DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel...

47

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Early Market Transition of Fuel Cell Vehicles Macro-System Model Stranded Biogas Decision Tool for Fuel Cell Co-Production Water for Hydrogen Pathways 2010 A Portfolio...

48

H2A Delivery Scenario Model and Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

H2A Delivery Scenario Model H2A Delivery Scenario Model and Analyses Marianne Mintz and Jerry Gillette DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting February 8, 2005 2 Pioneering Science and Technology Office of Science U.S. Department of Energy Topics * Delivery Scenarios - Current status - Future scenarios * Delivery Scenarios model - Approach - Structure - Current status - Results * Pipeline modeling - Approach - Key assumptions - Results * Next Steps 3 Pioneering Science and Technology Office of Science U.S. Department of Energy Delivery Scenarios 4 Pioneering Science and Technology Office of Science U.S. Department of Energy Three-Quarters of the US Population Reside in Urbanized Areas East of the Mississippi there are many large, proximate urban areas. In the West

49

Fuel Cell Technologies Office: Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Systems Analysis on AddThis.com... Home Analysis Methodologies DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel...

50

H2A Delivery Models and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of well defined "base cases" that span major markets and demand levels: Hydrogen Delivery Scenario Analysis Model (HDSAM) * Estimate the cost of H 2 delivery for base cases. *...

51

DOE Hydrogen Analysis Repository: Hydrogen Technology Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process Project ID: 121 Principal...

52

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

53

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

54

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

55

DOE Hydrogen and Fuel Cells Program: Upcoming Webinar July 9...  

NLE Websites -- All DOE Office Websites (Extended Search)

one of these models in detail, the H2A (Hydrogen Analysis) model. H2A allows a user to estimate the cost of producing hydrogen from a variety of different technical pathways and...

56

DOE Hydrogen Analysis Repository: Hydrogen Production from Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the 1998 DOE Hydrogen Program Review. Keywords: Technoeconomic analysis; hydrogen production; costs; hydrogen storage; renewable Purpose To determine technical and economic...

57

DOE Hydrogen Analysis Repository: Transportation Routing Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

model can be used to complete the technoeconomic analysis of hydrogen delivery for the DOE Hydrogen Program by analyzing the highway transportation network to determine locations...

58

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Transition to Hydrogen Fuel Cell Vehicles Biofuels in Light-Duty Vehicles Biogas Resources Characterization Biomass Integrated Gasification Combined-Cycle Power...

59

DOE Hydrogen Analysis Repository: Hydrogen Pathways Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2020 ProductsDeliverables Description: FY 2012 Progress Report Publication Title: FY 2012 DOE Hydrogen Program Annual Progress Report ArticleAbstract Title: Effects of...

60

DOE Hydrogen Analysis Repository: Hydrogen Transition Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Period of Performance Start: June 2005 End: May 2008 Project Description Type of Project: Model Category: Hydrogen Fuel Pathways Objectives: Use agent-based modeling to provide...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen Transition Infrastructure Analysis  

DOE Green Energy (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-05-01T23:59:59.000Z

62

DOE Hydrogen Analysis Repository: Hydrogen Production by  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

63

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

64

DOE Hydrogen and Fuel Cells Program: Macro System Model  

NLE Websites -- All DOE Office Websites (Extended Search)

and Energy Use in Transportation (GREET; versions 1 and 2) H2A Production H2A Delivery Scenario Analysis Model (HDSAM) Hydrogen Demand and Resource Analysis (HyDRA) HyPro...

65

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

thermochemical water splitting; fuel cell vehicles Inputs: Description: Nuclear Fuel Cycle Cost Units: kWh Models Used: GREET Version 1.7; H2A Production Model Version...

66

DOE Hydrogen Analysis Repository: Biogas Resources Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas Resources Characterization Biogas Resources Characterization Project Summary Full Title: Biogas Resources Characterization Project ID: 259 Principal Investigator: Ali Jalalzadeh-Azar Brief Description: This project intends to develop a cost-analysis tool based on the H2A Production model, collect global information system (GIS) / cost data, and perform techno-economic analyses of upgrading biogas and utilizing the resulting bio-methane. Keywords: Biogas; Bio-methane; Landfill; Dairy farm; Sewage treatment plant; Fuel cell Purpose Fuel cells operating on bio-methane or on hydrogen derived from bio-methane can mitigate energy and environmental issues and provide an opportunity for their commercialization. This project can provide valuable insights and information to the stakeholders-utilities, municipalities, and policy

67

DOE Hydrogen Analysis Repository: Hydrogen from Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Renewable Energy Project Summary Full Title: H2 Production Infrastructure Analysis - Task 3: Hydrogen From Renewable Energy Sources: Pathway to 10 Quads for...

68

DOE Hydrogen Analysis Repository: Economic Analysis of Hydrogen Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Analysis of Hydrogen Energy Station Concepts Economic Analysis of Hydrogen Energy Station Concepts Project Summary Full Title: Economic Analysis of Hydrogen Energy Station Concepts: Are 'H2E-Stations' a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? Project ID: 244 Principal Investigator: Timothy Lipman Brief Description: This project expands on a previously conducted, preliminary H2E-Station analysis in a number of important directions. Purpose This analysis, based on an integrated Excel/MATLAB/Simulink fuel cell system cost and performance model called CETEEM, includes the following: several energy station designs based on different sizes of fuel cell systems and hydrogen storage and delivery systems for service station and office building settings; characterization of a typical year of operation

69

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Cost Analysis Hydrogen Storage Systems Cost Analysis Project Summary Full Title: Cost Analysis of Hydrogen Storage Systems Project ID: 207 Principal Investigator: Stephen Lasher Keywords: Hydrogen storage; costs Purpose The purpose of this analysis is to help guide researchers and developers toward promising R&D and commercialization pathways by evaluating the various on-board hydrogen storage technologies on a consistent basis. Performer Principal Investigator: Stephen Lasher Organization: TIAX, LLC Address: 15 Acorn Park Cambridge, MA 02140 Telephone: 617-498-6108 Email: lasher.stephen@tiaxllc.com Additional Performers: Matt Hooks, TIAX, LLC; Mark Marion, TIAX, LLC; Kurtis McKenney, TIAX, LLC; Bob Rancatore, TIAX, LLC; Yong Yang, TIAX, LLC Sponsor(s) Name: Sunita Satyapal

70

Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Tri-Generation System Case Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model Darlene Steward/ Mike Penev National Renewable Energy Laboratory Integrated Stationary Power and Transportation Workshop Phoenix, Arizona October 27, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future 2 Introduction Goal: Develop a cost analysis tool that will be flexible and comprehensive enough to realistically analyze a wide variety of potential combined heat and power/hydrogen production scenarios Approach: Rely on the H2A discounted cash flow methodology to develop a new stationary systems model With the help of industry partners, develop and analyze a range of realistic case studies for tri-generation systems. National Renewable Energy Laboratory Innovation for Our Energy Future

71

DOE Hydrogen Analysis Repository: Hydrogen Systems Analysis, Education, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis, Education, and Outreach Systems Analysis, Education, and Outreach Project Summary Full Title: Hydrogen Systems Analysis, Education, and Outreach Project ID: 89 Principal Investigator: Faith Klareich Brief Description: Sentech undertook systems analysis and technical/economic assessments to allow DOE to define the strategic goals of the hydrogen R&D program. Keywords: Technoeconomic analysis; education Purpose Provide data that allow DOE to define the strategic goals of the hydrogen R&D program. Performer Principal Investigator: Faith Klareich Organization: Sentech, Inc. Address: 7475 Wisconsin Avenue, Suite 900 Bethesda , MD 20814 Telephone: 240-223-5500 Period of Performance Start: August 1996 End: September 1997 Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

72

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Principal  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Investigator Principal Investigator Below are hydrogen analyses and analytical models grouped by principal investigator. | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | R | S | T | U | V | W A Portfolio of Power-Trains for Europe Review of FreedomCAR and Fuel Partnership Ahluwalia, Rajesh Fuel Cell Systems Analysis GCtool-ENG Ahluwalia, Rajesh K. Hydrogen Storage Systems Analysis Ahmed, Shabbir Cost Implications of Hydrogen Quality Requirements Fuel Quality Effects on Stationary Fuel Cell Systems Fuel Quality in Fuel Cell Systems Quick Starting Fuel Processors - A Feasibility Study Amos, Wade Biological Water-Gas Shift Costs of Storing and Transporting Hydrogen Photobiological Hydrogen Production from Green Algae Cost Analysis Arif, Muhammad Fuel Cell Water Transport Mechanism

73

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Performing  

NLE Websites -- All DOE Office Websites (Extended Search)

Performing Organization Performing Organization Below are hydrogen analyses and analytical models grouped by performing organization. A B D E F G I L M N O P R S T U W A Aalborg University Wind Power Integration Air Products and Chemicals, Inc. Ceramic Membrane Reactors for Converting Natural Gas to Hydrogen Hydrogen Energy Station Validation Anhui University of Technology Well-to-Wheels Analysis of Hydrogen Fuel-Cell Vehicle Pathways in Shanghai Argonne National Laboratory (ANL) Advanced Vehicle Introduction Decisions (AVID) Model AirCRED Model All Modular Industry Growth Assessment (AMIGA) Model Biofuels in Light-Duty Vehicles Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power Cost Implications of Hydrogen Quality Requirements

74

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

government interests, a variety of vendors, and numerous utilities. Keywords: Hydrogen production, natural gas, costs Purpose Assess progress toward the 2005 DOE Hydrogen...

75

DOE Hydrogen Analysis Repository: Hydrogen Futures Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen scenarios will affect carbon and other environmental effluents and U.S. oil import requirements Outputs: Delivered hydrogen costs (cost per gallon of gas...

76

DOE Hydrogen Analysis Repository: Electrolytic Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

by Principal Investigator Projects by Date U.S. Department of Energy Electrolytic Hydrogen Production Project Summary Full Title: Summary of Electrolytic Hydrogen Production:...

77

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer (OSTI)

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

78

DOE Hydrogen Analysis Repository: Resource Analysis for Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Analysis for Hydrogen Production Resource Analysis for Hydrogen Production Project Summary Full Title: Resource Analysis for Hydrogen Production Project ID: 282 Principal Investigator: Marc Melaina Brief Description: Analysis involves estimating energy resources required to support part of the demand generated by 100 million fuel cell electric vehicles in 2040. Performer Principal Investigator: Marc Melaina Organization: National Renewable Energy Laboratory (NREL) Address: 15013 Denver West Parkway Golden, CO 80401 Telephone: 303-275-3836 Email: marc.melaina@nrel.gov Website: http://www.nrel.gov/ Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/FCTO Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Website: http://www.hydrogen.energy.gov/ Period of Performance Start: October 2009 Project Description

79

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

80

Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle storage and the role for H2A tools. * Present the HyPro and Hytrans Transition Scenario models * Define next steps for H2A models relative to overall HFI analysis needs...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)  

SciTech Connect

This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-06-10T23:59:59.000Z

82

Technical Analysis of Hydrogen Production  

SciTech Connect

The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

Ali T-Raissi

2005-01-14T23:59:59.000Z

83

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Systems Analysis Storage Systems Analysis Project Summary Full Title: System Level Analysis of Hydrogen Storage Options Project ID: 202 Principal Investigator: Rajesh K. Ahluwalia Keywords: Hydrogen storage; compressed hydrogen tanks Purpose ANL is developing models to understand the characteristics of storage systems based on approaches with unique characteristics (thermal energy and temperature of charge and discharge, kinetics of the physical and chemical process steps involved) and to evaluate their potential to meet DOE targets for on-board applications. Performer Principal Investigator: Rajesh K. Ahluwalia Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5979 Email: walia@anl.gov Additional Performers: T.Q. Hua, Argonne National Laboratory; Romesh Kumar, Argonne National Laboratory; J-C Peng, Argonne National Laboratory

84

Quantitative Analysis of Station Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Station Analysis of Station Hydrogen * Role of ENAA (Engineering Advancement Association of Japan) - To manage the construction and operation of hydrogen stations in national project, JHFC Project - To act as secretariat of ISO/TC197 (Hydrogen technologies) committee of Japan Kazuo Koseki Chief Secretary of ISO/TC197 of Japan ENAA Yokohama Daikoku Station (Desulfurized Gasoline) Yokohama Asahi Station (Naphtha) Senju Station (LPG) Kawasaki Station (Methanol) Yokohama Asahi Station Naphtha PSA Compressor Storage Tanks Dispenser Reformer Buffer Tank 25 MPa 35 MPa 1073 K 0.8 MPa Inlet : 0.6 MPa Outlet : 40 MPa Vent Stack 40 MPa Result of Quantitative Analysis Concentration. vol.ppm Min.Detect Analysis Impurity Gasoline Naphtha LPG Methanol Conc. Method CO 0.05 0.06 0.02 0.06 0.01 GC-FID

85

Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)  

DOE Green Energy (OSTI)

This presentation by Keith Wipke at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

Wipke, K.

2007-05-17T23:59:59.000Z

86

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects by Date U.S. Department of Energy Distributed Hydrogen Production via Steam Methane Reforming Project Summary Full Title: Well-to-Wheels Case Study: Distributed...

87

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass feedstock price Units: million Btu Supporting Information: LHV Description: Electricity price Units: kWh Description: Hydrogen fill pressure Units: psi Description:...

88

DOE Hydrogen Analysis Repository: Hydrogen Deployment System...  

NLE Websites -- All DOE Office Websites (Extended Search)

routine to determine the layout of a least-cost infrastructure. Keywords: Hydrogen production; electrolysis; costs; fuel cells Purpose Initially, electrolytic H2 production...

89

DOE Hydrogen Analysis Repository: Hydrogen Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Costs Project Summary Full Title: Fuel Choice for Fuel Cell Vehicles: Hydrogen Infrastructure Costs Previous Title(s): Guidance for Transportation Technologies: Fuel...

90

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification with Sequestration Project Summary Full Title: Well-to-Wheels Case Study: Centralized Hydrogen Production from Coal Gasification with Sequestration Project ID:...

91

DOE Hydrogen Analysis Repository: Hydrogen Vehicle Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas. ProductsDeliverables Description: Report Publication Title:...

92

DOE Hydrogen Analysis Repository: Hydrogen Passenger Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers,...

93

Guidance for Filling Out a Detailed H2A Production Case Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Property Data Standard Price and Property Data Information H2A Process Flow Diagram 4 Production Cost + Rate of Return Cost Contribution Sensitivity Analysis Key Cost Drivers...

94

Hydrogen Delivery Infrastructure Option Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Delivery Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and Preliminary Results for Each Delivery Option Summary of Observations Next Step Project Background Project Background 4 Delivery Options Option 1* GH delivery by new pipelines Option 2 Converting NG/oil pipelines for GH delivery Option 3 Blending GH into NG pipelines Option 4* GH tube trailers

95

DOE Hydrogen Analysis Repository: Hydrogen Fueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

considered.) 4. Gaseous hydrogen generated at the refueling station from natural gas by steam methane reforming, stored as a compressed gas at 5000 psi and dispensed to the vehicle...

96

DOE Hydrogen Analysis Repository: Hydrogen Demand and Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Demand and Infrastructure Deployment Hydrogen Demand and Infrastructure Deployment Project Summary Full Title: Geographically-Based Hydrogen Demand and Infrastructure Deployment Scenario Analysis Project ID: 189 Principal Investigator: Margo Melendez Keywords: Hydrogen fueling; infrastructure; fuel cell vehicles (FCV) Purpose This analysis estimates the spatial distribution of hydrogen fueling stations necessary to support the 5 million fuel cell vehicle scenario, based on demographic demand patterns for hydrogen fuel cell vehicles and strategy of focusing development on specific regions of the U.S. that may have high hydrogen demand. Performer Principal Investigator: Margo Melendez Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401-3393 Telephone: 303-275-4479

97

DOE Hydrogen Analysis Repository: Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Hydrogen from Coal Production of Hydrogen from Coal Project Summary Full Title: Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies Project ID: 265 Principal Investigator: Kristin Gerdes Brief Description: This report assesses the improvements in cost and performance of hydrogen production from domestic coal when employing emerging technologies funded by DOE. Keywords: Hydrogen production; Coal Purpose This analysis specifically evaluates replacing conventional acid gas removal (AGR) and hydrogen purification with warm gas cleanup (WGCU) and a high-temperature hydrogen membrane (HTHM) that meets DOE's 2010 and 2015 performance and cost research and development (R&D) targets. Performer Principal Investigator: Kristin Gerdes

98

DOE Hydrogen Analysis Repository: Photobiological Hydrogen Production from  

NLE Websites -- All DOE Office Websites (Extended Search)

Photobiological Hydrogen Production from Green Algae Cost Analysis Photobiological Hydrogen Production from Green Algae Cost Analysis Project Summary Full Title: Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report Project ID: 110 Principal Investigator: Wade Amos Purpose This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are

99

DOE Hydrogen Analysis Repository: Life Cycle Assessment of Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project Summary Full Title: Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project ID: 143 Principal Investigator: Ibrahim Dincer Brief Description: Examines the social, environmental and economic impacts of hydrogen fuel cell and gasoline vehicles. Purpose This project aims to investigate fuel cell vehicles through environmental impact, life cycle assessment, sustainability, and thermodynamic analyses. The project will assist in the development of highly qualified personnel in such areas as system analysis, modeling, methodology development, and applications. Performer Principal Investigator: Ibrahim Dincer Organization: University of Ontario Institute of Technology

100

Cost Analysis of Hydrogen Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Cost Analysis of Hydrogen Storage Systems Storage Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-5000 Fax 617-498-7200 www.TIAXLLC.com Reference:...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FCT Systems Analysis: 2010-2025 Scenario Analysis for Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure to someone by E-mail Share FCT Systems Analysis: 2010-2025 Scenario Analysis for Hydrogen Fuel Cell...

102

DOE Hydrogen Analysis Repository: Hydrogen Transition Model ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report ArticleAbstract Title: VII.11 Development of HyTrans Model and Integrated Scenario Analysis Page number(s): 1307 Publisher: U.S. Department of Energy Author...

103

NREL: Energy Analysis - Hydrogen and Fuel Cells Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Geothermal Hydrogen and Fuel Cells Solar Vehicles and Fuels Research Wind Market Analysis Policy Analysis Sustainability Analysis Key Activities Models & Tools Data &...

104

DOE Hydrogen Analysis Repository: Well-to-Wheels Analysis of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Analysis of Hydrogen Fuel-Cell Vehicle Pathways in Shanghai Project Summary Full Title: Well-to-Wheels Analysis of Hydrogen Based Fuel-Cell Vehicle Pathways in...

105

DOE Hydrogen Analysis Repository: Hydrogen Quality Issues for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Quality Issues for Fuel Cell Vehicles Quality Issues for Fuel Cell Vehicles Project Summary Full Title: Hydrogen Quality Issues for Fuel Cell Vehicles Project ID: 201 Principal Investigator: Romesh Kumar Keywords: Lifecycle costs; fuel cells; steam methane reforming (SMR); autothermal reforming (ATR) Purpose Assess the influence of different contaminants and their concentration in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification. Performer Principal Investigator: Romesh Kumar Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Avenue Argonne, IL 60439 Telephone: 630-252-4342 Email: kumar@cmt.anl.gov Period of Performance Start: October 2005 End: September 2010 Project Description Type of Project: Analysis

106

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Donna Heimiller (2005). For more information on hydrogen resources, access the Hydrogen Energy Analysis and Tools site. For Geographic Information System (GIS) hydrogen resource...

107

H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms  

SciTech Connect

The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs, and pipeline delivery specifications.

Saur, G.; Jalalzadeh, A.

