Sample records for hydrofluorocarbons hfcs perfluorocarbons

  1. Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa

    E-Print Network [OSTI]

    Rigby, Matthew

    We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH[subscript 3]CF[subscript 2]CH[subscript 2]CF[subscript 3], 1,1,1,3,3-pentafluorobutane), ...

  2. People's Climate Stewardship / Carbon Fee and Dividend Act of 2010: Proposed Findings

    E-Print Network [OSTI]

    Hansen, James E.

    conventional (non-greenhouse-gas) pollutants emitted by fossil fuel burning which cause health, nitrous oxide, sulfur hexafluoride, hydrofluorocarbons (HFCs) emitted as byproducts, perfluorocarbons and DOE shall annually review greenhouse gas emissions data and determine whether an increase larger than

  3. The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007

    E-Print Network [OSTI]

    The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

  4. Petroleum characterization by perfluorocarbon tracers

    SciTech Connect (OSTI)

    Senum, G.I.; Fajer, R.W. (Brookhaven National Lab., Upton, NY (United States)); Harris, B.R. Jr. (USDOE Naval Petroleum Reserves in California, Tupman, CA (United States)); DeRose, W.E. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Ottaviani, W.L. (Chevron U.S.A., Inc., Bakersfield, CA (United States))

    1992-02-01T23:59:59.000Z

    Perfluorocarbon tracers (PFTs), a class of six compounds, were used to help characterize the Shallow Oil Zone (SOZ) reservoir at the Naval Petroleum Reserve in California (NPRC) at Elk Hills. The SOZ reservoir is undergoing a pilot gas injection program to assess the technical feasibility and economic viability of injecting gas into the SOZ for improved oil recovery. PFTs were utilized in the pilot gas injection to qualitatively assess the extent of the pilot gas injection so as to determine the degree of gas containment within the SOZ reservoir.

  5. Ozone-depleting substances and the greenhouse gases HFCs, PFCs

    E-Print Network [OSTI]

    Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6 Danish consumption contribution to the debate on environmental policy in Denmark. #12;3 Contents 1 SUMMARY 5 1.1 OZONE OZONE-DEPLETING SUBSTANCES 19 3.1 IMPORTS AND EXPORTS 19 3.1.1 CFCs 19 3.1.2 Tetrachloromethane 19 3

  6. Perfluorocarbon tracer method for air-infiltration measurements

    DOE Patents [OSTI]

    Dietz, R.N.

    1982-09-23T23:59:59.000Z

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  7. Informal Report USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY

    E-Print Network [OSTI]

    BNL-66726 Informal Report USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER and concentrations in the range of a few hundred ppm. Approximately 65 liters of air laced with tracer was injected

  8. Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane

    E-Print Network [OSTI]

    Muhle, J.

    We present atmospheric baseline growth rates from the 1970s to the present for the long-lived, strongly infrared-absorbing perfluorocarbons (PFCs) tetrafluoromethane (CF4), hexafluoroethane (C2F6), and octafluoropropane ...

  9. Trends and inferred emissions of atmospheric high molecular weight perfluorocarbons

    E-Print Network [OSTI]

    Ivy, Diane Jean

    2012-01-01T23:59:59.000Z

    Atmospheric observations and atmospheric observation-based global emission estimates are presented for the five high molecular weight perfluorocarbons (PFCs): decafluorobutane (C 4 F 1 0 ), dodecafluoropentane (C5 F1 2 ), ...

  10. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  11. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10T23:59:59.000Z

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  12. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and

    E-Print Network [OSTI]

    Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6 Danish consumption contribution to the debate on environmental policy in Denmark. #12;3 Contents 1 SUMMARY 5 1.1 OZONE OZONE-DEPLETING SUBSTANCES 18 3.1 IMPORTS AND EXPORTS 18 3.1.1 CFCs 18 3.1.2 Tetrachloromethane 19 3

  13. Adsorption of Hydrofluorocarbons HFC-134 and HFC-134A on X and Y Zeolites: Effect of Ion-Exchange on Selectivity and Heat of Adsorption

    E-Print Network [OSTI]

    Siperstein, Flor R.

    rapidly as worldwide refrigerator and air-conditioner production rises almost exponentially.1 A byproduct) is a hydrofluorocarbon coolant for refrigerators designated to replace the ozone-damaging chloro- fluorocarbons (CFCs

  14. Demonstration of high efficiency elastocaloric cooling with large DT using Jun Cui,1,2

    E-Print Network [OSTI]

    Rubloff, Gary W.

    of modern compressors approaching the theoretical limit, but its environmental footprint remains a global problem. VC refrigerants such as hydrochloroflurocarbons (HCFCs) and hydrofluorocarbons (HFCs

  15. Development of a perfluorocarbon liquid immersed prototype large power transformer with compressed SF sub 6 insulation

    SciTech Connect (OSTI)

    Mukaryama, Y.; Nonaka, F.; Takagi, I. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Higaki, M.; Endoo, K.; Sakamoto, T.; Hiraishi, K.; Kawashima, K. (Hitachi Ltd., Hitachi (JP))

    1991-07-01T23:59:59.000Z

    This paper reports on a prototype of three phase non-flammable, large power transformer that has been developed. It uses non-flammable perfluorocarbon liquid as both a coolant and an insulating material for windings, and compressed SF{sub 6} gas as the insulation from the outer windings to the tank. Using cooling and insulation models, the cooling and insulation characteristics of the disc windings were clarified. Stress analyses and the pressure tests of the transformer tank were carried out, to evaluate its mechanical characteristics. Finally, a prototype of 275kV 100MVA three phase transformer was developed, and its excellent performance was confirmed.

  16. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    E-Print Network [OSTI]

    Vacek, V; Lindsay, S

    2000-01-01T23:59:59.000Z

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  17. PERFLUOROCARBON GAS TRACER STUDIES TO SUPPORT RISK ASSESSMENT MODELING OF CRITICAL INFRASTRUCTURE SUBJECTED TO TERRORIST ATTACKS.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; HEISER, J.; WATSON, T.; ALLWINE, K.J.; FLAHERTY, J.E.

    2006-05-06T23:59:59.000Z

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models needed for risk assessment.

  18. Measurement of HVAC system performance and local ventilation using passive perfluorocarbon tracer technology

    SciTech Connect (OSTI)

    Dietz, R.N.; Goodrich, R.W.

