Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

energy including hydroelectric, wind, geothermal, biomass, photovoltaic, and solar thermal, each having its own advantages and

Luc, Wesley Wai

2

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

3

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

4

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

5

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

6

Solar thermal power system  

DOE Patents [OSTI]

A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

Bennett, Charles L.

2010-06-15T23:59:59.000Z

7

Solar Thermal Demonstration Project  

SciTech Connect (OSTI)

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

8

City of Dubuque- Solar Thermal Licensing Requirement  

Broader source: Energy.gov [DOE]

The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The...

9

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov (indexed) [DOE]

is a rendering of a scattering solar concentrator. Light collected by a cylindrical Fresnel lens is focused within a curved glass "guide" sheet, where it is redirected into...

10

Solar mechanics thermal response capabilities.  

SciTech Connect (OSTI)

In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

Dobranich, Dean D.

2009-07-01T23:59:59.000Z

11

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network [OSTI]

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program COMMISSION May 2010 #12; The California Public

12

Solar Thermal Incentive Program  

Broader source: Energy.gov [DOE]

The New York State Energy Research and Development Authority (NYSERDA) offers incentives for the installation of solar water heating systems to residential and non-residential customers of the...

13

Passive Solar Building Design and Solar Thermal Space Heating Webinar  

Broader source: Energy.gov [DOE]

Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

14

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

15

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

16

Practical Solar Thermal Chilled Water  

E-Print Network [OSTI]

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

17

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

18

Sandia National Laboratories: solar thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolarsolar

19

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

20

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

22

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,heat transfer in solar thermal power plants utilizing phase

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

23

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

24

Pv-Thermal Solar Power Assembly  

DOE Patents [OSTI]

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

25

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network [OSTI]

iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

26

Thermal Management of Solar Cells  

E-Print Network [OSTI]

Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

27

Thermal Management of Solar Cells  

E-Print Network [OSTI]

ratio of the solar cell output power to the incident lightpower to operate the fan. Natural cooling is preferred for solar

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

28

Sandia National Laboratories: National Solar Thermal Test Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilityNational Solar Thermal Test Facility Interest Survey National Solar Thermal Test Facility Interest Survey Company Name * Contact Name * Email * Phone Number * Nature of...

29

Sandia National Laboratories: Sandia-AREVA Commission Solar Thermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECResearch & CapabilitiesCapabilitiesSandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Sandia-AREVA Commission Solar ThermalMolten Salt...

30

Thermal Management of Solar Cells  

E-Print Network [OSTI]

cells by cooling and concentration techniques," inheat. Different techniques of cooling solar cells have been

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

31

California Solar Initiative- Solar Thermal Program  

Broader source: Energy.gov [DOE]

'''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to...

32

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

33

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

34

Thermal Management of Solar Cells  

E-Print Network [OSTI]

is the ratio of the solar cell output power to the incidentmaximum power output at: The fill factor of a solar cell FFsolar cell temperature by about 15°C, which increases the output power

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

35

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

36

Solar thermal electric: Program overview fiscal years 1993--1994  

SciTech Connect (OSTI)

The Solar Thermal Electric Program Overview and Accomplishments for Fiscal Years 1993--1994 are documented.

NONE

1995-03-01T23:59:59.000Z

37

PV/thermal solar power assembly  

DOE Patents [OSTI]

A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

2004-01-13T23:59:59.000Z

38

Thermal metastabilities in the solar core  

E-Print Network [OSTI]

Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

Attila Grandpierre; Gabor Agoston

2002-01-18T23:59:59.000Z

39

Thermal Management of Solar Cells  

E-Print Network [OSTI]

D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

40

Thermal Management of Solar Cells.  

E-Print Network [OSTI]

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one… (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar thermal electric power information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

42

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA RIVERSIDE Phase Change Materials for Thermal Energy Storage in Concentrated Solar

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

43

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

materials (PCM) in solar thermal concentrating technologyeffective and efficient solar thermal electricity generatorbeen considered for solar thermal energy storages. These are

Roshandell, Melina

2013-01-01T23:59:59.000Z

44

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

45

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

46

Unique Solar Thermal Laboratory Gets an Upgrade | Department...  

Broader source: Energy.gov (indexed) [DOE]

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This power tower is part of the...

47

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

48

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network [OSTI]

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

49

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

THERMAL COGENERATION A solar tracker and concentrator was3.1.Tracking System The solar tracker is designed to supportSummary and Conclusion A solar tracker and concentrator was

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

50

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents [OSTI]

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

51

SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind  

E-Print Network [OSTI]

SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

Richardson, John

52

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks  

E-Print Network [OSTI]

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks Pascal Richter1 introduce our tool for the optimisation of parameterised solar thermal power plants, and report the applicability of our approach. Keywords: Optimization, Solar thermal power plants, Neural networks, Genetic

Ábrahám, Erika

53

Value of solar thermal industrial process heat  

SciTech Connect (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

54

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolarsolarenergy

55

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems.… (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

56

E-Print Network 3.0 - alto hydroelectric power Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Renewable Energy 17 RENEWABLE RESOURCES DEVELOPMENT REPORT Summary: hydroelectric, and solar (photovoltaic and concentrated solar power) in California is more than 262,000...

57

A solar concentrating photovoltaic / thermal collector J.S. Coventry  

E-Print Network [OSTI]

A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy.Coventry@anu.edu.au Abstract Australia is a good location for solar concentrator applications. Current activities in Australia OF THE SOLAR RESOURCE IN AUSTRALIA Australia has relatively high solar insolation, as shown in figure 1

58

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Power Plants,” Journal of Solar Energy Engineering, 124 (2),Cycle Storage of Solar Energy,” Energy & Environmental

Coso, Dusan

2013-01-01T23:59:59.000Z

59

Sandia National Laboratories: solar thermal storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Testthermal storage Sandia

60

High-Performance Home Technologies: Solar Thermal & Photovoltaic...  

Broader source: Energy.gov (indexed) [DOE]

in each of the volumes. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems More Documents & Publications Building America Whole-House Solutions for...

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

62

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

63

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

64

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network [OSTI]

upstream of the EarthÃ?s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measureSolar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately

California at Berkeley, University of

65

Energy 101: Hydroelectric Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

66

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

67

Optimizing Profits from Hydroelectricity Production  

E-Print Network [OSTI]

Optimizing Profits from Hydroelectricity Production Daniel De Ladurantaye Michel Gendreau Jean the profits obtained by the stochastic model. Keywords: Hydroelectricity, electricity market, prices, dams countries deregulate their electricity market, new challenges appear for hydroelectricity producers

Potvin, Jean-Yves

68

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

69

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

70

Renewable Energies III Photovoltaics, Solar & Geo-Thermal  

E-Print Network [OSTI]

Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 on the principles of solar energy conversion. Theoretical knowledge will be complemented with practical workshops of solar energy conversion. Theoretical knowledge will be comple- mented with practical workshops

71

Solar-thermal fluid-wall reaction processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

2006-04-25T23:59:59.000Z

72

Solar-Thermal Fluid-Wall Reaction Processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

2006-04-25T23:59:59.000Z

73

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network [OSTI]

Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

74

Minnesota Power- Solar-Thermal Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; ...

75

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

76

Hydroelectric Plants (Iowa)  

Broader source: Energy.gov [DOE]

A permit is required from the Executive Council of Iowa for the construction, maintenance, or operation of any hydroelectric facility. All applications will be subject to a public hearing.

77

Thermal storage module for solar dynamic receivers  

DOE Patents [OSTI]

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

78

Solar thermal program summary: Volume 1, Overview, fiscal year 1988  

SciTech Connect (OSTI)

The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology,energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

Not Available

1989-02-01T23:59:59.000Z

79

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network [OSTI]

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

80

Camera-based reflectivity measurement for solar thermal applications  

E-Print Network [OSTI]

of the solar-weighted reflectivity of the receiver component in CSP systems. Such reflectivity measurement Tubular receivers for solar thermal power plants, specifically tower plants, are in common use, in plants to be able to do conveniently in the field, possibly at intervals throughout the life of the plant

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

outstanding technical challenges focused on applicability to heat pipes to Concentrated Solar Power production. These include * Counter gravity physics * Counter gravity...

82

Thermally Induced Vibrations of a Solar Wing with Bowed STEM  

E-Print Network [OSTI]

undergo thermal excitations due to a thermal gradient through the cross-section when entering and exiting solar eclipse. These vibrations can greatly reduce pointing accuracy and lead to mission failure. Boeing obtained a patent in 2006 for the High Power...

Hagler, Shawn 1983-

2010-11-30T23:59:59.000Z

83

Gulf Power- Solar Thermal Water Heating Program  

Broader source: Energy.gov [DOE]

'''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating...

84

Design of a solar thermal collector simulator.  

E-Print Network [OSTI]

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new… (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

85

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

86

Solar thermal bowl concepts and economic comparisons for electricity generation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

1988-04-01T23:59:59.000Z

87

High temperature solar thermal technology: The North Africa Market  

SciTech Connect (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

88

Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.  

E-Print Network [OSTI]

??A solar updraft tower power plant – sometimes also called 'solar chimney' or just ‘solar tower’ – is a solar thermal power plant utilizing a… (more)

Daba, Robera

2011-01-01T23:59:59.000Z

89

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

90

Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels  

SciTech Connect (OSTI)

The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

Copeland, R. J.

1980-02-01T23:59:59.000Z

91

Tehachapi solar thermal system first annual report  

SciTech Connect (OSTI)

The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

1993-05-01T23:59:59.000Z

92

Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies  

E-Print Network [OSTI]

To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

93

Solar thermal power systems. Annual technical progress report, FY 1979  

SciTech Connect (OSTI)

The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

Not Available

1980-06-01T23:59:59.000Z

94

Photon management in thermal and solar photovoltaics  

E-Print Network [OSTI]

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

95

Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations  

E-Print Network [OSTI]

by the University of Wisconsin, which is used to select and analyze solar thermal systems. The program provides monthly- average performance for selected system, including: domestic water heating systems, space heating systems, pool heating systems and others... savings from photovoltaic systems using the PV F-CHART program, and a second procedure that uses the F-CHART program to calculate the thermal savings. The solar systems are simulated as specified for the user, no optimization or modification...

Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

96

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

97

Value of Concentrating Solar Power and Thermal Energy Storage  

SciTech Connect (OSTI)

This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

Sioshansi, R.; Denholm, P.

2010-02-01T23:59:59.000Z

98

Solar Thermal Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolarSuccess Stories

99

Solar Thermal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolarSuccess

100

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network [OSTI]

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Off-peak summer performance enhancement for rows of fixed solar thermal collectors using reflective surfaces.  

E-Print Network [OSTI]

??The possibility of increasing the efficiency of fixed solar thermal collectors without greatly adding to the cost or complexity of the overall solar collection system… (more)

Armenta, Casiano

2011-01-01T23:59:59.000Z

102

Solar thermal energy contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

Not Available

1991-09-01T23:59:59.000Z

103

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

104

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

105

Thermal characteristics of a classical solar telescope primary mirror  

E-Print Network [OSTI]

We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

Banyal, Ravinder K

2011-01-01T23:59:59.000Z

106

Solar Thermal Group Research School of Engineering  

E-Print Network [OSTI]

DEVELOPMENT OF COMPLEX OXIDE-BASED MATERIALS FOR HYBRID SOLAR THERMOELECTRIC GENERATOR Speaker: Dr Ruoming- and n- type thermoelectric materials. A number of strategies for enhancing the material efficiency were interests are in the development of oxide-based thermoelectric materials via ad- vanced synthesis

107

Solar Thermal Electric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,Home Aimeebailey's picture SubmittedSan

108

E-Print Network 3.0 - advanced solar thermal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

..) - residential and commercial. (A. Athienitis) 2. Solar thermal systems for heating and cooling (DHW... and optimization tool. THEME 1 Integration THEME 2 Thermal THEME...

109

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network [OSTI]

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

110

Cogenerating Photovoltaic and Thermal Solar Collector  

E-Print Network [OSTI]

cell, 25% max ­ Steam power plant, 50% max · Data Centers in the U.S. ­ Demand increases as internet.2% of the nations electricity consumption · Load equivalent to 5 1000 MW power plants · Over 2.2 billion dollars applications #12;First Prototype Spring 2008 #12;#12;Experimental Results · Thermal power generated ­ 1.4 KW

Su, Xiao

111

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

112

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

solar-thermal- assisted hvac system. Energy and Buildings, [of a Solar-Assisted HVAC System with Thermal Storage A.of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

113

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

2007-06-01T23:59:59.000Z

114

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Energy Frontier Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal...

115

Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module  

E-Print Network [OSTI]

This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

Zengeni, Hazel C

2014-01-01T23:59:59.000Z

116

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

117

Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)  

SciTech Connect (OSTI)

The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

Glatzmaier, G.; Mehos, M.; Mancini, T.

2008-04-01T23:59:59.000Z

118

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to: navigation,Solar

119

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network [OSTI]

collectors on the south tilted roofs, south walls, balconies or awnings. Experiences on solar thermal utilization are mainly introduced in this paper, which include solar hot water systems with different design methods in residential buildings and solar-powered...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

120

Where solar thermal meets photovoltaic for high-efficiency power conversion  

E-Print Network [OSTI]

To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

Bierman, David M. (David Matthew)

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove  

E-Print Network [OSTI]

. In the first step, pyrolysis, volatile components of the biomass are vaporised at elevated temperatures from. #12;Biomass gasification using solar thermal energy Munzinger Figure 1 Pyrolysis pathways (Milne et alBiomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group

122

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

123

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors  

E-Print Network [OSTI]

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

Mayer, Alexandre

124

Enhanced regeneration of degraded polymer solar cells by thermal annealing  

SciTech Connect (OSTI)

The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ?50% performance restoration over several degradation/regeneration cycles.

Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

2014-05-12T23:59:59.000Z

125

Midtemperature solar systems test facility predictions for thermal performance of the Acurex solar collector with FEK 244 reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Acurex solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-01-01T23:59:59.000Z

126

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at… (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

127

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

128

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

129

Sandia National Laboratories: solar thermal power plant components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test

130

Potential for supplying solar thermal energy to industrial unit operations  

SciTech Connect (OSTI)

Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

May, E.K.

1980-04-01T23:59:59.000Z

131

Environmental Impacts of Increased Hydroelectric Development...  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes the...

132

Title COMBINATION OF THERMAL SOLAR COLLECTORS, HEAT PUMP AND THERMAL ENERGY STORAGE FOR DWELLINGS IN BELGIUM.  

E-Print Network [OSTI]

The amount of available solar energy in Belgium is more than sufficient to meet local heat demand for space heating and domestic hot water in a dwelling. However, the timing of both the availability of solar energy and the need for thermal energy, match only to a limited extent. Therefore, compact storage of the surplus of thermal energy is a critical issue. Depending on the temperature at which this energy is available, directly from the sun or indirectly through the storage, different combinations with a heat pump can be considered. By combining solar energy with a heat pump one may benefit on both sides since the fraction of solar energy increases as well as the performance of the heat pump. The aim of this thesis is to select the best out of three configurations that combine thermal solar collectors, heat pump and thermal energy storage for heating purposes in dwellings in Belgium, based on model simulations. Energetic, exergetic and economic criteria are used to evaluate the different configurations, while thermal comfort and domestic hot water tap profiles should be met. One (or more) performance index (indices) is (are) defined enabling an objective comparison between different systems. Today several systems are already commercially available on the international market [4]. Since these systems consist of different components, the system design is a crucial issue. Therefore, special attention should be paid to the sizing of the individual components, the interaction of the components within the global system, and the strategy for operational control. To study the interaction with the building, three types of buildings (already defined in a previous project) are considered.

Contact Raf; De Herdt; Roel De Coninck; Filip Van Den Schoor; Lieve Helsen

133

Midtemperature Solar Systems Test Facility predictions for thermal performance of the Solar Kinetics T-700 solar collector with FEK 244 reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Solar Kinetics T-700 solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1980-11-01T23:59:59.000Z

134

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network [OSTI]

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets David, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPV by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class

Soljaèiæ, Marin

135

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind  

E-Print Network [OSTI]

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind S to the well--known thermal expansion of the solar corona [Parker, 1958, 1963, 1991]. In particular Alfv'en waves in the solar atmosphere and wind, taking into account relevant physical effects

136

Fifth parabolic dish solar thermal power program annual review: proceedings  

SciTech Connect (OSTI)

The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

None

1984-03-01T23:59:59.000Z

137

Potential for hydroelectric development in Alaska  

SciTech Connect (OSTI)

Testimony concerning Alaskan hydroelectricity development is presented. Various public and private organizations were represented.

Not Available

1981-01-01T23:59:59.000Z

138

An overview: Component development for solar thermal systems  

SciTech Connect (OSTI)

In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

Mancini, T.R.

1994-10-01T23:59:59.000Z

139

Solar-thermal-energy collection/storage-pond system  

DOE Patents [OSTI]

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

140

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A model library of solar thermal electric components for the computer code TRNSYS  

SciTech Connect (OSTI)

A new approach to modeling solar thermal electric plants using the TRNSYS simulation environment is discussed. The TRNSYS environment offers many advantages over currently used tools, including the option to more easily study the hybrid solar/fossil plant configurations that have been proposed to facilitate market penetration of solar thermal technologies. A component library developed for Rankine cycle, Brayton cycle, and solar system modeling is presented. A comparison between KPRO and TRNSYS results for a simple Rankine cycle show excellent correlation.

Pitz-Paal, R. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Solare Energietechnik; Jones, S. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

142

Global Energetics of Solar Flares: II. Thermal Energies  

E-Print Network [OSTI]

We present the second part of a project on the global energetics of solar flares and CMEs that includes about 400 M- and X-class flares observed with AIA/SDO during the first 3.5 years of its mission. In this Paper II we compute the differential emission measure (DEM) distribution functions and associated multi-thermal energies, using a spatially-synthesized Gaussian DEM forward-fitting method. The multi-thermal DEM function yields a significantly higher (by an average factor of $\\approx 14$), but more comprehensive (multi-)thermal energy than an isothermal energy estimate from the same AIA data. We find a statistical energy ratio of $E_{th}/E_{diss} \\approx 2\\%-40\\%$ between the multi-thermal energy $E_{th}$ and the magnetically dissipated energy $E_{diss}$, which is an order of magnitude higher than the estimates of Emslie et al.~2012. For the analyzed set of M and X-class flares we find the following physical parameter ranges: $L=10^{8.2}-10^{9.7}$ cm for the length scale of the flare areas, $T_p=10^{5.7}-...

Aschwanden, M J; Ryan, D; Caspi, A; McTiernan, J M; Warren, H P

2015-01-01T23:59:59.000Z

143

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems  

E-Print Network [OSTI]

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal the confidence in solar thermal energy. The so called Input/Output-Procedure is controlling the solar heat systems. The simulation model was validated with measured data and a lot of failures in 11 solar thermal

144

Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2  

E-Print Network [OSTI]

Risø Energy Report 5 Solar thermal 41 6.3.2 by the end of 2004 about 110 million m2 of solar ther be within the competence of the existing solar thermal industry. Solar thermal PETER AHM, PA ENERgy LTD- mal collectors were installed worldwide. Figure 24 il- lustrates the energy contribution from

145

Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

146

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

SciTech Connect (OSTI)

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

Not Available

1985-01-01T23:59:59.000Z

147

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

148

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network [OSTI]

/or hydrogen powered fuel cell vehicles could help to mitigate the energy supply and environmental problems black production. For solar-thermal processing, where carbon black is sold, fossil energy usageRapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor Jaimee Dahl a , Karen

149

The Thermal Control of the New Solar Telescope at Big Bear Observatory  

E-Print Network [OSTI]

The Thermal Control of the New Solar Telescope at Big Bear Observatory Angelo P. Verdonia and Carsten Denkera aNew Jersey Institute of Technology, Center for Solar-Terrestrial Research, 323 Martin Luther King Blvd, Newark, NJ 07102, US ABSTRACT We present the basic design of the THermal Control System

150

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network [OSTI]

Early direct steam generation prototypes include two central tower projects: a solar-powered enhanced oil recovery project called STEOR in the early 1980s (Romero 2002), and a solar tower projectPressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

151

STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994  

SciTech Connect (OSTI)

The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

NONE

1994-12-31T23:59:59.000Z

152

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

153

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

154

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

155

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower • Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

156

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

157

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

158

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

159

EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington  

Broader source: Energy.gov [DOE]

This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

160

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network [OSTI]

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

Pierre-Luc Carpentier

2013-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

162

An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization  

SciTech Connect (OSTI)

This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

Burch, J.; Thomas, K.E.

1998-01-01T23:59:59.000Z

163

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network [OSTI]

@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

Reif, John H.

164

The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993  

SciTech Connect (OSTI)

The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

Menicucci, D.F.

1994-03-01T23:59:59.000Z

165

Collisional Thermalization of Hydrogen and Helium in Solar Wind Plasma  

E-Print Network [OSTI]

In situ observations of the solar wind frequently show the temperature of $\\alpha$-particles (fully ionized helium), $T_\\alpha$, to significantly differ from that of protons (ionized hydrogen), $T_p$. Many heating processes in the plasma act preferentially on $\\alpha$-particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the $\\textit{Wind}$ spacecraft's Faraday cups reveal that, at $r=1.0\\ \\textrm{AU}$ from the Sun, the observed values of the $\\alpha$-proton temperature ratio, $\\theta_{\\alpha p} \\equiv T_\\alpha\\,/\\,T_p$ has a complex, bimodal distribution. This study applied a simple model for the radial evolution of $\\theta_{\\alpha p}$ to these data to compute expected values of $\\theta_{\\alpha p}$ at $r=0.1\\ \\textrm{AU}$. These inferred $\\theta_{\\alpha p}$-values have no trace of the bimodality seen in the $\\theta_{\\alpha p}$-values measured at $r=1.0\\ \\textrm{AU}$ but are instead consistent with the actions of the known mechanisms for $\\alpha$-particle p...

Maruca, Bennett A; Sorriso-Valvo, Luca; Kasper, Justin C; Stevens, Michael L

2013-01-01T23:59:59.000Z

166

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

Since the ceramic wafers have a high thermal conductivity,easily altered ceramic blocks all had a thermal conductivityCeramics. Available Online: http://www.dynacer.com/thermal_

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

167

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

168

Waverly Light and Power- Residential Solar Thermal Rebates  

Broader source: Energy.gov [DOE]

Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

169

Monitoring solar-thermal systems: An outline of methods and procedures  

SciTech Connect (OSTI)

This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1994-04-01T23:59:59.000Z

170

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications  

E-Print Network [OSTI]

The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid...

Shin, Donghyun

2012-10-19T23:59:59.000Z

171

Modeling the solar thermal receiver for the CSPonD Project  

E-Print Network [OSTI]

The objective was to create an accurate steady state thermal model of a molten salt receiver prototype with a horizontal divider plate in the molten salt for Concentrated Solar Power on Demand (CSPonD). The purpose of the ...

Rees, Jennifer A. (Jennifer Anne)

2011-01-01T23:59:59.000Z

172

Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting  

E-Print Network [OSTI]

In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. ...

Noone, Corey J. (Corey James)

2011-01-01T23:59:59.000Z

173

Optimal operation and design of solar-thermal energy storage systems  

E-Print Network [OSTI]

The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

Lizarraga-García, Enrique

2012-01-01T23:59:59.000Z

174

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network [OSTI]

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

175

Recent National Solar Thermal Test Facility activities, in partnership with industry  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

176

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

177

Modelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove  

E-Print Network [OSTI]

value energy conversions such as heat engine cycles or chemical process to be carried outModelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove, Canberra AUSTRALIA E-mail: u3370739@anu.edu.au The natural convective flow inside a concentrating solar

178

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network [OSTI]

The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

Wu, Mingshen

179

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network [OSTI]

Quality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch different solar systems. The simulation model was validated with measured data. The deviation between meas * Tel. +49 (0)5151-999503, Fax: +49 (0)5151-999500, Email: paerisch@isfh.de Abstract Input/Output

180

Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County  

SciTech Connect (OSTI)

The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

Kuver, Walt

2009-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

1997-12-02T23:59:59.000Z

182

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

Christensen, Craig B. (Boulder, CO); Kutscher, Charles F. (Golden, CO); Gawlik, Keith M. (Boulder, CO)

1997-01-01T23:59:59.000Z

183

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

Other Solar Technologies HYDROELECTRIC AND PUMPED STORAGEand Solar Thermal Hydroelectric Power Geothermal . Land UseOcean Wind Geothermal Hydroelectric Ocean Energy Fossil

Authors, Various

2010-01-01T23:59:59.000Z

184

Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1980-11-01T23:59:59.000Z

185

Hydroelectric energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydro orHydroelectric

186

Thermal control system and method for a passive solar storage wall  

DOE Patents [OSTI]

The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, Joseph K. E. (Westminister, CO)

1984-01-01T23:59:59.000Z

187

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network [OSTI]

to achieve further energy consumption reductions. To accomplish this, the F- Chart program was used for the solar thermal system analysis and the PV F-Chart program for the solar photovoltaic (PV) system analysis. Authors show how DOE-2.1e simulation... Time series plots of space heating and service hot water loads from SYSTEMS and PLANT simulation runs Due to the fact that the solar thermal systems analysis program, F-Chart, takes into account the system efficiencies in its loads calculation...

Cho, S.; Haberl, J.

188

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network [OSTI]

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

189

Thermodynamic Analysis And Simulation Of A Solar Thermal Power System.  

E-Print Network [OSTI]

??Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used… (more)

Harith, Akila

2012-01-01T23:59:59.000Z

190

Wind Issues in Solar Thermal Performance Ratings: Preprint  

SciTech Connect (OSTI)

We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

Burch, J.; Casey, R.

2009-04-01T23:59:59.000Z

191

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy,… (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

192

Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

193

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

the thermoelectric module, and the water cooling tubes. Tothermoelectric module, combined with the thermal power transferred by the water cooling

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

194

Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar  

E-Print Network [OSTI]

and moist air for thermal storage of solar energy: global performance Benoit Michela, *, Nathalie Mazeta-gas reaction, hydration, thermal storage, seasonal storage, solar energy * Corresponding author: E-mail: mazet Der energy density of the reactor, Jm -3 thermal conductivity, Wm -1 .K -1 G reactive gas

Paris-Sud XI, Université de

195

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules  

E-Print Network [OSTI]

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves are accounted for in their ef fects on the mass, momentum and energy fluxes. Also, besides thermal exchange

Connolly Jr, Harold C.

196

Solar thermal powered desalination: membrane versus distillation technologies  

E-Print Network [OSTI]

, in terms of the volume of water produced for the energy consumed. The two most commonly encountered. The daily desalinated water output per square metre of solar collector area is estimated for a number in remediation of dryland salinity, a critical review of the literature on medium to large scale solar driven (or

197

Solar thermal collector system modeling and testing for novel solar cooker  

E-Print Network [OSTI]

Solar cookers are aimed at reducing pollution and desertification in the developing world. However, they are often disregarded as they do not give users the ability to cook after daylight hours. The Wilson solar cooker is ...