2010-12-01T23:59:59.000Z

108

Hydrogen and Water: An Engineering, Economic and Environmental Analysis  

SciTech Connect

The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved solids) is used inside boilers, reactors or electrolyzers because as it changes phase or is consumed, it leaves very little residue behind. Pre-treatment of 'raw' source water to remove impurities not only enables efficient hydrogen production, but also reduces maintenance costs associated with component degradation due to those impurities. Cooling water has lower overall quality specifications, though it is required in larger volumes. Cooling water has distinct quality requirements aimed at preserving the cooling equipment by reducing scaling and fouling from untreated water. At least as important as the quantity, quality and cost of water inputs to a process are the quantity, quality and cost of water discharge. In many parts of the world, contamination from wastewater streams is a far greater threat to water supply than scarcity or drought (Brooks, 2002). Wastewater can be produced during the pre-treatment processes for process and cooling water, and is also sometimes generated during the hydrogen production and cooling operations themselves. Wastewater is, by definition, lower quality than supply water. Municipal wastewater treatment facilities can handle some industrial wastewaters; others must be treated on-site or recycled. Any of these options can incur additional cost and/or complexity. DOE's 'H2A' studies have developed cost and energy intensity estimates for a variety of hydrogen production pathways. These assessments, however, have not focused on the details of water use, treatment and disposal. As a result, relatively coarse consumption numbers have been used to estimate water intensities. The water intensity for hydrogen production ranges between 1.5-40 gallons per kilogram of hydrogen, including the embedded water due to electricity consumption and considering the wide variety of hydrogen production, water treatment, and cooling options. Understanding the consequences of water management choices enables stakeholders to make informed decisions regarding water use. Water is a fundamentally reg

Simon, A J; Daily, W; White, R G

2010-01-06T23:59:59.000Z

109

Hydrogen and Water: An Engineering, Economic and Environmental Analysis  

DOE Green Energy (OSTI)

The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved solids) is used inside boilers, reactors or electrolyzers because as it changes phase or is consumed, it leaves very little residue behind. Pre-treatment of 'raw' source water to remove impurities not only enables efficient hydrogen production, but also reduces maintenance costs associated with component degradation due to those impurities. Cooling water has lower overall quality specifications, though it is required in larger volumes. Cooling water has distinct quality requirements aimed at preserving the cooling equipment by reducing scaling and fouling from untreated water. At least as important as the quantity, quality and cost of water inputs to a process are the quantity, quality and cost of water discharge. In many parts of the world, contamination from wastewater streams is a far greater threat to water supply than scarcity or drought (Brooks, 2002). Wastewater can be produced during the pre-treatment processes for process and cooling water, and is also sometimes generated during the hydrogen production and cooling operations themselves. Wastewater is, by definition, lower quality than supply water. Municipal wastewater treatment facilities can handle some industrial wastewaters; others must be treated on-site or recycled. Any of these options can incur additional cost and/or complexity. DOE's 'H2A' studies have developed cost and energy intensity estimates for a variety of hydrogen production pathways. These assessments, however, have not focused on the details of water use, treatment and disposal. As a result, relatively coarse consumption numbers have been used to estimate water intensities. The water intensity for hydrogen production ranges between 1.5-40 gallons per kilogram of hydrogen, including the embedded water due to electricity consumption and considering the wide variety of hydrogen production, water treatment, and cooling options. Understanding the consequences of water management choices enables stakeholders to make informed decisions regarding water use. Water is a fundamentally regional commodity. Water resources vary in quality and qu

Simon, A J; Daily, W; White, R G

2010-01-06T23:59:59.000Z

110

DOE Hydrogen Analysis Repository: GREET Model  

NLE Websites -- All DOE Office Websites (Extended Search)

GREET Model GREET Model Project Summary Full Title: Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) Model Project ID: 84 Principal Investigator: Michael Wang Keywords: Well-to-wheels (WTW); emissions; greenhouse gases (GHG); fuel cell vehicles (FCV) Purpose GREET supports Milestone 24 of the Systems Analysis activity of the DOE Hydrogen Program: Complete baseline economic, energy efficiency, and environmental targets for fossil, nuclear and renewable hydrogen production and delivery technologies. GREET also supports the 3rd objective listed in the DOE Hydrogen Program's Systems Analysis Plan: Well-to-Wheels Analysis: Conduct on-going, integrated well-to-wheels analysis of hydrogen pathways for introducing hydrogen as a transportation fuel. The analysis

111

DOE Hydrogen Analysis Repository: Transition Analysis - H2 Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition Analysis - H2 Production and Delivery Infrastructure Project Summary Full Title: Transition Analysis of the Hydrogen Production and Delivery Infrastructure as a Complex...

112

DOE Hydrogen Analysis Repository: HyWays-IPHE Comparison Between  

NLE Websites -- All DOE Office Websites (Extended Search)

HyWays-IPHE Comparison Between E3database, H2A and GREET HyWays-IPHE Comparison Between E3database, H2A and GREET Project Summary Full Title: HyWays-IPHE Methodological Comparison Between E3database, H2A and GREET Including a Comparison of Database and Respective Model Results Project ID: 221 Principal Investigator: Christoph Stiller Keywords: Models, steam methane reforming (SMR), coal, wind, natural gas Purpose HyWays-IPHE (International Partnership for the Hydrogen Economy) is a specific support action to assess and compare the development efforts for the European Hydrogen Energy Roadmap prepared by HyWays with international roadmapping or comparative activities of IPHE partner countries. In a first step, it aims at an in-depth assessment and comparison of the individual elements of the national/ regional strategies, modeling approaches and

113

DOE Hydrogen Analysis Repository: Emissions Analysis of Electricity Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Analysis of Electricity Storage with Hydrogen Emissions Analysis of Electricity Storage with Hydrogen Project Summary Full Title: Emissions Analysis of Electricity Storage with Hydrogen Project ID: 269 Principal Investigator: Amgad Elgowainy Brief Description: Argonne National Laboratory examined the potential fuel cycle energy and emissions benefits of integrating hydrogen storage with renewable power generation. ANL also examined the fuel cycle energy use and emissions associated with alternative energy storage systems, including pumped hydro storage (PHS), compressed air energy storage (CAES), and vanadium-redox batteries (VRB). Keywords: Hydrogen; Emissions; Greenhouse gases (GHG); Energy storage; Life cycle analysis Performer Principal Investigator: Amgad Elgowainy Organization: Argonne National Laboratory (ANL)

114

DOE Hydrogen Analysis Repository: Analysis of Energy Infrastructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Energy Infrastructures Analysis of Energy Infrastructures Project Summary Full Title: Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure Project ID: 250 Principal Investigator: David Reichmuth Brief Description: Sandia National Laboratories is using a system dynamics approach to simulate the interaction of vehicle adoption and infrastructure for hydrogen, electricity, natural gas, and gasoline. Purpose It is envisioned that the transition to hydrogen vehicles will begin by taking advantage of the existing infrastructure for natural gas. This project will study the impact of hydrogen vehicles on demand for natural gas, electricity, and gasoline. The impact of existing energy infrastructures on hydrogen infrastructure growth will also be considered.

115

DOE Hydrogen Analysis Repository: Hydrogen Dynamic Infrastructure and  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Infrastructure and Vehicle Evolution (HyDIVE) Model Dynamic Infrastructure and Vehicle Evolution (HyDIVE) Model Project Summary Full Title: Hydrogen Dynamic Infrastructure and Vehicle Evolution (HyDIVE) Model Project ID: 200 Principal Investigator: Cory J. Welch Keywords: Costs; vehicle characteristics Purpose HyDIVE permits rigorous analysis of the interdependence between hydrogen fuel vehicle demand growth and hydrogen fueling station coverage. Performer Principal Investigator: Cory J. Welch Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-275-4436 Email: cory_welch@nrel.gov Additional Performers: PA Government Services Period of Performance Start: October 2006 End: December 2007 Project Description Type of Project: Model Category: Vehicle Options

116

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Cycle Analysis of Hydrogen-Powered Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million through FY08 * Funding received in FY07: $450k * Funding for FY08: $840k Budget * H2A team * PSAT team * NREL * Industry stakeholders Partners Timeline Barriers to Address 3 Objectives * Expand and update the GREET model for hydrogen production pathways and for applications of FCVs and other FC systems

117

Hydrogen Systems Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal » Coal to Liquids » Hydrogen Clean Coal » Coal to Liquids » Hydrogen Systems Analysis Hydrogen Systems Analysis Energy analyses provide valuable information, input, and guidance into the decision-making process on important issues such as national energy security and environmental policies, research and development programs and plans, technology options, and potential technical, economic, market, and social barriers to technology deployment. The Hydrogen and Clean Coal Fuels Program, working with the NETL Office of Systems, Analyses, and Planning, supports systems, techno-economic, and benefits analysis activities to provide guidance and input for its research and development program portfolio, assess the progress made by Program-funded research, and measure the energy security, economic and

118

DOE Hydrogen Analysis Repository: Potential for Stationary Fuel Cells to  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Hydrogen Vehicles Project Summary Full Title: Analyzing the Potential for Stationary Fuel Cells to Augment Hydrogen Availability in the Transition to Hydrogen Vehicles Project ID: 281 Principal Investigator: David Greene Brief Description: This analysis was focused on the role that combined heat and hydrogen power (CHHP) could play in increasing hydrogen refueling availability during the transition to hydrogen vehicles. Keywords: Stationary fuel cell; hydrogen; plug-in hybrid electric vehicle; hydrogen fuel cell vehicle; combined heat, hydrogen and power; internal combustion engine Performer Principal Investigator: David Greene Organization: Oak Ridge National Laboratory (ORNL)

119

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540C and 900C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

120

DOE Hydrogen and Fuel Cells Program Record 6002: Electrolysis Analysis to Support Technical Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Record #: 6002 Date: September 28, 2006 Title: Electrolysis Analysis to Support Technical Targets Originator: Roxanne Garland Approved by: Sunita Satyapal Date: December 16, 2008 Distributed Water Electrolysis - Technical Targets. Item #1: Table 3.1.4 and Table 3.1.4A in the Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. This Record provides further information vis-à-vis the assumptions and corresponding references used in Table 3.1.4 "Technical Targets: Distributed Water Electrolysis Hydrogen Production" and Table 3.1.4A "Distributed Electrolysis H2A Example Cost Contributions" in the Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research,

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE Hydrogen Analysis Repository: H2 Delivery Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

carriers. Keywords: Hydrogen delivery; Hydrogen infrastructure; tube trailers; pipelines Purpose This project will conduct an in-depth comparative analysis of the various...

122

Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Hydrogen Delivery Modeling and Analysis FreedomCAR and Fuels Partnership Hydrogen Delivery, Storage and Fuel Pathway Integration Tech Teams May 8-9, 2007 Energetics...

123

Geographically-Based Hydrogen Demand & Infrastructure Rollout Scenario Analysis (Presentation)  

DOE Green Energy (OSTI)

This presentation by Margo Melendez at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Hydrogen Demand & Infrastructure Rollout Scenario Analysis.

Melendez, M.

2007-05-17T23:59:59.000Z

124

Controlled Hydrogen Fleet and Infrastructure Analysis (2008 Presentation)  

DOE Green Energy (OSTI)

This presentation by Keith Wipke at the 2008 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

Wipke, K.; Sprik, S.; Kurtz, J.

2008-06-10T23:59:59.000Z

125

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

126

DOE Hydrogen Analysis Repository: Production of Hydrogen byPhotovolta...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Project ID: 132 Principal Investigator: DL Block Purpose Compare the cost of hydrogen produced using photo electric chemical systems to the cost of hydrogen...

127

Controlled Hydrogen Fleet and Infrastructure Analysis - DOE Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

conditions, using multiple sites, varying climates, and a variety of hydrogen sources. Analyze detailed fuel cell and hydrogen data from * vehicles and infrastructure to...

128

DOE Hydrogen Analysis Repository: Impact of Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Energy Markets Project ID: 99 Principal Investigator: Harry Vidas Keywords: Hydrogen production; hydrogen supply; infrastructure; costs Purpose This project addresses the...

129

DOE Hydrogen Analysis Repository: The Hydrogen Economy: Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the potential penetration of hydrogen into the economy and associated impacts on oil imports and CO2 gas emissions; Address the problem of how hydrogen might be...

130

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Delivery Hydrogen Delivery Printable Version 2010 Annual Progress Report III. Hydrogen Delivery This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on hydrogen delivery. Each technical report is available as an individual Adobe Acrobat PDF. Hydrogen Delivery Sub-Program Overview, Sara Dillich, DOE Hydrogen Delivery Infrastructure Analysis, Marianne Mintz, Argonne National Laboratory H2A Delivery Analysis and H2A Delivery Components Model, Olga Sozinova, National Renewable Energy Laboratory Oil-Free Centrifugal Hydrogen Compression Technology Demonstration, Hooshang Heshmat Development of a Centrifugal Hydrogen Pipeline Gas Compressor, Francis Di Bella, Concepts NREC Advanced Hydrogen Liquefaction Process, Joseph Schwartz, Praxair, Inc. Active Magnetic Regenerative Liquefier, John Barclay, Prometheus

131

Hydrogen Infrastructure Transition Analysis: Milestone Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Infrastructure Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Milestone Report NREL/TP-540-38351 January 2006 Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Prepared under Task No. HY55.2200 Milestone Report NREL/TP-540-38351 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

132

Hydrogen Infrastructure Transition Analysis: Milestone Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Infrastructure Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Milestone Report NREL/TP-540-38351 January 2006 Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Prepared under Task No. HY55.2200 Milestone Report NREL/TP-540-38351 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

133

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Delivery Hydrogen Delivery Printable Version 2009 Annual Progress Report III. Hydrogen Delivery This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on hydrogen delivery. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Delivery Program Element Introduction, Monterey Gardiner, U.S. Department of Energy (PDF 67 KB ) Hydrogen Delivery Infrastructure Analysis (PDF 267 KB), Marianne Mintz, Argonne National Laboratory H2A Delivery Components Module (PDF 315 KB), Olga Sozinova, National Renewable Energy Laboratory Hydrogen Regional Infrastructure Program in Pennsylvania (PDF 1.3 MB), Eileen Schmura, Concurrent Technologies Corporation Oil-Free Centrifugal Hydrogen Compression Technology Demonstration

134

Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review  

E-Print Network (OSTI)

they have initiated on solid state hydride tanks for hydrogen storage and other energy conversionHydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review Crystal Laboratory and Elvin Yuzugullu Sentech, Inc. June 28, 2007 #12;SUMMARY REPORT Hydrogen Storage

135

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

136

Screening analysis of solar thermochemical hydrogen concepts.  

DOE Green Energy (OSTI)

A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

Diver, Richard B., Jr.; Kolb, Gregory J.

2008-03-01T23:59:59.000Z

137

NREL: Hydrogen and Fuel Cells Research - Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis modeling activities. To learn more about hydrogen systems analysis, visit Energy Analysis and Tools. Publications The following technical papers, journal articles,...

138

DOE Hydrogen Analysis Repository: Infrastructure Analysis of...  

NLE Websites -- All DOE Office Websites (Extended Search)

(HyDS-ME) Project ID: 258 Principal Investigator: Brian Bush Brief Description: This analysis uses the Scenario Evaluation and Regionalization Analysis (SERA) Model to...

139

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

140

Hydrogen Production Infrastructure Options Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Infrastructure Options Analysis January 26, 2006 Brian D. James Julie Perez Peter Schmidt (703) 243 - 3383 Brian_James@DirectedTechnologies.com Directed Technologies, Inc. Page 1 of 39 26 January 2006 2006-1-26 DOE Transition Workshop Agenda 1. Project Description and Objective 2. Team Members 3. Approach 4. Model Theory, Structure and Assumptions 5. Model Description 1. Logic 2. Features 3. Cost Components (Production, Delivery & Dispensing) 6. Los Angeles Transitional Example 7. Model Flexibility Page 2 of 39 26 January 2006 2006-1-26 DOE Transition Workshop Team Members & Interactions Start: May 2005 (effective) End: Summer 2007 * Directed Technologies, Inc.- Prime * Sentech, Inc., Research Partner * Air Products, Industrial Gas Supplier * Advisory Board * Graham Moore, Chevron Technology Ventures

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE Hydrogen Analysis Repository: Environmental Impacts of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Title: Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications Project ID: 247 Principal...

142

DOE Hydrogen Analysis Repository: Hydrogen (H2) Co-Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated with Stationary Fuel Cell Systems Project Summary Full Title: Thermodynamic, Economic, and Environmental Modeling of Hydrogen (H2) Co-Production Integrated...

143

DOE Hydrogen Analysis Repository: PV-Hydrogen System Simulator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach: The photovoltaic hydrogen system has a photovoltaic array with an optional maximum power point tracker that supplies electrical energy to the system. This electrical...

144

DOE Hydrogen Analysis Repository: Impact of Renewables on Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

in terms of contributing factors Technologies Considered: Biomass; wind; photovoltaic (PV) Models Used: NASA's Earth Observing System; TIAX Hydrogen Logistics Model Outputs:...

145

Final Report - Hydrogen Delivery Infrastructure Options Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

The Power of Experience The Power of Experience Final Report Hydrogen Delivery Infrastructure Options Analysis DOE Award Number: DE-FG36-05GO15032 Project director/principal investigator: Tan-Ping Chen Consortium/teaming Partners: Air Liquide, Chevron Technology Venture, Gas Technology Institute, NREL, Tiax, ANL Hydrogen Delivery Infrastructure Options Analysis ii TABLE OF CONTENTS SECTION 1 EXECUTIVE SUMMARY ........................................................................... 1-1 1.1 HOW THE RESEARCH ADDS TO THE UNDERSTANDING OF THE AREA INVESTIGATED. 1-1 1.2 TECHNICAL EFFECTIVENESS AND ECONOMIC FEASIBILITY OF THE METHODS OR TECHNIQUES INVESTIGATED OR DEMONSTRATED .................................................... 1-1 1.3 HOW THE PROJECT IS OF BENEFIT TO THE PUBLIC..................................................... 1-1

146

DOE Hydrogen Analysis Repository: Life Cycle Analysis of Vehicles for  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis of Vehicles for Canada Life Cycle Analysis of Vehicles for Canada Project Summary Full Title: Life Cycle Analysis of Vehicles Powered by a Fuel Cell and by Internal Combustion Engine for Canada Project ID: 117 Principal Investigator: Xianguo Li Purpose In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station.

147

FCT Systems Analysis: Analysis Methodologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Methodologies to Analysis Methodologies to someone by E-mail Share FCT Systems Analysis: Analysis Methodologies on Facebook Tweet about FCT Systems Analysis: Analysis Methodologies on Twitter Bookmark FCT Systems Analysis: Analysis Methodologies on Google Bookmark FCT Systems Analysis: Analysis Methodologies on Delicious Rank FCT Systems Analysis: Analysis Methodologies on Digg Find More places to share FCT Systems Analysis: Analysis Methodologies on AddThis.com... Home Analysis Methodologies Resource Analysis Technological Feasibility & Cost Analysis Environmental Analysis Delivery Analysis Infrastructure Development & Financial Analysis Energy Market Analysis DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

148

DOE Hydrogen Analysis Repository: Hydrogen Fueling Station Economics Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Fueling Station Economics Model Fueling Station Economics Model Project Summary Full Title: Hydrogen Fueling Station Economics Model Project ID: 193 Principal Investigator: Bill Liss Brief Description: The Gas Technology Institute developed a hydrogen fueling station economics model as part of their project to develop a natural gas to hydrogen fuel station. Keywords: Compressed gas; vehicle; refueling station; cost; natural gas Purpose Calculate hydrogen fueling station costs, including capital, operating, and maintenance costs. Performer Principal Investigator: Bill Liss Organization: Gas Technology Institute Address: 1700 South Mount Prospect Road Des Plains, IL 60018-1804 Telephone: 847-768-0530 Email: william.liss@gastechnology.org Project Description Type of Project: Model Category: Hydrogen Fuel Pathways

149

DOE Hydrogen Analysis Repository: Infrastructure Costs for Hydrogen and  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hydrogen and Electricity for Hydrogen and Electricity Project Summary Full Title: Comparing Infrastructure Costs for Hydrogen and Electricity Project ID: 274 Principal Investigator: Marc Melaina Brief Description: Retail capital costs for infrastructure for advanced vehicles are compared on a per mile basis. Keywords: Hydrogen infrastructure; electricity; costs; Performer Principal Investigator: Marc Melaina Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-275-3836 Email: Marc.Melaina@nrel.gov Website: http://www.nrel.gov Additional Performers: Michael Penev, National Renewable Energy Laboratory (NREL) Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/HFCP Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Website: http://www.hydrogen.energy.gov

150

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

DOE Green Energy (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

151

H2A Delivery: GH2 and LH2 Forecourt Land Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

GH2 and LH2 Forecourt GH2 and LH2 Forecourt GH2 and LH2 Forecourt Land Areas Land Areas Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland TIAX LLC Matthew Hooks 1601 S. D Anza Blvd. hooks.matthew@TIAXLLC.com Cupertino CA, 95014 Tel. 408-517-1550 Reference: D0348 © 2007 TIAX LLC General Assumptions ƒ Forecourt stations with fewer than 6 hydrogen dispensers will have both hydrogen and gasoline dispensers on-site (6 total) ƒ Forecourt area (not including convenience store) will be allocated based on relative number of hydrogen/gasoline dispensers ƒ All stations with more than 6 hydrogen dispensers will only dispense hydrogen ƒ 100% of forecourt area (not including convenience store) will be allocated to hydrogen delivery ƒ Area allocated to hydrogen storage will be in excess of the

152

DOE Hydrogen Analysis Repository: FLOW Model  

NLE Websites -- All DOE Office Websites (Extended Search)

FLOW Model FLOW Model Project Summary Full Title: Chemical Engineering Process Simulation Platform - FLOW Project ID: 131 Principal Investigator: Juan Ferrada Brief Description: FLOW is a steady-state chemical process simulator. Modules have been developed for supply chain calculations, micro-economic calculations, and other calculations. Purpose Simulate steady-state chemical processes to support hydrogen infrastructure and transition analysis. Performer Principal Investigator: Juan Ferrada Organization: Oak Ridge National Laboratory (ORNL) Address: Bethel Valley 1, Bldg 5700, N217 Oak Ridge, TN 37831-6166 Telephone: 865-574-4998 Email: ferradajj@ornl.gov Sponsor(s) Name: Fred Joseck Organization: DOE Hydrogen Program Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov

153

System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2012-11-01T23:59:59.000Z

154

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production from Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

from Wind from Wind Project Summary Full Title: Well-to-Wheels Case Study: Distributed Hydrogen Production from Wind Project ID: 216 Principal Investigator: Fred Joseck Keywords: Wind; hydrogen production; well-to-wheels (WTW); fuel cell vehicles (FCV); electrolysis Purpose Provide well-to-wheels energy use and emissions data on a potential pathway for producing hydrogen from wind via distributed water electrolysis. This data was used in developing the U.S. Department of Energy Hydrogen Posture Plan. Performer Principal Investigator: Fred Joseck Organization: DOE/EERE/HFCIT Address: 1000 Independence Avenue, SW Washington, DC 20585 Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Additional Performers: Margaret Mann, National Renewable Energy Laboratory; Michael Wang, Argonne National Laboratory

155

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production from Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Wind Project Summary Full Title: Well-to-Wheels Case Study: Centralized Hydrogen Production from Wind Project ID: 214 Principal Investigator: Fred Joseck Keywords: Wind; hydrogen production; well-to-wheels (WTW); fuel cell vehicles (FCV); electrolysis Purpose Provide well-to-wheels energy use and emissions data on a potential pathway for producing hydrogen from wind via centralized water electrolysis. This data was used in developing the U.S. Department of Energy Hydrogen Posture Plan. Performer Principal Investigator: Fred Joseck Organization: DOE/EERE/HFCIT Address: 1000 Independence Avenue, SW Washington, DC 20585 Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Additional Performers: Margaret Mann, National Renewable Energy Laboratory; Michael Wang, Argonne National Laboratory

156

Geographically Based Hydrogen Demand & Infrastructure Analysis (Presentation)  

DOE Green Energy (OSTI)

Presentation given at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006, discusses potential future hydrogen demand and the infrastructure needed to support hydrogen vehicles.