    1995-06-01T23:59:59.000Z

    In April of 1993, two (2) perfluorocarbon tracer (PFT) ventilation/indoor air quality assessment tests were performed in the Gleeson Hall building of the SUNY Farmingdale campus. The building was being modified, in part, as a result of significant occupant complaints of perceived poor air quality. The four story building had a basement first floor with air supplied normally by an HVAC system labelled as AC1. During this study, AC1 was inoperational and the basement interior rooms (walls) were primarily gone; the other three floors were still being used for classes. It is possible that a sense of poor air quality may have been perceived by first-floor occupants because they were working in the basement, but this issue could not be addressed. The second floor had two (2) lecture halls--Rm 202 (handled by AC4) and Rm 204 (handled by AC5); the balance of the second floor interior rooms and corridors was split between two other air handling systems, AC2 for the west side of the building and AC3 for the east side. The remaining 3rd and 4th floors were also split about evenly between AC2 and AC3. The perimeter rooms, equipped with wall units having their own outside air (OA) source plus centralized return air (RA) bypasses, were not included in this testing which was restricted to the basement floor (1st floor) and the four operating air handling systems, AC2 to AC5, during Test 1 and only AC2 to AC5 during Test 2. Two types of tests were performed using the full suite of 5 PFT types available. The first test was designed to measure the infiltration, exfiltration, and air exchange between the 5 AC zones above and the second test used the 5th tracer, which had been in the basement, as a distributed source throughout the four other zones to act as a surrogate pollutant source. This report provides final conclusions of both tests and suggestions regarding its usefulness in similar building ventilation and indoor air quality assessments.

  19. USING PERFLUOROCARBON TRACERS FOR VERIFICATION OF CAP AND COVER SYSTEMS PERFORMANCE.

    SciTech Connect (OSTI)

    HEISER,J.; SULLIVAN,T.

    2001-11-01T23:59:59.000Z

    The Department of Energy (DOE) Environmental Management (EM) office has committed itself to an accelerated cleanup of its national facilities. The goal is to have much of the DOE legacy waste sites remediated by 2006. This includes closure of several sites (e.g., Rocky Flats and Fernald). With the increased focus on accelerated cleanup, there has been considerable concern about long-term stewardship issues in general, and verification and long-term monitoring (LTM) of caps and covers, in particular. Cap and cover systems (covers) are vital remedial options that will be extensively used in meeting these 2006 cleanup goals. Every buried waste site within the DOE complex will require some form of cover system. These covers are expected to last from 100 to 1000 years or more. The stakeholders can be expected to focus on system durability and sustained performance. DOE EM has set up a national committee of experts to develop a long-term capping (LTC) guidance document. Covers are subject to subsidence, erosion, desiccation, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. Very little is available in terms of long-term monitoring other than downstream groundwater or surface water monitoring. By its very nature, this can only indicate that failure of the cover system has already occurred and contaminants have been transported away from the site. This is unacceptable. Methods that indicate early cover failure (prior to contaminant release) or predict approaching cover failure are needed. The LTC committee has identified predictive monitoring technologies as a high priority need for DOE, both for new covers as well as existing covers. The same committee identified a Brookhaven National Laboratory (BNL) technology as one approach that may be capable of meeting the requirements for LTM. The Environmental Research and Technology Division (ERTD) at BNL developed a novel methodology for verifying and monitoring subsurface barriers (1,2). The technology uses perfluorocarbon tracers (PFTs) to determine flaws (e.g., holes or cracks) and high permeability areas in subsurface barriers. Gaseous tracers are injected on one side of the barrier and searched for on the opposite side of the barrier. The sampling grid, concentration, and time of arrival of the tracer(s) on the opposite side are used to determine the size and location of flaws and relative permeability of the barrier. In addition, there are multiple tracers available, which allows different tracers to be injected in different quadrants of the barrier. This yields additional information on transport phenomena of the barrier.

  20. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06T23:59:59.000Z

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest) from the lidar (the lidar beam path was limited by site constraints and was {approx}100 meters). When one door of each of the cars was opened (sequentially), the lidar was clearly able to determine which vehicles had been tagged and which one was not. The lidar is probably capable of greater than 0.5 kilometer standoff distances based on the extreme amount of signal return achieved (so much that the system had to be de-tuned). The BNL lidar system, while optimized to the extent possible with available parts and budget, was not as sensitive as it could be. Steps to improve the lidar are detailed in this report and include using a better laser system (for more stable power output), dual wavelengths (to improve the sensitivity and allow common mode noise reduction and to allow the use of the lidar in a scanning configuration), heterodyning (for range resolved PFT detection) and an off-axis optical configuration (for improved near field sensitivity).

  1. Basic cooling characteristics of perfluorocarbon liquid immersed windings for nonflammable transformers; Disk coil cooling for large-capacity forced circulating transformers. Part 1

    SciTech Connect (OSTI)

    Yamazaki, H.; Sakamoto, T. (Mechanical Engineering Research Lab., Hitachi, Ltd. (JP)); Takagi, I. (Chubu Electric Power Co., Inc., Keizaburo Hawashima (JP))

    1991-01-01T23:59:59.000Z

    This paper reports that to develop a new type of nonflammable large-power transformer which uses perfluorocarbon liquid as the cooling and insulation medium, the basic cooling characteristics of the liquid were investigated. Using a horizontal coil duct model, design data on heat-transfer characteristics of perfluorocarbon liquid were obtained by the computer program. Using a two-dimensional cooling model of nine coils per section, the velocity distribution in the coil ducts and the temperature rise distribution of the coils were clarified. Comparisons were made between experimental and calculated results and the developed computer program was found to be valid for the prediction of the velocity distribution in the coil ducts and of the temperature rise distribution of the coils.

  2. Only CryoguardTM Thermal Exposure

    E-Print Network [OSTI]

    Haskel, Daniel

    potential for environmentally friendly magnetic refrigera- tion systems. Magnetic refrigeration is a clean. Magnetic refrigeration does not rely on hydrofluorocarbons (HFCs) used in conventional refrigeration.. CCoollllaabboorraattiioonn wwiitthh AAmmeess LLaabboorraattoorryy Materials that change temperature in magnetic fields could

  3. Development and practical operation of perfluorocarbon immersed 275kV transformers with compressed SF6 gas insulation

    SciTech Connect (OSTI)

    Hiraishi, K.; Uwano, Y.; Shirakura, K.; Gotanda, Y.; Endoo, K. [Hitachi Ltd. (Japan)] [Hitachi Ltd. (Japan); Higaki, M. [Kyushu Kyoritu Univ., Kitakyushu (Japan)] [Kyushu Kyoritu Univ., Kitakyushu (Japan); Horikoshi, M.; Mizuno, K.; Hora, H. [Chubu Electric Power Co., Inc., Nagoya (Japan)] [Chubu Electric Power Co., Inc., Nagoya (Japan)

    1995-04-01T23:59:59.000Z

    A perfluorocarbon (PFC) immersed 275kV transformer with compressed SF6 gas insulation has been under development. This paper clarified the AC partial discharge inception voltage and time characteristics of PFC immersed insulation and also clarified that a prototype 275kV 100MVA three phase transformer could be worked without any trouble during the long-term over voltage test. This prototype proved that it had the AC partial discharge inception strength of higher than 1.5 times of the AC test voltage and the lightning impulse breakdown strength of 1.5 times of the test voltage. A 275kV 250MVA three phase transformer was developed and practically operated at the outdoor substation of Chubu Electric Power Co., Inc. This transformer has been successfully operated until now and the detailed internal inspection of the transformer was carried out after one year and 9 months of the successful practical operation and no significant abnormal condition was recognized.

