Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE/EIS-0456 CUSHMAN HYDROELECTRIC PROJECT MASON COUNTY, WASHINGTON  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 CUSHMAN HYDROELECTRIC PROJECT MASON COUNTY, WASHINGTON (FERC PROJECT NO. 460) FINAL ENVIRONMENTAL IMPACT STATEMENT (FERC/EIS-0095F, ADOPTED AS DOE/EIS-0456) US Department of Energy OCTOBER 2010 Lead Agency: U.S. Department of Energy (DOE) Title: Final Environmental Impact Statement (FEIS) for the Cushman Hydroelectric Project, Mason County, Washington (Adopted) Contact: For additional copies or more information on this final environmental impact statement (EIS), please

2

Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection  

DOE Green Energy (OSTI)

This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Cada, G.F.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Dauble, D.D. [Pacific Northwest Lab., Richland, WA (United States); Hunt, R.T. [Hunt (Richard) Associates, Inc., Concord, NH (United States); Costello, R.J. [Northwest Water Resources Advisory Services (United States)

1994-01-01T23:59:59.000Z

3

Falls Creek Hydroelectric Project  

DOE Green Energy (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

4

Jackson Bluff Hydroelectric Project. Feasibility assessment report  

DOE Green Energy (OSTI)

A feasibility assessment study was conducted to determine if it is economical to reinstall hydroelectric generating units at the existing Jackson Bluff Dam on the Ochlockonee River in Florida. The studies and investigations have included site reconnaissance, system loads, growth rate, site hydrology, conceptual project arrangements and layouts, power output, estimates of construction costs and annual costs, economic analyses, development of a design and construction schedule and a preliminary environmental review of the proposed Project. It was concluded that the Project poses no unusual technical problems and no significant adverse environmental effects are anticipated. It shows sufficient promise of technical, economic and financial feasibility, to justify the City entering into the next phase of work, the FERC License Application, as soon as possible. The site can be restored for an investment of $9.9 to $10.4 million to establish 8.8 MW of capacity and produce 24,920 MWh of electrical energy annually, and in 10 years would save over $4 million as compared with current fuel costs for operating an oil-fueled power plant. (LCL)

Not Available

1979-03-01T23:59:59.000Z

5

Indian River Hydroelectric Project Grant  

Science Conference Proceedings (OSTI)

This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

Rebecca Garrett

2005-04-29T23:59:59.000Z

6

Report on siphon penstocks for hydroelectric projects  

DOE Green Energy (OSTI)

This report on the use of siphon penstocks for hydroelectric installations has been prepared under DOE Contract AC07-82ID12356 by Acres International Corporation and draws extensively on the information and data assembled by the following organizations: CHI Engineering Services; Clearwater Hydro; Gannett Fleming Water Resources Engineers, Inc.; Harza Engineering Company; J. Kenneth Fraser and Associates, P.C.; Mead and Hunt, Inc.; TKO Power--Ott Water Engineers, Inc.; and Williams and Broome, Inc. The purpose of the study was to review the design, construction, operation, and maintenance considerations for siphon penstocks. The discussions, data, and information presented are based on experiences with the following operational siphon penstock plants: Columbia Mills Hydroelectric Plant, Virginia; Jim Falls Minimum Flow Unit Hydro Development, Wisconsin; Lac Courte Oreilles Hydro Development, Wisconsin; Ontelaunee Hydroelectric Project, Pennsylvania; Pine Grove Dam Hydroelectric Station, Pennsylvania; Pocono Lake Hydroelectric Project, Pennsylvania; Schaads Reservoir Hydroelectric Project, California; Second Broad River Hydroelectric Project, North Carolina; Superior Dam Power Station, Michigan; Tierckenkill Falls Hydroelectric Project, New York; and Traicao Hydroelectric Project, Brazil. 71 figs., 12 tabs.

Not Available

1989-02-01T23:59:59.000Z

7

South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.  

DOE Green Energy (OSTI)

The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

United States. Bonneville Power Administration.

1992-07-01T23:59:59.000Z

8

Small-Scale Hydroelectric Power Demonstration Project  

DOE Green Energy (OSTI)

The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

Gleeson, L.

1991-12-01T23:59:59.000Z

9

FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995  

E-Print Network (OSTI)

during the Federal Energy Regulatory Commission (FERC) proceedings on renewal of the hydroelectric of decommissioning dams in the Klamath Hydroelectric Project, Energy Commission staff has completed a preliminaryPRELIMINARY ASSESSMENT OF ENERGY ISSUES ASSOCIATED WITH THE KLAMATH HYDROELECTRIC PROJECT Kevin

10

Tuttle Creek Hydroelectric Project feasibility assessment report  

DOE Green Energy (OSTI)

The results are presented of a feasibility assessment study to determine if hydroelectric generation could be developed economically at the Corps of Engineers' Tuttle Creek Dam, an existing flood control structure on the Big Blue River near Manhattan, Kansas. The studies and investigations included site reconnaissance, system load characteristics, site hydrology, conceptual project arrangements and layouts, power studies, estimates of construction costs, development of capital costs, economic feasibility, development of a design and construction schedule and preliminary environmental review of the proposed Project. The dependable capacity of the Project as delivered into the existing transmission and distribution network is 12,290 kW and the average annual energy is 56,690 MWh. For the scheduled on-line date of July 1984, the Project is estimated to have a Total Investment Cost of $19,662,000 (equal to $1333/kW installed at that time frame) with an estimated annual cost for the first year of operation of $2,696,000, assuming REA financing at 9.5% interest rate. The Project is considered technically feasible and without any major environmental issues. It shows economic feasibility providing satisfactory financing terms are available. (LCL)

None

1979-03-01T23:59:59.000Z

11

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

12

Maintaining and Monitoring Dissolved Oxygen at Hydroelectric Projects: Status Report  

Science Conference Proceedings (OSTI)

This report is an update of EPRI's 1990 report, "Assessment and Guide for Meeting Dissolved Oxygen Water Quality Standards for Hydroelectric Plant Discharges" (GS-7001). The report provides an updated review of technologies and techniques for enhancing dissolved oxygen (DO) levels in reservoirs and releases from hydroelectric projects and state-of-the-art methods, equipment, and techniques for monitoring DO.