Foley, Brian, S.B. (Brian M.). Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

198

Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop  

SciTech Connect (OSTI)

Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

199

Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems  

E-Print Network [OSTI]

In concentrated solar power (CSP) systems, high temperature heat transfer fluids (HTFs) are responsible for collecting energy from the sun at the solar receiver and transporting it to the turbine where steam is produced ...

Thoms, Matthew W

2012-01-01T23:59:59.000Z

200

Solar-thermal hybridization of Advanced Zero Emissions Power Plants  

E-Print Network [OSTI]

Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

El Khaja, Ragheb Mohamad Fawaz

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modeling of solar thermal selective surfaces and thermoelectric generators  

E-Print Network [OSTI]

A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

McEnaney, Kenneth

2010-01-01T23:59:59.000Z

202

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

203

Green Energy Ohio- GEO Solar Thermal Rebate Program  

Broader source: Energy.gov [DOE]

With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are...

204

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal… (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

205

Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program This document contains the Final...

206

Energy Department Seeks Feedback on Draft Guidance for the Hydroelectr...  

Office of Environmental Management (EM)

Feedback on Draft Guidance for the Hydroelectric Production Incentive Program Energy Department Seeks Feedback on Draft Guidance for the Hydroelectric Production Incentive Program...

207

Energy Partitions and Evolution in a Purely Thermal Solar Flare  

E-Print Network [OSTI]

This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

Fleishman, Gregory D; Gary, Dale E

2015-01-01T23:59:59.000Z

208

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [Verma et al., 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron’s thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of Braginskii. In this paper we have also estimated the eddy turbulent viscosity. 1 1

Mahendra K. Verma

2008-01-01T23:59:59.000Z

209

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

Mahendra K. Verma

1995-09-05T23:59:59.000Z

210

SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists  

SciTech Connect (OSTI)

The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

Not Available

1980-05-01T23:59:59.000Z

211

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofs

212

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofsIncentives Jump to:

213

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors… (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

214

Solar cooking : the development of a thermal battery  

E-Print Network [OSTI]

There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

215

Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab  

SciTech Connect (OSTI)

The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

2010-12-15T23:59:59.000Z

216

Foote Hydroelectric Plant spillway rehabilitation  

SciTech Connect (OSTI)

In 1993 the spillway of the 9 MW Foote Hydroelectric Plant located on the AuSable River, near Oscoda, Michigan was rehabilitated. The Foote Plant, built in 1917, is owned and operated by Consumers Power Company. In the 76 years of continuous operation the spillway had deteriorated such that much of the concrete and associated structure needed to be replaced to assure safety of the structure. The hydro station includes an earth embankment with concrete corewall, a concrete spillway with three tainter gates and a log chute, a penstock structure and a steel and masonry powerhouse. The electric generation is by three vertical shaft units of 3,000 KW each. A plan of the plant with spillway and an elevation of the spillway section is shown. This paper describes the evaluation and repair of the plant spillway and associated structure.

Sowers, D.L. [Consumers Power Co., Jackson, MI (United States); Hasan, N.; Gertler, L.R. [Raytheon Infrastructures Services, New York, NY (United States)

1996-10-01T23:59:59.000Z

217

Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Environmental Protection, Mitigation and Enhancement at Hydroelectric Projects ----10 Fish Passage Tour ---...

218

OLADE-Solar Thermal World Portal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |AgnyFostering

219

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation

220

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents [OSTI]

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fish and hydroelectricity; Engineering a better coexistence  

SciTech Connect (OSTI)

This paper reports on the problems that hydroelectric plants have regarding fish populations. The utilities that operate these plants are finding that accommodating migrating fish presents unique engineering challenges, not the least of which involves designing and building systems to protect fish species whose migratory behavior remains something of a mystery. Where such systems cannot be built, the status of hydroelectric dams may be in doubt, as is now the case with several dams in the United States. A further twist in some regions in the possibility that certain migratory fish will be declared threatened or endangered-a development that could wreak havoc on the hydroelectric energy supply in those regions.

Zorpette, G.

1990-12-01T23:59:59.000Z

222

Solar Thermal Policy in the U.S.: A Review of Best Practices  

E-Print Network [OSTI]

Solar Thermal Policy in the U.S.: A Review of Best Practices in Leading States Renewable Energy Applications for Delaware Yearly (READY) Center for Energy and Environmental Policy University of Delaware Byrne, Director, CEEP Center for Energy and Environmental Policy University of Delaware Newark, DE 19716

Delaware, University of

223

Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

1987-03-01T23:59:59.000Z

224

Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs  

SciTech Connect (OSTI)

This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

1980-02-01T23:59:59.000Z

225

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report  

SciTech Connect (OSTI)

We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

2012-03-30T23:59:59.000Z

226

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWindInternationalbyNRELPresentedNational

227

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSP Images &

228

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSP Images

229

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSP

230

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSPParabolic

231

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in

232

Sandia National Laboratories: National Solar Thermal Testing Facility Beam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, inProfiling

233

Hydroelectric Resources on State Lands (Montana)  

Broader source: Energy.gov [DOE]

This chapter authorizes the leasing of state lands for the development of hydroelectric resources. It provides regulations for the granting and duration of leases, as well as for the inspection of...

234

ELIGIBILITY SECOND EDITION  

E-Print Network [OSTI]

sales, small hydroelectric, solar, thermal, supplemental energy payments, wind #12;TABLE OF CONTENTS ............................................................................................................. 12 3. Small Hydroelectric ............................................................................................ 13 a. Small Hydroelectric (not conduit

235

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

and Solar Thermal Hydroelectric Power Geothermal Land Usenoise 91ALL/LARGE HYDROELECTRIC DAMS significant evaporationthe reservoirs behind hydroelectric dams varies greatly from

Balderston, F.

2010-01-01T23:59:59.000Z

236

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

and Solar Thermal Hydroelectric Power Geothermal Land Useimplications, hydroelectric power may be classified intodisadvantage In by hydroelectric power is the limited life

Balderston, F.

2010-01-01T23:59:59.000Z

237

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

and Solar Thermal Hydroelectric Power Geothermal . Land UsePower Commission, Hydroelectric Power Resources of theSTORAGE RESOURCES Hydroelectric power comprises, after oil-

Authors, Various

2010-01-01T23:59:59.000Z

238

Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-06-01T23:59:59.000Z

239

Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-05-01T23:59:59.000Z

240

E-Print Network 3.0 - assessment uri hydroelectric Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

uri hydroelectric Search Powered by Explorit Topic List Advanced Search Sample search results for: assessment uri hydroelectric Page: << < 1 2 3 4 5 > >> 1 FUTURE HYDROELECTRIC...

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solar Thermal Technologies Available for Licensing - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmartPortal Thermal Site

242

Midtemperature solar systems test facility predictions for thermal performance based on test data: AAI solar collector with pressure-formed glass reflector surface  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhance oil recovery applications. The thermal performance predictions for the AAI solar line-focusing slat-type collector for five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

243

Thermal performance simulation of a solar cavity receiver under windy conditions  

SciTech Connect (OSTI)

Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle {alpha} = 90 ). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind. (author)

Fang, J.B.; Wei, J.J.; Dong, X.W.; Wang, Y.S. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

2011-01-15T23:59:59.000Z

244

Indian River Hydroelectric Project Grant  

SciTech Connect (OSTI)

This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

Rebecca Garrett

2005-04-29T23:59:59.000Z

245

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect (OSTI)

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

246

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

Reddy, Ramana G. [The University of Alabama] [The University of Alabama

2013-10-23T23:59:59.000Z

247

Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage  

SciTech Connect (OSTI)

At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

Denholm, P.; Mehos, M.

2011-11-01T23:59:59.000Z

248

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power  

SciTech Connect (OSTI)

The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

2009-08-15T23:59:59.000Z

249

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network [OSTI]

et al. , April 1975. 4. Solar Thermal Conversion Missionof.Several Central Reveiver Solar Thermal Power Plant Designterm solar energy are: Included solar thermal conversion to

Davidson, M.

2010-01-01T23:59:59.000Z

250

Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares  

E-Print Network [OSTI]

The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

2007-01-12T23:59:59.000Z

251

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

252

Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint  

SciTech Connect (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

2011-08-01T23:59:59.000Z

253

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

-flexible with respect to the source of thermal energy and unprocessed waste heat can be harvested for CHP purposes for residential solar generation or on a small commercial building scale. The Stirling engine is a key component

Sanders, Seth

254

The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory  

E-Print Network [OSTI]

The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5 degree Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

A. P. Verdoni; C. Denker; J. R. Varsik; S. Shumko; J. Nenow; R. Coulter

2007-08-04T23:59:59.000Z

255

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

SciTech Connect (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

256

EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.  

SciTech Connect (OSTI)

The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

ANDREWS,J.W.

1981-06-01T23:59:59.000Z

257

Hybrid Modeling and Control of a Hydroelectric Power Plant  

E-Print Network [OSTI]

Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

Ferrari-Trecate, Giancarlo

258

ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America  

E-Print Network [OSTI]

ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America: modelling service services provided to the Costa Rican and Nicaraguan hydroelectric sectors, which are crucial sectors for the conservation and restoration of forests for the services they provide to the hydroelectric sector. As such

Paris-Sud XI, Université de

259

Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes  

E-Print Network [OSTI]

A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.

Thomas R. Ayres; Claude Plymate; Christoph U. Keller

2006-06-07T23:59:59.000Z

260

Outdoor testing of advanced optical materials for solar thermal electric applications  

SciTech Connect (OSTI)

The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred but not in a systematic manner. To date, simulated/accelerated testing has been limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed. 10 refs.

Wendelin, T.J.; Jorgensen, G.; Goggin, R.M.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure  

E-Print Network [OSTI]

Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearin...

Loukitcheva, Maria; Carlsson, Mats; White, Stephen

2015-01-01T23:59:59.000Z

262

Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.  

SciTech Connect (OSTI)

The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

Ehrhart, Brian David; Gill, David Dennis

2013-07-01T23:59:59.000Z

263

Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model  

SciTech Connect (OSTI)

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2012-11-01T23:59:59.000Z

264

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants  

SciTech Connect (OSTI)

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

Bowyer, J.M.

1984-04-15T23:59:59.000Z

265

Opto-thermal analysis of a lightweighted mirror for solar telescope  

E-Print Network [OSTI]

In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in gro...

Banyal, Ravinder K; Chatterjee, S

2013-01-01T23:59:59.000Z

266

Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop  

E-Print Network [OSTI]

We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

T. Minoshima; T. Yokoyama

2008-06-24T23:59:59.000Z

267

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

from solar heat is o These solar thermal systems provide lowTechnologies, Vol. 5, Solar Thermal Electric Systems" MITREWind Cogeneration and Solar Thermal Hydroelectric Power

Balderston, F.

2010-01-01T23:59:59.000Z

268

Chaotic mean wind in turbulent thermal convection and long-term correlations in solar activity  

E-Print Network [OSTI]

It is shown that correlation function of the mean wind velocity in a turbulent thermal convection (Rayleigh number $Ra \\sim 10^{11}$) exhibits exponential decay with a very long correlation time, while corresponding largest Lyapunov exponent is certainly positive. These results together with the reconstructed phase portrait indicate presence of a chaotic component in the examined mean wind. Telegraph approximation is also used to study relative contribution of the chaotic and stochastic components to the mean wind fluctuations and an equilibrium between these components has been studied. Since solar activity is based on the thermal convection processes, it is reasoned that the observed solar activity long-term correlations can be an imprint of the mean wind chaotic properties. In particular, correlation function of the daily sunspots number exhibits exponential decay with a very long correlation time and corresponding largest Lyapunov exponent is certainly positive, also relative contribution of the chaotic and stochastic components follows the same pattern as for the convection mean wind.

A. Bershadskii

2009-12-25T23:59:59.000Z

269

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Organometallic Frames for Solar Energy Storage, Berkeley. [and Photovoltaic Solar Energy Converters,” American ChemicalNocera D. G. , 2010, “Solar Energy Supply and Storage for

Coso, Dusan

2013-01-01T23:59:59.000Z

270

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

271

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

been heated at solar collection tower, at the temperatureIn the receiver tower, the collected solar radiation heatsfocus and send solar radiation to a receiver tower.

Roshandell, Melina

2013-01-01T23:59:59.000Z

272

E-Print Network 3.0 - active solar thermal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. ACTIVE SOLAR SYSTEMS Solar collectors are designed to take advan- tage of the greenhouse effect. The flat... " solar system (Figure 2). It is called active because it requires...

273

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”Power Plants,” Journal of Solar Energy Engineering, 124 (2),

Coso, Dusan

2013-01-01T23:59:59.000Z

274

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

and Photovoltaic Solar Energy Converters,” American ChemicalNocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

Coso, Dusan

2013-01-01T23:59:59.000Z

275

Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint  

SciTech Connect (OSTI)

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

2013-10-01T23:59:59.000Z

276

Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)  

SciTech Connect (OSTI)

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

2013-10-01T23:59:59.000Z

277

The U.S. Department of Energy`s role in commercialization of solar thermal electric technology  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has supported the development of solar thermal electric (STE) technology since the early 1970s. From its inception, the program has held a long-term goal of nurturing STE technologies from the research and development (R&D) stage through technology development, ultimately leading to commercialization. Within the last few years, the focus of this work -has shifted from R&D to cost-shared cooperative projects with industry. These projects are targeted not just at component development, but at complete systems, marketing approaches, and commercialization plans. This changing emphasis has brought new industry into the program and is significantly accelerating solar thermal`s entry into the marketplace. Projects such as Solar Two in the power tower area, a number of dish/Stirling joint ventures in the modular power area, and operations and maintenance (O&M) cost reduction studies will be discussed as examples of this new focus.