Melendez, M.

2006-05-18T23:59:59.000Z

157

DOE Hydrogen Analysis Repository: Infrastructure Costs Associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Costs Associated with Central Hydrogen Production from Biomass and Coal Project Summary Full Title: Infrastructure Costs Associated with Central Hydrogen Production...

158

ECONOMIC FEASIBILITY ANALYSIS OF HYDROGEN PRODUCTION BY  

E-Print Network (OSTI)

steps (syngas generation, shift conversion and hydrogen purification) necessary for hydrogen production for this process option. O2 H2 air N.G. + Steam Hydrogen H2-depleted syngas OTM Reactor HTM Reactor syngas Figure 1- gas. A portion of natural gas also reacts with steam to form syngas. Additional hydrogen is formed

159

National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure  

E-Print Network (OSTI)

cold start analysis: 2001 ­ Fuel cell hybrid electric vehicles: 1999 (in collaboration with VATech) ­ H funding from the DOE Hydrogen Program (now HFCIT), with some funding coming from PBA and OFCVT #12;History analysis, electric grid/hydrogen interaction ­ Johanna Ivy: Electrolysis, H2A, programming ­ Maggie Mann

160

PROCESS ANALYSIS WORK FOR THE DOE HYDROGEN PROGRAM -2001  

E-Print Network (OSTI)

conducted at the National Renewable Energy Laboratory for the Department of Energy's Hydrogen Program, and environmental aspects of hydrogen production and storage technologies. The advantages of performing analyses-term hydrogen storage technology. In 2001, NREL's process analysis task helped to define the conversion

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Hydrogen Analysis Repository: Lessons Learned from Stationary...  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigator Projects by Date U.S. Department of Energy Lessons Learned from Stationary Power Generation Project Summary Full Title: Hydrogen and Fuel Cell Analysis: Lessons...

162

Potential Role of Exergy in Analysis of Hydrogen Infrastructure  

DOE Green Energy (OSTI)

The objective of this paper is to demonstrate the potential role of exergy (second-law) analysis, as a complementary tool for economic assessments of hydrogen infrastructures.

Jalalzadeh-Azar, A. A.

2008-01-01T23:59:59.000Z

163

DOE Hydrogen Analysis Repository: Cost Analysis of Proton Exchange Membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Analysis of Proton Exchange Membrane Fuel Cell Systems for Cost Analysis of Proton Exchange Membrane Fuel Cell Systems for Transportation Project Summary Full Title: Cost Analysis of Proton Exchange Membrane (PEM) Fuel Cell Systems for Transportation Project ID: 196 Principal Investigator: Eric Carlson Keywords: Fuel cells, fuel cell vehicles (FCV), transportation, costs Purpose Assess the cost of an 80 kW direct hydrogen fuel cell system relative to the DOE 2005 target of $125/kW. The system includes the fuel cell stack and balance-of-plant (BOP) components for water, thermal, and fuel management, but not hydrogen storage. Performer Principal Investigator: Eric Carlson Organization: TIAX, LLC Address: 15 Acorn Park Cambridge, MA 02140-2328 Telephone: 617-498-5903 Email: carlson.e@tiaxllc.com Additional Performers: P. Kopf, TIAX, LLC; J. Sinha, TIAX, LLC; S. Sriramulu, TIAX, LLC

164

Analysis of a supercritical hydrogen liquefaction cycle  

E-Print Network (OSTI)

In this work, a supercritical hydrogen liquefaction cycle is proposed and analyzed numerically. If hydrogen is to be used as an energy carrier, the efficiency of liquefaction will become increasingly important. By examining ...

Staats, Wayne Lawrence

2008-01-01T23:59:59.000Z

165

Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Held in Conjunction with the DOE Hydrogen Program Annual Merit Review Crystal Gateway Marriott, Arlington, VA June 11, 2008 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Elvin Yzugullu Sentech, Inc. July 18, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting June 11, 2008 Crystal Gateway Marriott, Arlington, VA Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related

166

DOE Hydrogen Analysis Repository: HyDRA: Hydrogen Demand and Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

HyDRA: Hydrogen Demand and Resource Analysis Tool HyDRA: Hydrogen Demand and Resource Analysis Tool Project Summary Full Title: HyDRA: Hydrogen Demand and Resource Analysis Tool Project ID: 220 Principal Investigator: Johanna Levene Brief Description: HyDRA has evolved from a basic display of spatial data to a repository of over 100 datasets with dynamic data, querying, and interoperability with other models and spatial data repositories and over 350 registered users. Keywords: Hydrogen infrastructure; wind; solar; biomass; coal; natural gas Purpose Facilitate regional and geographical analyses of resources, demand, and infrastructure relevant to the implementation of hydrogen production, delivery, and dispensing. Performer Principal Investigator: Johanna Levene Organization: National Renewable Energy Laboratory (NREL)

167

Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Analysis Working Group Meeting Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Kristin Deason Sentech, Inc. January 16, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related developments within the DOE program. A major thrust of these meetings is to leverage

168

DOE Hydrogen Analysis Repository: Codes & Standards Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes & Standards Analysis Codes & Standards Analysis Project Summary Full Title: Codes & Standards Analysis Project ID: 180 Principal Investigator: Michael Swain Brief Description: Conducts a building safety analysis for the California Fuel Cell Partnership including an assessment of safety issues related to garaged vehicles. Keywords: transportation; safety; hydrogen sensor; codes and standards Purpose To conduct a building safety analysis for the California Fuel Cell Partnership including an assessment of safety issues related to garaged vehicles. Performer Principal Investigator: Michael Swain Organization: University of Miami Address: McArthur Engineering Building, Room 224, P.O. Box 248294 Coral Gables, FL 33124 Telephone: 305-284-3321 Email: mswain@eng.miami.edu Project Description

169

Analysis of Hybrid Hydrogen Systems: Final Report  

DOE Green Energy (OSTI)

Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

2010-01-01T23:59:59.000Z

170

Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

171

DOE Hydrogen Analysis Repository: MiniCAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil, Gas, Biomass, Hydro, Nuclear, Wind, Solar PV), Hydrogen production (Coal, Oil, Gas, Biomass, Electrolysis), synthetic fuels (liquids and gases from coal, oil, gas,...

172

DOE Hydrogen Analysis Repository: CASCADE Refueling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Liss Brief Description: Calculate sizing, fueling, and tradeoff issues for compressed gas fueling stations. Keywords: Natural gas; hydrogen; vehicle; refueling; storage;...

173

Hydrogen Infrastructure Transition Analysis: Milestone Report  

DOE Green Energy (OSTI)

This milestone report identifies a minimum infrastructure that could support the introduction of hydrogen vehicles and develops and evaluates transition scenarios supported by this infrastructure.

Melendez, M.; Milbrandt, A.

2006-01-01T23:59:59.000Z

174

Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Analysis Meeting Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC 20024-2168 March 29, 2005 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory June 20, 2005 SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza, North, SW, Suite 6000 Washington, DC 20024-2168 Meeting Objectives The objective of this meeting was to familiarize the DOE research community involved in hydrogen storage materials and process development with the systems analysis work being carried out within the DOE program. In particular, Argonne National Laboratory (ANL) has been tasked to develop models of on-board and off-board hydrogen storage systems based on the various materials and technologies being developed at the DOE Centers of Excellence and

175

Analysis of Renewable Hydrogen Rangan Banerjee  

E-Print Network (OSTI)

methods of hydrogen production Steam methane reforming (SMR) Coal gasification Electrolysis Based TRANSMISSION m 90% TR 91% #12;Base Case Natural Gas ­ Feedstock Steam Methane Reforming Life of plant 20 years/Therm) #12;Industrial Process CH4 + 2H2O 4H2 + CO2 Steam Methane Reforming #12;Variation of Hydrogen price

Banerjee, Rangan

176

DOE Hydrogen Analysis Repository: Analysis of the Transition...  

NLE Websites -- All DOE Office Websites (Extended Search)

David L. Greene Keywords: Infrastructure; fuel cell vehicles (FCV); hydrogen production; hydrogen delivery; costs Purpose Section 811 of the Energy Policy Act of 2005...

177

Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540C and 900C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohmcm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-01-01T23:59:59.000Z

178

DOE Hydrogen Analysis Repository: H2 Fueling Appliances Cost and  

NLE Websites -- All DOE Office Websites (Extended Search)

H2 Fueling Appliances Cost and Performance H2 Fueling Appliances Cost and Performance Project Summary Full Title: H2 Production Infrastructure Analysis - Task 2: Cost and Performance of H2 Fueling Appliances Project ID: 80 Principal Investigator: Brian James Keywords: Costs; steam methane reforming (SMR); autothermal reforming (ATR); hydrogen fueling Purpose The purpose of the analysis was to estimate the capital cost and the resulting cost of hydrogen of several types of methane-fueled hydrogen production systems. A bottoms-up cost analysis was conducted of each system to generate a system design and detailed bill-of-materials. Estimates of the overall capital cost of the hydrogen production appliance were generated. This work supports Systems Analysis Milestone A1. ("Complete techno-economic analysis on production and delivery technologies currently

179

Hydrogen engine performance analysis. First annual report  

DOE Green Energy (OSTI)

Many problems associated with the design and development of hydrogen-air breathing internal combustion engines for automotive applications have been identified by various domestic and foreign researchers. This project addresses the problems identified in the literature, seeks to evaluate potential solutions to these problems, and will obtain and document a design data-base convering the performance, operational and emissions characteristics essential for making rational decisions regarding the selection and design of prototype hydrogen-fueled, airbreathing engines suitable for manufacture for general automotive use. Information is included on the operation, safety, emission, and cost characteristics of hydrogen engines, the selection of a test engine and testing facilities, and experimental results. Baseline data for throttled and unthrottled, carburetted, hydrogen engine configurations with and without exhaust gas recirculation and water injection are presented. In addition to basic data gathering concerning performance and emissions, the test program conducted was formulated to address in detail the two major problems that must be overcome if hydrogen-fueled engines are to become viable: flashback and comparatively high NO/sub x/ emissions at high loads. In addition, the results of other hydrogen engine investigators were adjusted, using accepted methods, in order to make comparisons with the results of the present study. The comparisons revealed no major conflicts. In fact, with a few exceptions, there was found to be very good agreement between the results of the various studies.

Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

1978-08-01T23:59:59.000Z

180

DOE Hydrogen and Fuel Cells Program Record 5035: Cost Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Date: May 22, 2006 Title: Cost Analysis of Hydrogen Production from Natural Gas 2003 - 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Approval Date: May 22, 2006 Item...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel Cell Technologies Office: DOE Hydrogen Transition Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc. Overview of NEMS-H2, Version 1.0 (PDF 294 KB), Frances Wood, OnLocation, Inc. Agent-Based Modeling and Simulation for Hydrogen Transition Analysis (PDF 515 KB),...

182

Agent-Based Modeling and Simulation for Hydrogen Transition Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Agent Agent Agent - - Based Modeling Based Modeling and Simulation (ABMS) and Simulation (ABMS) for Hydrogen Transition for Hydrogen Transition Analysis Analysis Marianne Mintz Hydrogen Transition Analysis Workshop US Department of Energy January 26, 2006 Objectives and Scope for Phase 1 2 Analyze the hydrogen infrastructure development as a complex adaptive system using an agent-based modeling and simulation (ABMS) approach Develop an ABMS model to simulate the evolution of that system, spanning the entire H2 supply chain from production to consumption Identify key factors that either promote or inhibit the growth of H2 infrastructure Apply ABMS to get new insights into transition, particularly early transition phase - Dynamic interplay between supply and demand

183

Hydrogen Technical Analysis -- Dissemination of Information  

DOE Green Energy (OSTI)

SENTECH is a small energy and environmental consulting firm providing technical, analytical, and communications solutions to technology management issues. The activities proposed by SENTECH focused on gathering and developing communications materials and information, and various dissemination activities to present the benefits of hydrogen energy to a broad audience while at the same time establishing permanent communications channels to enable continued two-way dialog with these audiences in future years. Effective communications and information dissemination is critical to the acceptance of new technology. Hydrogen technologies face the additional challenge of safety preconceptions formed primarily as a result of the crash of the Hindenburg. Effective communications play a key role in all aspects of human interaction, and will help to overcome the perceptual barriers, whether of safety, economics, or benefits. As originally proposed SENTECH identified three distinct information dissemination activities to address three distinct but important audiences; these formed the basis for the task structure used in phases 1 and 2. The tasks were: (1) Print information--Brochures that target the certain segment of the population and will be distributed via relevant technical conferences and traditional distribution channels. (2) Face-to-face meetings--With industries identified to have a stake in hydrogen energy. The three industry audiences are architect/engineering firms, renewable energy firms, and energy companies that have not made a commitment to hydrogen (3) Educational Forums--The final audience is students--the future engineers, technicians, and energy consumers. SENTECH will expand on its previous educational work in this area. The communications activities proposed by SENTECH and completed as a result of this cooperative agreement was designed to compliment the research and development work funded by the DOE by presenting the technical achievements and validations of hydrogen energy technologies to non-traditional audiences. These activities were also designed to raise the visibility of the DOE Hydrogen Program to new audiences and to help the program continue to advance its mission and vision. We believe that the work conducted under this cooperative agreement was successful at meeting the objectives presented and funded over the period of performance. During Phase 1, SENTECHs activities resulted in the development and distribution of two glossy brochures that target the on-site distributed generation and public transit markets for hydrogen energy technologies; face-to-face industry outreach meetings with various firms with an interest in hydrogen energy, but who may not have made a commitment to be involved; and implementation of two educational forums on hydrogen for students - the future engineers, technicians, and energy consumers. The educational forums were conducted with in-kind cost-shared contributions from NHA and Dr. Robert Reeves, Professor Emeritus, Rensealler During Phase 2, SENTECH activities initially were focused on the development of additional brochures and the development of a series of training modules. This set of information dissemination activities built on the experience demonstrated in our phase one activities, and focused the effort within two critical issue areas facing the development of hydrogen as an energy carrier--effective communications and information dissemination on codes and standards. SENTECH joined with the National Fire Protection Association (NFPA) to scope out the training modules and identified a series of 12 that could be used to train a variety of audiences. The NFPA is an international nonprofit corporation, which has developed a reputation as a worldwide leader in providing fire, electrical, and life safety to the public since 1896. Its membership totals more than 75,000 individuals from around the world and in more than 80 national trade and professional organizations.

George Kervitsky, Jr.

2006-03-20T23:59:59.000Z

184

Analysis of the Hydrogen Infrastructure Needed to Enable Commercial Introduction of Hydrogen-Fueled Vehicles: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference Paper Conference Paper Analysis of the Hydrogen NREL/CP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and A. Milbrandt National Renewable Energy Laboratory To be presented at the National Hydrogen Association � Annual Hydrogen Conference 2005 � Washington, DC � March 29-April 1, 2005 � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of

185

Hydrogen engine performance analysis project. Quarterly report  

DOE Green Energy (OSTI)

The objective of this project is to address the problems identified in order to obtain the data-base covering performance, operational characteristics and emissions essential for making a rational decision regarding the selection and design of prototype hydrogen-fueled, air-breathing engines capable of being manufactured for general automotive use. The project program plan calls for investigation of pre-intake valve closing fuel ingestion (Pre IVC) hydrogen-fueled engines during the first two of the three year project. With Pre IVC engines the fuel is introduced into the combustion chamber prior to closing of the intake valve. This is in contrast to Post IVC engines in which fuel is introduced in the cylinder after the intake valve closes. Post IVC engines are to be investigated during the third year according to the project program plan. This quarterly report is a summary of the work accomplished during the first three months of the project.

Adt, R.R. Jr.; Swain, M.R.

1977-03-01T23:59:59.000Z

186

Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)  

SciTech Connect

Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

Steward, D.

2010-02-11T23:59:59.000Z

187

Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)  

DOE Green Energy (OSTI)

Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

Steward, D.

2010-02-11T23:59:59.000Z

188

Discrete Choice Analysis: Hydrogen FCV Demand Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Choice Analysis: H 2 FCV Demand Potential Cory Welch H 2 Scenario Analysis Workshop Washington, D.C. , January 31, 2007 2 Overview * Motivation for work * Methodology * Relative...

189

DOE Hydrogen Analysis Repository: Sensitivity Analysis of H2...  

NLE Websites -- All DOE Office Websites (Extended Search)

David Greene Brief Description: This project seeks to understand market prospects, costs, and benefits of light-duty hydrogen fuel cell vehicles and their sensitivity to...

190

Hydrogen Storage Systems Analysis Working Group Meeting Held in Conjunction with the  

E-Print Network (OSTI)

Hydrogen Storage Systems Analysis Working Group Meeting Held in Conjunction with the DOE Hydrogen REPORT Hydrogen Storage Systems Analysis Working Group Meeting June 11, 2008 Crystal Gateway Marriott of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring

191

Hydrogen engine performance analysis project. Quarterly report  

DOE Green Energy (OSTI)

The objective of this project is to address the problems identified in the literature and in the project proposal in order to obtain the data-base covering performance, operational characteristics and emissions essential for making a rational decision regarding the selection and design of prototype hydrogen-fueled, air-breathing engines capable of being manufactured for general automotive use. The project program plan calls for investigation of pre-intake valve closing fuel ingestion (Pre IVC) hydrogen-fueled engines during the first two of the three year project. With Pre IVC engines the fuel is introduced into the combustion chamber prior to closing of the intake valve. This is in contrast to Post IVC engines in which fuel is introduced in the cylinder after the intake valve closes. Post IVC engines are to be investigated during the third year according to the project program plan. This quartery report is a summary of the work accomplished during the first three months of the project. For completeness it contains information presented in the first two monthly reports.

Adt, R.R. Jr.; Swain, M.R.; Pappas, J.M.

1977-03-01T23:59:59.000Z

192

Analysis of the Hydrogen Infrastructure Needed to Enable Commercial Introduction of Hydrogen-Fueled Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper for the 2005 National Hydrogen Association conference analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-03-01T23:59:59.000Z

193

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network (OSTI)

development helping to stream hydrogen policies into theconcepts and knowledge in hydrogen energy systems and theirSpazzafumo, G. , Drafting a Hydrogen Vision for Tasmania,

Pigneri, Attilio

2005-01-01T23:59:59.000Z

194

DOE Hydrogen Analysis Repository: Wind Power Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Summary Full Title: Large-Scale Integration of Wind Power into Different Energy Systems Project ID: 124 Principal Investigator: Henrik Lund Purpose The analysis...

195

Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Geographically Based Hydrogen Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NREL/TP-540-40373 October 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Prepared under Task No. HF65.8310 Technical Report NREL/TP-540-40373 October 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

196

Quantitative infrared analysis of hydrogen fluoride  

SciTech Connect

This work was performed at the Portsmouth Gaseous Diffusion Plant where hydrogen fluoride is produced upon the hydrolysis of UF{sub 6}. This poses a problem for in this setting and a method for determining the mole percent concentration was desired. HF has been considered to be a non-ideal gas for many years. D. F. Smith utilized complex equations in his HF studies in the 1950s. We have evaluated HF behavior as a function of pressure from three different perspectives. (1) Absorbance at 3877 cm{sup -1} as a function of pressure for 100% HF. (2) Absorbance at 3877 cm{sup -1} as a function of increasing partial pressure HF. Total pressure = 300 mm HgA maintained with nitrogen. (3) Absorbance at 3877 cm{sup -1} for constant partial pressure HF. Total pressure is increased to greater than 800 mm HgA with nitrogen. These experiments have shown that at partial pressures up to 35mm HgA, HIF follows the ideal gas law. The absorbance at 3877 cm{sup -1} can be quantitatively analyzed via infrared methods.

Manuta, D.M.

1997-04-01T23:59:59.000Z

197

ANALYSIS OF AVAILABLE HYDROGEN DATA & ACCUMULATION OF HYDROGEN IN UNVENTED TRANSURANIC (TRU) DRUMS  

DOE Green Energy (OSTI)

This document provides a response to the second action required in the approval for the Justification for Continued Operations (JCO) Assay and Shipment of Transuranic (TRU) Waste Containers in 218-W-4C. The Waste Management Project continues to make progress toward shipping certified TRU waste to the Waste Isolation Pilot Plant (WIPP). As the existing inventory of TRU waste in the Central Waste Complex (CWC) storage buildings is shipped, and the uncovered inventory is removed from the trenches and prepared for shipment from the Hanford Site, the covered inventory of suspect TRU wastes must be retrieved and prepared for processing for shipment to WIPP. Accumulation of hydrogen in unvented TRU waste containers is a concern due to the possibility of explosive mixtures of hydrogen and oxygen. The frequency and consequence of these gas mixtures resulting in an explosion must be addressed. The purpose of this study is to recommend an approach and schedule for venting TRU waste containers in the low-level burial ground (LLBG) trenches in conjunction with TRU Retrieval Project activities. This study provides a detailed analysis of the expected probability of hydrogen gas accumulation in significant quantities in unvented drums. Hydrogen gas accumulation in TRU drums is presented and evaluated in the following three categories: Hydrogen concentrations less than 5 vol%; Hydrogen between 5-15 vol%; and Hydrogen concentrations above 15 vol%. This analysis is based on complex-wide experience with TRU waste drums, available experimental data, and evaluations of storage conditions. Data reviewed in this report includes experience from the Idaho National Environmental Engineering Laboratories (INEEL), Savannah River Site (SRS), Los Alamos National Laboratories (LANL), Oak Ridge National Laboratories, (ORNL), Rocky Flats sites, Matrix Depletion Program and the National Transportation and Packaging Program. Based on this analysis, as well as an assessment of the probability and frequency of postulated credible accident scenarios, this study presents a plan and schedule for accomplishing necessary venting for segregated unvented TRU drums. A recommended method for venting TRU drums is proposed. Upon revision of the authorization basis document to include TRU drum venting, and successful completion of readiness activities; TRU drum venting will be implemented in the LLBG.