2002-05-28T23:59:59.000Z

13

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

Science Conference Proceedings (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

14

Legal factors affecting the financing of small scale hydroelectric projects  

DOE Green Energy (OSTI)

An introduction to the major business organizational options open to small-scale hydroelectric (SSH) projects is given. The major federal income tax treatments of these options are compared. Significant general federal income tax factors affecting SSH projects are reintroduced and explained. Some of the special federal income tax problem areas in SSH development are isolated. Tax benefit flow through or transfer mechanisms are discussed. Tax exempt financing opportunities for private SSH projects are reviewed. (MHR)

Wilson, W.H.; Ringo, M.J.; Forgione, N.

1983-09-01T23:59:59.000Z

15

Fish passage mitigation of impacts from hydroelectric power projects in the United States  

DOE Green Energy (OSTI)

Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.

Cada, G.F. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1996-10-01T23:59:59.000Z

16

A policy analysis of the Federal Energy Regulatory Commission's hydroelectric relicensing process.  

E-Print Network (OSTI)

??In this thesis, the FERC’s hydroelectric relicensing process is examined from a historical perspective. It finds that strong federal control to ensure a comprehensive plan… (more)

Wright, Jay

2006-01-01T23:59:59.000Z

17

Shawmut hydroelectric redevelopment project. Final technical and construction cost report  

DOE Green Energy (OSTI)

This report describes the major steps undertaken by the Central Maine Power Company to redevelop an old existing lowhead (19 to 23 ft) hydroelectric station and, at the same time, demonstrate the commercial viability of such a venture. The report addresses the process of site selection, preliminary conceptual design for determining economic viability, licensing and the regulatory process, final design, and project construction with the objective of presenting to the reader a technical and economical guide useful for a similar undertaking.

None

1982-08-01T23:59:59.000Z

18

Small-Scale Hydroelectric Power Demonstration Project. Pennsylvania Hydroelectric Development Corporation Flat Rock Dam: Project summary report  

DOE Green Energy (OSTI)

The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

Gleeson, L.

1991-12-01T23:59:59.000Z

19

Financing of private small scale hydroelectric projects  

DOE Green Energy (OSTI)

This manual is a description of the financing process associated with the private development of SSH projects. It examines the institutional framework and the actors within that framework who will have vital impact upon the potential for success of a project. The manual describes the information a developer should obtain in order to make intelligent decisions concerning the multiple directions in which project development can proceed. This information should assist the developer in formulating a business plan. Factors to be considered in choosing a business organizational form are discussed. Included is an analysis of the federal income tax factors relevant to SSH in context of the treatment of specific items: business expenses, depreciation, the Investment Tax Credit, and the Energy Tax Credit as modified by COWPTA. In addition, the tax and organizational factors are applied to an analysis of two mechanisms which can lower development costs through maximum utilization of available tax benefits: limited partnerships and leveraged leases. The manual lists and analyzes the major sources of debt and equity financing that are potentially available to a developer. Finally, all the previously discussed pieces are put together and how the decisions relating to such factors as marketing, taxation and debt financing interrelate to determine the probable success and profitability of a project are investigated. Furthermore, this part of the manual will provide an illustrated guide to understanding the financing process, leading the reader through the decisionmaking and negotiation points, and highlighting what should be borne in mind, what a developer may be giving up and what the perspective of other key actors will be at those points.

Smukler, L.M.

1981-03-01T23:59:59.000Z

20

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

DOE Green Energy (OSTI)

The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Benefits of fish passage and protection measures at hydroelectric projects  

DOE Green Energy (OSTI)

The US Department of Energy`s Hydropower Program is engaged in a multi-year study of the costs and benefits of environmental mitigation measures at nonfederal hydroelectric power plants. An initial report (Volume 1) reviewed and surveyed the status of mitigation methods for fish passage, instream flows, and water quality; this paper focuses on the fish passage/protection aspects of the study. Fish ladders were found to be the most common means of passing fish upstream; elevators/lifts were less common, but their use appears to be increasing. A variety of mitigative measures is employed to prevent fish from being drawn into turbine intakes, including spill flows, narrow-mesh intake screens, angled bar racks, and lightor sound-based guidance measures. Performance monitoring and detailed, quantifiable performance criteria were frequently lacking at non-federal hydroelectric projects. Volume 2 considers the benefits and costs of fish passage and protection measures, as illustrated by case studies for which performance monitoring has been conducted. The report estimates the effectiveness of particular measures, the consequent impacts on the fish populations that are being maintained or restored, and the resulting use and non-use values of the maintained or restored fish populations.

Cada, G.F.; Jones, D.W.

1993-06-01T23:59:59.000Z

22

Canton hydroelectric project: feasibility study. Final report, appendices  

DOE Green Energy (OSTI)

These appendices contain legal, environmental, regulatory, technical and economic information used in evaluating the feasibility of redeveloping the hydroelectric power generating facilities at the Upper and Lower Dams of the Farmington River at Collinsville, CT. (LCL)

Not Available

1979-05-01T23:59:59.000Z

23

MHK Projects/Lock and Dam No 2 Hydroelectric Project | Open Energy  

Open Energy Info (EERE)

Lock and Dam No 2 Hydroelectric Project Lock and Dam No 2 Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7486,"lon":-92.8048,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

24

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.  

DOE Green Energy (OSTI)

This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

Howerton, Jack; Hwang, Diana

1984-11-01T23:59:59.000Z

25

Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.  

DOE Green Energy (OSTI)

This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

Bissell, Gael

1985-01-01T23:59:59.000Z

26

Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.  

DOE Green Energy (OSTI)

This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

Mundinger, John

1985-01-01T23:59:59.000Z

27

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.  

DOE Green Energy (OSTI)

This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

Howerton, Jack

1984-11-01T23:59:59.000Z

28

Wildlife and Wildlife Habitat Mitigation Plan for the Thompson Falls Hydroelectric Project, Final Report.  