Burch, G.D. [United States Dept. of Energy, Washington, DC (United States); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

278

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

for evening cooking in a solar cooker. Energy Convers Manageperformance of a solar cooker based on an evacuated tube

Roshandell, Melina

2013-01-01T23:59:59.000Z

279

Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980  

SciTech Connect (OSTI)

The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

1980-11-01T23:59:59.000Z

280

Solar Compartment Design Methods, Performance Analysis and Thermal Data for Solar Composting Latrines: A Full Scale Experimental Study  

E-Print Network [OSTI]

. Pathogen resistance to disinfection or inactivation in latrines is multifaceted. The full-scale solar composting compartment studies at the University of Kansas have advanced the knowledge about feces composting in solar compartments based on climate...

Rendall, Joseph D.

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lost films chronicle dawn of hydroelectric power in the Northwest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lost-films-chronicle-dawn-of-hydroelectric-power-in-the-Northwest Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects &...

282

Testing and evaluation of large-area heliostats for solar thermal applications  

SciTech Connect (OSTI)

Two heliostats representing the state-of-the-art in glass-metal designs for central receiver (and photovoltaic tracking) applications were tested and evaluated at the National Solar Thermal Test Facility in Albuquerque, New Mexico from 1986 to 1992. These heliostats have collection areas of 148 and 200 m{sup 2} and represent low-cost designs for heliostats that employ glass-metal mirrors. The evaluation encompassed the performance and operational characteristics of the heliostats, and examined heliostat beam quality, the effect of elevated winds on beam quality, heliostat drives and controls, mirror module reflectance and durability, and the overall operational and maintenance characteristics of the two heliostats. A comprehensive presentation of the results of these and other tests is presented. The results are prefaced by a review of the development (in the United States) of heliostat technology.

Strachan, J.W.; Houser, R.M.

1993-02-01T23:59:59.000Z

283

Thermal performance evaluation of selected projects in Massachusetts Multi-Family Passive Solar Program. Draft final technical report  

SciTech Connect (OSTI)

The Massachusetts Executive Office of Energy Resources (EOER) through its Multi-Family Passive Solar Program (MFPS) has provided design and technical assistance, and funded construction, for passive solar design features and energy conservation measures affecting more than 750 apartments at 30 different sites in the Commonwealth. Four Case Study sites from the Program's first round of construction funding were monitored with equipment loaned to EOER by the Solar Energy Research Institute (SERI) as part of the Level B Program (currently operated by the National Association of Home Builders - NAHB). The primary objectives of thermal performance evaluation, for EOER, were to document fuel savings and to assess the cost-effectiveness of the funded solar and conservation measures. Three methods were used to evaluate thermal performance: computer models, Level B monitoring of selected apartments, and analysis of utility meter readings. This report summarizes the results of the Level B monitoring, together with the results of the two other thermal performance evaluation procedures: design estimates prepared with the aid of computer simulation models, and analysis of utility meter readings from a larger group of apartments. The report compares the results of the different evaluation procedures, describes further analysis performed to account for signficant differences among the results, and concludes with a discussion of design implications for future passive solar projects, and for future monitoring.

Noble, E.C.; Lofchie, B.

1985-01-01T23:59:59.000Z

284

25 kWe solar thermal stirling hydraulic engine system: Final conceptual design report  

SciTech Connect (OSTI)

This report documents the conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to the 11-meter Test Bed Concentrator at Sandia National Laboratories. A manufacturing cost assessment for 10,000 units per year was made by Pioneer Engineering and Manufacturing. The design meets all program objectives including a 60,000-hr design life, dynamic balancing, fully automated control, >33.3% overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs of $300/kW. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high-pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk. The engine design is based on a highly refined Stirling hydraulic engine developed over 20 years as a fully implantable artificial heart power source. 4 refs., 19 figs., 3 tabs.

Not Available

1988-01-01T23:59:59.000Z

285

Solar thermal hydrogen production process: Final report, January 1978-December 1982  

SciTech Connect (OSTI)

Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

Not Available

1982-12-01T23:59:59.000Z

286

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

SciTech Connect (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

287

Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?solar thermal absorbers  

SciTech Connect (OSTI)

Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?°C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?°C. The SiO{sub x} (x?solar absorptance of ?90% and a low emittance ?18% measured at 300?°C. These results open the door towards atmospheric stable, high temperature, high-performance solar selective absorber coatings processed by low-cost solution-chemical methods for future generations of CSP systems.

Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States); Li, Juchuan [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-08-21T23:59:59.000Z

288

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

Proceedings on thermal energy storage and energy conversion;polymer microcomposites for thermal energy storage. SAE SocLow temperature thermal energy storage: a state of the art

Roshandell, Melina

2013-01-01T23:59:59.000Z

289

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

Coso, Dusan

2013-01-01T23:59:59.000Z

290

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Review on Sustainable thermal Energy Storage Technologies,D. , 2009, “Review on Thermal Energy Storage with PhaseW. , 2002, “Survey of Thermal Energy Storage for Parabolic

Coso, Dusan

2013-01-01T23:59:59.000Z

291

GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian Aquatic Ecosystems  

E-Print Network [OSTI]

GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian with Fisheries and Oceans Canada (6 scientists) and 3 major hydroelectric companies (Nalcor, Manitoba Hydro

Cooke, Steven J.

292

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Solar Energy Conversion Applications By Dusan Coso B.S. (UniversitySolar Energy Conversion Applications by Dusan Coso Doctor of Philosophy in Engineering – Mechanical Engineering University

Coso, Dusan

2013-01-01T23:59:59.000Z

293

Development of solar air heaters & thermal energy storage system for drying applications in food processing industries.  

E-Print Network [OSTI]

??In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air… (more)

Sreekumar, A

2007-01-01T23:59:59.000Z

294

The Water Wall: A Passive Solar Collection and Thermal Storage Device for Supplementary Radiant Heating.  

E-Print Network [OSTI]

??Through the implementation of passive solar building systems, suburbia could take a fresh new step forward toward a progressively more sustainable direction. Making passive solar… (more)

Noseck, Rhett Roman

2013-01-01T23:59:59.000Z

295

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

296

Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy  

E-Print Network [OSTI]

chloride salt eutectics for solar thermal-energy storage applications Donghyun Shin, Debjyoti Banerjee for the anoma- lous enhancement of thermal conductivity over that of the neat solvent. Eastman et al. [5] reported thermal conductivity enhance- ment of 30% and 60% for water based nanofluids of Al2O3 and Cu

Banerjee, Debjyoti

297

Financing alternatives and incentives for solar-thermal central-receiver systems  

SciTech Connect (OSTI)

As a result of various recently enacted incentive and regulatory legislation combined with the new administration policy and budgetary guidelines, the commercialization of solar thermal central receiver systems will involve financing alternatives other than conventional utility financing. This study was conducted to identify these potential financing alternatives and the associated requirements and impacts on the Department of Energy program. Based upon this analysis, it is concluded that the current alternative financing window is extremely short (through 1985), and that an extension or at the least a gradual phasing out, of the solar tax credits is necessary for the successful transfer of the central receiver technology to the private sector. Furthermore, throughout this time period, continued government support of the R and D activities is necessary to provide the necessary confidence in this technology for the private (financial) sector to underwrite this technology transfer. Consequently, even though the central receiver technology shows high promise for replacing a significant fraction of the oil/gas-fired utility industry peaking and intermediate generation, the current readiness status of this technology still requires further direct and indirect government support for a successful technology transfer. The direct government research and development support will provide the basis for a technological readiness and confidence, whereas the indirect tax incentive support serves to underwrite the extraordinary risks associated with the technology transfer. These support requirements need only be limited to and decreasing during this technology transfer phase, since as the systems approach successful full-scale commercialization, the extraordinary risks will be gradually eliminated. At the time of commercialization the system's value should be on a par with the installed system's cost.

Bos, P.B.

1982-07-01T23:59:59.000Z

298

STAFF FINAL GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network [OSTI]

hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell, gasification, geothermal, hydroelectric, hydrogen, incremental generation, landfill gas, multifuel, municipal solid waste, ocean wave, retail sales, small hydroelectric, SelfGeneration Incentive Program, solar, solar thermal, supplemental

299

STAFF DRAFT GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network [OSTI]

, biomethane, certificates, certification, common carrier pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell, gasification, geothermal, hydroelectric, hydrogen hydroelectric, SelfGeneration Incentive Program, solar, solar thermal, supplemental energy payments, tidal

300

An outdoor exposure testing program for optical materials used in solar thermal electric technologies  

SciTech Connect (OSTI)

Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

Wendelin, T.; Jorgensen, G.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare  

E-Print Network [OSTI]

We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy ($\\gsim 100$ keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy ($\\lsim 100$ keV) HXRs. We interpret these observations in terms of an electron transport model called {\\TPP}. We numerically solved the spatially-homogeneous {\\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.

T. Minoshima; T. Yokoyama; N. Mitani

2007-10-02T23:59:59.000Z

302

Thermal influence on charge carrier transport in solar cells based on GaAs PN junctions  

SciTech Connect (OSTI)

The electron and hole one-dimensional transport in a solar cell based on a Gallium Arsenide (GaAs) PN junction and its dependency with electron and lattice temperatures are studied here. Electrons and heat transport are treated on an equal footing, and a cell operating at high temperatures using concentrators is considered. The equations of a two-temperature hydrodynamic model are written in terms of asymptotic expansions for the dependent variables with the electron Reynolds number as a perturbation parameter. The dependency of the electron and hole densities through the junction with the temperature is analyzed solving the steady-state model at low Reynolds numbers. Lattice temperature distribution throughout the device is obtained considering the change of kinetic energy of electrons due to interactions with the lattice and heat absorbed from sunlight. In terms of performance, higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the design of heat exchange devices and thermal management strategies in photovoltaic technologies.

Osses-Márquez, Juan; Calderón-Muñoz, Williams R., E-mail: wicalder@ing.uchile.cl [Department of Mechanical Engineering, University of Chile, Beauchef 850, Santiago (Chile)

2014-10-21T23:59:59.000Z

303

Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data. Alpha Solarco Model 104 solar collector with 0. 125-inch Schott low-iron glass reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions based on test data are presented for the Alpha Solarco Model 104 solar collector, with 0.125-inch Schott low-iron glass reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-04-01T23:59:59.000Z

304

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Thermal Energy Storage,” Renewable and Sustainable EnergyReview on Sustainable thermal Energy Storage Technologies,Energy Storage Using Phase Change Materials,” Renewable and Sustainable Energy

Coso, Dusan

2013-01-01T23:59:59.000Z

305

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network [OSTI]

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

306

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network [OSTI]

solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace

Vilmer, Christian

2013-01-01T23:59:59.000Z

307

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network [OSTI]

solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

Vilmer, Christian

2013-01-01T23:59:59.000Z

308

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Geothermal Electric, Geothermal Heat Pumps, CHP, Small Hydroelectric, Tidal, Wave, Ocean Thermal, Biodiesel, Fuel Cells Using Renewable Fuels September% by 2020 Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Geothermal

309

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network [OSTI]

habitat loss from solar and thermal power expansions (Photovoltaic vs Solar Thermal. In: Planetary Stewardship.of the vegetation for thermal solar power units. The net C

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

310

The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1  

SciTech Connect (OSTI)

This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

Long, R.C.

1996-12-31T23:59:59.000Z

311

Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration  

SciTech Connect (OSTI)

The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

Not Available

1982-04-01T23:59:59.000Z

312

Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011  

SciTech Connect (OSTI)

This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

Glatzmaier, G.

2011-08-01T23:59:59.000Z

313

STAFF DRAFT GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network [OSTI]

, biomass, biomethane, certificates, certification, conduit hydroelectric, digester gas, electrolysis sales, small hydroelectric, SelfGeneration Incentive Program, solar thermal, supplemental energy

314

LEAD COMMISSIONER DRAFT RENEWABLES PORTFOLIO  

E-Print Network [OSTI]

: Biodiesel, biogas, biomass, biomethane, certificates, certification, conduit hydroelectric, digester gas, repowered, retail sales, small hydroelectric, SelfGeneration Incentive Program, solar thermal, supplemental

315

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

hydroelectric, digester gas, electrolysis, eligibility, fuel cell, gasification, geothermal, hydrogen, landfill, retail sales, small hydroelectric, Self- Generation Incentive Program, solar thermal, supplemental energy

316

COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network [OSTI]

. Keywords: Biodiesel, biogas, biomass, biomethane, certificates, certification, conduit hydroelectric, repowered, retail sales, small hydroelectric, Self Generation Incentive Program, solar thermal, supplemental

317

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network [OSTI]

on site. 7) Climatology. Solar power plants of the centralCentral Reveiver Solar Thermal Power Plant Design Concepts,l ,2,3,4,5 A. Solar Thermal Power Solar thermal power

Davidson, M.

2010-01-01T23:59:59.000Z

318

Midtemperature Solar Systems Test Facility Program for predicting thermal performance of line-focusing, concentrating solar collectors  

SciTech Connect (OSTI)

The program at Sandia National Laboratories, Albuquerque, for predicting the performance of line-focusing solar collectors in industrial process heat applications is described. The qualifications of the laboratories selected to do the testing and the procedure for selecting commercial collectors for testing are given. The testing program is outlined. The computer program for performance predictions is described. An error estimate for the predictions and a sample of outputs from the program are included.

Harrison, T.D.

1980-11-01T23:59:59.000Z

319

Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting  

E-Print Network [OSTI]

In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

2014-01-01T23:59:59.000Z

320

Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover  

SciTech Connect (OSTI)

Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

322

Evaluating thermal imaging for identification and characterization of solar cell defects.  