  4. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  5. THE BROOKHAVEN NATIONAL LABORATORY PERFLUOROCARBON TRACER TECHNOLOGY: A PROVEN AND COST EFFECTIVE METHOD TO VERIFY INTEGRITY AND MONITOR LONG TERM PERFORMANCE OF WALLS, FLOORS, CAPS, AND COVER SYSTEMS.

    SciTech Connect (OSTI)

    HEISER, J.; SULLIVAN, T.

    2002-03-11T23:59:59.000Z

    Currently, containment system failures are detected by monitoring wells downstream of the waste site. Clearly this approach is inefficient, as the contaminants will have migrated from the disposal area before they are detected. Methods that indicate early cover failure (prior to contaminant release) or predict impending cover failure are needed. The Brookhaven National Laboratory (BNL) Perfluorocarbon Tracer (PFT) technology can measure performance changes and integrity losses as the cover ages. This allows early detection of cover failure or pending failure so that repair or replacement can be made before contaminants leave the disposal cell. The PFT technology has been successfully applied to four subsurface barrier problems, one leak detection problem from underground ducts, and one surface cover problem. Testing has demonstrated that the PFTs are capable of accurately detecting and locating leaks down to fractions of an inch. The PFT technology has several advantages over competing approaches. The ability to simultaneously use multiple PFTs separates it from other gas tracer technologies. Using multiple tracers provides independent confirmation of flaw location, helps to clearly define transport pathways, and can be used for confirmatory testing (e.g., repeat the test using a new tracer). The PFT tests provide a direct measure of flaws in a barrier, whereas other measurements (pressure, moisture content, temperature, subsidence) provide indirect measures that need interpretation. The focus of the six PFT demonstrations has been on engineering aspects of the technology with the intent of finding if a flaw existed in the barrier. Work remains to be done on the scientific basis for this technology. This includes determining PFT diffusion rates through various materials (soils and barrier) as a function of moisture content, determining the effects of barometric pumping on PFT flow for cover systems, and determining wind effects on side slopes of cover systems and their impact on PFT performance. It also includes application of models to assist in the design of the monitoring system and the interpretation of the data. The set of demonstrations was performed on small sites (< 1/4 acre). Future work also needs to consider scaling issues to develop and design optimal techniques for delivery and monitoring of the PFTs.

  6. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

  7. BNL-65897-AB NEW DETECTABILITY IN ATMOSPHERIC PERFLUOROCARBON TRACING

    E-Print Network [OSTI]

    J. Rappolt Tracer Environmental Sciences & Technologies, Inc. San Marcos, CA 92069. Presented.S. Department of Energy under Contract No. DE-AC02-98CH10886. #12;

  8. Trends and Inferred Emissions of Atmospheric High Molecular Weight Perfluorocarbons

    E-Print Network [OSTI]

    , with estimated ac- curacies of 6.8 % for C4F10, 7.8 % for C5F12, 4.0 % for C6F14, 6.6 % for C7F16 and 7.9 % for C molecular weight PFCs are: 0.17 parts-per-trillion (ppt, i.e., parts per 1012 ) for C4F10, 0.12 ppt for C5F for C4F10, C5F12, C6F14, C7F16 and C8F18 were estimated from the observations using a 3-dimensional

  9. Novel hydrofluorocarbon polymers for use as pellicles in 157 nm semiconductor photolithography: fundamentals of transparency

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Pont Photomasks Inc., 4 Finance Dr., Danbury, CT 06810, USA c INEOS, Russian Academy of Sciences, Vavilova 28

  10. HDW Fuel Cell Systems GmbH HFCS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,GuizhouGuyana: Energy ResourcesHAASEHDW

  11. TOWARDS ELIMINATION OF THE ANODE EFFECT AND PERFLUOROCARBON EMISSIONS FROM HALL-HROULT CELLS

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    Hongmin Zhu and Donald R. Sadoway Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, Massachusetts U.S.A. 02139-4307 ABSTRACT Cyclic voltammetry, stepped that the film can be formed and removed at will by regulation of applied potential. In harmony with this first

  12. Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems

    SciTech Connect (OSTI)

    Reimus, Paul W [Los Alamos National Laboratory

    2011-01-21T23:59:59.000Z

    The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

  13. Perfluorocarbons and their use in Cooling Systems for Semiconductor Particle Detectors

    E-Print Network [OSTI]

    Vacek, V; Ilie, S; Lindsay, S

    2000-01-01T23:59:59.000Z

    We report on the development of evaporative fluorocarbon cooling for the semiconductor pixel and micro-strip sensors of inner tracking detector of the ATLAS experiment at the future CERN Large Hadron Collider (LHC). We proceeded with studies using perfluoro-n-propane (3M-"PFG 5030"; C3F8), perfluoro-n-butane (3M-"PFG 5040"; C4F10), trifluoro-iodo-methane (CF3I) and custom C3F8/C4F10 mixtures. Certain thermo-physical properties had to be verified for these fluids.

  14. Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T Using NiTi Wires

    SciTech Connect (OSTI)

    Cui, Jun; Wu, Yiming; Muehlbauer, Jan; Hwang, Yunho; Radermacher, Reinhard; Fackler, Sean; Wuttig, Manfred; Takeuchi, Ichiro

    2012-08-01T23:59:59.000Z

    Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the theoretical limit, but its envi-ronmental footprint remains a global problem. VC refrigerants such as hydrochlo-roflurocarbons (HCFCs) and hydrofluorocarbons (HFCs) are a significant source of green house gas (GHG) emissions, and their global warming potential (GWP) is as high as 1000 times that of CO2. It is expected that building space cooling and re-frigeration alone will amount to {approx} 5% of primary energy consumption and {approx}5% of all CO2 emission in U.S. in 2030 . As such, there is an urgent need to develop an al-ternative high-efficiency cooling technology that is affordable and environmentally friendly. Among the proposed candidates, magnetocaloric cooling (MC) is currently received a lot of attention because of its high efficiency. However, MC is inherently expensive because of the requirement of large magnetic field and rare earth materi-als. Here, we demonstrate an entirely new type of solid-state cooling mechanism based on the latent heat of reversible martensitic transformation. We call it elasto-caloric cooling (EC) after the superelastic transformation of austenite it utilizes. The solid-state refrigerant of EC is cost-effective, and it completely eliminates the use of any refrigerants including HCFCs/HFCs. We show that the COP (coefficient of per-formance) of a jugular EC with optimized materials can be as high as > 10 with measured {Delta}T of 17 C.