DAYLEY, L.

2004-06-24T23:59:59.000Z

198

Hydrogen  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Hydrogen production ...

199

DOE Hydrogen and Fuel Cells Program: Well-to-Wheels Case Studies for  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Well-to-Wheels Analysis Printable Version Well-to-Wheels Case Studies for Hydrogen Pathways The ultimate goal is for hydrogen to be produced and delivered utilizing several feedstocks, processing methods, and delivery options at a variety of scales ranging from large central production to very small local (distributed) production, depending on what makes the most economic and logistical sense for a given location. These parameters and the

200

Geographically Based Hydrogen Demand and Infrastructure Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Prepared for: 2010-2025 H2 Scenario Analysis Meeting Margo Melendez - NREL 2 Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36- 99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes. Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â??bottom-upâ? costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA?® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

202

DOE Hydrogen Analysis Repository: Stochastic Energy Source Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Energy Source Access Management (SESAM) Stochastic Energy Source Access Management (SESAM) Project Summary Full Title: Stochastic Energy Source Access Management (SESAM): Infrastructure-integrative modular plant for hydrogen-electric co-generation Project ID: 140 Principal Investigator: Kai Strunz Purpose The model demonstrates a renewable power plant that is designed to seamlessly integrate with the given energy infrastructure while serving the dual purpose of generating electric power and hydrogen. A multilevel storage absorbs short-term shocks on the infrastructure while also compensating for intermittency of wind and solar energy conversion in the long term. The model supports in particular analysis and design of a hydrogen infrastructure with a high penetration of renewable energy. Performer

203

Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

to Hydrogen to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results May 8, 2007 Amgad Elgowainy Argonne National Laboratory Comparison of Delivery Pathways- V1.0 vs. V2.0 2 1 3 i delivery by a Loading, the plant Version 1.0 character zed components for 3 pathways with single mode. conditioning and storage are at or adjacent to Liquid Hydrogen (LH) Truck H2 Production 100 or 1500 kg/d Compressed H2 (CH) Truck H2 Production 3 or 7 kpsi 100 or 1500 kg/d H2 Production Gaseous H2 Pipeline 100 or 1500 kg/d HDSAM V1.0 Estimates Delivery Cost for 3 Pathways 4 H2 H2 1 2 3 H2 Distribution and Ci I. Liquid H2 Distribution: HDSAM V2.0 Simulates Nine Pathways Production Production LH Terminal LH Terminal Production LH Terminal Transmission Transmission Distribution

204

Nuclear reaction analysis of hydrogen in SSC beam pipe materials  

DOE Green Energy (OSTI)

To control the photodesorption of molecular hydrogen, it is advantageous to reduce the amount of hydrogen in candidate SSC beam pipe materials and identify those procedures that: (1) lead to contamination of the beam pipe surface or materials, (2) would reduce the amount of hydrogen on the surface or in the bulk and (3) could be used for in-situ cleaning during Collider assembly or during Collider maintenance. Nuclear Reaction Analysis (NRA) can be used to quantitatively measure the amount of hydrogen on the surface or within half a micron of the surface. The present report discusses data that has been obtained for candidate SSC beam pipe materials (Nitronix 40 Stainless Steel, Nitronix 40 SS coated with electrodeposited copper (Silvex process)), oxygen-free high conductivity copper (Hitachi 101 OFHC) and several miscellaneous samples. The work demonstrates the potential of the technique for characterizing the hydrogen concentration of accelerator beam pipe materials, for assisting in the development of better vacuum system materials for TeV-scale accelerators, and for the development of better beam pipe construction or maintenance procedures for future accelerator projects.

Ruckman, M.W.; Strongin, M. [Brookhaven National Lab., Upton, NY (United States); Lanford, W.A. [State Univ. of New York, Albany, NY (United States). Dept. of Physics

1993-12-31T23:59:59.000Z

205

2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and trade - - offs) need to be assessed as part of offs) need to be assessed as part of scenario analysis. What makes hydrogen scenario analysis. What makes hydrogen FCVs FCVs...

206

Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements  

DOE Green Energy (OSTI)

Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen res

Greene, David L [ORNL; Leiby, Paul Newsome [ORNL; James, Brian [Directed Technologies, Inc.; Perez, Julie [Directed Technologies, Inc.; Melendez, Margo [National Renewable Energy Laboratory (NREL); Milbrandt, Anelia [National Renewable Energy Laboratory (NREL); Unnasch, Stefan [Life Cycle Associates; Rutherford, Daniel [TIAX, LLC; Hooks, Matthew [TIAX, LLC

2008-03-01T23:59:59.000Z

207

DOE Hydrogen Analysis Repository: PEMFC Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

PEMFC Manufacturing Cost PEMFC Manufacturing Cost Project Summary Full Title: Manufacturing Cost of Stationary Polymer Electrolyte Membrane (PEM) Fuel Cell Systems Project ID: 85 Principal Investigator: Brian James Keywords: Costs; fuel cells; stationary Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: brian_james@directedtechnologies.com Period of Performance End: November 1999 Project Description Type of Project: Analysis Category: Cross-Cutting Objectives: Estimate the cost of the fuel cell system using the Directed Technologies, Inc. cost database built up over the several years under U.S. Department of Energy and Ford Motor Company contracts.

208

DOE Hydrogen Analysis Repository: Projected Benefits - GPRA  

NLE Websites -- All DOE Office Websites (Extended Search)

Projected Benefits - GPRA Projected Benefits - GPRA Project Summary Full Title: Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs Project ID: 208 Principal Investigator: Michael Leifman Keywords: Energy efficiency; energy use; energy savings; renewable Purpose Assess the past and future contributions of the programs conducted by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) to DOE's goals of providing affordable, clean and reliable energy. The program benefits are reported in EERE's annual Congressional Budget Request. This analysis fulfills the requirements of the Government Performance and Results Act of 1993. Performer Principal Investigator: Michael Leifman Organization: U.S. Department of Energy Address: 1000 Independence Ave., SW

209

DOE Hydrogen Analysis Repository: Biomass Integrated Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Integrated Gasification Combined-Cycle Power Systems Biomass Integrated Gasification Combined-Cycle Power Systems Project Summary Full Title: Cost and Performance Analysis of Biomass-Based Integrated Gasification Combined-Cycle (BIGCC) Power Systems Project ID: 106 Principal Investigator: Margaret Mann Brief Description: This project examines the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems--high-pressure air blown, low-pressure air blown, and low-pressure indirectly heated. Purpose Examine the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems - a high pressure air-blown, a low pressure indirectly heated, and a low pressure air-blown. Performer Principal Investigator: Margaret Mann

210

Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices  

E-Print Network (OSTI)

Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices 955 REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 12, 2006 955 L'Enfant Plaza research community involved in systems analysis of hydrogen storage materials and processes for information

211

H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation  

E-Print Network (OSTI)

The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely ...

Subramanian, Vidya

212

Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements  

SciTech Connect

Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure a

Greene, David L [ORNL; Leiby, Paul Newsome [ORNL; James, Brian [Directed Technologies, Inc.; Perez, Julie [Directed Technologies, Inc.; Melendez, Margo [National Renewable Energy Laboratory (NREL); Milbrandt, Anelia [National Renewable Energy Laboratory (NREL); Unnasch, Stefan [Life Cycle Associates; Rutherford, Daniel [TIAX, LLC; Hooks, Matthew [TIAX, LLC

2008-03-01T23:59:59.000Z

213

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

60-46674 60-46674 September 2009 Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production March 27, 2008 - August 31, 2009 B.D. James, G.N. Baum, J. Perez, and K.N. Baum Directed Technologies, Inc. Arlington, Virginia National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Subcontract Report NREL/SR-560-46674 September 2009 Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production March 27, 2008 - August 31, 2009 B.D. James, G.N. Baum, J. Perez, and K.N. Baum

214

Economic Analysis of Hydrogen Production from Wind: Preprint  

DOE Green Energy (OSTI)

The purpose of this analysis is to determine the cost of using wind energy to produce hydrogen for use as a transportation fuel. This analysis assumes that a market exists for 50,000 kg of hydrogen per day produced from wind at the wind site; only production costs to the front gate are included, no delivery or dispensing costs are included. Three different scenarios are examined: near term, which represents 2005 currently available technology; mid term, which represents technological improvements and price reductions in the next 5-10 years; and long term, which is representative of the best technology gains and price reductions surmised by industry at this point, and represents the next 10-25 years.

Levene, J. I.

2005-05-01T23:59:59.000Z

215

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

216

Accurate hydrogen depth profiling by reflection elastic recoil detection analysis  

DOE Green Energy (OSTI)

A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

Verda, R. D. (Raymond D.); Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W. (Robert W.)

2001-01-01T23:59:59.000Z

217

Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint  

DOE Green Energy (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

2012-06-01T23:59:59.000Z

218

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000  

E-Print Network (OSTI)

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC, 2005 #12;SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza was to familiarize the DOE research community involved in hydrogen storage materials and process development

219

DOE Hydrogen Analysis Repository: Biomass Gasification, Microturbines and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification, Microturbines and Fuel Cells for Farming Operations Biomass Gasification, Microturbines and Fuel Cells for Farming Operations Project Summary Full Title: Opportunities for Hydrogen: An Analysis of the Application of Biomass Gasification to Farming Operations Using Microturbines and Fuel Cells Project ID: 133 Principal Investigator: Darren Schmidt Purpose To determine the feasibility of a hydrogen based biomass fueled power installation for farming operations. Performer Principal Investigator: Darren Schmidt Organization: University of North Dakota Energy & Environmental Research Center Address: 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018 Telephone: 701-777-5120 Email: dschmidt@undeerc.org Additional Performers: J.R Gunderson, University of North Dakota Period of Performance Start: June 1999

220

Hydrogen Trailer Storage Facility (Building 878). Consequence analysis  

DOE Green Energy (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This consequence analysis documents the impact that a hydrogen accident could have to employees, the general public, and nearby facilities. The computer model ARCHIE was utilized to determine discharge rates, toxic vapor dispersion analyses, flammable vapor cloud hazards, explosion hazards, and flame jets for the Hydrogen Trailer Storage Facility located at Building 878. To determine over pressurization effects, hand calculations derived from the Department of the Air Force Manual, ``Structures to Resist the Effects of Accidental Explosions,`` were utilized. The greatest distances at which a postulated facility event will produce the Lower Flammability and the Lower Detonation Levels are 1,721 feet and 882 feet, respectively. The greatest distance at which 10.0 psi overpressure (i.e., total building destruction) is reached is 153 feet.

Banda, Z.; Wood, C.L.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Hydrogen Analysis Repository: Costs of Storing and Transporting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs of Storing and Transporting Hydrogen Project Summary Full Title: Costs of Storing and Transporting Hydrogen Project ID: 114 Principal Investigator: Wade Amos Purpose An...

222

DOE Permitting Hydrogen Facilities: Hazard and Risk Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

are expected as the hydrogen infrastructure grows. And like developers of conventional gas stations, hydrogen-fueling-station developers must analyze and mitigate potential...

223

DOE Hydrogen Analysis Repository: H2CAS Model  

NLE Websites -- All DOE Office Websites (Extended Search)

decisions and actions of drivers; hydrogen fueling station investors; combined heat, hydrogen, and power system owners; and vehicle original equipment manufacturers are modeled....

224

Transient analysis of a two-phase hydrogen heat switch  

DOE Green Energy (OSTI)

A transient, thermal analysis of a two-phase hydrogen heat switch is presented. The heat switch has application to a zero-g, no-moving-part magnetic refrigerator that operates between 7 K and 25 K and provides a one-way thermal path for heat rejection from the refrigerator to the 20 K heat sink. Incorporation of the heat switch is dependent on operating frequency. However, the thermal diode operating characteristic and the high axial thermal conductivity of the heat switch provide advantages over other methods. 3 refs., 13 figs., 2 tabs.

Prenger, C.; Stewart, W.

1990-01-01T23:59:59.000Z

225

Techno Economic Analysis of Hydrogen Production by gasification of biomass  

SciTech Connect

Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

Francis Lau

2002-12-01T23:59:59.000Z

226

Techno Economic Analysis of Hydrogen Production by gasification of biomass  

DOE Green Energy (OSTI)

Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

Francis Lau

2002-12-01T23:59:59.000Z

227

Hydrogen Delivery Options and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Options and Issues Options and Issues Mark Paster DOE August, 2006 Scope * From the end point of central or distributed production (300 psi H2) to and including the dispenser at a refueling station or stationary power site - GH2 Pipelines and Trucks, LH2 Trucks, Carriers <$1.00/kg of Hydrogen by 2017 Hydrogen Delivery H2 Delivery Current Status * Technology - GH2 Tube Trailers: ~340 kg, ~2600 psi - LH2 Trucks: ~3900 kg - Pipelines: up to 1500 psi (~630 miles in the U.S.) - Refueling Site Operations (compression, storage dispensing): Demonstration projects * Cost (Does NOT include refueling Site Operations) - Trucks: $4-$12/kg - Pipeline: <$2/kg H2A Analysis * Consistent, comparable, transparent approach to hydrogen production and delivery cost analysis * Excel spreadsheet tools with common economic

228

DOE Hydrogen Analysis Repository: Powertrain Systems Analysis Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Powertrain Systems Analysis Toolkit (PSAT) Powertrain Systems Analysis Toolkit (PSAT) Project Summary Full Title: Powertrain Systems Analysis Toolkit (PSAT) Project ID: 122 Principal Investigator: Aymeric Rousseau Brief Description: PSAT is a forward-looking model that simulates fuel economy and performance in a realistic manner -- taking into account transient behavior and control system characteristics. It can simulate an unrivaled number of predefined configurations (conventional, electric, fuel cell, series hybrid, parallel hybrid, and power split hybrid). Keywords: Hybrid electric vehicles (HEV); fuel cell vehicles (FCV); vehicle characteristics Purpose Simulate performance and fuel economy of advanced vehicles to support U.S. DOE R&D activities Performer Principal Investigator: Aymeric Rousseau

229

DOE Hydrogen Analysis Repository: Macro-System Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Macro-System Model Macro-System Model Project Summary Full Title: Macro-System Model (MSM) Project ID: 66 Principal Investigator: Mark Ruth Brief Description: Federated object model framework is used to link other models to perform rapid cross-cutting analysis. Keywords: Transition; well-to-wheels (WTW); renewable; hydrogen production; emissions; cost Purpose Perform rapid cross-cutting analysis by utilizing and linking other models. This work will also improve consistency between models. Analyses that require the MSM will be used to support decisions regarding programmatic investments and focus of funding and to estimate program outputs and outcomes. Performer Principal Investigator: Mark Ruth Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

230

DOE Hydrogen Analysis Repository: H2 Production by Fermentation  

NLE Websites -- All DOE Office Websites (Extended Search)

H2 Production by Fermentation H2 Production by Fermentation Project Summary Full Title: Boundary Analysis for H2 Production by Fermentation Project ID: 70 Principal Investigator: Tim Eggeman Keywords: Hydrogen production; pressure swing adsorption (PSA); glucose; costs; fermentation Performer Principal Investigator: Tim Eggeman Organization: Neoterics International Address: 2319 S. Ellis Ct. Lakewood, CO 80228 Telephone: 303-358-6390 Email: time@NeotericsInt.com Sponsor(s) Name: Roxanne Garland Organization: DOE/EERE/HFCIT Telephone: 202-586-7260 Email: Roxanne.Garland@ee.doe.gov Name: Margaret Mann Organization: National Renewable Energy Laboratory Telephone: 303-275-2921 Email: Margaret_mann@nrel.gov Period of Performance Start: July 2001 End: September 2004 Project Description Type of Project: Analysis

231

DOE Hydrogen Analysis Repository: H2M Model of H2 Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

gas; GHG-constrained Purpose H2M supports a number of milestones in the Systems Analysis and Systems Integration activities of the DOE Hydrogen Program. Performer...

232

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network (OSTI)

demand for hydrogen- energy services and different theprojected level of energy services demanded by end-users, atservice i; Quantity of energy service i; Intensity of energy

Pigneri, Attilio

2005-01-01T23:59:59.000Z

233

Process Analysis Work for the DOE Hydrogen Program - 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

was also examined as one that could supply hydrogen to a pipeline network. For the power production scenario, the hydrogen is co-fired in a turbine at a natural gas...

234

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

for each hydrogen production cost quote. Table 2-6: HydrogenTable 2-25: Electricity Production/Control Cost Summary fromTable 2-26: Electricity Production/Control Cost Summary from

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

235

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

for each hydrogen production cost quote. Table 2-6: HydrogenTable 2-25: Electricity Production/Control Cost Summary fromTable 2-26: Electricity Production/Control Cost Summary from

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

236

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Data  

NLE Websites -- All DOE Office Websites (Extended Search)

to hydrogen development locally and regionally. These additional resources include offshore wind, concentrating solar power, geothermal, hydropower, photoelectrochemical,...

237

IMPROVED TECHNIQUE OF HYDROGEN CONTENT ANALYSIS BY SLOW NEUTRON SCATTERING  

SciTech Connect

A slow-neutron-transmission method fro dertermining the hydrogen content of fluorcarbons is described (G.Y.).

Rainwater, L.J.; Havens, W.W. Jr.

1945-02-28T23:59:59.000Z

238

Analysis of Hydrogen Depletion Using a Scaled Passive Autocatalytic Recombiner  

DOE Green Energy (OSTI)

Hydrogen depletion tests of a scaled passive autocatalytic recombine (pAR) were performed in the Surtsey test vessel at Sandia National Laboratories (SNL). The experiments were used to determine the hydrogen depletion rate of a PAR in the presence of steam and also to evaluate the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations.

Blanchat, T.K.; Malliakos, A.

1998-10-28T23:59:59.000Z

239

Technical Analysis of Hydrogen Production: Evaluation of H2 Mini-Grids  

SciTech Connect

We have assessed the transportation of hydrogen as a metal hydride slurry through pipelines over a short distance from a neighborhood hydrogen production facility to local points of use. The assessment was conducted in the context of a hydrogen "mini-grid" serving both vehicle fueling and stationary fuel cell power systems for local building heat and power. The concept was compared to a compressed gaseous hydrogen mini-grid option and to a stand-alone hydrogen fueling station. Based on our analysis results we have concluded that the metal hydride slurry concept has potential to provide significant reductions in overall energy use compared to liquid or chemical hydride delivery, but only modest reductions in overall energy use, hydrogen cost, and GHG emissions compared to a compressed gaseous hydrogen delivery. However, given the inherent (and perceived) safety and reasonable cost/efficiency of the metal hydride slurry systems, additional research and analysis is warranted. The concept could potentially overcome the public acceptance barrier associated with the perceptions about hydrogen delivery (including liquid hydrogen tanker trucks and high-pressure gaseous hydrogen pipelines or tube trailers) and facilitate the development of a near-term hydrogen infrastructure.

Lasher, Stephen; Sinha, Jayanti

2005-05-03T23:59:59.000Z

240

DOE Hydrogen and Fuel Cells Program: 2010-2025 Scenario Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis Printable Version 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure A transition from the current U.S. energy system to one based on...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Hydrogen Analysis Repository: Potential Environmental Impacts of  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Environmental Impacts of Hydrogen-Based Transportation & Power Potential Environmental Impacts of Hydrogen-Based Transportation & Power Systems Project Summary Full Title: Potential Environmental Impacts of Hydrogen-Based Transportation & Power Systems Project ID: 245 Principal Investigator: Thomas Grieb Brief Description: The goal of this project is to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, ecosystems, and structures. Purpose The overall goal of the project is to compare emissions of hydrogen, the six criteria pollutants (CO, SOX, NO2, particulate matter, ozone, and lead), and greenhouse gases from near- and long-term methods of generating hydrogen for vehicles and stationary power systems, and the effects of those emissions on climate, human health, the ecosystem, and structures.

242

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

243

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

DOE Green Energy (OSTI)

Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

2009-09-01T23:59:59.000Z

244

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

245

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

the Effect of Scale and Electricity Price 5. CONCLUSIONdominate and thus electricity price does not substantiallyof both hydrogen and electricity prices given various FCV

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

246

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

the Effect of Scale and Electricity Price 5. CONCLUSIONdominate and thus electricity price does not substantiallyof both hydrogen and electricity prices given various FCV

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

247

DOE Hydrogen Analysis Repository: Consumer Adoption and Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power Project Summary Full Title: Consumer Adoption and Infrastructure Development Including...