E-Print Network [OSTI]

??Solar cells have become a primary technology in today's world for harvesting clean and renewable energy. Progress has been made towards improving the performance and… (more)

Chen, Jiahao

2014-01-01T23:59:59.000Z

323

An Evolutionary Path for Concentrating Thermal Solar Power Technologies: A New Approach for Modeling CSP Power Costs and Potential  

SciTech Connect (OSTI)

Concentrating thermal solar power (CSP) technology is a potentially competitive power generation option, particularly in arid regions where direct sunlight is abundant. We examine the potential role of CSP power plants and their contribution to carbon emissions reduction. The answers to these questions depend on the cost of electricity generated by CSP plants. Although a few studies have projected future CSP costs based on assumptions for technology advancement and the effect of economies of scale and learning curves, few studies have considered the combined effects of intermittency, solar irradiance changes by season, and diurnal and seasonal system load changes. Because the generation of a solar plant varies over a day and by season, the interactions between CSP generators and other generators in the electric system can play an important role in determining costs. In effect, CSP electricity generation cost will depend on the CSP market penetration. This paper examines this relationship and explores possible evolutionary paths for CSP technologies with and without thermal storage.

Zhang, Yabei; Smith, Steven J.

2008-05-08T23:59:59.000Z

324

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

SciTech Connect (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

325

3.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/56 9. Solar cooling  

E-Print Network [OSTI]

.iea.org/publications/freepublications/publication/Solar_Heating_Cooling_Road map_2012_WEB.pdf 3.12.2014 Ã?bo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500.iea.org/publications/freepublications/publication/Solar_Heating_Cooling_Road map_2012_WEB.pdf #12;3.12.2014Ã?bo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500.12.2014Ã?bo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500 Turku 8/56 http://www.brighton-webs

Zevenhoven, Ron

326

Solar Hot Water Contractor Licensing  

Broader source: Energy.gov [DOE]

Arkansas offers several limited, specialty licenses for solar thermal installers under the general plumbing license. There are three specialty classifications available for solar thermal...

327

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

2004) “Advances in solar thermal electricity technology”.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

328

Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation and rapid thermal annealing  

E-Print Network [OSTI]

of terrestrial solar cells as compared to classical furnace or pulsed laser annealing. Unfortunately, drawbacks695 Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation with classical furnace annealing or with classical diffusion process. Revue Phys. Appl. 22 (1987) 695-700 JUILLET

Paris-Sud XI, Université de

329

Dynamic simulation of the thermal and electrical behavior of a thermionic converter coupled to a solar concentrator  

SciTech Connect (OSTI)

A mathematical simulation for the dynamic thermal and electrical behavior of a thermionic converter coupled to a solar concentrator, is presented. The thermionic device is a Cesium-filled thermionic diode operating in the ignited mode. The emitter of the device is made of polycrystalline Rhenium and the collector of the device of Molybdenum. The solar concentrator is a parabolic dish. The designed emitter and collector temperatures are 1,850 K and 928 K, respectively. However, due to changes in ambient conditions, the collector efficiency varies and so does the system efficiency. This fact makes it necessary to evaluate the design of the system not just for one hour with constant conditions but also for a whole operating day. The paper presents plots for the emitter and collector thermionic device temperatures and power and voltage for a constant resistance load as a function of time.

Perez, G. [CUAP-UAP, Puebla (Mexico). Centro de Investigaciones en Dispositivos Semiconductores; Estrada, C.A.; Cervantes, J.G. [UNAM, Temixco, Morelos (Mexico). Solar Energy Research Lab.

1995-12-31T23:59:59.000Z

330

Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)  

SciTech Connect (OSTI)

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2013-02-01T23:59:59.000Z

331

Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems  

SciTech Connect (OSTI)

This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

Not Available

1980-03-01T23:59:59.000Z

332

On the transition from photoluminescence to thermal emission and its implication on solar energy conversion  

E-Print Network [OSTI]

Photoluminescence (PL) is a fundamental light-matter interaction, which conventionally involves the absorption of energetic photon, thermalization and the emission of a red-shifted photon. Conversely, in optical-refrigeration the absorption of low energy photon is followed by endothermic-PL of energetic photon. Both aspects were mainly studied where thermal population is far weaker than photonic excitation, obscuring the generalization of PL and thermal emissions. Here we experimentally study endothermic-PL at high temperatures. In accordance with theory, we show how PL photon rate is conserved with temperature increase, while each photon is blue shifted. Further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also show how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. Relying on these observations, we propose and theoretically study thermally enhanced PL (TEPL) for highly eff...

Manor, Assaf; Rotschild, Carmel

2014-01-01T23:59:59.000Z

333

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

Thermal energy storage for sustainable energy consumption –Sustainable Energy, Cambridge University Press, 65- Dermott A.M, Frysinger G.R, Storage

Roshandell, Melina

2013-01-01T23:59:59.000Z

334

Investigation of new heat exchanger design performance for solar thermal chemical heat pump.  

E-Print Network [OSTI]

?? The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incinerator… (more)

Cordova, Cordova

2013-01-01T23:59:59.000Z

335

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

analyzed a built-in, storage-type water heater containing astorage and thermal protection that can operate with PCM technology. Among them are building insulators, water heaters,

Roshandell, Melina

2013-01-01T23:59:59.000Z

336

Design and validation of an air window for a molten salt solar thermal receiver  

E-Print Network [OSTI]

This thesis contributes to the development of Concentrating Solar Power (CSP) receivers and focuses on the design of an efficient aperture. An air window is proposed for use as the aperture of a CSP molten salt receiver ...

Paxson, Adam Taylor

2009-01-01T23:59:59.000Z

337

Computational and experimental investigations into cavity receiver heat loss for solar thermal concentrators  

E-Print Network [OSTI]

of the total, though the losses depend on solar elevation angle; at higher angles, and in low-wind conditions in inclination, temperature and cavity geometry on convective and radiative heat loss. Secondly, a water

338

Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint  

SciTech Connect (OSTI)

This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-10-01T23:59:59.000Z

339

Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project in Bolivia  

E-Print Network [OSTI]

Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project a hydroelectric power plant instead of subsidized diesel plants in the Bolivian Pando Province. Simulations show

Paris-Sud XI, Université de

340

Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS  

SciTech Connect (OSTI)

This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

Hodge, B.-M.; Lew, D.; Milligan, M.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

SciTech Connect (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

342

Federal Register Notice EPAct 2005 Section 242 Hydroelectric Incentive Program: January 2015  

Broader source: Energy.gov [DOE]

Federal Register Notice for the EPAct 2005 Section 242 Hydroelectric Incentive Program application period announcement: January, 2015.

343

Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982  

SciTech Connect (OSTI)

The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

Loferski, J.J. (ed.)

1983-12-01T23:59:59.000Z

344

Dust production from sub-solar to super-solar metallicity in Thermally Pulsing Asymptotic Giant Branch Stars  

E-Print Network [OSTI]

We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader contex...

Ambra, Nanni; Paola, Marigo; Léo, Girardi; Atefeh, Javadi; Jacco, van Loon

2014-01-01T23:59:59.000Z

345

An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System  

E-Print Network [OSTI]

DRAFT 1 An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System September 26, 2005 The best way to assess the hydroelectric system's peaking capability is to simulate its. This model simulates the operation of the major hydroelectric projects over a one-week (168 hour) period

346

Model-Free Based Water Level Control for Hydroelectric Power Plants  

E-Print Network [OSTI]

Model-Free Based Water Level Control for Hydroelectric Power Plants Cédric JOIN Gérard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned, the set-point is followed even in severe operating conditions. Keywords: Hydroelectric power plants

Paris-Sud XI, Université de

347

RETURN TO THE RIVER -2000 Chapter 6 Hydroelectric System Development187  

E-Print Network [OSTI]

RETURN TO THE RIVER - 2000 Chapter 6 Hydroelectric System Development187 Return to Table of Contents Go to Next Chapter CHAPTER 6. HYDROELECTRIC SYSTEM DEVELOPMENT: EFFECTS ON JUVENILE AND ADULT of the Hydroelectric System Development of the hydropower system in the Columbia River basin began in the late

348

Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control Approach  

E-Print Network [OSTI]

Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control of Waterloo, Waterloo ON, Canada N2L 3G1 Abstract. In this paper, we value hydroelectric power plant cash operational constraints may considerably overestimate the value of hydroelectric power plant cashflows. 1

Forsyth, Peter A.

349

CLIMATE CHANGE IMPACTS ON HYDROELECTRIC POWER G.P. Harrison(1),  

E-Print Network [OSTI]

CLIMATE CHANGE IMPACTS ON HYDROELECTRIC POWER G.P. Harrison(1), H.W. Whittington(1) and S.W. Gundry implications for the design, operation and viability of hydroelectric power stations. This describes attempts to predict and quantify these impacts. It details a methodology for computer based modelling of hydroelectric

Harrison, Gareth

350

The net carbon footprint of a newly created boreal hydroelectric reservoir  

E-Print Network [OSTI]

The net carbon footprint of a newly created boreal hydroelectric reservoir Cristian R. Teodoru,1 of a boreal hydroelectric reservoir (Eastmain-1 in northern Québec, Canada). This is the result of a large. Citation: Teodoru, C. R., et al. (2012), The net carbon footprint of a newly created boreal hydroelectric

Long, Bernard

351

Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera  

E-Print Network [OSTI]

Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera , B. J Abstract We present a method for constructing blades of hydroelectric turbines and ship propellers based. Keywords: CAD-model, B-spline representation, hydroelectric turbine blade, propeller blade, medial axis

Jüttler, Bert

352

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric reservoirs  

E-Print Network [OSTI]

LETTERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric * Hydroelectric reservoirs cover an area of 3.4 Ã? 105 km2 and comprise about 20% of all reservoirs. In addition dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed

353

THE LOW-TEMPERATURE THRESHOLD FOR PINK SALMON EGGS IN RELATION TO A PROPOSED HYDROELECTRIC INSTALLATION  

E-Print Network [OSTI]

THE LOW-TEMPERATURE THRESHOLD FOR PINK SALMON EGGS IN RELATION TO A PROPOSED HYDROELECTRIC INSTALLATION JACK E. BAILEY' AND DALE R. EVANS' ABSTRACT A proposed hydroelectric installation in southeastern hydroelectric installation could result in temperatures as low as 4.5 0 C during spawning and initial incubation

354

Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including a  

E-Print Network [OSTI]

Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including that minimizes losses in the transmission and costs in the generation of a hydroelectric power system, formulated such perturbing parameter. Keywords-- Hydroelectric power system, Network flow, Predispatch, Primal-dual interior

Oliveira, Aurélio R. L.

355

The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric  

E-Print Network [OSTI]

The Impacts of Wind Speed Trends and Long- term Variability in Relation to Hydroelectric Reservoir and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can

Kohfeld, Karen

356

FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995  

E-Print Network [OSTI]

FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995 Section 12 FUTURE HYDROELECTRIC DEVELOPMENT Much of this program has focused on mitigating damage done for additional federal hydroelectric projects and to plan for new development in the basin. The Federal Energy

357

Hybrid Photovoltaic/Thermal Systems with a Solar-Assisted Heat Pump  

SciTech Connect (OSTI)

An outline of possibilities for effective use of PV/T collectors with a Solar Assisted Heat Pump is given. A quantitative analysis of the performance and cost of the various configurations as a function of regional climates, using up-to-date results from solar heat pump and PV/T collector studies, will be required for more definitive assessment; and it is recommended that these be undertaken in the PV/T Program. Particular attention should be paid to development of high performance PV/T collectors, matching of heat pump electrical system to PV array and power conditioning characteristics, and optimization of storage options for cost effectiveness and utility impact.

Kush, E.A.

1980-01-01T23:59:59.000Z

358

Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER  

E-Print Network [OSTI]

The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

Naveed, A.T.; Lee, E. J.; Kang, E. C.

2006-01-01T23:59:59.000Z

359

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

360

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

photovoltaics and solar thermal collectors; electricalfor application of solar thermal and recovered heat to end-absorption chiller solar thermal photovoltaics Results

Stadler, Michael

2008-01-01T23:59:59.000Z

362

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

363

Lessons Learned: Pangue Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012Lee CountyLearned: NREL

364

EIS-0184: South Fork Tolt River Hydroelectric Project  

Broader source: Energy.gov [DOE]

This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

365

Potential Climate Change Impacts to the NW Hydroelectric System  

E-Print Network [OSTI]

Page 1 Potential Climate Change Impacts to the NW Hydroelectric System NW Power and Conservation Council Symposium on Greenhouse Gases June 4, 2013 1 Source of Data · 2009 International Panel on Climate Change (IPCC-4) data but prior to River Management Joint Operating Committee's (RMJOC) processing

366

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network [OSTI]

1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

367

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

SciTech Connect (OSTI)

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

368

Solar and Wind Contractor Licensing  

Broader source: Energy.gov [DOE]

The Connecticut Department of Consumer Protection (DCP) is authorized to issue licenses for solar-thermal work, solar-electric work and wind-electric work. "Solar thermal work" is defined as "the...

369

Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation  

SciTech Connect (OSTI)

This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

Qui, Songgang [Temple University] [Temple University; Galbraith, Ross [Infinia] [Infinia

2013-01-23T23:59:59.000Z

370

Rapid Thermal Processing of High Efficiency n-Type Silicon Solar Cells with Al Back Junction  

SciTech Connect (OSTI)

In this paper we report on the design, fabrication and modeling of 49 cm{sup 2}, 200-{micro}m thick, 1-5 {Omega}-cm, n- and p-type <111> and <100> screen-printed silicon solar cells. A simple process involving RTP front surface phosphorus diffusion, low frequency PECVD silicon nitride deposition, screen-printing of Al metal and Ag front grid followed by co-firing of front and back contacts produced cell efficiencies of 15.4% on n-type <111> Si, 15.1% on n-type <100> Si, 15.8% on p-type <111> Si and 16.1% on p-type <100> Si. Open circuit voltage was comparable for n and p type cells and was also independent of wafer orientation. High fill factor values (0.771-0.783) for all the devices ruled out appreciable shunting which has been a problem for the development of co-fired n-type <100> silicon solar cells with Al back junction. Model calculations were performed using PC1D to support the experimental results and provide guidelines for achieving >17% n-type silicon solar cells by rapid firing of Al back junction.