  15. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01T23:59:59.000Z

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  16. Feasibility of a Perfluorocarbon tracer based network to support Monitoring, Verification, and Accounting of Sequestered CO2

    E-Print Network [OSTI]

    Johnson, Peter D.

    , New York, 11073-5000 *S Supporting Information ABSTRACT: Carbon capture and sequestration (CCS emissions from fossil fuel based energy production through carbon capture and sequestration (CCS). CCS energy based economy. The Department of Energy (DOE) target leak rate for sequestration reservoirs is 1

  17. The Climate Change Action Plan: Technical supplement

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This Technical Annex documents the assumptions and parameters used in developing the supporting analysis for the Climate Change Action Plan (the Plan) issued by President Clinton on October 19, 1993. The Annex is intended to meet the needs of independent energy and environmental analysts who wish to better understand the Plan, its analytical underpinnings, and the events that need to transpire for the emissions reductions called for in the Plan to be realized. The Plan documented in this Annex reflects the outcome of a wide-ranging effort by Government agencies and interested members of the public to develop and implement actions that can reduce net greenhouse gas emissions in the year 2000 to their aggregate 1990 level. Based on agency and public input, the Climate Change Mitigation Group, chaired by the White House Office on Environmental Policy, developed the Plan`s content. Many of the actions called for in the Plan are now underway, while others are in advanced planning pending congressional action on the fiscal year 1995 budget. The analysis supporting the Plan represents the results of an interagency effort. The US Department of Energy (DOE) was responsible for the integrated analysis of energy-related options, based on the analysis of individual energy-related options by DOE, the US Environmental Protection Agency (EPA), and the US Department of Transportation (DOT). EPA led in providing analysis for actions related to methane, hydrofluorocarbons, and perfluorocarbons. The US Department of Agriculture (USDA) led the analysis of carbon sequestration actions and cooperated with EPA in the analysis of actions to reduce nitrous oxide emissions.

  18. Millenium Science Complex New clean room: 10,000 sq. ft. class 100/1000

    E-Print Network [OSTI]

    -ring outgassing · All high temperature O-rings made of fluorocarbon or perfluorocarbon materials have this issue

  19. Supplement 1. PFC emissions from UNFCCC data1086 Perfluorocarbon (PFC) emission are reported to UNFCCC by 34 Annex I countries as part of their obligations as signatories to the1087

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    (UNFCCC, 2009). Emissions are reported for CF4, C2F6, C3F8, c-C4F8, C4F10, C5F12 and C6F14 in Gg) 6500 (CF4), 9200 (C2F6), 7000 (C3F8), 8700 (c-1089 C4F8), 7000 (C4F10), 7500 (C5F12), and 7400 (C6F14

  20. acid gas emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas ((GHG) (CO2, NH4, HFCs 26 INTRODUCTION Greenhouse Gas Emissions in an Urban Environment Environmental Sciences and Ecology Websites Summary: INTRODUCTION Greenhouse Gas...

  1. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    for CO2 , CH4 , N2 O, CO, NMVOC, SO2 , HFCs, PFCs and SF6 . Keywords: Emission Inventory; UNFCCC; IPCC; CO2 ; CH4 ; N2 O; HFCs; PFCs; SF6. ISSN (electronic): 1399-9346 Number of pages: 845 Internet version, Greenland and the Faroe Islands Appendix 2: Emission trends 1990-2001 adjusted for electricity exchange

  2. Update in Fluoroelastomers : fromPerfluoroelastomers to Fluorosilicones and Fluorophosphazenes

    E-Print Network [OSTI]

    Boyer, Edmond

    of the fluoroelastomers, ranging from (per)fluorocarbon elastomers to fluorophosphazenes, and fluorosilicones. 2 to be crosslinked and those are do not 2-1 Fluorocarbon elastomers. Usually, fluorocarbon elastomers are synthesised

  3. Primary aluminum production : climate policy, emissions and costs

    E-Print Network [OSTI]

    Harnisch, Jochen.; Sue Wing, Ian.; Jacoby, Henry D.; Prinn, Ronald G.

    Climate policy regarding perfluorocarbons (PFCs) may have a significant influence on investment decisions in the production of primary aluminum. This work demonstrates an integrated analysis of the effectiveness and likely ...

  4. Infrared absorption spectra, radiative efficiencies, and global warming potentials

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Infrared absorption spectra, radiative efficiencies, and global warming potentials absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison. (1995) and combined with atmospheric lifetimes from the literature to determine global warming

  5. Atmospheric histories and growth trends of C[subscript 4]F[subscript 10], C[subscript 5]F[subscript 12], C[subscript 6]F[subscript 14], C[subscript 7]F[subscript 16] and C[subscript 8]F[subscript 18

    E-Print Network [OSTI]

    Ivy, Diane J.

    Atmospheric observations and trends are presented for the high molecular weight perfluorocarbons (PFCs): decafluorobutane (C[subscript 4]F[subscript 10]), dodecafluoropentane (C[subscript 5]F[subscript 12]), tetradecafluorohexane ...

  6. Global emission estimates and radiative impact of C[subscript 4]F[subscript 10], C[subscript 5]F[subscript 12], C[subscript 6]F[subscript 14], C[subscript 7]F[subscript 16] and C[subscript 8]F[subscript 18

    E-Print Network [OSTI]

    Ivy, Diane J.

    Global emission estimates based on new atmospheric observations are presented for the acylic high molecular weight perfluorocarbons (PFCs): decafluorobutane (C[subscript 4]F[subscript 10]), dodecafluoropentane (C[subscript ...

  7. Reliability of Heat Pumps Containing R410-A Refrigerant

    E-Print Network [OSTI]

    McJimsey, B. A.; Cawley, D.

    1998-01-01T23:59:59.000Z

    on alternate refrigerants. One major manufacturer announced a formation of black smudge on internal surfaces of field trial units using HFCs. Several causes were suggested but none were published. Reports of capillary tube plugging were wide spread. Polyol...