DOE Green Energy (OSTI)

This document presents a preliminary mitigation and enhancement plan for the Thompson Falls hydroelectric project. It discusses options available to provide wildlife protection, mitigation and enhancement in accordance with the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501). The options focus on mitigation for wildlife and wildlife habitat losses attributable to the construction of the hydroelectric project. These losses were previously estimated from the best available information concerning the degree of negative and positive impacts to target wildlife species (Wood and Olsen 1984). Criteria by which the mitigation alternatives were evaluated were the same as those used to assess the impacts identified in the Phase I document (Wood and Olsen 1984). They were also evaluated according to feasibility and cost effectiveness. This document specifically focuses on mitigation for target species which were identified during Phase I (Wood and Olsen 1984). It was assumed mitigation and enhancement for the many other target wildlife species impacted by the hydroelectric developments will occur as secondary benefits. The recommended mitigation plan includes two recommended mitigation projects: (1) development of wildlife protection and enhancement plans for MPC lands and (2) strategies to protect several large islands upstream of the Thompson Falls reservoir. If implemented, these projects would provide satisfactory mitigation for wildlife losses associated with the Thompson Falls hydroelectric project. The intent of the mitigation plan is to recommend wildlife management objectives and guidelines. The specific techniques, plans, methods and agreements would be developed is part of the implementation phase.

Bissell, Gael; Wood, Marilyn

1985-08-01T23:59:59.000Z

29

Guide to development of small hydroelectric and microhydroelectric projects in North Carolina  

Science Conference Proceedings (OSTI)

A guide to the development of small-scale hydroelectric projects in North Carolina is presented. The guide provides a potential developer with a simplified method of evaluating whether a project warrants additional investments of time and money. Information is presented on regulatory analysis, engineering analysis, microhydro development, environmental analysis, power marketing factors, and financing factors. Appendixes present information on where to go for further information and action.

Warren, J.L.; Gallimore, P.

1983-01-01T23:59:59.000Z

30

EA-1949: FERC Final Environmental Assessment | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Environmental Assessment EA-1949: FERC Final Environmental Assessment Admiralty Inlet Pilot Tidal Project, Puget Sound, WA On September 16, 2010, Snohomish PUD was selected...

31

EA-1949: FERC Notice of Availability Errata Sheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability Errata Sheet EA-1949: FERC Notice of Availability Errata Sheet Admiralty Inlet Pilot Tidal Project, Puget Sound, WA This notice corrects the Notice of...

32

Updated flood frequencies and a canal breach on the upper Klamath River  

E-Print Network (OSTI)

Klamath Hydroelectric Project (FERC Project No. 2082), WaterHydroelectric Project, FERC Project No. 2082. ” January 17,Regulatory Commission (FERC), PacifiCorp ( 2004) conducted

Fahey, Dan

2006-01-01T23:59:59.000Z

33

Manual for development of small scale hydroelectric projects by public entities  

DOE Green Energy (OSTI)

This manual is designed to provide guidance to towns, cities, counties and other political subdivisions which are interested in undertaking or participating in small scale hydroelectric (SSH) development within or close to their territorial boundaries. The manual is primarily directed to those political subdivisions which either own or have access to a site, are interested in exploring the prospects for development of the site and do not have longstanding experience in the electric power development. For purposes of this manual a small scale hydroelectric project is a project of 25 to 30 MWs or less and utilizes an existing dam or structure or utilizes the site characteristics of partially breached dams or structures. As the reader will observe from the discussion that follows, several incentives under federal and state law have been implemented which favor small scale hydroelectric development at existing sites. This manual is designed to assist political subdivisions in taking advantage of these incentives and devising strategies for development. The manual will provide information to political subdivisions as to what to expect in the development process and the kinds of informed questions to ask of paid advisers. The manual, however, cannot be and should not be used as a substitute for competent advice and assistance from experienced lawyers, engineers, accountants and financing experts.

Not Available

1981-03-01T23:59:59.000Z

34

Updated flood frequencies and a canal breach on the upper Klamath River  

E-Print Network (OSTI)

2004. “Klamath Hydroelectric Project (FERC Project No.Agencies at the Klamath Hydroelectric Project, FERC Project2005) Figure 2. The Klamath Hydroelectric Project Source:

Fahey, Dan

2006-01-01T23:59:59.000Z

35

Tazimina Hydroelectric Project, Iliamna, Alaska Final Technical and Construction Cost Report  

DOE Green Energy (OSTI)

The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. These communities have a combined population of approximately 600 residents. There is no direct road connection from these villages to larger population centers. Electric power has been generated by INNEC since 1983 using diesel generators located in the community of Newhalen. Fuel for these generators was transported up the Kvichak River, an important salmon river, and across Iliamna Lake. In dry years the river is low and fuel is flown into Iliamna and then trucked five miles into Newhalen. The cost, difficult logistics and potential spill hazard of this fuel was a primary reason for development of hydroelectric power in this area. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

HDR Alaska, Inc.

1998-11-01T23:59:59.000Z

36

Snettisham Hydroelectric Project, Alaska second stage development, Crater lake. Final foundation report. Final report  

Science Conference Proceedings (OSTI)

The important geologic features and methods used to construct the Crater Lake stage of the Snettisham Hydroelectric project, built between 1985 and 1989, are discussed. The project added 31 megawatts of non-polluting, renewable electric power for Juneau, Alaska and the surrounding area. Features of the report include the power tunnel and access adits, penstock excavation, surge shaft, gate shaft and lake top. Construction aspects include the general geology, design features, construction methods, geologic conditions encountered, ground support requirements, grouting, instrumentation and tunnel filling. Foundation conditions for the Crater Lake status were excellent, permitting the power and penstock tunnel and shafts to be constructed essentially unlined. The basic rock type throughout the project is a high-quality, quartz diorite gneiss with randomly spaced, subparallel basalt dikes.... Unlined rock tunnels, Power tunnel, Penstocks, Lake tap, Surge shaft.