Ebong, A.; Upadhyaya, V.; Rounsaville, B.; Kim, D. S.; Meemongkolkiat, V.; Rohatgi, A.; Al-Jassim, M. M.; Jones, K. M.; To, B.

2006-01-01T23:59:59.000Z

371

Improved power efficiency for very-high-temperature solar-thermal-cavity receivers  

DOE Patents [OSTI]

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

McDougal, A.R.; Hale, R.R.

1982-04-14T23:59:59.000Z

372

1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION  

E-Print Network [OSTI]

1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative

373

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants  

SciTech Connect (OSTI)

Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

Gawlik, Keith

2013-06-25T23:59:59.000Z

374

JEA- Solar Incentive Program  

Broader source: Energy.gov [DOE]

The JEA Solar Incentive Program provides rebates to JEA's residential customers who install new and retrofit solar hot water heaters on their homes. The rebate is worth $800 for new solar thermal...

375

A model for thermally driven heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

Jones, G.F.; Balcomb, J.D.; Otis, D.R.

1985-01-01T23:59:59.000Z

376

Model for thermally driven heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

Jones, G.F.; Balcomb, J.D.; Otis, D.R.

1985-01-01T23:59:59.000Z

377

Project Profile: High-Temperature Thermal Array for Next-Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos...

378

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

379

A Study of United States Hydroelectric Plant Ownership  

SciTech Connect (OSTI)

Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

Douglas G Hall

2006-06-01T23:59:59.000Z

380

Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant  

SciTech Connect (OSTI)

The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

Ladewig, T.D.

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Intergrated function nonimaging concentrating collector tubes for solar thermal energy. Final technical report  

SciTech Connect (OSTI)

A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 m/sup 2/ panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200/sup 0/C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100/sup 0/C to 300/sup 0/C range including industrial process heat, air conditioning and Rankine engine operation.

Winston, R

1982-09-01T23:59:59.000Z

382

Characterization of solar thermal concepts for electricity generation: Volume 2, Appendices  

SciTech Connect (OSTI)

Volume 1 of this report documented the analyses and evaluation of the concepts. This volume contains appendices which provided additional information on the approach used in the analysis, and further detail of the study results. Appendix A describes tradeoffs involved in the orientation of trough collector fields. The methodology used in the calculation of levelized energy costs is described in Appendix B. Additional detail on the annual energy output for each of the technologies is provided in Appendix C. Appendix D provides a discussion on the method and assumptions used in developing optical performance models for central receiver systems, and gives a detailed description of the results obtained. Plant cost data is shown in Appendix E, and a method for first-order sensitivity analyses using the data is described. The calculational approach used to estimate the manufacturing cost of distributed solar components is described in Appendix F.

Williams, T.A.; Dirks, J.A.; Brown, D.R.

1987-03-01T23:59:59.000Z

383

Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems  

E-Print Network [OSTI]

Greenhouse gas analysis of solar-thermal electricity gen-CdTe Concentrator PV Solar Thermal Wind Coal CC Gas Turbinefor the assessment of thermal solar systems,” Proceedings of

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

384

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

385

Short-term hydroelectric generation model. Model documentation report  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Energy Information Administration`s (EIA) Short-Term Hydroelectric Generation Model (STHGM), describe its basic approach, and to provide details on the model structure. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with the EIA`s legal obligation to provide adequate documentation in support of its models.

NONE

1996-12-01T23:59:59.000Z

386

Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store  

SciTech Connect (OSTI)

A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

2010-05-15T23:59:59.000Z

387

Using RPS Policies to Grow the Solar Market in the United States  

E-Print Network [OSTI]

nine also allow solar- thermal electric to qualify, threestrong competition from solar-thermal electric facilities in

Wiser, Ryan H

2008-01-01T23:59:59.000Z

388

A preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude in the north of Buenos Aires provence  

E-Print Network [OSTI]

Using irradiance and temperature measurements obtained at the Facultad Regional San Nicol\\'as of UTN, we performed a preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude. The results show a very satisfactory adjustment (R = 0.848, RMS = 0.066, RMS% = 9.690 %), even taking into account the limited number of months (36). Thus, we have a formula of predictive nature, capable of estimating mean monthly solar radiation for various applications. We expect to have new data sets to expand and improve the statistical significance of these results.

Cionco, R; Rodriguez, R

2012-01-01T23:59:59.000Z

389

Empirical validation of the thermal model of a passive solar cell test  

E-Print Network [OSTI]

The paper deals with an empirical validation of a building thermal model. We put the emphasis on sensitivity analysis and on research of inputs/residual correlation to improve our model. In this article, we apply a sensitivity analysis technique in the frequency domain to point out the more important parameters of the model. Then, we compare measured and predicted data of indoor dry-air temperature. When the model is not accurate enough, recourse to time-frequency analysis is of great help to identify the inputs responsible for the major part of error. In our approach, two samples of experimental data are required. The first one is used to calibrate our model the second one to really validate the optimized model

Mara, T A; Boyer, H; Mamode, M

2012-01-01T23:59:59.000Z

390

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

391

Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis  

SciTech Connect (OSTI)

There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar�driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

Todd M. Francis, Paul R. Lichty, Christopher Perkins, Melinda Tucker, Peter B. Kreider, Hans H. Funke, Allan Lewandowski, and Alan W. Weimer

2012-10-24T23:59:59.000Z

392

MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS  

SciTech Connect (OSTI)

Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M., E-mail: schryver@lmsal.co [Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304 (United States)

2010-08-20T23:59:59.000Z

393

Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation  

SciTech Connect (OSTI)

Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 �ºC to 600 �ºC) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWhthermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWhthermal for a two-tank liquid configuration.

R. Panneer Selvam, Micah Hale and Matt strasser

2013-03-31T23:59:59.000Z

394

THERMAL PROPERTIES OF A SOLAR CORONAL CAVITY OBSERVED WITH THE X-RAY TELESCOPE ON HINODE  

SciTech Connect (OSTI)

Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during 2008 July that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity 'cores' with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK, and 2.0 MK (for July 19, July 21, and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 58, Cambridge, MA 02138 (United States); Gibson, Sarah E. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Kucera, Therese A. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hudson, Hugh S. [Space Sciences Laboratories, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kano, Ryouhei, E-mail: kreeves@cfa.harvard.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

2012-02-20T23:59:59.000Z

395

Dramatic enhancement of fullerene anion formation in polymer solar cells by thermal annealing: Direct observation by electron spin resonance  

SciTech Connect (OSTI)

Using electron spin resonance (ESR), we clarified the origin of the efficiency degradation of polymer solar cells containing a lithium-fluoride (LiF) buffer layer created by a thermal annealing process after the deposition of an Al electrode (post-annealing). The device structure was indium-tin-oxide/ poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly (3-hexylthiophene):phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM)/LiF/Al. Three samples consisting of quartz/P3HT:PCBM/LiF/Al, quartz/P3HT:PCBM/Al, and quartz/PCBM/LiF/Al were investigated and compared. A clear ESR signal from radical anions on the PCBM was observed after LiF/Al was deposited onto a P3HT:PCBM layer because of charge transfer at the interface between the PCBM and the LiF/Al, which indicated the formation of PCBM{sup ?}Li{sup +} complexes. The number of radical anions on the PCBM was enhanced remarkably by the post-annealing process; this enhancement was caused by the surface segregation of PCBM and by the dissociation of LiF at the Al interface by the post-annealing process. The formation of a greater number of anions enhanced the electron scattering, decreased the electron-transport properties of the PCBM molecules, and caused an energy-level shift at the interface. These effects led to degradation in the device performance.

Liu, Dong; Nagamori, Tatsuya; Yabusaki, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Yasuda, Takeshi; Han, Liyuan [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Marumoto, Kazuhiro, E-mail: marumoto@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Saitama 322-0012 (Japan); Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

2014-06-16T23:59:59.000Z

396

Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report  

SciTech Connect (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

1980-08-01T23:59:59.000Z

397

Thermal storage for solar cooling using paired ammoniated salt reactors. Final report  

SciTech Connect (OSTI)

The objectives of the program were to investigate the feasibility of using various solid and liquid ammoniates in heat pump/thermal storage systems for space heating and cooling. The study included corrosion testing of selected metallic and non-metallic specimens in the ammoniates, subscale testing of the candidate ammoniates singly and in pairs, trade studies and conceptual design of a residential system, prototype testing, and ammoniation/deammoniation cyclic testing of manganese chloride. Results of the corrosion testing showed that problems exist with manganese and magnesium chloride ammoniates, except with the teflon which displayed excellent resistance in all environments. Also, all liquid ammoniates are unsuitable for use with uncoated carbon steel. Cycling of the manganese chloride between the high and low ammoniates does not affect its properties. However, the density change between the high and low ammoniates could cause packing problems in a reactor which constrains the salt volume. Subscale tests with solid ammoniates indicated that the heat transfer coefficient in a fixed bed reactor is low (approx. 1 Btu/h-ft/sup 2/-/sup 0/F). Therefore solid ammoniates are not practical because of the high heat exchanger cost requirement. Forced ammonia recirculation was tested as a means of increasing heat transfer rate in the fixed bed reactor with solid salts, but was not successful. Conversely, the subscale testing with liquid ammoniates produced heat transfer coefficients of 40 to 45 Btu/h-ft/sup 2/-/sup 0/F. Thus, the residential design was based on a liquid ammoniate/ammonia system using ammonium nitrate as the salt.

Not Available

1981-09-01T23:59:59.000Z

398

Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources Jump to: navigation,Ashton-SandyLeibo Hydroelectricity Co

399

Dam and Hydroelectric Powerplant University of Hawai`i CEE 491University of Hawai`i CEE 491  

E-Print Network [OSTI]

Karun 3 Dam and Hydroelectric Powerplant University of Hawai`i ­ CEE 491University of Hawai`i ­ CEE;Location #12;Description/Background Hydroelectric dam on Karun River Help with national energy needs

Prevedouros, Panos D.

400

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)  

E-Print Network [OSTI]

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

Bookhagen, Bodo

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

402

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

403

Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.  

SciTech Connect (OSTI)

The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

Bedrossian, Karen L.

1984-08-01T23:59:59.000Z

404

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Broader source: Energy.gov [DOE]

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

405

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

A.W. , “Likely Near-Term Solar-Thermal Water SplittingFundamentals of s Solar-thermal Mn 2 O 3 /MnO ThermochemicalPower-Photovaltaics or Solar Thermal Power? ” Proceedings of

Luc, Wesley Wai

406

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network [OSTI]

Medium Temperature Non-Tracking Solar Thermal Concentrators.an outdoor LiBr/H2O solar thermal absorption cooling systemperformance of a solar-thermal-assisted HVAC system, Energy

Widyolar, Bennett

2013-01-01T23:59:59.000Z

407

Solar Hot Water Contractor Licensing  

Broader source: Energy.gov [DOE]

In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North...

408

Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada: an isotopic approach  

E-Print Network [OSTI]

Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada Hydroelectric reservoirs emit greenhouse gases (GHGs). Although a few hypothesis have been put forward at the surface of a large boreal hydroelectric reservoir of eastern Canada (Robert-Bourassa) as well

Long, Bernard

409

Proceedings of: ''Formal Methods Europe'', March 1996, Oxford, UK, LNCS 1051, Springer Automatic Verification of a Hydroelectric Power  

E-Print Network [OSTI]

Verification of a Hydroelectric Power Plant 1 Rosario Pugliese Enrico Tronci Dip. di Scienze dell@univaq.it Abstract. We analyze the specification of a hydroelectric power plant by ENEL (the Italian Electric Company we report on the analysis of a hydroelectric power plant by ENEL (the Italian Electric Company). Our

Tronci, Enrico

410

14 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir in  

E-Print Network [OSTI]

14 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir Hydroelectric reservoirs and lakes in boreal Québec produce greenhouse gases (GHG) mainly in the form of CO2 of the interface. When applied to the Robert- Bourassa hydroelectric reservoir in boreal Québec, this model

Long, Bernard

411

Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

412

Chemically Reactive Working Fluids for the Capture and Transport of Concentrated Solar Thermal Energy for Power Generation  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

413

Hydro-Thermal Scheduling (HTS) 1.0 Introduction  

E-Print Network [OSTI]

1 Hydro-Thermal Scheduling (HTS) 1.0 Introduction From an overall systems view, the single most, relative to that of thermal plants, are very small. There are three basic types of hydroelectric plants;2 Pump-storage This kind of hydro plant is a specialized reservoir-type plant which has capability to act

McCalley, James D.

414

The Effects of Nanoparticle Augmentation of Nitrate Thermal Storage Materials for Use in Concentrating Solar Power Applications  

E-Print Network [OSTI]

The Department of Energy funded a project to determine if the specific heat of thermal energy storage materials could be improved by adding nanoparticles. The standard thermal energy storage materials are molten salts. The chosen molten salt was a...

Betts, Matthew

2011-08-08T23:59:59.000Z

415

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Looking back—sizing the 2008 solar market. ” pp. 88–93.Iberdrola launches its first solar thermal power plant. ”Analysis of a future solar market, management summary. Bonn,

Price, S.

2010-01-01T23:59:59.000Z

416

Solar Thermal Incentive Program  

Broader source: Energy.gov [DOE]

Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs.