  8. The State of the CDM & its Contribution to SD

    E-Print Network [OSTI]

    distribution of CDM projects 2012 CER Total in the CDM Pipeline kCERs Population per cap. Latin America 609 23 category Renewables 61% Demand-side EE 5% Supply-side EE 11% Fuel sw itch 3% HFCs, PFCs & N2O reduction 2% Supply-side EE 10% CH4 reduction & Cement & Coal mine/bed 20% Renewables 28% HFCs, PFCs & N2O reduction

  9. NOAA ARL Monthly Activity Report Bruce B. Hicks, Director

    E-Print Network [OSTI]

    and implementingfield programs consistingof tracer studies, including SF6 and perfluorocarbons. · Applying urban models quarter of the year, beginning in March 2005. The results of the Midtown Manhattan fugitive SF6 survey. Conclusions of this study were: · Electrical substations in the city release SF6 that impact the target test

  10. MS ID#: CIRCULATIONAHA/2011/039388-Accepted version Ultra-fast and whole body cooling with total liquid ventilation induces favourable3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with total liquid ventilation induces favourable3 neurological and cardiac outcomes following cardiac arrest in rabbits4 5 Short title: Liquid ventilation, hypothermia and cardiac arrest6 7 Chenoune M1,2,3 , DVM, MSc liquid ventilation (TLV) with temperature controlled perfluorocarbons induces a very rapid35

  11. BNL-73106-2004-IR Research by BNL investigators was performed under the auspices of the U.S. Department

    E-Print Network [OSTI]

    ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS Gunnar I. Senum and Russell N (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been

  12. Innovative bioreactors Marc A Deshusses*t, Wilfred Chen*, Ashok Mulchandani* and

    E-Print Network [OSTI]

    Chen, Wilfred

    -sensitive cultures, such as mammalian or plant cells, bubble bursting at the surface is sometimes sufficient to generate high stresses that kill the cultures [3]. The development of bubble-free bioreactor systems to the culture medium and to remove carbon dioxide in a dissolved form [4,.5]. A commercial perfluorocarbon

  13. Except for a few changes at the copyediting, this is the version that was published. Deshusses, M.A., W. Chen, A. Mulchandani, and I.J. Dunn. 1997. Innovative bioreactors. Current Opinion in

    E-Print Network [OSTI]

    -sensitive cultures such as mammalian or plant cells, bubble bursting at the surface is sometimes sufficient to generate high stresses which kill the cultures [3]. Development of bubble free bioreactor systems without medium and to remove carbon dioxide in a dissolved form [4-5]. A commercial perfluorocarbon, Foralkyl

  14. Fracture Model, Ground Displacements and Tracer Observations: Fruitland Coals, San Juan Basin, New Mexico,

    E-Print Network [OSTI]

    Wilson, Thomas H.

    that the coal reservoirs consist of six separate coal beds rather than three. Perfluorocarbon tracer monitoring the site consist of two coal beds, each separated by a shale parting. This observation indicates will improve our understanding of Fruitland coal reservoirs; help develop more effective strategies to enhance

  15. NOAA ARL Monthly Activity Report January 2005

    E-Print Network [OSTI]

    . SURFRAD/ISIS 9. DHS Model Evaluation Planning 10. U.S. Climate Reference 11. Community Multiscale Air. Tracer Analysis Facility (TAF) Adaptation for Perfluorocarbon Tracer Analysis 19. Smart Balloon" Method for DCNet added to READY. A routine that inserts DCNet tower observations into the Eta gridded

  16. Environment International, Vol. 8, pp. 419-433, 1982 0160-4120/82/070419-15503.00/0 Printed in the USA. All rights reserved. Copyright 1982 Pergamon Press Ltd.

    E-Print Network [OSTI]

    perfluorocarbon tracer (PFT) sources and miniature passive samplers, both about the size of a cigarette, tests of passive adsorption tube samplers performed reproducibly and identically (to within + 2%-3%) in laboratory-story house. Multiple location sampling, as well as sampling in rooms with and without a miniature source

  17. INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES The French APACHE project aims at

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    commercially available fuel cell vehicles [1­4]. Several projects of fuel cell aircrafts intend to demonstrate at demonstrating the feasibility of using a Hybrid Fuel Cell System (HFCS) as the power generator for all electric Fuel Cells (PEMFC), their hybridization with Lithium Ion (Li-Ion) batteries and systems' integration

  18. Nutrition Research and Practice (Nutr Res Pract) 2011;5(3):253-259 DOI: 10.4162/nrp.2011.5.3.253

    E-Print Network [OSTI]

    Toledo, University of

    intake and consumption of high fructose corn syrup (HFCS) did not correlate with rising obesity trends did not correlate with obesity trends. However, our results surprisingly revealed that consumption epidemic of obesity has been attributed to heuristic observations of an increase in the consumption of high-energy

  19. Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation

    E-Print Network [OSTI]

    .S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;Center% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCsTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

  20. A continuous fast-response dual-tracer analyzer for halogenated atmospheric tracer studies

    SciTech Connect (OSTI)

    Rydock, J.P.; Lamb, B.K. [Washington State Univ., Pullman, WA (United States)] [Washington State Univ., Pullman, WA (United States)

    1994-10-01T23:59:59.000Z

    An apparatus for the simultaneous measurement of two tracers, sulfur hexafluoride (SF6) and a perfluorocarbon compound, is introduced. The new instrument is a modification of a commercially available fast-response, continuous analyzer for single halogenated atmospheric tracer studies. A two-channel flow system was implemented consisting of an alumina cartridge in one channel and a glass beads cartridge of equal flow resistance in the second channel. The alumina passes only sulfur hexafluoride, while the glass beads pass both SF6 and the perfluoroarbon tracer. The SF6 is quantified directly from the electron capture detector (ECD) signal in the alumina channel, and the perfluorocarbon concentration is obtained from the difference of the ECD responses in the two channels. The dual-tracer analyzer is field portable for mobile operations or fixed-location monitoring, has a response time of 1.2 s, and has limits of detection of about 15 pptv for SF6 and 10 pptv for perfluoro-methylcyclohexane, which was the principal perfluorocarbon tracer used in this study. The present instrument configuration, which requires periodic purging of the adsorbent trap, can obtain continuous measurements for a 10-15-min segment in every half hour of operation. Dual-tracer data from a field demonstration test are presented.