Not Available

1992-09-04T23:59:59.000Z

37

Repurposing a Hydroelectric Plant.  

E-Print Network (OSTI)

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as… (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

38

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network (OSTI)

Upper American River Hydroelectric Project, FERC Project No.California, Chili Bar Hydroelectric Project, FERC Projectthe night, as part of hydroelectric power generation by the

2010-01-01T23:59:59.000Z

39

EA-1949: FERC Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment Draft Environmental Assessment EA-1949: FERC Draft Environmental Assessment Admiralty Inlet Pilot Tidal Project, Puget Sound, WA This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. EA-1949-FERC-DEA-2013.pdf More Documents & Publications EA-1949: FERC Notice of Availability of an Environmental Assessment EA-1949: FERC Final Environmental Assessment

40

FERC's Hackberry Decision (2002) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In its ruling, FERC granted preliminary approval ... Because FERC's open access requirements for LNG terminals had formerly mandated public, ...

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tazimina hydroelectric project, Iliamna, Alaska. Final technical and construction cost report  

DOE Green Energy (OSTI)

The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is on the Tazimina River about 12 miles northeast of Iliamna Lake. The taximina River flows west from the Aleutian Range. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

NONE

1998-08-01T23:59:59.000Z

42

FERC sees huge potential for demand response  

Science Conference Proceedings (OSTI)

The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

NONE

2010-04-15T23:59:59.000Z

43

Inexpensive cross-flow hydropower turbine at Arbuckle Mountain Hydroelectric Project  

SciTech Connect

This report documents the first three and half years of operation and maintenance on the Arbuckle Mountain Hydroelectric Project. Located on a flashy mountain stream in northern California, the project was designed, built and tested through a Cooperative Agreement between the US DOE and OTT Engineering, Inc. (OTT). The purpose of the Agreement is to build and intensively test an inexpensive American-made cross-flow turbine and to provide information to the DOE on the cost, efficiency, operation, and maintenance of the unit. It requires that OTT document for DOE a summary of the complete operating statistics, operation and maintenance cost, and revenues from power sales for a two-year operating period. Several unique events occurred between the initial start-up (December 1986) and the beginning of the 1989 generation season (October 1988) that delayed the first year's full operation and provided unique information for a demonstration project of this type. Accordingly, this report will discuss certain major problems experienced with the design, operation and maintenance, and energy production, as well as the operation and maintenance costs and value of the power produced for the first three and half years of operation. 9 figs., 2 tabs.

1991-07-01T23:59:59.000Z

44

RETURN TO THE RIVER : Prepublication Copy 10 September 1996 Chapter 7 Hydroelectric Project Development264  

E-Print Network (OSTI)

, uranium, hydroelectric, and geothermal. It also comes indirectly from wind, tidal and geo-solar sources/clean: hydroelectric, wind, tidal/wave, geothermal, and hydrogen Conventional fuels: coal, oil, oil-sand natural gas Research on Minerals, Metals and Materials (CERM3) Department of Mining and Mineral Process Engineering

45

Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.  

DOE Green Energy (OSTI)

The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

Bedrossian, Karen L.

1984-08-01T23:59:59.000Z

46

Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.  

DOE Green Energy (OSTI)

The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

Martin, Robert C.; Mehrhoff, L.A.

1985-01-01T23:59:59.000Z

47

EA-1949: FERC Notice of Availability of an Environmental Assessment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of an Environmental Assessment Notice of Availability of an Environmental Assessment EA-1949: FERC Notice of Availability of an Environmental Assessment Admiralty Inlet Pilot Tidal Project, Puget Sound, WA This Notice announces the availability of a Federal Energy Regulatory Commission (FERC) EA, which analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The FERC is the lead agency. DOE is a cooperating agency. EA-1949-FERC-EA-NOA-2013.pdf More Documents & Publications

48

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

SciTech Connect

On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

49

EIS-0493: FERC Notice of Intent of an Environmental Impact Statement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0493: FERC Notice of Intent of an Environmental Impact Statement Corpus Christi LNG Terminal and Pipeline Project, Nueces and San Patricio Counties, Texas The Federal...

50

EIS-0488: FERC Draft Environmental Impact Statement | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

88: FERC Draft Environmental Impact Statement 88: FERC Draft Environmental Impact Statement EIS-0488: FERC Draft Environmental Impact Statement Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, Louisiana Federal Energy Regulatory Commission (FERC) has prepared a Draft EIS, with DOE as a cooperating agency, that analyzes the potential environmental impacts of a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export the LNG. EIS-0488-DEIS-Cover-2014.pdf EIS-0488-DEIS-TOC-2014.pdf EIS-0488-DEIS-ExecutiveSummary-2014.pdf EIS-0488-DEIS-Sections1-5-2014.pdf

51

Transmission Infrastructure: FERC’s Role  

U.S. Energy Information Administration (EIA)

... Approved by state siting authority Nexus Test Project must demonstrate a nexus between the incentive sought and the investment made The total package of ...

52

Feasibility of determination of low-head hydroelectric power development at existing sites: North Hartland Dam Project. Feasibility report  

DOE Green Energy (OSTI)

The feasibility of constructing a low-head hydroelectric power plant at the North Hartland Dam in Vermont was investigated. Evaluation of technical, economic, environmental, safety, and regulatory aspects led to the conclusion that the North Hartland Dam Hydroelectric Project is a technically feasible concept. The proposed project will have a recommended 6000 kW nominally rated capacity at a 52 ft turbine design head and 1680 cfs demand flow. The gross generation expected from the project is 11,980,000 kWh per year. It is estimated that the project will cost $8,997,000 at 1978 price levels, with no allowance for funds during construction. The project will provide peaking power at a levelized cost of about 41 mills per kWh at 1979 price levels, based on 7% cost of money, a 1985 commissioning date, and allowing for funds during construction and cost escalation over a 30 y period. The benefit-cost ratio compared with an equivalent oil-based generation source over a similar period is estimated as 1.06. (LCL)

None

1979-03-01T23:59:59.000Z

53

Wildlife and Wildlife Habitat Mitigation Plan for the Noxon Rapids and Cabinet Gorge Hydroelectric Projects, Final Report.  