417

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

This document summarizes the progress of this Penn State project, funded by SunShot, for the second quarter of fiscal year 2013.

418

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

419

Spectrally selective beam splitters designed to decouple quantum and thermal solar energy conversion in hybrid concentrating systems: Final report, Phase 1 and 2  

SciTech Connect (OSTI)

The technical feasibility and flexibility of developing elements that separate concentrated solar irradiation into specific spectral regions matched to specific photoquantum processes have been shown. These elements, spectrally selective beam splitters or filters, are designed to decouple quantum and thermal solar energy conversion in hybrid concentrating systems. Both interference filters and liquid absorption filters were investigated for use as spectrally selective beam splitters. Spectral selectivity is investigated for a variety of quantum systems with various spectral windows utilizing interference and absorption filters designed. Detailed analysis of one typical quantum system is provided consisting of a model of the silicon cell photovoltaic/photothermal hybrid system using spectral selectivity. The performance benefits of this approach are shown. Interference filters show the greatest flexibility and ability to match specific spectral windows. Liquid absorption filters appear to be a lower cost option, when an appropriate spectrally selective solution that can be used as a heat transfer fluid is available. 18 refs., 88 figs., 9 tabs.

Osborn, D.E.

1988-06-01T23:59:59.000Z

420

10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: plant-support subsystem procurement documentation (RADL Item 7-44D)  

SciTech Connect (OSTI)

Purchase specifications are given for the specific long lead items to be procured for the 10 MWe Solar Pilot Plant. The hardware is grouped into two categories: 480 Volt Load Center and 480 Volt Motor Control Centers; and Power, Control and Instrumentation Cable. The purchase orders for each procurement are included. Need dates for each item are identified. (LEW)

Not Available

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Under Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes  

E-Print Network [OSTI]

for a Brayton-cycle engine are challenging, and lack a large body of operational data unlike steam plants. WeUnder Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation estimates showed that the Brayton engine's turbine inlet temperature needs to be at least 1100 K

Tomkins, Andrew

422

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

423

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

424

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

425

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2003-10-14T23:59:59.000Z

426

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2004-08-31T23:59:59.000Z

427

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Two, Mojave Desert, California [22] Solar thermal is not aSolar Two, Mojave Desert, California ..OF CALIFORNIA, SAN DIEGO A Continuous Solar Thermochemical

Luc, Wesley Wai

428

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network [OSTI]

Jenerette. 2010. Box 11: Two paths towards solar energy:Photovoltaic vs Solar Thermal. In: Planetary Stewardship.government betting on the wrong solar horse. Natural Gas &

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

429

Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation I: non-thermal transport of helium ions  

E-Print Network [OSTI]

Models of the solar transition region made from lines other than those of helium cannot account for the strength of the helium lines. However, the collisional excitation rates of the helium resonance lines are unusually sensitive to the energy of the exciting electrons. Non-thermal motions in the transition region could drive slowly-ionizing helium ions rapidly through the steep temperature gradient, exposing them to excitation by electrons characteristic of higher temperatures than those describing their ionization state. We present the results of calculations which use a more physical representation of the lifetimes of the ground states of He I and He II than was adopted in earlier work on this process. New emission measure distributions are used to calculate the temperature variation with height. The results show that non-thermal motions can lead to enhancements of the He I and He II resonance line intensities by factors that are comparable with those required. Excitation by non-Maxwellian electron distributions would reduce the effects of non-thermal transport. The effects of non-thermal motions are more consistent with the observed spatial distribution of helium emission than are those of excitation by non-Maxwellian electron distributions alone. In particular, they account better for the observed line intensity ratio I(537.0 A)/I(584.3 A), and its variation with location.

G. R. Smith; C. Jordan

2002-08-16T23:59:59.000Z

430

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network [OSTI]

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

431

Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report  

SciTech Connect (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

1980-07-01T23:59:59.000Z

432

Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand.  

E-Print Network [OSTI]

??Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows… (more)

Kear, Gareth

2011-01-01T23:59:59.000Z

433

Small-Hydroelectricity and Landscape Change in the Bitterroot Mountains: Public Perceptions and Attitudes.  

E-Print Network [OSTI]

??Newman, Chad, M.A. December 2007 Geography Small-Hydroelectricity and Landscape Change in the Bitterroot Mountains: Public Perceptions and Attitudes Chairperson: Dr. David D. Shively The development… (more)

Newman, Chad E

2008-01-01T23:59:59.000Z

434

Hydroelectricity and landscape protection in the Highlands of Scotland, 1919 - 1980 .  

E-Print Network [OSTI]

??This thesis employs twentieth-century hydroelectric development ventures in the Highlands of Scotland as a means of exploring conflicting demands of socio-economic development and landscape protection… (more)

Payne, Jill

2008-01-01T23:59:59.000Z

435

IDENTIFICATION OF AN {sup 84}Sr-DEPLETED CARRIER IN PRIMITIVE METEORITES AND IMPLICATIONS FOR THERMAL PROCESSING IN THE SOLAR PROTOPLANETARY DISK  

SciTech Connect (OSTI)

The existence of correlated nucleosynthetic heterogeneities in solar system reservoirs is now well demonstrated for numerous nuclides. However, it has proven difficult to discriminate between the two disparate processes that can explain such correlated variability: incomplete mixing of presolar material or secondary processing of a well-mixed disk. Using stepwise acid-leaching of the Ivuna CI-chondrite, we show that unlike other nuclides such as {sup 54}Cr and {sup 50}Ti, Sr-isotope variability is the result of a carrier depleted in {sup 84}Sr. The carrier is most likely presolar SiC, which is known to have both high Sr-concentrations relative to solar abundances and extremely depleted {sup 84}Sr compositions. Thus, variability in {sup 84}Sr in meteorites and their components can be attributed to varying contributions from presolar SiC. The observed {sup 84}Sr excesses in calcium-aluminum refractory inclusions (CAIs) suggest their formation from an SiC-free gaseous reservoir, whereas the {sup 84}Sr depletions present in differentiated meteorites require their formation from material with an increased concentration of SiC relative to CI chondrites. The presence of a positive correlation between {sup 84}Sr and {sup 54}Cr, despite being hosted in carriers of negative and positive anomalies, respectively, is not compatible with incomplete mixing of presolar material but instead suggests that the solar system's nucleosynthetic heterogeneity reflects selective thermal processing of dust. Based on vaporization experiments of SiC under nebular conditions, the lack of SiC material in the CAI-forming gas inferred from our data requires that the duration of thermal processing of dust resulting in the vaporization of CAI precursors was extremely short-lived, possibly lasting only hours to days.

Paton, Chad; Schiller, Martin; Bizzarro, Martin, E-mail: chadpaton@gmail.com, E-mail: schiller@snm.ku.dk, E-mail: bizzarro@snm.ku.dk [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350 (Denmark)

2013-02-01T23:59:59.000Z

436

Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection  

SciTech Connect (OSTI)

This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Cada, G.F.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Dauble, D.D. [Pacific Northwest Lab., Richland, WA (United States); Hunt, R.T. [Hunt (Richard) Associates, Inc., Concord, NH (United States); Costello, R.J. [Northwest Water Resources Advisory Services (United States)

1994-01-01T23:59:59.000Z

437

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events, Facilities, National Solar Thermal Test Facility, News, News...

438

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

439

MODELING PASSIVE SOLAR BUILDINGS WITH HAND CALCULATIONS  

E-Print Network [OSTI]

California ABSTRACT Passive solar design can be encouragedpassive solar buildings and the a b i l i t y to predict the thermal response of various designs.

Goldstein, David B.

2011-01-01T23:59:59.000Z

440

Sandia National Laboratories: Concentrating Solar Power: Efficiently...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rules of thumb for passive solar heating  

SciTech Connect (OSTI)

Rules of thumb are given for passive solar systems for: (1) sizing solar glazing for 219 cities, (2) sizing thermal storage mass, and (3) building orientation.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

442

Solar Power for Deployment in Populated Areas.  

E-Print Network [OSTI]

??The thesis presents background on solar thermal energy and addresses the structural challenges associated with the deployment of concentrating solar power fields in urban areas.… (more)

Hicks, Nathan Andrew

2009-01-01T23:59:59.000Z

443

Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications  

E-Print Network [OSTI]

maximizing the thermal conductivity of the nanomaterial (which typically occurs for nanoparticle size varying between ~ 20-30nm) and maximizing the specific heat capacity (which typically occurs for nanoparticle size less than 5nm), while simultaneously...

Jung, Seunghwan

2012-07-16T23:59:59.000Z

444

Performance evaluation of thermal energy storage systems;.  

E-Print Network [OSTI]

??Solar thermal technologies are promising, given the fact that solar newlineenergy is the cheapest and most widely available of all renewable energy newlinetechnologies. The recent… (more)

Ramana A S

2014-01-01T23:59:59.000Z

445

Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project  

SciTech Connect (OSTI)

The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: �¢���¢ Increasing safety at Boulder Canyon Hydro �¢���¢ Increasing protection of the Boulder Creek environment �¢���¢ Modernizing and integrating control equipment into Boulder�¢����s municipal water supply system, and �¢���¢ Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to

Joe Taddeucci, P E

2013-03-29T23:59:59.000Z

446

The Brasfield Hydroelectric Project: A model-prototype comparison  

SciTech Connect (OSTI)

Observations made during start-up and operation of the 3 MW Brasfield Hydroelectric Project provide an excellent means of comparing physical model results with the prototype installation. During start-up, the turbine generator unit was operated without the surface vortex suppression grid in place to allow engineers to observe vortex formation without, and later with, the grid. The model performance is reproduced in the prototype with regard to surface vortices. Field data has also been obtained at 0.7 in depth increments to provide dissolved oxygen (D.O.) concentrations profiles in the reservoir and in the nearfield zone surrounding the intake. Parallel D.O. measurements at the powerhouse outlet and 1.6 km downstream of the outlet provide a good means of determining the average depth of water column from which the water was removed. Measurements of model velocities, scaled to the prototype, multiplied times the field measurements of dissolved oxygen (D.O.) concentration and water temperature provide a model-predicted downstream D.O. concentration that also compares well to that measured in the prototype. This paper provides support for an unconventional design technique which may be applicable to many other sites facing similar environmental constraints. The model-prototype comparison also provides a strong verification of the combined use of both physical and mathematical models to solve such a design problem.

Gulliver, J.S.; Voigt, R.L. Jr.; Hibbs, D.E. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

1995-12-31T23:59:59.000Z

447

Storing hydroelectricity to meet peak-hour demand  

SciTech Connect (OSTI)

This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

Valenti, M.

1992-04-01T23:59:59.000Z

448

2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for  

E-Print Network [OSTI]

photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar technology such as concentrating solar power (CSP). PV project developers first need to identify2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases

Paris-Sud XI, Université de

449

A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam  

SciTech Connect (OSTI)

This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

Jaffe, L.D.

1988-11-01T23:59:59.000Z

450

User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants  

SciTech Connect (OSTI)

DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

Dellin, T.A.; Fish, M.J.; Yang, C.L.

1981-08-01T23:59:59.000Z

451

E-Print Network 3.0 - absorbers solar Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

go to www.ncsc.ncsu.edu Solar... Thermal Solar thermal technologies use the sun's power to heat air or water. We use hot water in our homes... The two types of solar thermal...

452

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Performance of Thin Film, Solar Thermal Energy Converters",sts of Collectors of Solar Thermal Energy, A Steel Flat PlatA Comparison of Solar Thermal Coatings", Spie 85, Optics in

Viswanathan, R.

2011-01-01T23:59:59.000Z

453

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Heat Storage for a Solar Thermal Power Plant T. Baldwin, S.A. J. Hunt, "A new solar thermal receiver utilizing small9317. A. J. Hunt, "A new solar thermal receiver utilizing a

Authors, Various

2010-01-01T23:59:59.000Z

454

Study of the thermochemistry for oxygen production for a solar sulfur-ammonia  

E-Print Network [OSTI]

Power-Photovoltaics or Solar Thermal Power? ” Proceedings ofA.W. , “Likely Near-Term Solar-Thermal Water Splittingto use concentrated solar thermal energy to power a cost

Wang, Mimi Kai Wai

2012-01-01T23:59:59.000Z

455

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

to buffer the incoming solar power to the glycol loop so asarea the available power to the solar thermal collector was

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

456

Thermal storage studies for solar heating and cooling: applications using chemical heat pumps. Final report, September 15, 1979-April 15, 1980  

SciTech Connect (OSTI)

TRNSYS-compatible subroutines for the simulation of chemical heat pumps have been written, and simulations (including heating, cooling, and domestic hot water) have been performed for Washington, DC and Ft. Worth, Texas. Direct weekly comparisons of the H/sub 2/SO/sub 4//H/sub 2/O and CaCl/sub 2//CH/sub 3/OH cycles have been carried out. Projected performance of the NH/sub 4/NO/sub 3//NH/sub 3/ cycle has also been investigated, and found to be essentially identical to H/sub 2/SO/sub 4//H/sub 2/O. In all cases simulated, the solar collector is a fixed evacuated tube system, which is necessary because chemical heat pumps operate at higher solar collector temperatures (> 100/sup 0/C) than conventional solar systems. With standard residential loads, the chemical heat pumps performed surprisingly well. In the Ft. Worth climate, less than 45 m/sup 2/ of collectors were required to meet over 90% of the heating and cooling loads. In Washington, DC, the area required to meet the cooling load was smaller (as little as 20 m/sup 2/, depending on window shading), but was sufficient to meet only 50 to 60% of the heating load. However, gas-fired backup via the heat pump was quite effective in reducing fossil fuel consumption: the thermal COPs in the heating mode were in the range 1.6 to 1.7. Since chemical heat pumps are designed to reject heat at relatively high temperatures, they were also effective in providing domestic hot water, supplying ca. 70% of the DHW in summer, ca. 50% in winter, and nearly 100% in spring and fall.