248

Stakeholders' Perspectives on Hydrogen Policy: A Factor Analysis  

E-Print Network (OSTI)

Gasoline plug-in hybrid electric vehicles Battery electricengine vehicles Hydrogen hybrid electric vehicles Hydrogenplug-in hybrid electric vehicles Fuel-cell vehicles

Collantes, Gustavo O

2005-01-01T23:59:59.000Z

249

STAKEHOLDERS PERSPECTIVES ON HYDROGEN POLICY: A FACTOR ANALYSIS  

E-Print Network (OSTI)

Gasoline plug-in hybrid electric vehicles Battery electricengine vehicles Hydrogen hybrid electric vehicles Hydrogenplug-in hybrid electric vehicles Fuel-cell vehicles

Collantes, G O

2005-01-01T23:59:59.000Z

250

Analysis of hydrogen vehicles with cryogenic high pressure storage  

DOE Green Energy (OSTI)

Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LIQ) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

Aceves, S. M.; Berry, G. D.

1998-06-19T23:59:59.000Z

251

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced hydrogen storage systems could also be a cost competitive alternative to pumped hydro and compressed air energy storage (CAES) under certain circumstances. Context: As...

252

Hydrogen Storage Cost Analysis, Preliminary Results - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 E-mail: bjames@sainc.com DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005253 Project Start Date: September 30, 2012 Project End Date: September 29, 2016 Fiscal Year (FY) 2012 Objectives Develop cost models of carbon fiber hydrogen storage * pressure vessels. Explore the sensitivity of pressure vessel cost to design * parameters including hydrogen storage quantity, storage

253

Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.  

DOE Green Energy (OSTI)

Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they become worried that they would run out of fuel before encountering a facility, their motivation to purchase a hydrogen-powered vehicle decreases. At vehicle purchase time, they weigh this experience, as well as other factors such as social influence by their peers, fuel cost, and capital cost of a hydrogen vehicle. Investor agents build full-service hydrogen fueling stations (HFSs) at different locations along the highway network. They base their decision to build or not build a station on their (imperfect) estimates of the sales the station would immediately generate (based on hydrogen-powered vehicle traffic past the location and other factors), as well as the growth in hydrogen sales they could expect throughout their investment horizon. The interaction between driver and investor agents provides the basis for growth in both the number of hydrogen vehicles and number of hydrogen stations. For the present report, we have added to this mix smaller, 'bare-bones' hydrogen dispensing facilities (HDFs) of the type that owners of CHHP facilities could provide to the public. The locations of these stations were chosen to match existing facilities that might reasonably incorporate CHHP plants in the future. Unlike the larger commercial stations, these facilities are built according to exogenously supplied timetables, and no attempt has been made to model the financial basis for the facilities. Rather, our objective is to understand how the presence of these additional stations might facilitate the petroleum-to-hydrogen transition. We discuss a base case in which the HDFs are not present, and then investigate the effects of introducing HDFs in various numbers; according to different timetables; with various production capacities; and with hydrogen selling at prices above, equal to, and below the commercial stations selling price. We conclude that HDFs can indeed be helpful in accelerating a petroleum-to-hydrogen transition. Placed in areas where investors might not be willing to install large for-profit HFSs, HDFs can serve as a bridge until demand for hydrogen increases to the point where l

Mahalik, M.; Stephan, C. (Decision and Information Sciences)

2011-01-18T23:59:59.000Z

254

Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report  

DOE Green Energy (OSTI)

In FY 2004 and 2005, NREL developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. This report identifies key metropolitan areas and regions on which to focus infrastructure efforts during the early hydrogen transition.

Melendez, M.; Milbrandt, A.

2006-10-01T23:59:59.000Z

255

Hydrogen engine performance analysis project. Second annual report  

DOE Green Energy (OSTI)

Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

1980-01-01T23:59:59.000Z

256

Hydrogen Delivery Infrastructure Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Amgad Elgowainy (Primary Contact), Marianne Mintz and Krishna Reddi Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-3074 Email: aelgowainy@anl.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 2007 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Identify cost drivers of current technologies for hydrogen * delivery to early market applications of fuel cells Evaluate role of high-pressure tube-trailers in reducing * hydrogen delivery cost Identify and evaluate benefits of synergies between *

257

U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis  

DOE Green Energy (OSTI)

This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

Saur, G.; Ainscough, C.

2011-12-01T23:59:59.000Z

258

Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.  

DOE Green Energy (OSTI)

Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

Mintz, M.; Gillette, J.; Elgowainy, A. (Decision and Information Sciences); ( ES)

2009-01-01T23:59:59.000Z

259

Hydrogen Sulfide Dispersion Consequences Analysis in Different Wind Speeds: A CFD Based Approach  

Science Conference Proceedings (OSTI)

Hydrogen sulfide (h2s) leakage and dispersion from a sulfide recycle installation in different wind speeds are simulated by implementing a 3D Computational Fluid Dynamics (CFD) model. H2s concentrations of monitor points which represent dispersion contours ... Keywords: CFD, hydrogen Sulfide, dispersion, concenquences analysis, different wind speeds

Bo Zhang; Guo-ming Chen

2009-10-01T23:59:59.000Z

260

Technical Analysis: Integrating a Hydrogen Energy Station into a Federal Building  

E-Print Network (OSTI)

be achievable, and as typical load profiles for the fueling station and for the buildings are often partiallyTechnical Analysis: Integrating a Hydrogen Energy Station into a Federal Building Stefan Unnasch NREL/CP-610-32405 #12;electric power demand from the fuel cell and vehicle hydrogen demand result

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE Hydrogen Analysis Repository: Impact of Program Goals on...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Date U.S. Department of Energy Impact of Program Goals on Hydrogen Vehicles: Market Prospect, Costs, and Benefits Project Summary Full Title: Impact of Program Goals on...

262

Thermal Hydraulic Analysis of HTGR Coupled with Hydrogen Plant  

DOE Green Energy (OSTI)

The US Department of Energy is investigating the use of high-temperature gas-cooled reactors (HTGR) to produce electricity and hydrogen. Although the hydrogen production processes using the nuclear energy are in an early stage of development, coupling hydrogen plant to HTGR requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear plant. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) coupled to hydrogen plant. In this study, we investigated a number of design configurations and performed thermal hydraulic analyses using various working fluids and various conditions. This paper includes a portion of thermal hydraulic results based on a direct cycle and a parallel intermediate heat exchanger (IHX) configuration option.

Chang Oh; Cliff Davis; Robert Barner; Paul Pickard

2006-06-01T23:59:59.000Z

263

Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis  

E-Print Network (OSTI)

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

Tomas Roubicek; Giuseppe Tomassetti

2013-09-12T23:59:59.000Z

264

Analysis of Potential Hydrogen Risk in the PWR Containment  

SciTech Connect

Various studies have shown that hydrogen combustion is one of major risk contributors to threaten the integrity of the containment in a nuclear power plant. That hydrogen risk should be considered in severe accident strategies in current and future NPPs has been emphasized in the latest policies issued by the National Nuclear Safety Administration of China (NNSA). According to a deterministic approach, three typical severe accident sequences for a PWR large dry containment, such as the large break loss-of-coolant (LLOCA), the station blackout (SBO), and the small break loss-of-coolant (SLOCA) are analyzed in this paper with MELCOR code. Hydrogen concentrations in different compartments are observed to evaluate the potential hydrogen risk. The results show that there is a great amount of hydrogen released into the containment, which causes the containment pressure to increase and some potential in-consecutive burning. Therefore, certain hydrogen management strategies should be considered to reduce the risk to threaten the containment integrity. (authors)

Deng Jian; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

2006-07-01T23:59:59.000Z

265

DOE Hydrogen Analysis Repository: CO2 Reduction Benefits Analysis for Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Reduction Benefits Analysis for Fuel Cell Applications CO2 Reduction Benefits Analysis for Fuel Cell Applications Project Summary Full Title: CO2 Reduction Benefits Analysis for Fuel Cell Applications Project ID: 263 Principal Investigator: Chip Friley Brief Description: This analysis used the 10-region U.S. MARKAL model to quantify the impact of changes in production, distribution and vehicle costs and carbon prices on fuel cell vehicle penetration and overall carbon dioxide emissions. Keywords: Carbon dioxide (CO2); Hydrogen; Fuel cells Purpose Perform analysis of topics of interest to the DOE Fuel Cell Technologies program related to projected carbon dioxide reduction benefits of fuel cell applications. Performer Principal Investigator: Chip Friley Organization: Brookhaven National Laboratory (BNL) Address: Mail Stop 475C

266

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

267

Resource Analysis for Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Donna Heimiller National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 1, 2009 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Understand the hydrogen production requirements for a * future demand scenario Estimate low-carbon energy resources required to meet * the future scenario demand Compare resource requirements to current consumption * and projected future consumption Determine resource availability geographically and on a *

268

Hydrogen Refueling Infrastructure Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Darlene Steward National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: IDC Energy Insights, Framingham, MA Project Start Date: October 1, 2010 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Identify the capacity (kg/day) and capital costs * associated with "Early Commercial" hydrogen stations (defined below) Identify cost metrics for larger numbers of stations and * larger capacities Technical Barriers This project addresses the following technical barriers

269

Hydrogen and Fuel Cells R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids --Hydrogen Storage Materials --Hydrogen Storage Systems Modeling and Analysis --Thermochemical Hydrogen * Fuel Cells --Polymer Electrolyte --Modeling & Analysis --Fuel...

270

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

271

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Science Conference Proceedings (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

272

Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report  

DOE Green Energy (OSTI)

This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are also included in this study. Based on this analysis, the estimated future selling price of hydrogen produced from algae ranges $0.57/kg to $13.53/kg.

Amos, W. A.

2004-01-01T23:59:59.000Z

273

Natural Gas Utilities Options Analysis for the Hydrogen Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

6 January 2005 6 January 2005 Oak Ridge National Laboratory Oak Ridge, TN Mark E. Richards Manager, Advanced Energy Systems 2 Gas Technology Institute > GTI is an independent non-profit R&D organization > GTI focuses on energy & environmental issues - Specialize on natural gas & hydrogen > Our main facility is an 18- acre campus near Chicago - Over 350,000 ft 2 GTI's Main Research Facility GTI's Energy & Environmental Technology Center 3 GTI RD&D Organization Robert Stokes Vice-President Research & Deployment Hydrogen Fuel Processing Low-Temperature Fuel Cells High-Temperature Fuel Cells Vehicle Fuel Infrastructure Gerry Runte Executive Director Hydrogen Energy Systems Gasification & Hot Gas Cleanup Process Engineering Thermal Waste Stabilization

274

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review  

NLE Websites -- All DOE Office Websites (Extended Search)

& Hydrogen Production Technical Team Research Review Agenda for Tuesday, November 6, 2007 Location: BCS Incorporated, 8929 Stephens Road, Laurel, MD. 20723 410-997-7778 8:30 - 9:00 Continental Breakfast 9:00 DOE Targets, Tools and Technology o Bio-Derived Liquids to Hydrogen Distributed Reforming Targets DOE, Arlene Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen Distributed Reforming Cost Analysis DTI, Brian James 10:00 Research Review o Low-Cost Hydrogen Distributed Production Systems, H2Gen, Sandy Thomas o Integrated Short Contact Time Hydrogen Generator, GE Global Research, Wei Wei o Distributed Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar

275

Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II  

DOE Green Energy (OSTI)

Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

TIAX, LLC

2005-05-04T23:59:59.000Z

276

A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.  

DOE Green Energy (OSTI)

The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James

2010-10-01T23:59:59.000Z

277

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network (OSTI)

integration team for the National Hydrogen Roadmap in 2002.in the H2A, a group of hydrogen analysts convened by theframework for analyzing hydrogen systems, and serves on the

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

278

Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution  

E-Print Network (OSTI)

integration team for the National Hydrogen Roadmap in 2002.in the H2A, a group of hydrogen analysts convened by theframework for analyzing hydrogen systems, and serves on the

Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

2006-01-01T23:59:59.000Z

279

DOE Hydrogen Analysis Repository: Using HyPro to Evaluate Competing  

NLE Websites -- All DOE Office Websites (Extended Search)

Using HyPro to Evaluate Competing Hydrogen Pathways Using HyPro to Evaluate Competing Hydrogen Pathways Project Summary Full Title: Using HyPro to Evaluate Competing Hydrogen Pathways Project ID: 217 Principal Investigator: Brian D. James Keywords: Steam methane reforming (SMR); electrolysis; biomass; fuel cell vehicles (FCV); costs Purpose This project provides analysis of the options and trade-offs associated with establishing the required hydrogen production infrastructure to provide hydrogen to fuel cell vehicles in the 2020 timeframe and beyond. Performer Principal Investigator: Brian D. James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-778-7114 Email: Brian_James@directedtechnologies.com Additional Performers: Sentech, Inc.; H2Gen Innovations, Inc.; ChevronTexaco Technology Ventures; Teledyne Energy Services

280

Global Assessment of Hydrogen Technologies Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies  

Science Conference Proceedings (OSTI)

This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOEs high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Hydrogen Analysis Repository: Gasification-Based Fuels and Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification-Based Fuels and Electricity Production from Biomass Gasification-Based Fuels and Electricity Production from Biomass Project Summary Full Title: Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage Project ID: 226 Principal Investigator: Eric D. Larson Keywords: Biomass; Fischer Tropsch; hydrogen Purpose Develop and analyze process designs for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch (F-T) fuels, dimethyl ether (DME), and hydrogen. All process designs will have some level of co-production of electricity, and some will include capture of byproduct CO2 for underground storage. Performer Principal Investigator: Eric D. Larson Organization: Princeton University Telephone: 609-258-4966 Email: elarson@princeton.edu

282

Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering  

DOE Green Energy (OSTI)

The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

2002-11-01T23:59:59.000Z

283

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

284

Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report  

DOE Green Energy (OSTI)

This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

2010-04-30T23:59:59.000Z

285

HyPro: Modeling the Hydrogen Transition  

NLE Websites -- All DOE Office Websites (Extended Search)

and exercise it to determine the key drivers of the hydrogen transition. 2005 Develop a production database from H2A and an economic cost model to determine and compare...

286

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

287

Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008  

Fuel Cell Technologies Publication and Product Library (EERE)

Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and

288

DOE Hydrogen and Fuel Cells Program Record 5040: 2005 Hydrogen Cost from Water Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

40 Date: December 12, 2008 40 Date: December 12, 2008 Title: 2005 Hydrogen Cost from Water Electrolysis Originator: Roxanne Garland Approved by: Sunita Satyapal Date: December 19, 2008 Item: The 2005 cost status for hydrogen produced from distributed water electrolysis is $5.90 / gge. Assumptions and References: The H2A analysis used to determine the projected cost of $5.88/gge (rounded up to $5.90/gge) was performed by Directed Technologies, Inc. and can be found in Record 5040a. The increase in cost compared to the 2004 analysis ($5.45/gge) is due to two assumptions changed in the model: (a) an increase in the industrial electricity price from 5¢/kWh to 5.5¢/kWh from the EIA Annual Energy Outlook, and (b) an increase in the capital cost estimate of the electrolyzer. The other assumptions in the analysis used standard values

289

Fuel Cell Technologies Office: Hydrogen Systems Analysis Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lee Slezak, OFCVT Fuel Pathways Integration Tech Team (PDF 109 KB), Don Gardner, ExxonMobil Planning, Budget, and Analysis (PDF 267 KB), Phil Patterson, PBA Argonne National...

290

Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation  

DOE Green Energy (OSTI)

This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

Fleming, W.H. Jr.

1999-10-20T23:59:59.000Z

291

Systems Analysis Sub-Program Overview - DOE Hydrogen and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Displaced Technology-Related Total 2009 2010 2011 - PRELIMINARY ANALYSIS - Including Backup Power Fuel Cells and Fuel Cell-Powered Forklifts Employment Impacts of ARRA Fuel Cell...

292

DOE Hydrogen Analysis Repository: Consumer Preferences for Refueling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Preferences for Refueling Availability Project Summary Full Title: Discrete Choice Analysis of Consumer Preferences for Refueling Availability Project ID: 249 Principal...

293

NREL: Hydrogen and Fuel Cells Research - Energy Analysis and...  

NLE Websites -- All DOE Office Websites (Extended Search)

related studies and research centers. International Council for Clean Transportation McKinsey & Company: A Portfolio of Powertrains for Europe: a Fact-Based Analysis of the Role...

294

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

295

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

296

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

297

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

298

Applications of nuclear reaction analysis for determining hydrogen and deuterium distribution in metals  

DOE Green Energy (OSTI)

The use of ion beams for materials analysis has made a successful transition from the domain of the particle physicist to that of the materials scientist. The subcategory of this field, nuclear reaction analysis, is just now undergoing the transition, particularly in applications to hydrogen in materials. The materials scientist must locate the nearest accelerator, because now he will find that using it can solve mysteries that do not yield to other techniques. 9 figures

Altstetter, C.J.

1981-01-01T23:59:59.000Z

299

Prediction of gas pressurization and hydrogen generation for shipping hazard analysis : Six unstabilized PU 02 samples  

DOE Green Energy (OSTI)

Radiolysis of water to form hydrogen gas is a safety concern for safe storage and transport of plutonium-bearing materials. Hydrogen gas is considered a safety hazard if its concentration in the container exceeds five percent hydrogen by volume, DOE Docket No. 00-1 1-9965. Unfortunately, water cannot be entirely avoided in a processing environment and these samples contain a range of water inherently. Thermodynamic, chemical, and radiolysis modeling was used to predict gas generation and changes in gas composition as a function of time within sealed containers containing plutonium bearing materials. The results are used in support of safety analysis for shipping six unstabilized (i.e. uncalcined) samples from Rocky Flats Environmental Technology Sits (RFETS) to the Material Identification and Surveillance (MIS) program at Los Alamos National Lab (LANL). The intent of this work is to establish a time window in which safe shipping can occur.

Moody, E. W. (Eddie W.); Veirs, D. K. (Douglas Kirk); Lyman, J. L. (John L.)

2001-01-01T23:59:59.000Z

300

Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Market Modeling of Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Paul N. Leiby, David L. Greene and David Bowman Oak Ridge National Laboratory A presentation to the Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams May 8-9, 2007 Columbia, MD 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Drawing from several other DOE models, HyTrans integrates supply and demand in a dynamic non-linear market model to 2050. * H2A - Hydrogen Production - Hydrogen Delivery * PSAT & ASCM - Fuel economy - 2010/2015 cost & performance goals * ORNL Vehicle Choice Model - Fuel availability - Make & model diversity - Price, fuel economy, etc. * Vehicle Manufacturing Cost Estimates (assisted by OEMs)

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Hydrogen Analysis Repository: Advanced Vehicle Simulator (ADVISOR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Simulator (ADVISOR) Advanced Vehicle Simulator (ADVISOR) Project Summary Full Title: Advanced Vehicle Simulator (ADVISOR) Project ID: 108 Principal Investigator: Matthew Thornton Brief Description: ADVISOR is used to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. Keywords: Hybrid electric vehicles (HEV); vehicle characteristics; vehicle performance; fuel consumption Purpose ADVISOR was designed as an analysis tool to assist the DOE in developing and understanding hybrid electric vehicles through the Hybrid Vehice Propulsion Systems contracts with Ford, GM, and DaimlerChrysler. Performer Principal Investigator: Matthew Thornton Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

302

DOE Hydrogen Analysis Repository: Water Use for Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Use for Power Production Water Use for Power Production Project Summary Full Title: Consumptive Water Use for U.S. Power Production Project ID: 205 Principal Investigator: Paul Torcellini Keywords: Water, energy use, electricity generation Purpose Estimate the water consumption at power plants to provide a metric for determining water efficiency in building cooling systems. Performer Principal Investigator: Paul Torcellini Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-384-7528 Email: paul_torcellini@nrel.gov Additional Performers: R. Judkoff, National Renewable Energy Laboratory; N. Long, National Renewable Energy Laboratory Period of Performance End: December 2003 Project Description Type of Project: Analysis

303

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

304

DOE Hydrogen Analysis Repository: Policy Office Electricity Modeling System  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Office Electricity Modeling System (POEMS) Policy Office Electricity Modeling System (POEMS) Project Summary Full Title: Policy Office Electricity Modeling System (POEMS) Project ID: 93 Principal Investigator: Lessly Goudarzi Purpose Designed and built by OnLocation specifically to address electricity industry restructuring issues Performer Principal Investigator: Lessly Goudarzi Organization: OnLocation, Inc. Address: Suite 300, 501 Church Street Vienna, VA 22180 Telephone: 703-938-5151 Email: goudarzi@onlocationinc.com Project Description Type of Project: Model Category: Energy Infrastructure Products/Deliverables Description: National Transmission Grid Study - Appendix A Publication Title: Policy Office Electricty Modeling System (POEMS) and Documentation for Transmission Analysis (PDF 461 KB) Download Adobe Reader.

305

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

2011-09-01T23:59:59.000Z

306

Preliminary analysis of gain measurements at the HFBR liquid hydrogen moderator  

DOE Green Energy (OSTI)

The High Flux Beam Reactor (HFBR) is a 60 MW steady state neutron source. As part of the facility a cold neutron source is included in one of the beam tubes (H-9). The arrangement of this source is shown in Figure 1, which shows the reactor core, beam tube H-9, and the cold source with its attached helium cooling lines and hydrogen feed lines. The liquid hydrogen chamber is in the shape of an oblate spheroid and has a volume of 1.466 liters, and an aspect ratio of 1:3. Aluminum is used as the material of construction. The wall thickness of the chamber varies, with the thinnest value being on the flatter parts of the oblate spheroid. This design minimizes the amount of metal in the direction of the neutron beam of interest. Gain is defined as the ratio of the flux at a specific wave length leaking from the front face of the cold source, with and without the liquid hydrogen present. Measurements of the gain were made at several wavelength for the HFBR cold source. The change in the neutron spectrum at a particular wave length is a strong function of the scattering kernel of the moderator. Thus, these measurements can be used as integral data to validate calculational models and scattering kernel data for liquid hydrogen, and shed light on the actual mixture of ortho/para hydrogen in the cold source. Two scattering kernels for each of the states of liquid hydrogen (ortho and para) were available at the beginning of the study. The total scattering cross section for each of these are shown. The two ortho kernels are seen to be quite similar. However, in the case of para-hydrogen there is seen to be a significant difference between the two cross sections at lower energies or longer wavelengths. This difference implies a similar difference in the scattering kernel. In the following analysis both para-hydrogen kernels and only one ortho-hydrogen kernel will be used. In addition, a free proton gas kernel (no molecular binding) will be used for comparison purposes.