  1. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08T23:59:59.000Z

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  2. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B. (Chicago, IL); Hoek, Terry Vanden (Chicago, IL); Kasza, Kenneth E. (Palos Park, IL)

    2003-04-15T23:59:59.000Z

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  3. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B. (Chicago, IL); Hoek, Terry Vanden (Chicago, IL); Kasza, Kenneth E. (Palos Park, IL)

    2008-09-09T23:59:59.000Z

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  4. Atmos. Chem. Phys., 12, 76357645, 2012 www.atmos-chem-phys.net/12/7635/2012/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18 D. J. Ivy1, M. Rigby1,*, M. Baasandorj2,3, J. B for the acylic high molecular weight perfluorocarbons (PFCs): decafluorobu- tane (C4F10), dodecafluoropentane (C5 rates were largest in the 1980s and 1990s for C4F10 and C5F12, and in the 1990s for C6F14, C7F16 and C8F

  5. Atmos. Chem. Phys., 12, 43134325, 2012 www.atmos-chem-phys.net/12/4313/2012/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    and growth trends of C4F10, C5F12, C6F14, C7F16 and C8F18 D. J. Ivy1, T. Arnold2, C. M. Harth2, L. P. Steele3 perfluorocarbons (PFCs): decafluorobutane (C4F10), dodecafluoropentane (C5F12), tetradecafluorohexane (C6F14 accuracies of 6.8 % for C4F10, 7.8 % for C5F12, 4.0 % for C6F14, 6.6 % for C7F16 and 7.9 % for C8F18. Based

  6. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect (OSTI)

    Huttenlocher, D.F.

    1992-10-09T23:59:59.000Z

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  7. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Final report

    SciTech Connect (OSTI)

    Huttenlocher, D.F.

    1992-10-09T23:59:59.000Z

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  8. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  9. Coolant controversy heats up

    SciTech Connect (OSTI)

    Shanley, A.

    1997-11-01T23:59:59.000Z

    In 1987, nations of the world banded together under the Montreal Protocol to help protect the earth`s ozone layer. Now, ten years and $2.4 billion in new fluorocarbon R and D later, the ozone hole is still with us, as a black market in illegal chlorofluorocarbons thrives and legal trade in recycled CFCs continues. Unfortunately, each alternative to CFCs poses tradeoffs. Some hydrochlorofluorocarbons present lubricant compatibility problems, and, because they are also somewhat ozone depleting, they`ll be phased out in the US between 2010 and 2030, and earlier in Europe. Chlorine-free hydrofluorocarbons contribute to global warming and some require lubricant changes and retooling, while the processes that make them emit halogenated organics. This paper discusses compatibility, flammability, global warming, and supply problems.

  10. Electrode assembly for use in a solid polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Raistrick, Ian D. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.

  11. Measurement of large strains in ropes using plastic optical fibers

    DOE Patents [OSTI]

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14T23:59:59.000Z

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  12. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect (OSTI)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01T23:59:59.000Z

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  13. Delocalization and hybridization enhance the magnetocaloric effect in Ni2Mn0.75Cu0.25Ga

    SciTech Connect (OSTI)

    Roy, Sujoy; Blackburn, E.; Valvidares, S. M.; Fitzsimmons, M. R.; Vogel, Sven C.; Khan, M.; Dubenko, I.; Stadler, S.; Ali, N.; Sinha, S. K.; Kortright, J. B.

    2008-11-26T23:59:59.000Z

    In view of the looming energy crisis facing our planet, attention increasingly focuses on materials potentially useful as a basis for energy saving technologies. The discovery of giant magnetocaloric (GMC) compounds - materials that exhibit especially large changes in temperature as the externally applied magnetic field is varied - is one such compound 1. These materials have potential for use in solid state cooling technology as a viable alternative to existing gas based refrigeration technologies that use choro-fluoro - and hydro-fluoro-carbon chemicals known to have a severe detrimental effect on human health and environment 2,3. Examples of GMC compounds include Gd5(SiGe)4 4, MnFeP1-xAsx 5 and Ni-Mn-Ga shape memory alloy based compounds 6-8. Here we explain how the properties of one of these compounds (Ni2MnGa) can be tuned as a function of temperature by adding dopants. By altering the free energy such that the structural and magnetic transitions coincide, a GMC compound that operates at just the right temperature for human requirements can be obtained 9. We show how Cu, substituted for Mn, pulls the magnetic transition downwards in temperature and also, counterintuitively, increases the delocalization of the Mn magnetism. At the same time, this reinforces the Ni-Ga chemical bond, raising the temperature of the martensite-austenite transition. At 25percent doping, the two transitions coincide at 317 K.

  14. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements

    SciTech Connect (OSTI)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-09T23:59:59.000Z

    The Urban Dispersion Program is a multi-year project, funded by the U.S. Department of Homeland Security, to better understand the flow and dispersion of airborne contaminants through and around the deep street canyons of New York City. The first tracer and meteorological field study was a limited study conducted during March 2005 near the Madison Square Garden in midtown Manhattan. Six safe, inert, gaseous perfluorocarbon tracers were released simultaneously at five street-level locations during two experimental days. In addition to collecting tracer data, meteorological data were also collected. Brookhaven National Laboratory conducted the bulk of the tracer and meteorological field efforts with Pacific Northwest National Laboratory and Stevens Institute of Technology assisting by measuring the vertical profile of winds. The Environmental Protection Agency worked with Brookhaven National Laboratory in accomplishing the personal exposure component of the study. This report presents some results from this analysis. In general, different release locations showed vastly different plume footprints for tracer materials, and the situation was made very complex with upwind and/or crosswind transport of tracer near street-level for the different release locations. Overall wind speeds and directions upwind and over the city were generally constant throughout each of the two experimental periods.

  15. THE MADISON SQUARE GARDEN DISPERSION STUDY (MSG05) METEOROLOGICAL DATA DESCRIPTION.

    SciTech Connect (OSTI)

    REYNOLDS, R.M.

    2006-10-01T23:59:59.000Z

    MSG05 was a study of atmospheric transport and dispersion in the deep urban canyons of Midtown New York City, in the area of Madison Square Garden. This downtown area is considered to be a prime target for terrorist activities, and has one of the largest commuter populations in the world. Little is known about air flow and hazardous gas dispersion in such scenarios, since previous urban field experiments have focused on small to medium sized cities with much smaller street canyons. On March 10 and 14, 2005, a series of Perfluorocarbon Tracer (PFT) tracers were released and tracked with about 30 sampling stations at radial distances of about 0.2 and 0.4 km, with vertical profiles near a 250 m tall building (One Penn Plaza). Meteorological stations collected wind data in the MSG vicinity, at street level and rooftop level. MSG05 is expected to provide useful information on rapid vertical dispersion will assist in planning for more extensive studies. This data release is being made available to a restricted group of key scientists who have worked on the project. Part of the QA program involves feedback from scientists and modelers who are working on this study. This document describes the meteorological component of the project. The file organization and metadata are detailed so that a researcher can work with the data sets.