Offenhartz, P O.D.

1981-04-01T23:59:59.000Z

457

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

Ho, Tony

2012-01-01T23:59:59.000Z

458

Public choice in water resource management: two case studies of the small-scale hydroelectric controversy  

SciTech Connect (OSTI)

Hydroelectric issues have a long history in the Pacific Northwest, and more recently have come to focus on developing environmentally less-obtrusive means of hydroelectric generation. Small-scale hydroelectric represents perhaps the most important of these means of developing new sources of renewable resources to lessen the nation's dependence on foreign sources of energy. Each potential small-scale hydroelectric project, however, manifests a unique history which provides a highly useful opportunity to study the process of collective social choice in the area of new energy uses of water resources. Utilizing the basic concepts of public choice theory, a highly developed and increasingly widely accepted approach in the social sciences, the politicalization of small-scale hydroelectric proposals is analyzed. Through the use of secondary analysis of archival public opinion data collected from residents of the State of Idaho, and through the development of the two case studies - one on the Palouse River in Eastern Washington and the other at Elk Creek Falls in Northern Idaho, the policy relevant behavior and influence of major actors is assessed. Results provide a useful test of the utility of public-choice theory for the study of cases of natural-resources development when public involvement is high.

Soden, D.L.

1985-01-01T23:59:59.000Z

459

Modeling of concentrating solar thermoelectric generators  

E-Print Network [OSTI]

The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

Ren, Zhifeng

460

Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons  

E-Print Network [OSTI]

Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells ...

Boriskina, Svetlana V

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effects of Climate Change on the Hydroelectric The Council is not tasked, nor does it have the resources to resolve existing uncertainties  

E-Print Network [OSTI]

Effects of Climate Change on the Hydroelectric System SUMMARY The Council is not tasked, nor does at hydroelectric dams when Northwest demands and power market values are likely to grow due to higher air

462

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

of Thermal Energy Energy Sources o Solar Heat o Winter Coldusual Solar Energy System which uses only a heat source andsources and heat sinks not found anywhere else. Furthermore even where Solar energy

Authors, Various

2011-01-01T23:59:59.000Z

463

List of Small Hydroelectric Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofs Incentives

464

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

R. (1980) “Solar collectors for low and intermediateSystem Using Double- glazed Collectors." Applied Thermal40: Heat loss in thermal watts from the collectors to the

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

465

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Particle Suspensions for Solar Energy Collection A.Sensible Heat Storage for a Solar Thermal Power Plant T.and A. Pfeiffhofer • . Solar Heated Gas Turbine Process

Authors, Various

2010-01-01T23:59:59.000Z

466

Building-integrated solar energy devices based on wavelength selective films.  

E-Print Network [OSTI]

??A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin… (more)

Ulavi, Tejas U.

2013-01-01T23:59:59.000Z

467

Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues  

SciTech Connect (OSTI)

The engineering and system benefits of using direct steam (in situ) generation in line-focus collectors are assessed. The major emphasis of the analysis is a detailed thermal performance comparison of in situ systems (which utilize unfired boilers). The analysis model developed for this study is discussed in detail. An analysis of potential flow stability problems is also provided along with a cursory cost analysis and an assessment of freeze protection, safety, and control issues. Results indicated a significant thermal performance advantage over the more conventional oil and flash systems and the flow stability does not appear to be a significant problem. In particular, at steam temperatures of 220/sup 0/C (430/sup 0/F) under the chosen set of assumptions, annual delivered energy predictions indicate that the in situ system can deliver 15% more energy than an oil system and 12% more energy than a flash system, with all of the systems using the same collector field. Further, the in situ system may result in a 10% capital cost reduction. Other advantages include improvement in simpler control when compared with flash systems, and fluid handling and safety enhancement when compared with oil systems.

Murphy, L.M.; May, E.K.

1982-04-01T23:59:59.000Z

468

Image courtesy of the Image Science & Analysis Laboratory, NASA Johnson Space Center (ISS006-E-42326). The hydroelectrical potential of North-Western  

E-Print Network [OSTI]

-42326). #12;The hydroelectrical potential of North-Western Patagonia ­ balancing economic development and ecological protection axel borsdorf #12;156 The hydroelectrical potential of North-Western Patagonia the rest an expansion of the hydroelectric potential, first proposed 30 years ago (Borsdorf 1987: 156ff), can

Borsdorf, Axel

469

Concentrated solar power on demand .  

E-Print Network [OSTI]

??This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten… (more)

Codd, Daniel Shawn

2011-01-01T23:59:59.000Z

470

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become an

Ho, Tony

2012-01-01T23:59:59.000Z

471

Passive solar design handbook  

SciTech Connect (OSTI)

The Passive Solar Design Handbook, Volume Three updates Volume Two by presenting extensive new data on the optimum mix of conservation and solar direct gain, sunspaces, thermal storage walls, and solar radiation. The direct gain, thermal storage wall, and solar radiation data are greatly expanded relative to the Volume 2 coverage. The needed flexibility to analyze a variety of system designs is accommodated by the large number of reference designs to be encompassed - 94 in contrast to 6 in Volume two - and the large amount of sensitivity data for direct gain and sunspace systems - approximately 1100 separate curves.

Jones, R.W.

1981-01-01T23:59:59.000Z

472

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

E-Print Network [OSTI]

by utilizing thermal energy storage such as ice storage orThermal Storage Utilization. ” Journal of Solar Energy

Yin, Rongxin

2010-01-01T23:59:59.000Z

473

Bangor Hydro-Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,AurantiaBanbury Geothermalanalysis,Bangor

474

Pumped storage for hydroelectric power. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 198 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

475

Pumped storage for hydroelectric power. (Latest citations from Fluidex data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 192 citations and includes a subject term index and title list.)

Not Available

1992-09-01T23:59:59.000Z

476

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.  

SciTech Connect (OSTI)

This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

Howerton, Jack; Hwang, Diana

1984-11-01T23:59:59.000Z

477

State of structures of the Kolyma hydroelectric station according to data of on-site observations  

SciTech Connect (OSTI)

On-site inspections of the Kolyma hydroelectric power station have been performed since 1979. A large quantity of data has been obtained pertaining to the dam, underground powerhouse, and other structures. Over 2000 measuring instruments were installed for checking the structures and foundations.

Kuznetsov, V.S.; Voinovich, A.P.; Matroshilina, T.V.; Krupin, V.A.; Bulatov, S.N.

1995-10-01T23:59:59.000Z

478

What is the role of hydroelectric power in the United States?  

Reports and Publications (EIA)

The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

2011-01-01T23:59:59.000Z

479

FACTORS FOR DECLINE 3.4.5 EFFECTS OF HYDROELECTRIC DAMS ON VIABILITY OF WILD FISH  

E-Print Network [OSTI]

FACTORS FOR DECLINE 3.4.5 EFFECTS OF HYDROELECTRIC DAMS ON VIABILITY OF WILD FISH The existence and operation of the Columbia River Hydrosystem poses risks to wild populations of anadromous salmonids. Run-tagged hatchery fish or a mixture of hatchery and wild fish are used as indicator stocks. In the Snake River

480

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network [OSTI]

of buildings, ocean thermal energy, and direct agriculturaltropics-based ocean thermal plants would manufacture energy-ocean thermal conversion. Another problem common to all technologies (not just solar energy)

Davidson, M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar collector  

SciTech Connect (OSTI)

A solar collector unit comprises a body of rigid thermally insulating material having a surface in the shape of about half a cylindrical parabola, the parabolic surface being provided with a reflective surface, a conduit being positioned with its long axis in the median plane of the parabola, said conduit serving as conduit for the heat-exchange medium, the surface of said conduit facing the parabolic surface being a selective surface, a transparent cover being provided on top of the device.

Dostrovsky, I.

1981-02-10T23:59:59.000Z

482

COMPARISON OF PROPORTIONAL AND ON/OFF SOLAR COLLECTOR LOOP CONTROL STRATEGIES USING A DYNAMIC COLLECTOR MODEL  

E-Print Network [OSTI]

of Solar Energy, Vol. II, Thermal Processes (University ofSolar Group Energy and Environment Division Lawrence Berkeley Laboratory University

Schiller, Steven R.

2013-01-01T23:59:59.000Z

483

A Monte Carlo Approach To Generator Portfolio Planning And Carbon...  

Open Energy Info (EERE)

requirement of 1 day in 10 years. The present study includes wind, centralized solar thermal, and rooftop photovoltaics, as well as hydroelectric, geothermal, and natural...

484

Initiative Guides Hawaii to the Path of Energy Independence ...  

Broader source: Energy.gov (indexed) [DOE]

renewable energy sources to choose from, including hydroelectric, geothermal, wind, solar, wave, ocean thermal and biomass. Many of these are already generating small amounts...

485

Renewable Energy Across the 50 United States and Related Factors.  

E-Print Network [OSTI]

??Renewable energy production replaces diminishing non-renewable energy sources including fossil fuels. Major sources of renewable energy include biofuels, geothermal, hydroelectric, solar thermal and photovoltaic, wind,… (more)

Christenson, Cynthia Brit

2013-01-01T23:59:59.000Z

487

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network [OSTI]

the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

488

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

are low risk Goal: Develop solar selective coatings for next- generation concentrated solar power towers that exhibit high absorptance with low thermal emittance, that can...

489

Solar Thermoelectrics Mercouri Kanatzidis,  

E-Print Network [OSTI]

Solar Thermoelectrics Mercouri Kanatzidis, Materials Science Division December 15, 2009 #12;2 Heat #12;13 What is the dot made of? Cook, Kramer #12;14 Nanostructures reduce the lattice thermal

Kanatzidis, Mercouri G

490

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

Copeland, R.J.

1981-08-01T23:59:59.000Z

491

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

492

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

energy sources such as solar heated industrial waste heat, geothermal water, brines, and ocean thermal

authors, Various

2011-01-01T23:59:59.000Z

493

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

energy sources such as solar heated water, indus- trial waste heat, geothermal brines, and ocean thermal

Authors, Various

2010-01-01T23:59:59.000Z

494

Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure  

SciTech Connect (OSTI)

We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T. [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

2014-08-14T23:59:59.000Z

495

MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. II. HYDRODYNAMIC SCALING LAWS AND THERMAL ENERGIES  

SciTech Connect (OSTI)

In this study we measure physical parameters of the same set of 155 M- and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure analysis to determine the flare peak emission measure EM{sub p} , peak temperature T{sub p} , electron density n{sub p} , and thermal energy E{sub th}, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M- and X-class flares are log (EM{sub p}) = 47.0-50.5, T{sub p} = 5.0-17.8 MK, n{sub p} = 4 × 10{sup 9}-9 × 10{sup 11} cm{sup –3}, and thermal energies of E{sub th} = 1.6 × 10{sup 28}-1.1 × 10{sup 32} erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) scaling law T{sub p}{sup 2}?n{sub p} L and H?T {sup 7/2} L {sup –2} during the peak time t{sub p} of the flare density n{sub p} , when energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts power-law distributions for all physical parameters, which we demonstrate with numerical Monte Carlo simulations as well as with analytical calculations. A consequence of the RTV law is also that we can retrieve the size distribution of heating rates, for which we find N(H)?H {sup –1.8}, which is consistent with the magnetic flux distribution N(?)??{sup –1.85} observed by Parnell et al. and the heating flux scaling law F{sub H} ?HL?B/L of Schrijver et al.. The fractal-diffusive self-organized criticality model in conjunction with the RTV scaling law reproduces the observed power-law distributions and their slopes for all geometrical and physical parameters and can be used to predict the size distributions for other flare data sets, instruments, and detection algorithms.

Aschwanden, Markus J. [Lockheed Martin Advanced Technology Center, Org. ADBS, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304 (United States); Shimizu, Toshifumi, E-mail: aschwanden@lmsal.com, E-mail: shimizu.toshifumi@isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

2013-10-20T23:59:59.000Z

496

Water quality and sedimentation implications of installing a hydroelectric dam on the Río Baker in Chilean Patagonia  

E-Print Network [OSTI]

HidroAysen, a Chilean corporation operated by energy giant Endesa, has proposed to build two hydroelectric dams on the Rio Baker in the Aysin Region of Chilean Patagonia. The proposed dams have been met with a variety of ...

Leandro, Gianna Dee

2009-01-01T23:59:59.000Z

497

NREL: Concentrating Solar Power Research - NREL Forges Foundation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

targets with systems that can supply solar power on demand through the use of thermal energy storage. The thermal energy from the receiver can be stored and subsequently...

498

Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility  

SciTech Connect (OSTI)

Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

Jack Q. Richardson

2012-06-28T23:59:59.000Z

499

Legal obstacles and incentives to the development of small scale hydroelectric power in Ohio  

SciTech Connect (OSTI)

The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level is described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by the FERC. A developer must obtain title or interest to a streambed from the proper riparian owners. Ohio provides assistance to an electric company in this undertaking by providing it with the power of eminent domain in the event it is unable to reach a purchase agreement with the riparian proprietors. The Ohio Water Law is discussed in detail, followed by discussions: Licensing, Permitting, and Review Procedures; Indirect Considerations; Ohio Public Utilities Commission; Ohio Department of Energy; Incidental Provision; and Financial Considerations.

None,

1980-05-01T23:59:59.000Z

500

Legal obstacles and incentives to the development of small scale hydroelectric potential in Wisconsin  

SciTech Connect (OSTI)

The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The initial obstacle that all developers confront in Wisconsin is obtaining the authority to utilize the bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Wisconsin follows the riparian theory of water law.

None,

1980-05-01T23:59:59.000Z