DOE Green Energy (OSTI)

Mitigation projects for wildlife species impacted by the Noxon Rapids and Cabinet Gorge hydroelectric projects are recommended. First priority projects encompass the development of long-term wildlife management plans for WWP lands adjacent to the two reservoirs. General objectives for all WWP lands include alternatives designed to protect or enhance existing wildlife habitat. It is also suggested that WWP evaluate the current status of beaver and river otter populations occupying the reservoirs and implement indicated management. Second priority projects include the protection/enhancement of wildlife habitat on state owned or privately owned lands. Long-term wildlife management agreements would be developed with Montana School Trust lands and may involve reimbursement of revenues lost to the state. Third priority projects include the enhancement of big game winter ranges located on Kootenai National Forest lands. 1 ref., 1 fig., 7 tabs.

Bissell, Gael

1985-04-01T23:59:59.000Z

54

DOE and FERC Joint Public Statement on Back Stop Siting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Joint Public Statement on Back Stop Siting FERC Joint Public Statement on Back Stop Siting DOE and FERC Joint Public Statement on Back Stop Siting October 11, 2011 - 1:32pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today his decision that the Department of Energy will work more closely with the Federal Energy Regulatory Commission (FERC) in reviewing proposed electric transmission projects under section 216 of the Federal Power Act (FPA), as an alternative to delegating additional authority to FERC. Chu said, "This nation promptly needs to build the electric grid of the 21st century to compete in the global economy. Enhanced cooperation between DOE and FERC is the best way to help achieve this goal. I look forward to working with Chairman Wellinghoff as we take steps to ease

55

American Bar Association Section of Environment, Energy, and Resources  

E-Print Network (OSTI)

Chelan Hydroelectric Project FERC Project No. 637," prepared for Public Utility District No. 1 of Chelan

Wells, Scott A.

56

Changes in Prehistoric Land Use in the Alpine Sierra Nevada: A Regional Exploration Using Temperature-Adjusted Obsidian Hydration Rates  

E-Print Network (OSTI)

of the Crane Valley Hydroelectric Project Area, Maderaand Balsam Meadow Hydroelectric Project. Report submitted toCalifornia—Bishop Creek Hydroelectric Project (FERC Project

Stevens, Nathan E.

2005-01-01T23:59:59.000Z

57

EA-1942-FERC-NOI-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion Cove Point LNG, LP Docket No. PF12-16-000 Dominion Cove Point LNG, LP Docket No. PF12-16-000 NOTICE OF INTENT TO PREPARE AN ENVIRONMENTAL ASSESSMENT FOR THE PLANNED COVE POINT LIQUEFACTION PROJECT, REQUEST FOR COMMENTS ON ENVIRONMENTAL ISSUES, NOTICE OF ON-SITE ENVIRONMENTAL REVIEW, AND NOTICE OF PUBLIC SCOPING MEETINGS (September 24, 2012) The staff of the Federal Energy Regulatory Commission (FERC or Commission) will prepare an environmental assessment (EA) that will discuss the environmental impacts of the Cove Point Liquefaction Project (Project) involving construction and operation of facilities by Dominion Cove Point LNG, LP (Dominion) in Maryland and Virginia. This EA will be used by the Commission in its decision-making process to determine whether the construction and operation of the proposed facilities is in the

58

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network (OSTI)

flow. Trans Am Fish Soc FERC (Federal Energy RegulatoryUpper American River Hydroelectric Project, FERC Project No.Chili Bar Hydroelectric Project, FERC Project No. 2155-024,

2010-01-01T23:59:59.000Z

59

EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact Statement EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact Statement CE FLNG Project, Plaquemines Parish, Louisiana The Federal Energy Regulatory Commission (FERC) announces its intention to prepare, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities. EIS-0497-FERC-NOI-2013.pdf More Documents & Publications EIS-0487: Notice of Intent to Prepare an Environmental Impact Statement EIS-0487: Notice of Intent to Prepare an Environmental Assessment

60

EA-1971: FERC Notice of Intent to Prepare an Environmental Assessment |  

NLE Websites -- All DOE Office Websites (Extended Search)

71: FERC Notice of Intent to Prepare an Environmental 71: FERC Notice of Intent to Prepare an Environmental Assessment EA-1971: FERC Notice of Intent to Prepare an Environmental Assessment Golden Pass LNG Export and Pipeline Project, Texas and Louisiana The Federal Energy Regulatory Commission (FERC) announces its intent to prepare, with DOE as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes approximately 8 miles of pipeline connecting to existing pipelines in Calcasieu Parish, Louisiana, and Jefferson County. EA-1971-NOI-2013.pdf More Documents & Publications EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact Statement EIS-0497: FERC Notice of Intent to Prepare an Environmental Impact Statement CE FLNG Project, Plaquemines Parish, Louisiana The Federal Energy Regulatory Commission (FERC) announces its intention to prepare, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities. EIS-0497-FERC-NOI-2013.pdf More Documents & Publications EIS-0487: Notice of Intent to Prepare an Environmental Impact Statement EIS-0487: Notice of Intent to Prepare an Environmental Assessment

62

Summary of the New England conference on legal and institutional incentives to small-scale hydroelectric development (Boston Massachusetts, January 30-31, 1979)  

DOE Green Energy (OSTI)

The New England Conference on Legal and Institutional Incentives to Small Scale Hydroelectric Development examined the legal and institutional problems confronting small-scale hydroelectric potential of the northeast. Representatives from DOE, FERC, state legislatures, state public service commissions, private developers, and environmental groups attempted to evaluate the state of hydroelectric development in New England. The meeting began with an introductory panel followed by workshops addressing four topics: Federal regulatory systems, state regulatory systems, the economics of small-scale hydroelectric development, and systems dynamics and the systems dynamics model. Comments by the Honorable Georgiana H. Sheldon, FERC, are presented.