  16. Taggants, method for forming a taggant, and a method for detecting an object

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Stone, Mark L. (Idaho Falls, ID)

    2012-02-28T23:59:59.000Z

    A taggant comprising at least one perfluorocarbon compound surrounded by a polyphosphazene compound. The polyphosphazene compound has the chemical structure: ##STR00001## wherein G.sub.1 and G.sub.2 are pendant groups having different polarities, m is an integer greater than or equal to 100, and each of A and B is independently selected from hydrogen, an alkyl, an alkene, an alkoxide, a polyether, a polythioether, a siloxane, and --X(CH.sub.2).sub.nY.sup.1(CH.sub.2)p.sub.1Y.sup.2(CH.sub.2)p.sub.2 . . . Y.sup.i(CH.sub.2)p.sub.iCH.sub.3, where n ranges from 1 to 6, X and Y are independently selected from oxygen, sulfur, selenium, tellurium, and polonium, and p.sub.1 through p.sub.i range from 1 to 6. Cyclic polyphosphazene compounds lacking the A and B groups are also disclosed, as are methods of forming the taggant and of detecting an object.

  17. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01T23:59:59.000Z

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  18. Effects of Water in Synthetic Lubricant Systems and Clathrate Formation: A Literature Search and Review

    SciTech Connect (OSTI)

    Rohatgi, Ngoc Dung T.

    2001-08-08T23:59:59.000Z

    An extensive literature search and a confidential survey were critically analyzed to determine the effects of water on the stability of hydrofluorocarbon/synthetic lubricant systems and to identify key areas requiring further investigation. Following are highlights from the analysis: Clathrate hydrates are solid solutions formed when water molecules are linked through hydrogen bonding creating cavities that can enclose various guest molecules from hydrate formers, such as hydrofluorocarbons R-32, R-125, R-134a, R-407C and R-410A. The four methods for preventing clathrate formation were drying the gas, heating it, reducing its pressure, or using inhibitors. The hydrolysis of polyolester lubricants was mostly acid-catalyzed and its reaction rate constant typically followed the Arrhenius equation of an activated process. Hydrolytic stability improved with hindered molecular structures, and with the presence of acid catcher additives and desiccants. Water vapor can effect the adsorption of long-chain fatty acids and the chemistry of formation of protective oxide film. However, these effects on lubrication can be either positive or negative. Fifty to sixty percent of the moisture injected into an air-conditioning system remained in the refrigerant and the rest mixed with the compressor oil. In an automotive air-conditioning system using R-134a, ice would form at 0 C evaporating temperature when the water content in the vapor refrigerant on the low-pressure side was more than 350 ppm. Moisture would cause the embrittlement of polyethylene terephthalate and the hydrolysis of polyesters, but would reduce the effect of amine additives on fluoroelastomer rubbers. The reactions of water with refrigerants and lubricants would cause formicary and large-pit corrosion in copper tubes, as well as copper plating and sludge formation. Moreover, blockage of capillary tubes increased rapidly in the presence of water. Twenty-four companies responded to the survey. From the responses, the water concentrations specified and expected for different refrigerant/lubricant systems varied depending on the products, their capacities and applications, and also on the companies. Among the problems associated with high moisture level, lubricant breakdown was of greatest concern, followed by acid formation, compressor failure and expansion valve sticking. The following research topics are suggested: 1. The air-conditioning and refrigeration industry needs to measure and record the water content and total acid number of the lubricant of newly installed systems as well as operating systems that are shutdown for service or repair. The reason for the shutdown needs to be documented. A database can then be established to correlate water content with type and cause of breakdown. 2. Detailed studies on the distribution of water in refrigeration and air-conditioning systems should be conducted to pinpoint problem areas associated with free water. 3. Research is needed to validate the current theories and mechanisms of formicary corrosion. Corrosion inhibitors need to be developed. 4. The conditions for clathrate formation and decomposition of other alternative refrigerants, such as R-23, R-41, R-116, R-125, R-143a, R-404A and R-507C, and water should be determined to avoid possible problems associated with tube plugging. The mechanism by which water facilitates or hinders lubrication needs to be studied.

  19. Final report on activities and findings under DOE grant “Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases”

    SciTech Connect (OSTI)

    Prather, Michael J. [UCI

    2014-11-07T23:59:59.000Z

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  20. Toxicity of trifluoroacetate to aquatic organisms

    SciTech Connect (OSTI)

    Berends, A.G.; Rooij, C.G. de [Solvay S.A., Brussels (Belgium); Boutonnet, J.C. [Elf Atochem, Levallois-Perret (France); Thompson, R.S. [Zeneca Ltd., Devon (United Kingdom). Brixham Environmental Lab.

    1999-05-01T23:59:59.000Z

    As a result of the atmospheric degradation of several hydrofluorocarbons and hydrochlorofluorocarbons, trifluoroacetate (TFA) will be formed. Through precipitation, TFA will enter aquatic ecosystems. To evaluate the impact on the aquatic environment, an aquatic toxicity testing program was carried out with sodium trifluoroacetate (NaTFA). During acute toxicity tests, no effects of NaTFA on water fleas (Daphnia magna) and zebra fish (Danio retrio) were found at a concentration of 1,200 mg/L. A 7-d study with duckweed (Lemna gibba Ge) revealed a NOEC of 300 mg/L. On the basis of the results of five toxicity tests with Selenastrum capricornutum, they determined a NOEC of 0.12 mg/L. However, algal toxicity tests with NaTFA and Chlorella vulgaris, Scenedesmus subspicatus, Chlamydomonas reinhardtii, Dunaliella tertiolecta, Eugelan gracilis, Phaeodactylum tricornutum, Navicula pelliculosa, Skeletonema costatum, Anabaena flos-aquae, and Microcystis aeruginosa resulted in EC50 values that were all higher than 100 mg/L. The toxicity of TFA to S. capricornutum could be due to metabolic defluorination to monofluoroacetate (MFA), which is known to inhibit the citric acid cycle. A toxicity test with MFA and S. capricornutum revealed it to be about three orders of magnitude more toxic than TFA. However, a bioactivation study revealed that defluorination of TFA was less than 4%. On the other hand, S. capricornutum exposed to a toxic concentration of NaTFA showed a recovery of growth when citric acid was added, suggesting that TFA (or a metabolite of TFA) interferes with the citric acid cycle. A recovery of the growth of S. capricornutum was also found when TFA was removed from the test solutions. Therefore, TFA should be considered algistatic and not algicidic for S. capricornutum. On the basis of the combined results of the laboratory tests and a previously reported semi-field study, they can consider a TFA concentration of 0.10 mg/L as safe for the aquatic ecosystem.

  1. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01T23:59:59.000Z

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  2. CHALLENGES IN SOURCE TERM MODELING OF DECONTAMINATION AND DECOMMISSIONING WASTES.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.

    2006-08-01T23:59:59.000Z

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models needed for risk assessment.

  3. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31T23:59:59.000Z

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM, to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.

  4. Side-by-side evaluation of a stressed-skin insulated-core panel house and a conventional stud-frame house. Final report

    SciTech Connect (OSTI)

    Rudd, A.; Chandra, S.