Ludewig, H.; Aronson, A.; Todosow, M.; Passell, L.; Wildgruber, U.

1998-05-01T23:59:59.000Z

307

DOE Hydrogen Analysis Repository: Evaluation of Energy Recovery Act Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Energy Recovery Act Fuel Cell Initiative Evaluation of Energy Recovery Act Fuel Cell Initiative Project Summary Full Title: Evaluation of U.S. DOE Energy Recovery Act Fuel Cell (Technologies Program) Initiative (ARRA-FCI) Project ID: 284 Principal Investigator: Brian James Brief Description: An evaluation was conducted to assess the early stage "market change" impacts of the Fuel Cell (Technologies Program) Initiative of the American Recovery and Reinvestment Act (ARRA-FCI) to accelerate fuel cell deployment and commercialization. Performer Principal Investigator: Brian James Organization: Strategic Analysis, Inc. Address: 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Telephone: 703-778-7114 Email: bjames@sainc.com Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/FCTO Telephone: 202-586-7932

308

DOE Hydrogen Analysis Repository: Stranded Biogas Decision Tool for Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Stranded Biogas Decision Tool for Fuel Cell Co-Production Stranded Biogas Decision Tool for Fuel Cell Co-Production Project Summary Full Title: Stranded Biogas Decision Tool for Fuel Cell Co-Production Project ID: 257 Principal Investigator: Michael Ulsh Brief Description: This project will explore the feasibility and utility of using stranded biogas resources in fuel cell co-production networks as well as lay the basis for development of analysis and decision-making tools for potential biogas sources and energy end-users to evaluate the economic feasibility of deploying these systems. Performer Principal Investigator: Michael Ulsh Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-275-3842 Email: michael.ulsh@nrel.gov Website: http://www.nrel.gov

309

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750C Reactor Outlet Temperature  

SciTech Connect

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

310

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

HyDIVE(tm) HyDIVE(tm) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) model analysis Cory Welch Hydrogen Analysis Workshop, August 9-10 Washington, D.C. Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes. Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their

311

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

6719 6719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-560-46719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden Prepared under Task No. H278.3400 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

312

Contain analysis of hydrogen distribution and combustion in PWR dry containments  

DOE Green Energy (OSTI)

Hydrogen transport and combustion in a PWR dry containment are analyzed using the CONTAIN code for a multi-compartment model of the Zion plant. The analysis includes consideration of both degraded core and full core meltdown accidents initiated by a small break LOCA. The importance of intercell flow mixing on distributions of gas composition and temperature in various compartments are evaluated. Thermal stratification and combustion behavior are discussed. 4 refs., 8 figs., 2 tabs.

Yang, J.W.; Nimnual, S.

1991-01-01T23:59:59.000Z

313

Analysis of the benefits of carbon credits to hydrogen addition to midsize gas turbine feedstocks.  

Science Conference Proceedings (OSTI)

The addition of hydrogen to the natural gas feedstocks of midsize (30-150 MW) gas turbines was analyzed as a method of reducing nitrogen oxides (NO{sub x}) and CO{sub 2} emissions. In particular, the costs of hydrogen addition were evaluated against the combined costs for other current NO{sub x} and CO{sub 2} emissions control technologies for both existing and new systems to determine its benefits and market feasibility. Markets for NO{sub x} emissions credits currently exist in California and the Northeast States and are expected to grow. Although regulations are not currently in place in the United States, several other countries have implemented carbon tax and carbon credit programs. The analysis thus assumes that the United States adopts future legislation similar to these programs. Therefore, potential sale of emissions credits for volunteer retrofits was also included in the study. It was found that hydrogen addition is a competitive alternative to traditional emissions abatement techniques under certain conditions. The existence of carbon credits shifts the system economics in favor of hydrogen addition.

Miller, J. (Energetics Inc., Washington, DC); Towns, B. (Energetics Inc., Washington, DC); Keller, Jay O.; Schefer, Robert W.; Skolnik, Edward G. (Energetics Inc., Washington, DC)

2006-02-01T23:59:59.000Z

314

DOE Annual Progress Report: Water Needs and Constraints for Hydrogen Pathways  

DOE Green Energy (OSTI)

Water is a critical feedstock in the production of hydrogen. In fact, water and many of the energy transformations upon which society depends are inextricably linked. Approximately 39% of freshwater withdrawals are used for cooling of power plants, and another 8% are used in industry and mining (including oil and gas extraction and refining). Major changes in the energy infrastructure (as envisioned in a transformation to a hydrogen economy) will necessarily result in changes to the water infrastructure. Depending on the manner in which a hydrogen economy evolves, these changes could be large or small, detrimental or benign. Water is used as a chemical feedstock for hydrogen production and as a coolant for the production process. Process and cooling water must meet minimum quality specifications (limits on mineral and organic contaminants) at both the inlet to the process and at the point of discharge. If these specifications are not met, then the water must be treated, which involves extra expenditure on equipment and energy. There are multiple options for water treatment and cooling systems, each of which has a different profile of equipment cost and operational requirements. The engineering decisions that are made when building out the hydrogen infrastructure will play an important role in the cost of producing hydrogen, and those decisions will be influenced by the regional and national policies that help to manage water resources. In order to evaluate the impacts of water on hydrogen production and of a hydrogen economy on water resources, this project takes a narrowly-scoped lifecycle analysis approach. We begin with a process model of hydrogen production and calculate the process water, cooling, electricity and energy feedstock demands. We expand beyond the production process itself by analyzing the details of the cooling system and water treatment system. At a regional scale, we also consider the water use associated with the electricity and fuel that feed hydrogen production and distribution. The narrow scope of the lifecycle analysis enables economic optimization at the plant level with respect to cooling and water treatment technologies. As water withdrawal and disposal costs increase, more expensive, but more water-efficient technologies become more attractive. Some of the benefits of these technologies are offset by their increased energy usage. We use the H2A hydrogen production model to determine the overall cost of hydrogen under a range of water cost and technology scenarios. At the regional level, we are planning on following the hydrogen roll-out scenarios envisioned by Greene and Leiby (2008) to determine the impact of hydrogen market penetration on various watersheds. The economics of various water technologies will eventually be incorporated into the temporal and geographic Macro System Model via a water module that automates the spreadsheet models described. At the time of this progress report, the major achievement for FY2009 has been the completion of the framework and analytical results of the economic optimization of water technology for hydrogen production. This accomplishment required the collection of cost and performance data for multiple cooling and water treatment technologies, as well as the integration of a water and energy balance model with the H2A framework. 22 (twenty-two) different combinations of production method (SMR, electrolysis), scale (centralized, forecourt), cooling (evaporative tower, dry) and water treatment (reverse osmosis, ion exchange) were evaluated. The following data were collected: water withdrawal, water discharge, electricity consumption, equipment footprint, equipment cost, installation cost, annual equipment and material costs and annual labor costs. These data, when consolidated, fit into a small number of input cells in H2A. Items such as capital cost end up as line-items for which there is space in the existing H2A spreadsheets. Items such as electricity use are added to the values that already exist in H2A. Table 1 lists eight potential technology combina

Simon, A; Daily, W

2009-07-02T23:59:59.000Z

315

Data Collection, Quality Assurance, and Analysis Plan for the 2008/2009 Hydrogen and Fuel Cells Knowledge and Opinions Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

13 13 DATA COLLECTION, QUALITY ASSURANCE, AND ANALYSIS PLAN FOR THE 2008/2009 HYDROGEN AND FUEL CELLS KNOWLEDGE AND OPINIONS SURVEYS R. L. Schmoyer Tykey Truett Susan Diegel September 2008 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 Managed by UT-BATTELLE, LLC For the U.S. DEPARTMENT OF ENERGY Under contract No. DE-AC05-00OR22725 Prepared for the Hydrogen Program Office of Energy Efficiency and Renewable Energy U.S. DEPARTMENT OF ENERGY Washington, D.C. Analysis Plan: Hydrogen Surveys i 9/29/2008 TABLE OF CONTENTS ACRONYMS ................................................................................................................ii ABSTRACT ................................................................................................................

316

System Level Analysis of Hydrogen Storage Options - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rajesh K. Ahluwalia (Primary Contact), T. Q. Hua, J-K Peng, Hee Seok Roh, and Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-5979 Email: walia@anl.gov DOE Manager HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov Start Date: October 1, 2004 Projected End Date: September 30, 2014 Objective The overall objective of this effort is to support DOE with independent system level analyses of various H 2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Fiscal Year (FY) 2012 Objectives Model various developmental hydrogen storage systems. * Provide results to Hydrogen Storage Engineering Center *

317

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage  

E-Print Network (OSTI)

L. Schlapbach, Ed. , Hydrogen as a Future Energy Carrier .M.S. Dresselhaus, Int. J. Hydrogen Energy 33 (2008) 4122-Kojima, T. Haga, Int. J. Hydrogen Energy 28 9 (2003) 989-993

Barcelo, Steven James

2009-01-01T23:59:59.000Z

318

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage  

E-Print Network (OSTI)

low volume, energy efficient hydrogen storage system if fuelof Energy (DOE) for on-board hydrogen storage. However,hydrogen storage system as defined by the Department of Energy.

Barcelo, Steven James

2009-01-01T23:59:59.000Z

319

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

320

Fuel Cell Technologies Office: Strategic Directions for Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Data Analysis Overview; Preprint  

DOE Green Energy (OSTI)

Paper for the 2005 National Hydrogen Association conference provides an overview of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Welch, C.; Wipke, K.; Gronich, S.; Garbak, J.

2005-03-01T23:59:59.000Z

322

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

diesel via hydrogenation Coalbiomass co-feeding for FT diesel production Various corn ethanol plant types with different process fuels * Hydrogen-powered FC systems (not...

323

Early Market TRL/MRL Analysis - DOE Hydrogen and Fuel Cells Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

2011a. The Department of Energy Hydrogen and Fuel Cells Program Plan - An Integrated Strategic Plan for the Research, Development and Demonstration of Hydrogen and Fuel Cell...

324

Technical Analysis of Projects Being Funded by the DOE Hydrogen Program  

DOE Green Energy (OSTI)

In July 2000, Energetics began a project in which we performed site-visit based technical analyses or evaluations on hydrogen R&D projects for the purpose of providing in-depth information on the status and accomplishments of these projects to the public, and especially to hydrogen stakeholders. Over a three year period, 32 site-visit analyses were performed. In addition two concepts gleaned from the site visits became subjects of in depth techno-economic analyses. Finally, Energetics produced a compilation document that contains each site-visit analysis that we have performed, starting in 1996 on other contracts through the end of Year One of the current project (July 2001). This included 21 projects evaluated on previous contracts, and 10 additional ones from Year One. Reports on projects visited in Years One and Two were included in their respective Annual Reports. The Year Two Report also includes the two In-depth Analyses and the Compilation document. Reports in Year three began an attempt to perform reviews more geared to hydrogen safety. This Final Report contains a summary of the overall project, all of the 32 site-visit analyses and the two In-depth Analyses.

Edward G. Skolnik

2006-02-10T23:59:59.000Z

325

FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10,  

NLE Websites -- All DOE Office Websites (Extended Search)

August 9-10, 2006 to someone by E-mail August 9-10, 2006 to someone by E-mail Share FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Facebook Tweet about FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Twitter Bookmark FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Google Bookmark FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Delicious Rank FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on Digg Find More places to share FCT Systems Analysis: DOE 2010-2025 Scenario Analysis Meeting: August 9-10, 2006 on AddThis.com... Home Analysis Methodologies DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery

326

Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term  

NLE Websites -- All DOE Office Websites (Extended Search)

Option Analysis Project Kick Off Meeting SOW, Budget, Schedule Tan-Ping Chen DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting February 8-9, 2005 Argonne National Laboratory 2 Project Team Real world infrastructure project experience * Air Liquide * GTI * Nexant Technology forward looking expertise * Tiax * NREL Ultimate users to advise on H2 infrastructure path * ChevronTexaco Technology Venture (CTTV) * Pinnacle West (PW) 3 Current Gas Station Operation in US 220 million cars for 280 million people = roughly 1 car/person Gasoline dispensed per station = 2,000 gallons/d Gasoline filled in the station = 8-10 gallons/car Cars pulled in per station = 200-250/d Fueling peaks at the morning and afternoon rush hours People do refueling close to home and work place

327

Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009)  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2013 September 2013 Presentation to: Biological Hydrogen Production Workshop By: Brian D. James Strategic Analysis Inc. Bjames@sainc.com (703) 778-7114 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information * DOE/NREL Bio H 2 Working Group * Roxanne Garland, DOE * Ali Jalalzadeh-Azar, NREL * Mike Seibert, NREL * Maria Ghirardi, NREL * Pin-Ching Maness, NREL * Tasio Melis, UC Berkeley * Gerald C. Dismukes - Princeton University * Bruce Logan, Penn State * DTI Team * Brian James * George Baum * Julie Perez * Kevin Baum Overview of 2009 Directed Technologies Inc. (DTI) Analysis 2 This presentation does not contain any proprietary, confidential, or otherwise restricted information  Start Date: April 2008

328

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

329

FCT Hydrogen Production: Hydrogen Production R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

330

Comparative analysis of hydrogen fire and explosion incidents: quarterly report No. 2, December 1, 1977--February 28, 1978  

DOE Green Energy (OSTI)

Additional hydrogen incident reports compiled during this quarter have increased the size of the computerized data base to a current total of 280 incidents. Listings of 165 incidents that have occurred in industrial and transportation operations since 1968 are presented here. Sample case histories in six different cause categories are provided together with a discussion of common safety problems contributing to these incidents. Some of these problems are inadequate detection measures for hydrogen leaks and fires and ineffective purging with inert gas. A preliminary comparison of losses due to natural gas fires/explosions and hydrogen incidents indicates that hydrogen explosions have been, on the average, four-to-six times as damaging as natural gas explosions. Some tentative explanations for this result are presented but await confirmation from a more sophisticated statistical analysis.

Zalosh, R.G.; Short, T.P.

1978-03-01T23:59:59.000Z

331

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network (OSTI)

Environment 38, 305319. NRC, 1991. Rethinking the ozonePress, Washington, D.C. NRC, 2004. The Hydrogen Economy:economy is quite attractive (NRC, 2004). Use of hydrogen in

Wang, Guihua

2008-01-01T23:59:59.000Z

332

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

333

DOE Hydrogen and Fuel Cells Program: DOE Fuel Cell Power Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen production, lowering fossil energy use and greenhouse gas emissions, reducing electricity transmission congestion, lowering capital investment risk, and providing...

334

DOE Hydrogen Analysis Repository: NEMS-H2 (National Energy Modeling...  

NLE Websites -- All DOE Office Websites (Extended Search)

economic aspects of hydrogen production, delivery, and consumption. Keywords: Energy prices; emissions; production; imports; energy consumption; economic Purpose NEMS projects...

335

Finite element analysis of contact stress in a full-metallic pipe joint for hydrogen pipelines  

Science Conference Proceedings (OSTI)

Hydrogen gas has been widely recognized as an environmentally clean and renewable energy fuel, and it provides a way to reduce greenhouse gas and air pollution emission. A great deal of effort has been made to develop new techniques in the field of hydrogen ... Keywords: contact stress analyses, finite element model (FEM), hydrogen pipelines, metallic gasket, pipe joint

Nan Bu; Naohiro Ueno; Osamu Fukuda

2010-02-01T23:59:59.000Z

336

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

337

Analysis of the Three Mile Island Unit 2 hydrogen burn. Volume 4  

DOE Green Energy (OSTI)

As a basis for the analysis of the hydrogen burn which occurred in the Three Mile Island Containment on March 28, 1979, a study of recorded temperatures and pressures was made. Long-term temperature information was obtained from the multipoint temperature recorder which shows 12 containment atmosphere temperatures plotted every 6 min. The containment atmosphere pressure recorder provided excellent long- and short-term pressure information. Short-term information was obtained from the multiplex record of 24 channels of data, recorded every 3 sec, and the alarm printer record which shows status change events and prints out temperatures, pressures, and the time of the events. The timing of these four data recording systems was correlated and pertinent data were tabulated, analyzed, and plotted to show average containment temperature and pressure versus time. Photographs and videotapes of the containment entries provided qualitative burn information.

Henrie, J.O.; Postma, A.K.

1983-03-01T23:59:59.000Z

338

DOE Hydrogen Analysis Repository: A Portfolio of Power-Trains for Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

A Portfolio of Power-Trains for Europe A Portfolio of Power-Trains for Europe Project Summary Full Title: A Portfolio of Power-Trains for Europe: A Fact-Based Analysis Project ID: 266 Principal Investigator: Brief Description: This study reports the results of a factual evaluation of battery electric vehicles, fuel cell electric vehicles, plug-in hybrid electric vehicles, and internal combustion engine vehicles for the European market based on proprietary industry data. Keywords: Alternative fuel vehicles (AFV); Fuel cell vehicles (FCV); Plug-in hybrid electric vehicles (PHEV); Costs; Greenhouse gases (GHG); Emissions; Battery electric vehicles (BEV); Internal combustion engine (ICE); Hydrogen Purpose A group of companies, government organisations and a non-governmental organization - the majority with a specific interest in fuel cell

339

Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.  

SciTech Connect

This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

Barth, Rachel Reina; Simmons, Kevin L. [Pacific Northwest National Laboratory, Richland, WA] [Pacific Northwest National Laboratory, Richland, WA; San Marchi, Christopher W.

2013-10-01T23:59:59.000Z

340

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design; Preprint  

Science Conference Proceedings (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. The most cost-effective hydrogen tower design would use substantially all of its volume for hydrogen storage and be designed at its crossover pressure. An 84-m tall hydrogen tower for a 1.5-MW turbine would cost an additional $84,000 (beyond the cost of the conventional tower) and would store 950 kg of hydrogen. The resulting incremental storage cost of $88/kg is approximately 30% of that for conventional pressure vessels.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3013 Date: September 26, 2013 3013 Date: September 26, 2013 Title: H 2 Delivery Cost Projections - 2013 Originator: E. Sutherland, A. Elgowainy and S. Dillich Approved by: R. Farmer and S. Satyapal Date: December 18, 2013 Item: Reported herein are past 2005 and 2011 estimates, current 2013 estimates, 2020 projected cost estimates and the 2015 and 2020 target costs for delivering and dispensing (untaxed) H 2 to 10%- 15% of vehicles within a city population of 1.2M from a centralized H 2 production plant located 100 km from the city gate. The 2011 volume cost estimates are based on the H2A Hydrogen Delivery Scenario Analysis Model (HDSAM) V2.3 projections and are employed as the basis for defining the cost and technical targets of delivery components in Table 3.2.4 in the 2012 Delivery

342

Economic analysis of large-scale hydrogen storage for renewable utility applications.  

DOE Green Energy (OSTI)

The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

Schoenung, Susan M.

2011-08-01T23:59:59.000Z

343

CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS  

DOE Green Energy (OSTI)

Idaho National Laboratorys (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to be addressed for hydrogen to become an economical and viable option.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

2008-03-01T23:59:59.000Z

344

Analysis of hydrogen production during a BWR6 core heatup transient  

DOE Green Energy (OSTI)

An extensive study was performed for the prediction of hydrogen production during a BWR6 core heatup transient. Hydrogen production was found to be strongly affected by the transient core heat transfer and vessel hydrodynamics. Various sources important for steam generation and hydrogen production were identified. The results of the study were used by the NRC staff in their evaluation of the adequacy of the H/sub 2/ release histories suggested by the Hydrogen Control Owner's Group (HCOG). The owners group are sponsoring a 1/4 scale test program to investigate the adequacy of H/sub 2/ control during a degraded event. 1 ref., 2 figs.

Yang, J.W.; Pratt, W.T.

1986-01-01T23:59:59.000Z

345

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

346

DOE and FreedomCAR and Fuel Partnership Analysis Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Workshop Analysis Workshop U.S. Department of Energy - Washington, DC January 25, 2006 A AC CT TI IO ON N I IT TE EM MS S A AN ND D D DI IS SC CU US SS SI IO ON N C CO OM MM ME EN NT TS S Agenda 1. Agenda and Purpose - Mark Paster, DOE-HFCIT 2. On-Board Storage Systems Analysis - Rajesh Ahluwalia, ANL 3. On-Board Storage Cost and Efficiency Analysis - Steve Lasher, TIAX 4. Off-Board Storage and Tube Trailers - Salvador Aceves and Gene Berry, LLNL 5. Forecourt Storage and Compression Options - Mark Richards, GTI 6. H2A Delivery Models and Results: H2A Delivery Team - Marianne Mintz, ANL 7. Delivery Analysis Project, Options, and Trade-Offs - T. P. Chen, Nexant 8. Hydrogen Delivery Demonstrations - Ed Kiczek, Air Products & Chemicals, Inc. 9. Pathway Cost Distributions: Fuel Pathway Integration Tech Team - James Uihlein, BP

347

Final technical report [Molecular genetic analysis of biophotolytic hydrogen production in green algae  

DOE Green Energy (OSTI)

The principal objective of this project was to identify genes necessary for biophotolytic hydrogen production in green algae, using Chlamydomonas reinhardtii as an experimental organism. The main strategy was to isolate mutants that are selectively deficient in hydrogen production and to genetically map, physically isolate, and ultimately sequence the affected genes.