Not Available

1980-05-01T23:59:59.000Z

63

Property:FERC License Docket Number | Open Energy Information  

Open Energy Info (EERE)

License Docket Number License Docket Number Jump to: navigation, search This is a property of type string. Pages using the property "FERC License Docket Number" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/Admirality Inlet Tidal Energy Project + P-12690 + MHK Projects/Algiers Light Project + P-12848 + MHK Projects/Anconia Point Project + P-12928 + MHK Projects/Astoria Tidal Energy + P-12665 + MHK Projects/Avalon Tidal + P-14228 + MHK Projects/Avondale Bend Project + P-12866 + MHK Projects/BW2 Tidal + P-14222 + MHK Projects/Bar Field Bend + P-12942 + MHK Projects/Barfield Point + P-13489 + MHK Projects/Bayou Latenache + P-13542 + MHK Projects/Belair Project + P-13125 + MHK Projects/Bondurant Chute + P-13477 + MHK Projects/Breeze Point + P-13480 +

64

Property:FERC License | Open Energy Information  

Open Energy Info (EERE)

License Jump to: navigation, search Property Name FERC License Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:FERCLicense&oldid610683...

65

EIS-0491-FERC-NOI-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

373 Federal Register 373 Federal Register / Vol. 77, No. 183 / Thursday, September 20, 2012 / Notices 1 The appendices referenced in this notice will not appear in the Federal Register. Copies of the appendices were sent to all those receiving this notice in the mail and are available at www.ferc.gov using the link called ''eLibrary'' or from the Commission's Public Reference Room, 888 First Street NE., Washington, DC 20426, or call (202) 502-8371. For instructions on connecting to eLibrary, refer to the last page of this notice. 2 ''We,'' ''us,'' and ''our'' refer to the environmental staff of the Commission's Office of Energy Projects. intervention is necessary to become a party to the proceeding. eFiling is encouraged. More detailed information relating to filing requirements, interventions, protests,

66

Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.  

DOE Green Energy (OSTI)

A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

United States. Bonneville Power Administration.

1993-10-01T23:59:59.000Z

67

Use of mediation to resolve the dispute over low-head hydroelectric development at Swan Lake  

DOE Green Energy (OSTI)

In 1978, the Maine Hydroelectric Development Corporation announced that the company planned to renovate five dams on the Goose River near Belfast, Maine to generate electricity. The most important part of the plan involved the use of the first of the dams, at the lower end of Swan Lake, to regulate the flow of water to the downstream dams. For Maine Hydro, management of the Swan Lake dam could make an otherwise marginal proposal lucrative. However, Swan Lake is vitally important to the residents of Swanville. The town was so concerned about the impact of this proposed hydroelectric project that it petitioned the Federal Energy Regulatory Commission (FERC) to deny Maine Hydro's application on the grounds that it would damage the environment, reduce property values and eliminate recreational opportunities for its citizens. This report was written by the mediator of the dispute and represents the views and behavior of the parties as the mediator understood them. It is intended to present the mediator's observations in a way which will inform and assist others who may someday face a difficult situation like the one the Town of Swanville and Maine Hydroelectric Development Corporation faced, and successfully resolved, in the spring and summer of 1979.

O'Connor, D.

1980-08-01T23:59:59.000Z

68

FERC Presendation: Demand Response as Power System Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy...

69

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

DOE Green Energy (OSTI)

Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

70

Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study  

DOE Green Energy (OSTI)

The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

Vaught, Douglas J.

2007-03-31T23:59:59.000Z

71

Microsoft Word - Buff Report Cover - FERC FISMA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Services Evaluation Report The Federal Energy Regulatory Commission's Unclassified Cyber Security Program - 2010 OAS-M-11-01 October 2010 Department of Energy Washington, DC 20585 October 25, 2010 MEMORANDUM FOR THE CHAIRMAN, FEDERAL ENERGY REGULATORY COMMISSION FROM: Rickey R. Hass Deputy Inspector General for Audit Services Office of Inspector General SUBJECT: INFORMATION: Evaluation Report on "The Federal Energy Regulatory Commission's Unclassified Cyber Security Program - 2010" BACKGROUND The Federal Energy Regulatory Commission (Commission) is responsible for regulating and overseeing the interstate transmission of natural gas, oil and electricity in addition to numerous other natural gas and hydroelectric projects. The regulations set forth by the Commission are

72

Libby Dam Hydro-electric Project Mitigation: Efforts for Downstream Ecosystem Restoration.  

DOE Green Energy (OSTI)

Construction of Libby Dam, a large hydropower and flood control dam occurred from 1966 to 1975 on the Kootenai River, near Libby, Montana in the Northwestern United States. Live reservoir storage is substantial, with water residence time of about 5 1/2 months (based on mean annual discharge of about 440 m{sup 3}/s). Downstream river discharge and thermal regimes and the dependent habitat conditions have been significantly altered by dam construction and operation relative to pre-dam conditions. Highly valued Kootenai River fish populations, including white sturgeon Acipenser transmontanus, burbot Lota lota and bull trout Salvelinus confluentus and their supporting ecological conditions have been deteriorating during post-dam years. Measurements of the presence of very low (ultraoligotrophic) concentrations of dissolved phosphorus in the river downstream from Libby Dam were identified as a critical limitation on primary production and overall ecosystem health. A decision was made to initiate the largest experimental river fertilization project to date in the Kootenai River at the Montana-Idaho border. Pre-treatment aquatic biomonitoring began in 2001; post-treatment monitoring began in 2005. A solar-powered nutrient addition system was custom designed and built to dose small releases of dissolved nutrients at rates from 10 to 40 L/hour, depending on river discharge, which averaged several hundred m3/s. Closely monitored experimental additions of ammonium polyphosphate solution (10-34-0) into the river occurred during the summers of 2005 through 2008. Targets for mixed in-river P concentrations were 1.5 {micro}g/L in 2005, and 3 {micro}g/L in subsequent years. Primary productivity and algal accrual rates along with invertebrate and fish community metrics and conditions were consistently measured annually, before and after experimental fertilization. Initial results from the program are very encouraging, and are reported.