    1994-01-14T23:59:59.000Z

    Side-by-side energy testing and monitoring was conducted on two houses in Louisville, KY between January--March 1993. Both houses were identical except that one house was constructed with conventional US 2 by 4 studs and a truss roof while the other house was constructed with stress-skin insulated core panels for the walls and second floor ceiling. Air-tightness testing included fan pressurization by blower door, hour long tracer tests using sulphur hexafluoride, and two-week long time-averaged tests using perfluorocarbon tracers. An average of all the air-tightness test results showed the SSIC panel house to have 22 percent less air infiltration than the frame house. Air-tightness testing resulted in a recommendation that both houses have a fresh air ventilation system installed to provide 0.35 air changes per hour continuously. Thermal insulation quality testing was by infrared imaging. Pressure differential testing resulted in recommendations to use sealed combustion appliances, and to allow for more return air flow from closed rooms. This can be accomplished by separate return ducts or transfer ducts which simply connect closed rooms to the main body with a short duct. The SSIC house UA was lower in both cases. By measurement, co-heating tests showed the SSIC panel house total UA to be 12 percent lower than the frame house. Short-term energy monitoring was also conducted for the two houses. A 17 day period of electric heating and a 14 day period of gas furnace heating was evaluated. Monitoring results showed energy savings for the panel house to be 12 percent during electric heating and 15 percent during gas heating. A comparison of the two monitoring periods showed that the lumped efficiency of the gas furnace and air distribution system for both houses was close to 80 percent. Simple regression models using Typical Meteorological Year weather data gave a preliminary prediction of seasonal energy savings between 14 and 20 percent.

  5. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01T23:59:59.000Z

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations show that R141b hydrate is stable at temperatures up to 265K, while the isomer hydrate is only stable up to 150K. Despite hydrogen bonding between guest and host, R141b molecules rotated freely within the water cage. The Raman spectrum of R141b in both the pure and hydrate phases was also compared with vibrational analysis from both computational methods. In particular, the frequency of the C-Cl stretch mode (585 cm{sup -1}) undergoes a shift to higher frequency in the hydrate phase. Raman spectra also indicate that this peak undergoes splitting and intensity variation as the temperature is decreased from 4 C to -4 C.

  6. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect (OSTI)

    Dennis Cartlidge; Hans Schellhase

    2003-07-31T23:59:59.000Z

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid number (TAN), which includes both mineral acids and organic acids, is therefore a useful indicator which can be used to monitor the condition of the system in order to perform remedial maintenance, when required, to prevent system failure. The critical TAN value is the acid level at which remedial action should be taken to prevent the onset of rapid acid formation which can result in system failure. The level of 0.05 mg KOH/g of oil was established for CFC/mineral oil systems based on analysis of 700 used lubricants from operating systems and failed units. There is no consensus within the refrigeration industry as to the critical TAN value for HFC/POE systems, however, the value will be higher than the CFC/mineral oil systems critical TAN value because of the much weaker organic acids produced from POE. A similar study of used POE lubricants should be performed to establish a critical TAN limit for POE systems. Titrimetric analysis per ASTM procedures is the most commonly used method to determine TAN values in lubricants in the refrigeration industry and other industries dealing with lubricating oils. For field measurements, acid test kits are often used since they provide rapid, semi-quantitative TAN results.

  7. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  8. PROOF OF CONCEPT TEST OF A UNIQUE GASEOUS PERFLUROCARBON TRACER SYSTEM FOR VERIFICATION AND LONG TERM MONITORING OF CAPS AND COVER SYSTEMS CONDUCTED AT THE SAVANNAH RIVER SITE BENTONITE MAT TEST FACILITY.

    SciTech Connect (OSTI)

    HEISER,J.; SULLIVAN,T.; SERRATO,M.

    2002-02-24T23:59:59.000Z

    Engineered covers have been placed on top of buried/subsurface wastes to minimize water infiltration and therefore, release of hazardous contaminants. In order for the cover to protect the environment it must remain free of holes and breaches throughout its service life. Covers are subject to subsidence, erosion, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. The U.S. Department of Energy Environmental Management (DOE-EM) Program 2006 Accelerated Cleanup Plan is pushing for rapid closure of many of the DOE facilities. This will require a great number of new cover systems. Some of these new covers are expected to maintain their performance for periods of up to 1000 years. Long-term stewardship will require monitoring/verification of cover performance over the course of the designed lifetime. In addition, many existing covers are approaching the end of their design life and will need validation of current performance (if continued use is desired) or replacement (if degraded). The need for a reliable method of verification and long-term monitoring is readily apparent. Currently, failure is detected through monitoring wells downstream of the waste site. This is too late as the contaminants have already left the disposal area. The proposed approach is the use of gaseous Perfluorocarbon tracers (PFT) to verify and monitor cover performance. It is believed that PFTs will provide a technology that can verify a cover meets all performance objectives upon installation, be capable of predicting changes in cover performance and failure (defined as contaminants leaving the site) before it happens, and be cost-effective in supporting stewardship needs. The PFTs are injected beneath the cover and air samples taken above (either air samples or soil gas samples) at the top of the cover. The location, concentrations, and time of arrival of the tracer(s) provide a direct measure of cover performance. PFT technology can be used as a non-invasive method (if injection ports are emplaced prior to cover emplacement) on new covers or a minimally invasive method on existing covers. PFT verification will be useful at all buried waste sites using a cover system (e.g., treated or untreated chemical waste landfills) including DOE, commercial, and private sector sites. This paper discusses the initial field trial of the PFT cover monitoring system performed at the Savannah River Site (SRS) in FY01. The experiments provided a successful proof-of-principle test of the PFT technology in monitoring caps and covers. An injection and sampling array was installed in the Bentomat test cap at the SRS Caps Test Facility. This system contained 6 feet of sandy soil beneath a 1/2 inch geosynthetic clay liner covered by an HDPE liner which was covered by 2 feet of clayey top soil. PFTs were injected into the sandy soil though a pre-existing system of access pipes below the cap and soil gas samples were taken on top of the cap. Mid-way into the injection period a series of 1 1/2 inch holes were punched into the cap (through the geomembrane) to provide a positive breach in the cap. Data will be presented that shows the initial cap was fairly tight and leak free and that the artificially induced leaks were detectable within two hours of occurrence.

  9. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01T23:59:59.000Z

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes

  10. The feasibility study of hot cell decontamination by the PFC spray method

    SciTech Connect (OSTI)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-Gu, Daejeon, 305-353 (Korea, Republic of)

    2008-01-15T23:59:59.000Z

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu{sub 2}O{sub 3} powder. The spray pressure was 41 kgf/cm{sup 2}, the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm{sup 2}. From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm{sup 2} and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the collection equipment. After the termination of the decontamination test, th