Mets, Laurens

2000-12-31T23:59:59.000Z

348

Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint  

DOE Green Energy (OSTI)

When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

2007-08-01T23:59:59.000Z

349

Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis  

Science Conference Proceedings (OSTI)

The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

2012-12-15T23:59:59.000Z

350

Economic and technical analysis of distributed utility benefits for hydrogen refueling stations. Final report  

SciTech Connect

This report presents the potential economic benefits of operating hydrogen refueling stations to accomplish two objectives: supply pressurized hydrogen for vehicles, and supply distributed utility generation, transmission and distribution peaking energy and capacity to the utility. The study determined under what circumstances using a hydrogen-fueled generator as a distributed utility generation source, co-located with the hydrogen refueling station components (electrolyzer and storage), would result in cost savings to the station owner, and hence lower hydrogen production costs. The systems studied include a refueling station (including such components as an electrolyzer, storage, hydrogen dispensers, and compressors) plus on-site hydrogen fueled electricity generation units (e.g., fuel cells or combustion engines). The operational strategy is to use off-peak electricity in the electrolyzer to fill hydrogen storage, and to dispatch the electricity generation about one hour per day to meet the utility`s local and system peaks. The utility was assumed to be willing to pay for such service up to its avoided generation, fuel, transmission and distribution costs.

Iannucci, J.J.; Eyer, J.M.; Horgan, S.A.; Schoenung, S.M. [Distributed Utility Associates, Livermore, CA (United States)]|[Longitude 122 West, Inc., Menlo Park, CA (United States)

1998-04-01T23:59:59.000Z

351

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network (OSTI)

incentives for Avoided electricity costs due to self- fuel cell installation/operation or generation hydrogen dispensing Avoided natural gas

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

352

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

353

Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen  

SciTech Connect

A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the industry-standard pressure vessel technology. The real-world performance data of SCCV under actual operating conditions is imperative for this new technology to be adopted by the hydrogen industry for stationary storage of CGH2. Therefore, the key technology development effort in FY13 and subsequent years will be focused on the fabrication and testing of SCCV mock-ups. The static loading and fatigue data will be generated in rigorous testing of these mock-ups. Successful tests are crucial to enabling the near-term impact of the developed storage technology on the CGH2 storage market, a critical component of the hydrogen production and delivery infrastructure. In particular, the SCCV has high potential for widespread deployment in hydrogen fueling stations.

Feng, Zhili [ORNL; Zhang, Wei [ORNL; Wang, Jy-An John [ORNL; Ren, Fei [ORNL

2012-09-01T23:59:59.000Z

354

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants  

DOE Green Energy (OSTI)

Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 Produce Data and Analyses Task 2 Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 Commercial-Scale Hydrogen Production Task 4 Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

Stephen Schey

2009-07-01T23:59:59.000Z

355

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

356

DATA COLLECTION, QUALITY ASSURANCE, AND ANALYSIS PLAN FOR THE 2008/2009 HYDROGEN AND FUEL CELLS KNOWLEDGE AND OPINIONS SURVEYS  

DOE Green Energy (OSTI)

The 2008/2009 Knowledge and Opinions Survey, conducted for the Department of Energy's Hydrogen Program will measure the levels of awareness and understanding of hydrogen and fuel cell technologies within five target populations: (1) the general public, (2) students, (3) personnel in state and local governments, (4) potential end users of hydrogen fuel and fuel cell technologies in business and industry, and (5) safety and code officials. The ultimate goal of the surveys is a statistically valid, nationally based assessment. Distinct information collections are required for each of the target populations. Each instrument for assessing baseline knowledge is targeted to the corresponding population group. While many questions are identical across all populations, some questions are unique to each respondent group. The biggest data quality limitation of the hydrogen survey data (at least of the general public and student components) will be nonresponse bias. To ensure as high a response rate as possible, various measures will be taken to minimize nonresponse, including automated callbacks, cycling callbacks throughout the weekdays, and availability of Spanish speaking interviewers. Statistical adjustments (i.e., sampling weights) will also be used to account for nonresponse and noncoverage. The primary objective of the data analysis is to estimate the proportions of target population individuals who would respond to the questions in the various possible ways. Data analysis will incorporate necessary adjustments for the sampling design and sampling weights (i.e., probability sampling). Otherwise, however, the analysis will involve standard estimates of proportions of the interviewees responding in various ways to the questions. Sample-weight-adjusted contingency table chi-square tests will also be computed to identify differences between demographic groups The first round of Knowledge and Opinions Surveys was conducted in 2004. Analysis of these surveys produced a baseline assessment of technical knowledge about hydrogen and fuel cells and a statistically valid description of opinions about safety and potential usage in the United States. The current surveys will repeat the process used in 2004. In addition the 2008/2009 survey results will be compared with the 2004 baseline results to assess changes in knowledge levels and opinions. In 2011/2012, the surveys will be repeated, and changes in knowledge and opinions will again be assessed. The information gained from these surveys will be used to enhance and update the DOE Hydrogen Program's education efforts.

Schmoyer, Richard L [ORNL; Truett, Lorena Faith [ORNL; Diegel, Susan W [ORNL

2008-09-01T23:59:59.000Z

357

Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)  

DOE Green Energy (OSTI)

The scope of work for this project includes safe building design, vehicle leak in residential garage, continual slow leak, passive, buoyancy-driven ventilation (versus mechanical), and steady-state concentration of hydrogen versus vent size.

Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

2007-09-11T23:59:59.000Z

358

Communication protocols, queuing and scheduling delay analysis in CANDU SCWR hydrogen co-generation model.  

E-Print Network (OSTI)

??Industrial dynamical, Networked Control Systems (NCSs) are controlled over a communication network. We study a continuous-time CANada Deuterium Uranium-Super Critical Water Reactor (CANDU-SCWR) hydrogen plant (more)

Ahmed, Fayyaz

2011-01-01T23:59:59.000Z

359

Trace component analysis of process hydrogen streams at the Wilsonville Advanced Coal Liquefaction Facility  

DOE Green Energy (OSTI)

This report summarizes subcontracted work done by the Radian Corporation to analyze trace components in process hydrogen streams at the Advanced Coal Liquefaction Facility in Wilsonville, Alabama. The data will be used to help define whether the gas streams to be treated in the hydrogen processing unit in the SRC-I Demonstration Plant will require further treatment to remove trace contaminants that could be explosive under certain conditions. 2 references.

Bronfenbrenner, J.C.

1983-09-01T23:59:59.000Z

360

Hydrogen Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,Year 2006 UCDITSRR0604 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

362

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

363

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

364

FUNDAMENTAL SAFETY TESTING AND ANALYSIS OF HYDROGEN STORAGE MATERIALS AND SYSTEMS  

DOE Green Energy (OSTI)

Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight, low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems, it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems, it is important to understand quantitatively, the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems, an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe, North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis, handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH{sub 4}, a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.

Anton, D

2007-05-01T23:59:59.000Z

365

Feasibility Analysis of Steam Reforming of Biodiesel by-product Glycerol to Make Hydrogen  

E-Print Network (OSTI)

Crude glycerol is the major byproduct from biodiesel industry. In general, for every 100 pounds of biodiesel produced, approximately 10 pounds of crude glycerol are produced as a by-product. As the biodiesel industry rapidly expands in the U.S., the market is being flooded with this low quality waste glycerol. Due to its high impurities, it is expensive to purify and use in food, pharmaceutical, and cosmetics industries. Biodiesel producers should seek an alternative method which is economically and environmentally friendly. This research contains reforming process to covert waste glycerol from a biodiesel industry into sellable hydrogen. This process consists of 850oC reformer, 350oC and 210oC shift reactors for water gas shift reaction, flash tanks, and a separator. It is considered to be the least expensive method. At 850oC and 1 atm pressure, glycerol reacts with superheated steam to produce gaseous mixture of hydrogen, carbon dioxide, carbon monoxide, and methane. Reformer is a batch process where only 68% of waste glycerol is converted into gaseous mixture. The excess glycerol is recycled back as a feedstock. Water gas shift (WGS) reaction, further convert carbon monoxide into hydrogen and carbon dioxide which is further subjected to separation process to isolate hydrogen from CO2 and any other impurities. The final product stream consists of 68% of hydrogen, and 27% of CO2 based on molar flow rate.

Joshi, Manoj

2009-06-09T23:59:59.000Z

366

Dynamic Modeling and Simulation Based Analysis of an Ammonia Borane (AB) Reactor System for Hydrogen Storage  

DOE Green Energy (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydrogen storage in PEM fuel cell applications. AB was selected by DOEs Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of three molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A model of a bead reactor system which includes feed and product tanks, hot and cold augers, a ballast tank/reactor, a H2 burner and a radiator was developed to study AB system performance in an automotive application and estimate the energy, mass, and volume requirements for this off-board regenerable hydrogen storage material. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate appropriate trends in the reactor system dynamics. A new controller was developed and validated in simulation for a couple of H2 demand cases.

Devarakonda, Maruthi N.; Holladay, Jamelyn D.; Brooks, Kriston P.; Rassat, Scot D.; Herling, Darrell R.

2010-10-02T23:59:59.000Z

367

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

368

Hydrogen Publications  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. ... These articles, of interest to the hydrogen community, can be viewed by clicking on the title. ...

369

Properties Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. PROPERTIES, ... For information on a PC database that includes hydrogen property information click here. ...

370

DOE Hydrogen Analysis Repository: Review of FreedomCAR and Fuel Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of FreedomCAR and Fuel Partnership Review of FreedomCAR and Fuel Partnership Project Summary Full Title: Review of the Research Program of the U.S. DRIVE Partnership Previous Title(s): Review of the Research Program of the FreedomCAR and Fuel Partnership Project ID: 203 Principal Investigator: Brief Description: The National Research Council's Committee on Review of the FreedomCAR and Fuel Research Program evaluates the structure and management of the Partnership as well as the Partnership's adequacy, progress, and technical problem areas on a biannual basis. Keywords: Advanced technology vehicles, fuel cells, hydrogen storage, hydrogen production Purpose Evaluate DOE-sponsored research efforts directed at the goal of a hydrogen economy under the U.S. DRIVE Partnership (formerly the FreedomCAR and Fuel

371

DOE Hydrogen and Fuel Cells Program: Program Records  

NLE Websites -- All DOE Office Websites (Extended Search)

110112 12022 Hydrogen Delivery Cost Projections-2011 071213 12022a Hydrogen Delivery Scenario Analysis Model v2.31-2005 case 071213 12022b Hydrogen Delivery Scenario...

372

Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)  

DOE Green Energy (OSTI)

The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

Steward, D. M.

2009-06-10T23:59:59.000Z

373

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Chicago team. On-board hydrogen storage is critical to the development of future high energy efficiency transportation technologies, such as hydrogen-powered fuel...

374

Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations  

DOE Green Energy (OSTI)

This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

Ted Barnes; William Liss

2008-11-14T23:59:59.000Z

375

Analysis of hypochlorite process for removal of hydrogen sulfide from geothermal gases  

SciTech Connect

Sodium hypochlorite reacts readily with hydrogen sulfide to convert the sulfide ion into free sulfur in a neutral or acid solution and to the sulfate ion in an alkaline solution. Sodium hypochlorite can be generated on site by processing geothermal brine in electrolytic cells. An investigation to determine if this reaction could be economically used to remove hydrogen sulfide from geothermal noncondensible gases is reported. Two processes, the LO-CAT Process and the Stretford Process, were selected for comparison with the hypochlorite process. Three geothermal reservoirs were considered for evaluation: Niland KGRA, Baca KGRA, and The Geysers KGRA. Because of the wide variation in the amount of hydrogen sulfide present at The Geysers, two different gas analyses were considered for treatment. Plants were designed to process the effluent noncondensible gases from a 10 MW/sub e/ geothermal power plant. The effluent gas from each plant was to contain a maximum hydrogen sulfide concentration of 35 ppb. Capital costs were estimated for each of the processes at each of the four sites selected. Operating costs were also calculated for each of the processes at each of the sites. The results of these studies are shown.

1980-04-01T23:59:59.000Z

376

Helioseismic Analysis of the Hydrogen Partition Function in the Solar Interior  

Science Conference Proceedings (OSTI)

The difference in the adiabatic gradient [gamma][sub 1] between inverted solar data and solar models is analyzed. To obtain deeper insight into the issues of plasma physics, the so-called intrinsic difference in [gamma][sub 1] is extracted, that is, the difference due to the change in the equation of state alone. Our method uses reference models based on two equations of state currently used in solar modeling, the Mihalas-Hummer-D[umlt a]ppen (MHD) equation of state and the OPAL equation of state (developed at Livermore). Solar oscillation frequencies from the SOI/MDI instrument on board the [ital SOHO] spacecraft during its first 144 days in operation are used. Our results confirm the existence of a subtle effect of the excited states in hydrogen that was previously studied only theoretically (Nayfonov D[umlt a]ppen). The effect stems from an internal partition function of hydrogen, as is used in the MHD equation of state. Although it is a pure hydrogen effect, it takes place in somewhat deeper layers of the Sun, where more than 90[percent] of hydrogen is ionized, and where the second ionization zone of helium is located. Therefore, the effect will have to be taken into account in reliable helioseismic determinations of the astrophysically relevant helium abundance of the solar convection zone. [copyright] [ital [copyright] 1999.] [ital The American Astronomical Society

Basu, S. (Institute for Advanced Studies, School of Natural Sciences, Princeton, NJ 08540 (United States)); Daeppen, W. (Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1342 (United States) Theoretical Astrophysics Center, Institute for Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)); Nayfonov, A. (Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1342 (United States) IGPP, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States))

1999-06-01T23:59:59.000Z

377

Economic Analysis of Electrolysis-Based Hydrogen Fueling Stations Matt Jones, Sandy Allan, Joan Ogden  

E-Print Network (OSTI)

) to calculate the effect on hydrogen price for three scenarios: constant electricity input, off Electricity Input Shown PRODUCTION STORAGE COMPRESSOR DISPENSER OTHER Storage Tank Electrolyzer Unit Transformer/Reactor Unit Compressor Units (2) Gas Holder Balance of Plant 3 units @ 46 kg/h 3 units Electrical

California at Davis, University of

378

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

379

Process analysis and aspen plus simulation of nuclear-based hydrogen production with a copper-chlorine cycle.  

E-Print Network (OSTI)

??Thermochemical processes for hydrogen production driven by nuclear energy are promising alternatives to existing technologies for large-scale commercial production of hydrogen, without dependence on fossil (more)

Chukwu, Cletus

2008-01-01T23:59:59.000Z

380

Hydrogen-engine performance-analysis project. Second quarterly report first year of program  

DOE Green Energy (OSTI)

The objective of this research effort is to obtain the design data-base covering performance, operational characteristics and emissions essential for making a rational decision regarding the selection and design of prototype hydrogen-fueled, air-breathing engines capable of being manufactured for general automotive use. To this end hydrogen-fueled internal combustion engines were divided into fourteen subgroups. An engine representative of each subgroup will be tested during the course of the three year program. The Project Program Plan calls for investigation of pre-intake valve closing fuel ingestion (Pre IVC) hydrogen-fueled engines during the first two years. Work accomplished during the second three months of the project is reported. Activities during the second quarter concentrated on: final apparatus debugging, engine break-in, preliminary testing to determine qualitative apparatus operating characteristics, rearranging of the proposal test schedule and performing of tests with engine 1 (carbureted, throttled, no H/sub 2/O injection, no EGR and engine 4 (carbureted, unthrottled, no H/sub 2/O injection, no EGR. The details of these activities are described.

Adt, R.R. Jr.; Swain, M.R.; Pappas, J.M.

1977-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen Highways  

E-Print Network (OSTI)

Joan Ogden, The Hope for Hydrogen, Issues in Science andand James S. Cannon. The Hydrogen Energy Transition: MovingHydrogen Highways BY TIMOTHY LIPMAN H 2 T H E S TAT E O F C

Lipman, Timothy

2005-01-01T23:59:59.000Z

382

Stationary Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Bryan Pivovar Phone: (303) 275-3809 Email: bryan.pivovar@nrel.gov Sub-Contract Number No: AGB-0-40628-01 under Prime Contract No. DE-AC36-08G028308 Project Start Date: July 8, 2010 Project End Date: September 7, 2012 Fiscal Year (FY) 2012 Objectives Perform Design for Manufacturing and Assembly * (DFMA ® ) cost analysis for low-temperature (LT)

383

Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review  

DOE Green Energy (OSTI)

This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

Ruth, M.

2011-10-01T23:59:59.000Z

384

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

385

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

386

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets  

E-Print Network (OSTI)

used the H2A model to analyze data and produce cost estimates. Conclusion: "...the hydrogen total cost the estimated range." Transition to Bio-Derived Liquids Independent Validation of progress towards 2006 interim. Bio-Derived Renewable Liquids Dist. Electrolysis Central Wind Electrolysis Biomass Gasification Solar

387

Failure Analysis, Permeation, and Toughness of Glass Fiber Composite Pressure Vessels for Inexpensive Delivery of Cold Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Andrew Weisberg (Primary Contact), Salvador Aceves Lawrence Livermore National Laboratory (LLNL) P.O. Box 808, L-792 Livermore, CA 94551 Phone: (925) 422-0864 Email: saceves@llnl.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Subcontractor: Spencer Composites Corporation (SCC), Sacramento, CA Project Start Date: October, 2004 Project End Date: October, 2012 Fiscal Year (FY) 2012 Objectives Optimize hydrogen delivery by tube trailer * Develop materials and manufacturing for low- * temperature hydrogen delivery Quantify performance and economics of delivery * pressure vessels Technical Barriers This project addresses the following technical barriers

388

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

389

Comparative analysis of hydrogen fire and explosion incidents. Quarterly report No. 1, September 1, 1977--November 30, 1977  

DOE Green Energy (OSTI)

A hydrogen accident data base covering industrial and other forms of hydrogen use is being developed. Ten different sources of hydrogen accident reports have contributed 168 reports for the period 1971-1976 and 402 reports for the years prior to 1971. Additional data are being sought through a survey of major hydrogen consuming industries. National gas consumption and accident data have also been collected to serve as a basis for comparison with the hydrogen accident data. During the next quarter, a computer data entry and retrieval program will be written to sort and tabulate the hydrogen accident data.

Zalosh, R.G.

1977-12-01T23:59:59.000Z

390

Life-Cycle Analysis of Vehicle and Fuel Systems with the GREET Model - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Wang (Primary Contact), Amgad Elgowainy, Jeongwoo Han and Hao Cai Argonne National Laboratory (ANL) ESD362 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-2819 Email: mqwang@anl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Project Start Date: October 2009 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Evaluate environmental benefits of hydrogen fuel * cell electric vehicles (FCEVs) with various renewable hydrogen production pathways relative to baseline gasoline pathways. Conduct vehicle-cycle analysis of hydrogen FCEVs. *

391

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

DOE Green Energy (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

392

Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California  

NLE Websites -- All DOE Office Websites (Extended Search)

a Cluster Strategy for a Cluster Strategy for Near term Hydrogen Infrastructure Rollout in Southern California Michael Nicholas, Joan Ogden Institute of Transportation Studies University of California, Davis November 16, 2009 Scope of study * Analyze "cluster" strategy for introducing H2 vehicles and refueling infrastructure in So. California over the next decade, to satisfy ZEV regulation. * Analyze: Station placement within the Los Angeles Basin Convenience of the refueling network (travel time to stations) Economics - capital and operating costs of stations; cost of H2 station build-out for different rollout scenarios. Transition costs for H2 to reach cost competitiveness with gasoline on cents/mile basis Options for meeting 33% renewable H2 requirement

393

Modeling and analysis of hydrogen detonation events in the Advanced Neutron Source reactor containment  

DOE Green Energy (OSTI)

This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure.

Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.N.; Simpson, D.B. [Oak Ridge National Lab., TN (United States); Sawruk, W. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1994-07-01T23:59:59.000Z

394

Selective Catalytic Oxidation of Hydrogen Sulfide--Systems Analysis for IGCC Applications  

SciTech Connect

Selective catalytic oxidation of hydrogen sulfide (SCOHS) has been evaluated conceptually for IGCC applications, and the theoretical limits of reaction performance, process performance, and economic potential in IGCC have been estimated. Syngas conditions that have high partial pressures of total sulfur result in substantial liquid sulfur retention within the catalyst bed, with relatively complex processing being required. Applications that have much lower total sulfur partial pressure in the process gas might permit SCOHS operation under conditions where little liquid sulfur is retained in the catalyst, reducing the processing complexity and possibly improving the desulfurization performance. The results from our recent IGCC process evaluations using the SCOHS technology and conventional syngas cleaning are presented, and alternative SCOHS process configurations and applications that provide greater performance and cost potential are identified.

Newby, R.A.; Keairns, D.L.; Alvin, M.A.