Holderman, Charles

2009-02-10T23:59:59.000Z

73

Analysis of the tradeoff between irrigated agriculure and hydroelectric power in the Pacific Northwest. [Base-line estimate of the effects of agricultural irrigation on the hydroelectric power generating potential projected for the year 2020  

DOE Green Energy (OSTI)

Hydrogeneration and irrigated agriculture are major competing users of the waters of the Columbia River and its tributaries. Irrigated agriculture requires the diversion of large amounts of water from the rivers, only part of which returns. As a result, streamflow is reduced and the generation potential of dams located downstream from points of irrigation diversion is reduced. In addition, irrigated agriculture involves the direct consumption of electricity to pump irrigation water and to apply it to crops in the field. The purpose of this report is to make a baseline estimate of the impact on the electrical generation system in the region of the level of irrigation development projected for year 2020 by the states of Oregon, Washington, and Idaho. This baseline estimate reflects the assumption that current conditions will prevail in the future. The results, therefore, provide a standard against which the impacts of changes in current conditions can be measured. It is estimated that the projected development level of 11.4 million acres of irrigated agriculture in Oregon, Washington, and Idaho by year 2020 would result in foregone hydroelectric generation potential of approximately 17.8 million megawatt-hours (MWh) annually and direct consumption of electric power for pumping and application of approximately 10.3 million MWh's annually. Thus, a total of 28.1 million MWh's of electric power generation will have to be traded off each year if irrigated agriculture is to be conducted on the projected scale. (ERB)

Davis, A. E.

1979-01-01T23:59:59.000Z

74

Normanskill Hydroelectric Facility Feasibility Assessment  

DOE Green Energy (OSTI)

A study was conducted to determine the feasibility of installing a hydroelectric generating facility at an existing dam of the Normanskill Reservoir in NY. Evaluation of the hydrologic, technical, economic, legal, instrumental and environmental factors led to the conclusion that the project is feasible and advantageous. The proposed project has a present worth net cost of $3,099,800. The benefit cost ratio is 2.36. It is estimated that the proposed hydroelectric generating facility at the French's Mills site, City of Watervliet Reservoir will replace approximately 6,000 barrels of foreign oil per year. (LCL)

Besha, J.A.

1979-01-01T23:59:59.000Z

75

Small Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Jump to: navigation, search TODO: Add description List of Small Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSmallHydroelectric&ol...

76

FERC Proposal for Delegation of DOE Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Proposal for Delegation of DOE Authority FERC Proposal for Delegation of DOE Authority FERC Proposal for Delegation of DOE Authority September 9, 2011 - 1:00pm Addthis Proposed Siting Delegation to FERC The Department of Energy is considering whether to delegate to FERC its authorities related to the conduct of congestion studies and the designation of National Interest Electric Transmission Corridors. The rationale for this delegation, as seen by FERC, is presented in two documents prepared by FERC staff, Transmission Siting Narrative, and Transmission Siting Narrative Outline. These documents and further information on this issue are posted on the Transmission Congestion Studies website. To enable the Secretary to make a more informed decision, DOE sought comments from interested persons on the two FERC documents, including the

77

Comments in response to FERC rulemaking on regional transmission organizations  

E-Print Network (OSTI)

On May 13, 1999, the Federal Energy Regulatory Commission (FERC) issued a Notice of Proposed Rulemaking (NOPR) on Regional Transmission Organizations (RTO). The purpose of the NOPR is to solicit comments on proposed FERC ...

Joskow, Paul L.

1999-01-01T23:59:59.000Z

78

Natural gas `96: Foretelling the FERC: Experts weigh the issues  

SciTech Connect

Should the FERC lift the cap on secondary rates from its July 31 notice of proposed rulemaking (NOPR) on capacity release? Shifting to the FERC`s alternative ratemaking policy statement: Is a negotiated rate with a default rate fallback (or recourse rate fallback) the way to go? To get a sense of attitudes toward Federal Energy Regulatory Commission (FERC) initiatives, Public Utilities Fortnightly interviewed two natural gas attorneys as well as a representative from a major pipeline.

Edwards, K.B. [Grammer, Kissel, Robbins & Skancke, Washington, DC (United States)

1996-10-15T23:59:59.000Z

79

Electromagnetic Analysis of Rotating Permanent Magnet Exciters for Hydroelectric Generators.  

E-Print Network (OSTI)

??The purpose of this project is to analyse different design possibilities for a rotating permanent magnet exciter for a hydroelectric generator. This is done through… (more)

Nöland, Jonas

2013-01-01T23:59:59.000Z

80

HYDROELECTRIC SYSTEM DESIGN.  

E-Print Network (OSTI)

??Hydroelectric power generation is not a viable option as a prime source of electrical energy for the Pico Blanco Boy Scout Camp, as determined by… (more)

Brown, Timothy McDonnell

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Process of Negotiating Settlements at FERC  

E-Print Network (OSTI)

. They propose a first settlement offer 3 months after a pipeline files for a tariff rate increase. Thereafter, the regulatory aim is to bring the parties into agreement, not to impose an outcome upon them. This is a different role for the regulatory body... Version: May 2011 1. Introduction The Federal Energy Regulatory Commission (FERC) has jurisdiction over interstate oil and gas pipelines and electricity transmission systems. A high and apparently increasing proportion of rate cases before...

Littlechild, Stephen

2011-01-31T23:59:59.000Z

82

FERC rate incentives for transmission infrastructure development  

Science Conference Proceedings (OSTI)

With enactment of the Energy Policy Act of 2005, Congress delivered a mandate to the Federal Energy Regulatory Commission to establish regulations that would provide for incentive-based rate treatments for investments that would improvement the nation's electric transmission system. That has required FERC to move from merely approving cost-based rates for transmission services to enacting new regulations that would make it more attractive to invest in transmission infrastructure without offending the ''just and reasonable'' rate standard. (author)

Snarr, Steven W.

2010-03-15T23:59:59.000Z

83

Hydroelectric energy | Open Energy Information  

Open Energy Info (EERE)

Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Hydroelectric energy (Redirected from Hydroelectric)...