2006-09-01T23:59:59.000Z

395

Mathematical modeling and economic analysis of membrane separation of hydrogen from gasifier synthesis gas  

DOE Green Energy (OSTI)

Investigators are studying hydrogen purification by membrane technology as a means to make the coal-to-hydrogen route economically attractive. To allow prediction of membrane performance and to facilitate comparisons between membrane and other technologies (cryogenic distillation, pressure swing adsorption), they developed a mathematical model to describe the permeation process inside a membrane module. The results of this model were compared with available experimental data (separation of CO{sub 2}/O{sub 2}/N{sub 2} mixtures). The model was first used to calculate the gas permeabilities from one set of mixed-gas experiments; the resulting permeabilities were then used to predict the results of the other mixed-gas experiments. The agreement between these predictions and the experimental data was good. However, model predictions using gas permeabilities obtained in pure gas experiments did not agree with the mixed gas experimental data. This disagreement is believed to be due to plasticization of the membrane by contact with CO{sub 2}. These results indicate that data obtained from experiments with mixed-gas feeds are necessary to adequately predict membrane performance when CO{sub 2} is present. The performance of different system configurations, including one and two stages of membrane modules, was examined. The different configurations examined were single module (SM), single module with recycle (SMR), series (SER), and two stage cascade with interstage compression (CAS). In general, SM is the most economical configuration for producing low purity products, SER for medium purity products, and CAS for high purity products. 7 refs., 12 figs., 8 tabs.

Roberts, D.L.; Gottschlich, D.E.

1988-10-13T23:59:59.000Z

396

Location of hydrogen adsorbed on Rh(111) studied by low-energy electron diffraction and nuclear reaction analysis  

Science Conference Proceedings (OSTI)

The structures of clean and hydrogen-adsorbed Rh(111) surfaces were investigated by dynamical low-energy electron-diffraction (LEED) analysis. Exposure of D{sub 2} induced no additional LEED patterns except for (1x1). Surface-layer relaxation occurs vertically on both clean and D-saturated surfaces. On the clean surface, the interlayer distance between the first and second layers (d{sub 12}) is smaller by 1.2({+-}0.6)% than the corresponding bulk distance of 2.194 A. On the other hand, the contraction of d{sub 12} is removed on the D-saturated surface. Detailed LEED analysis demonstrates that the D atoms are adsorbed on the fcc threefold hollow sites. The absolute saturation coverage of H on Rh(111) was determined to be 0.84 ML by nuclear reaction analysis (NRA). Moreover, the zero-point vibrational energy of H was derived from the analysis of the NRA resonance profile, which is discussed in comparison with the results of high-resolution electron-energy-loss spectroscopy.

Fukuoka, Masayuki; Okada, Michio; Matsumoto, Masuaki; Ogura, Shouhei; Fukutani, Katsuyuki; Kasai, Toshio [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 156-8505, Japan and CREST-JST, 4-6-1 Komaba, Meguro-ku, Tokyo 156-8505 (Japan); Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

2007-06-15T23:59:59.000Z

397

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS  

DOE Green Energy (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

398

Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

1:00 pm Program stakeholders convene in 2 parallel breakout groups to discuss scenario analysis results and provide feedback on the following focus questions: Does the...

399

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Vehicles Automotive System Cost Model (ASCM) B Biofuels in Light-Duty Vehicles Biogas Resources Characterization Biological Water-Gas Shift Biomass Gasification,...

400

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

402

FCT Hydrogen Delivery: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

403

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

404

FUNDAMENTAL ENVIRONMENTAL REACTIVITY TESTING AND ANALYSIS OF THE HYDROGEN STORAGE MATERIAL 2LIBH4 MGH2  

DOE Green Energy (OSTI)

While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions.

James, C.; Anton, D.; Cortes-Concepcion, J.; Brinkman, K.; Gray, J.

2012-01-10T23:59:59.000Z

405

System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities  

DOE Green Energy (OSTI)

This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-05-01T23:59:59.000Z

406

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Working With Argonne Contact TTRDC Thermochemical Cycles for Hydrogen Production Argonne researchers are studying thermochemical cycles to determine their potential...

407

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

408

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

409

Hydrogen Radialysis  

INL scientists have invented a process of forming chemical compositions, such as a hydrides which can provide a source of hydrogen. The process exposes the chemical composition decaying radio-nuclides which provide the energy to with a hydrogen source ...

410

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

411

Hydrogen wishes  

Science Conference Proceedings (OSTI)

Hydrogen Wishes, presented at MIT's Center for Advanced Visual Studies, explores the themes of wishes and peace. It dramatizes the intimacy and power of transforming one's breath and vocalized wishes into a floating sphere, a bubble charged with hydrogen. ...

Winslow Burleson; Paul Nemirovsky; Dan Overholt

2003-07-01T23:59:59.000Z

412

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

413

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

414

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

415

Codes and Standards Gap Analysis Helps DOE Define Research Priorities (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 * November 2010 6 * November 2010 Fuel Vehicle Codes and Standards Gap Documents Impacted Gap Resolution HYDROGEN High pressure storage, handling, and use of hydrogen presents hazards specific to high- pressure systems that may not be completely addressed NFPA 2, NFPA 52, NFPA 55 CGA H series of documents, IFC Evaluated codes and standards that address high pressures to determine if requirements are adequate HYDROGEN Incomplete requirements for sensing technologies NFPA 2, NFPA 52, NFPA 55, IFC Support the use of sensing technologies that replace odorants through evaluating sensing technologies and supporting code and standards development work in sensing technologies HYDROGEN Off-road vehicle storage tank requirements are incomplete CSA HGV 2,

416

Irreversibility analysis of hydrogen separation schemes in thermochemical cycles. [Condensation, physical absorption, diffusion, physical adsorption, thermal adsorption, and electrochemical separation  

SciTech Connect

Six processes have been evaluated as regards irreversibility generation for hydrogen separation from binary gas mixtures. The results are presented as a series of plots of separation efficiency against the mol fraction hydrogen in the feed gas. Three processes, condensation, physical absorption and electrochemical separation indicate increasing efficiency with hydrogen content. The other processes, physical and thermal adsorption, and diffusion show maxima in efficiency at a hydrogen content of 50 mol percent. Choice of separation process will also depend on such parameters as condition of feed, impurity content and capital investment. For thermochemical cycles, schemes based on low temperature heat availability are preferable to those requiring a work input.

Cox, K.E.

1978-01-01T23:59:59.000Z

417

Design, Modeling and Analysis of a Continuous Process for Hydrogenation of Diene based Polymers using a Static Mixer Reactor.  

E-Print Network (OSTI)

??Hydrogenated nitrile butadiene rubber (HNBR) which is known for its excellent elastomeric properties and mechanical retention properties after long time exposure to heat, oil and (more)

Madhuranthakam, Chandra Mouli R

2007-01-01T23:59:59.000Z

418

[13] Analysis of Trace Hydrogen Metabolism By FRANK E. LO FFLER and ROBERT A. SANFORD  

E-Print Network (OSTI)

community (Fauque et al., 1988). In natural ecosystems, the flux of reduced organic compounds, H2forming influence H2 concentrations through regulating hydrogenase activity also makes H2 an attractive METHODS (headspace) H2. Hence, H2 analysis assumes equilibrium between aqueous phase concentrations (molar) and gas

Löffler, Frank E.

419

Catalysts for Hydrogenation and Hydrosilylation - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; ... in line with the objectives of green chemistry. ...

420

Recyclable Catalysts for Hydrogenation and Hydrosilylation ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; ... in line with the objectives of green chemistry. ...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Hydrogen and Fuel Cells Program: Permitting Hydrogen Facilities Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy The objective of this U.S. Department of Energy Hydrogen Permitting Web site is to help local permitting officials deal with proposed hydrogen fueling stations, fuel cell installations for telecommunications backup power, and other hydrogen projects. Resources for local permitting officials who are looking to address project proposals include current citations for hydrogen fueling stations and a listing of setback requirements on the Alternative Fuels & Advanced Vehicle Data Center Web site. In addition, this overview of telecommunications fuel cell use and an animation that demonstrates telecommunications site layout using hydrogen fuel cells for backup power should provide helpful

422

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C.L.; Russell, L.H.

1981-06-23T23:59:59.000Z

423

Demonstration and System Analysis of High Temperature Steam Electrolysis for Large-Scale Hydrogen Production Using SOFCs  

DOE Green Energy (OSTI)

At the Idaho National Engineering Laboratory, an integrated laboratory scale (ILS), 15 kW high-temperature electrolysis (HTE) facility has been developed under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other integral issues. Additionally, a reference process model of a commercial-scale high-temperature electrolysis plant for hydrogen production has been developed. The reference plant design is driven by a 600 megawatt thermal high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The electrolysis unit used to produce hydrogen consists of 4.01106 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohmcm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.36 kg/s with the high-temperature helium-cooled reactor concept. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation. The paper will also present the optimized design for the reference nuclear-driven HTE hydrogen production plant which may be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

Michael G. McKellar; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

424

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

425

Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint  

DOE Green Energy (OSTI)

It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

2010-12-01T23:59:59.000Z

426

Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions  

DOE Green Energy (OSTI)

The introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological progress in several directions, such as production, delivery, consumption, and related emissions. To analyze each of these, a suite of corresponding models have been developed by the DOE, involving inputs from several national laboratories. The macro-system model is being developed as a cross-cutting analysis tool which combines a set of hydrogen technology analysis models. Within the macro-system model (MSM), federated simulation framework used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and will involve features of 'over-the-net' computation.

Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

2009-12-01T23:59:59.000Z

427

Examination of Terminal Land Requirements for Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

May 8, 2007 Jerry Gillette Examination of Terminal Land Requirements for Hydrogen Hydrogen Delivery Analysis Meeting Argonne National Laboratory A Variety of Terminal...

428

Berkeley Lab Study of Hydrogen Generating Technology's Lifecycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Study of Hydrogen Generating Technology's Lifecycle Net Energy Balance Designated a 'Hot' Article by Journal Photoelectrochemical hydrogen technology LCA analysis July...

429

Hydrogen Safety  

Science Conference Proceedings (OSTI)

... ASHRAE 62.1, 7 air changes per hour, 100 ... I, Division II, Group B: testing and research laboratory; ... Planning Guidance for Hydrogen Projects as a ...

2012-10-09T23:59:59.000Z

430

Mathematical analysis of hydrogen mixing and diffusion in the vapor space of a high-level nuclear waste tank  

DOE Green Energy (OSTI)

This paper presents mathematical analyses of the possible accumulation of radiolytically produced hydrogen in the vapor space in a tank storing liquid high-level radioactive waste. Under normal operating conditions, these tanks are continuously ventilated with air to ensure that the concentration of hydrogen never reaches its lower flammability limit (4%). These scenarios are considered in which it is postulated that hydrogen may accumulate and present a flammability hazard. These scenarios are stratification due to gravity, slow mixing when the ventilation system is operating, and slow mixing when the ventilation system is not operating. In all three cases, the analyses indicate that the accumulation of hydrogen is not likely and thus does not present a flammability problem so long as controls are in place to dilute its concentration to less than 4%.

Bibler, N.E. (ed.); Wallace, R.M.

1991-01-01T23:59:59.000Z

431

Method for the Collection and HPLC Analysis of Hydrogen Peroxide and Cl and C2 Hydroperoxides in the Atmosphere  

Science Conference Proceedings (OSTI)

An HPLC (high-performance liquid chromatography) method was developed to quantify hydrogen peroxide, methyl hydroperoxide. Hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyaectic acid in the atmosphere. Gas-phase hydroperoxides are ...

Meehye Lee; Birgitta C. Noone; Daniel O'sullivan; Brian G. Heikes

1995-10-01T23:59:59.000Z

432

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

433

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

434

DOE Hydrogen and Fuel Cells Program: News Archives - 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 January February April May June July August September October November December January DOE Announces New Funding Opportunity for Hydrogen Production and Delivery Research DOE Issues Federal Register Notice Soliciting Input on Sodium Borohydride for Hydrogen Storage Research DOE Releases Hydrogen Posture Plan Online Course Focuses on Hydrogen Safety for First Responders February DOE Announces Funding Opportunities for Hydrogen and Fuel Cell Analysis Workshop Focuses on Hydrogen Sensors April DOE Announces R&D Solicitation Selections for Hydrogen Storage DOE Requests Information on Early Markets for Hydrogen and Fuel Cells DOE Requests Information on Planned Hydrogen Storage Engineering Science Center of Excellence New DOE Employment Opportunity Available in Hydrogen Production

435

Hydrogen production  

SciTech Connect

The production of hydrogen by reacting an ash containing material with water and at least one halogen selected from the group consisting of chlorine, bromine and iodine to form reaction products including carbon dioxide and a corresponding hydrogen halide is claimed. The hydrogen halide is decomposed to separately release the hydrogen and the halogen. The halogen is recovered for reaction with additional carbonaceous materials and water, and the hydrogen is recovered as a salable product. In a preferred embodiment the carbonaceous material, water and halogen are reacted at an elevated temperature. In accordance with another embodiment, a continuous method for the production of hydrogen is provided wherein the carbonaceous material, water and at least one selected halogen are reacted in one zone, and the hydrogen halide produced from the reaction is decomposed in a second zone, preferably by electrolytic decomposition, to release the hydrogen for recovery and the halogen for recycle to the first zone. There also is provided a method for recovering any halogen which reacts with or is retained in the ash constituents of the carbonaceous material.

Darnell, A.J.; Parkins, W.E.

1978-08-08T23:59:59.000Z

436

Hydrogen Bibliography  

DOE Green Energy (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

437

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

438

Hydrogen Delivery Analysis Models  

NLE Websites -- All DOE Office Websites (Extended Search)

model for delivery system component costs and performance: Components Model Delivery scenario model for Urban and Rural Interstate markets and demand levels (Mkt....

439

Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio  

E-Print Network (OSTI)

Gas Based Hydrogen Infrastructure Optimizing TransitionsInitiating hydrogen infrastructures: preliminary analysis ofOgden, J.M. Modeling Infrastructure for a Fossil Hydrogen

2005-01-01T23:59:59.000Z

440

Hydrogen: Helpful Links & Contacts  

Science Conference Proceedings (OSTI)

Helpful Links & Contacts. Helpful Links. Hydrogen Information, Website. ... Contacts for Commercial Hydrogen Measurement. ...

2013-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen ICE  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Silverado 1500HD Hydrogen ICE 1 Conversion Vehicle Specifications Engine: 6.0 L V8 Fuel Capacity: 10.5 GGE Nominal Tank Pressure: 5,000 psi Seatbelt Positions: Five...

442

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

443

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

444

Next Generation H2 Station Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Sam Sprik (Primary Contact), Keith Wipke, Todd Ramsden, Chris Ainscough, Jen Kurtz National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4431 Email: sam.sprik@nrel.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Collect data from state-of-the-art hydrogen (H2) fueling * facilities, such as those funded by the California Air Resources Board (CARB), to enrich the analyses and composite data products (CDPs) on H2 fueling originally established by the Learning Demonstration project.

445

Storing Hydrogen  

DOE Green Energy (OSTI)

Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

2010-05-31T23:59:59.000Z

446

Where's the Hydrogen Economy? | Open Energy Information  

Open Energy Info (EERE)

Where's the Hydrogen Economy? Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? Agency/Company /Organization: Canada Library of Parliament Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Market Analysis Website: www2.parl.gc.ca/Content/LOP/ResearchPublications/2010-16-e.pdf Equivalent URI: cleanenergysolutions.org/content/wheres-hydrogen-economy Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This paper examines the state of the Canadian hydrogen and fuel cell industry and the general state of the global hydrogen economy, along with reasons why the hydrogen economy has not, thus far, lived up to expectations. How to Use This Tool This tool is most helpful when using these strategies:

447

Hydrogen from Biomass for Urban Transportation  

DOE Green Energy (OSTI)

The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

Boone, William

2008-02-18T23:59:59.000Z

448

Magnetic liquefier for hydrogen  

DOE Green Energy (OSTI)

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31T23:59:59.000Z

449

FCT Hydrogen Production: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Production: Contacts on Facebook Tweet about FCT Hydrogen Production: Contacts on Twitter Bookmark FCT Hydrogen Production:...

450

Hydrogen Technologies Group  

DOE Green Energy (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

451

The Transition to Hydrogen  

E-Print Network (OSTI)

Prospects for Building a Hydrogen Energy Infrastructure,and James S. Cannon. The Hydrogen Energy Transition: Movingof Energy, National Hydrogen Energy Roadmap, November 2002.

Ogden, Joan

2005-01-01T23:59:59.000Z

452

Hydrogen SRNL Connection  

hydrogen storage. Why is Savannah River National Laboratory conducting hydrogen research and development? ... Both the Department of Energys hydrogen ...

453

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

454

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap...

455

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen...

456

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with Süd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

457

Fuel Cell Technologies Office: Delivering Renewable Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Landill Gas to LNG Plant (PDF 432 KB), Steve Eckhardt, Linde Session 3: Hydrogen from Biogas Moderator: Marc Melaina, National Renewable Energy Laboratory Analysis of a Cluster...

458

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

459

Analysis of Laboratory Fuel Cell Technology Status … Voltage Degradation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jennifer Kurtz (Primary Contact), Keith Wipke, Sam Sprik, Genevieve Saur, Huyen Dinh National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4061 Email: jennifer.kurtz@nrel.gov DOE Manager HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.dog.gov Project Start Date: July 1, 2009 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Conduct an independent assessment to benchmark * state-of-the-art fuel cell durability in a non-proprietary method Leverage analysis experience from the Fuel Cell Electric * Vehicle Learning Demonstration project Collaborate with key fuel cell developers on the analysis

460

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

Note: This page contains sample records for the topic "hydrogen analysis h2a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen  

DOE Green Energy (OSTI)

This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that these are highly preliminary, incomplete, and optimistic estimates. Biophotolysis processes, indirect or direct, clearly require considerable basic and applied R and D before a more detailed evaluation of their potential and plausible economics can be carried out. For example, it is not yet clear which type of algae, green algae, or cyanobacteria, would be preferred in biophotolysis. If lower-cost photobioreactors can be developed, then small-scale (<1 ha) single-stage biophotolysis processes may become economically feasible. A major basic and applied R and D effort will be required to develop such biophotolysis processes.

Benemann, J.R.

1998-03-31T23:59:59.000Z

462

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system, Energy Policy

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

463

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

464

Proceedings of the 1992 DOE/NREL hydrogen program review  

Science Conference Proceedings (OSTI)

These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1992-07-01T23:59:59.000Z

465

Stationery and Emerging Market Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kathya Mahadevan (Primary Contact), VinceContini, Matt Goshe, and Fritz Eubanks Battelle 505 King Avenue Columbus, OH 43201 Phone: (614) 424-3197 Email: mahadevank@battelle.org DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-EE0005250/001 Project Start Date: September 30, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives To assist the DOE in developing fuel cell systems for stationary and emerging markets by developing independent cost models and costs estimates for manufacture and

466

Analysis of Durability of MEAs in Automotive PEMFC Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Randal L. Perry E.I. du Pont de Nemours and Company Chestnut Run Plaza, 701/209 4417 Lancaster Pike Wilmington, DE 19805 Phone: (302) 999-6545 Email: randal.l.perry @usa.dupont.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: Benjamin@anl.gov Contract Number: DE-EE0003772 Subcontractors: * Nissan Technical Center North America, Farmington Hills, MI * Illinois Institute of Technology (IIT), Chicago, IL Project Start Date: September 1, 2010

467

In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector  

Science Conference Proceedings (OSTI)

We present an analytical method for the real-time detection of free radicals from the photodecomposition (ultraviolet radiation, {lambda} = 254 nm) of hydrogen peroxide (H{sub 2}O{sub 2}) using frequency-mixing magnetic detection. We monitored the free radicals in situ without catalysts or probe molecules. Both water and H{sub 2}O{sub 2} produced frequency-mixing signals under UV radiation, but the water signal was much weaker. The root mean square amplitude of the frequency-mixing signal was found to depend on the initial H{sub 2}O{sub 2} concentration. Considering the physical properties of the reactants, the frequency-mixing signal is attributed to the generation of paramagnetic free radicals by the photodecomposition of H{sub 2}O{sub 2}.

Hong, Hyobong; Song, Kibong [IT Convergence Service Core Research Team, Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Krause, Hans-Joachim [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich, D-52425 Juelich (Germany); Choi, Chel-Jong [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2012-07-30T23:59:59.000Z

468

Mathematical modeling and economic analysis of membrane separation of hydrogen from gasifier synthesis gas. Mathematical modeling topical report  

DOE Green Energy (OSTI)

Investigators are studying hydrogen purification by membrane technology as a means to make the coal-to-hydrogen route economically attractive. To allow prediction of membrane performance and to facilitate comparisons between membrane and other technologies (cryogenic distillation, pressure swing adsorption), they developed a mathematical model to describe the permeation process inside a membrane module. The results of this model were compared with available experimental data (separation of CO{sub 2}/O{sub 2}/N{sub 2} mixtures). The model was first used to calculate the gas permeabilities from one set of mixed-gas experiments; the resulting permeabilities were then used to predict the results of the other mixed-gas experiments. The agreement between these predictions and the experimental data was good. However, model predictions using gas permeabilities obtained in pure gas experiments did not agree with the mixed gas experimental data. This disagreement is believed to be due to plasticization of the membrane by contact with CO{sub 2}. These results indicate that data obtained from experiments with mixed-gas feeds are necessary to adequately predict membrane performance when CO{sub 2} is present. The performance of different system configurations, including one and two stages of membrane modules, was examined. The different configurations examined were single module (SM), single module with recycle (SMR), series (SER), and two stage cascade with interstage compression (CAS). In general, SM is the most economical configuration for producing low purity products, SER for medium purity products, and CAS for high purity products. 7 refs., 12 figs., 8 tabs.

Roberts, D.L.; Gottschlich, D.E.

1988-10-13T23:59:59.000Z

469