84

Small Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Small Hydroelectric (Redirected from Hydroelectric (Small)) Jump to: navigation, search TODO: Add description List of Small...

85

Property:FERC License Issuance Date | Open Energy Information  

Open Energy Info (EERE)

Issuance Date Jump to: navigation, search Property Name FERC License Issuance Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:FERCLicense...

86

Property:FERC License Application Date | Open Energy Information  

Open Energy Info (EERE)

Property Name FERC License Application Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:FERCLicenseApplicationDate&oldid610687...

87

When it comes to Demand Response, is FERC its Own Worst Enemy?  

E-Print Network (OSTI)

July 1978, pp. 42-47. FERC, "Final Rule, Order 719,comes to Demand Response, is FERC its Own Worst Enemy? Jamesit comes to demand response, is FERC its own worst enemy? By

Bushnell, James; Hobbs, Benjamin; Wolak, Frank A.

2009-01-01T23:59:59.000Z

88

FERC`s {open_quotes}MegaNOPR{close_quotes} - changes ahead for the natural gas industry  

Science Conference Proceedings (OSTI)

On July 31, 1991 the Federal Energy Regulatory Commission (FERC) issued a notice of proposed rulemaking (NOPR) that would fundamentally change the current scheme of transportation and sales of natural gas by interstate pipelines. FERC`s proposal will result in disparate impacts on the various segments of the natural gas industry. These impacts and the major policy issues sought for implementation by FERC can be grouped into five major points, discussed in this article: unbundling of service; pregrated abandonment; capacity reallocation; rate design; and transition/implementation costs.

Stosser, M.A. [Arnold & Porter, Washington, DC (United States)

1992-12-31T23:59:59.000Z

89

Policy on regional transmission organizations: Five pitfalls FERC must avoid  

SciTech Connect

In announcing in late November that it would explore what role it might play in developing regional transmission organizations, the Federal Energy Regulatory Commission (FERC) took the first step in a process that will be crucial to capturing maximum regional efficiency from the transmission grid. Ahead, though, lie many obstacles, a FERC commissioner warns.

Massey, W.L. [Federal Energy Regulatory Commission, Washington, DC (United States)

1999-03-01T23:59:59.000Z

90

Hydroelectric Plants (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

A permit is required from the Executive Council of Iowa for the construction, maintenance, or operation of any hydroelectric facility. All applications will be subject to a public hearing.

91

Tribal Renewable Energy Foundational Course: Hydroelectric |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydroelectric Tribal Renewable Energy Foundational Course: Hydroelectric Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on hydroelectric...

92

Natural Gas Pipeline Projects Completed in 2003  

U.S. Energy Information Administration (EIA)

Table 2. Natural Gas Pipeline Projects Completed in 2003; Ending Region & State: Begins in State - Region: Pipeline/Project Name: FERC Docket ...

93

A new FERC policy for electric utility mergers  

SciTech Connect

Section 203 of the FPA provides the FERC with significant authority to shape the future structure of the electric utility industry. The FERC should exercise this authority prudently, with due regard to the reality that competition works better than regulation. For the FERC, this means carefully selecting the type of regulation it pursues. Second guessing whether a particular merger makes good business sense or will create a more efficient firm are matters particularly ill-suited to the regulatory process. These decisions can generally be left to utility executives and shareholders. Competition will be more than adequate to discipline any mergers that do not live up to expectations. The goal should be to ensure that competition will remain a disciplining force following a merger. This means carefully considering the potential competitive impacts of a merger. In doing so, however, the FERC must remain cognizant of the interplay between its merger review standards and its other policies. FERC decisions regarding transmission pricing and future market institutions (such as Poolcos) will have a significant impact on the size and nature of markets. This, in turn, will affect the degree to which particular mergers may, or may not, harm competition. The FERC`s merger policies must not only be rational and clearly articulated, but coordinated with its other policies to achieve the common goal of more efficient bulk power markets.

Moot, J.S.

1996-12-31T23:59:59.000Z

94

Hydroelectric | OpenEI  

Open Energy Info (EERE)

Hydroelectric Hydroelectric Dataset Summary Description This dataset presents summary information related to world hydropower. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords Hydro Hydroelectric Data application/vnd.ms-excel icon book_wote_energy_hydro.xls (xls, 83.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited" Rate this dataset Usefulness of the metadata

95

FERC Presendation: Demand Response as Power System Resources, October 29,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as Power System Resources More Documents & Publications A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Cost-Effectiveness Working Group Loads Providing Ancillary Services: Review of International Experience Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006)

96

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume One, Libby Dam Project, Operator, U.S. Army Corps of Engineers.  

DOE Green Energy (OSTI)

This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Libby Dam project on the Kootenai River and previous mitigation of these losses. The current assessment documents the best available information concerning the impacts to the wildlife populations inhabiting the project area prior to construction of the dam and creation of the reservoir. Many of the impacts reported in this assessment differ from those contained in the earlier document compiled by the Fish and Wildlife Service; however, this document is a thorough compilation of the available data (habitat and wildlife) and, though conservative, attempts to realistically assess the impacts related to the Libby Dam project. Where appropriate the impacts resulting from highway construction and railroad relocation were included in the assessment. This was consistent with the previous assessments.

Yde, Chris A.

1984-10-01T23:59:59.000Z

97

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.  

DOE Green Energy (OSTI)

This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

Wood, Marilyn

1984-06-01T23:59:59.000Z

98

A Review of Recent RTO Benefit-Cost Studies: Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies  

E-Print Network (OSTI)

Regulatory Commission (FERC). 1996. Environmental Impactland-docs/rm95-8p3-000.txt FERC. 1999. Regional Transmissionfileid=9514094&trial=1 FERC. 2004. Staff Report on Cost

Eto, Joseph H.; Lesieutre, Bernard C.

2005-01-01T23:59:59.000Z

99

Sixth Northwest Conservation and Electric Power Plan Appendix L: Climate Change and Power  

E-Print Network (OSTI)

#12;#12;PACIFICORP'S FINAL LICENSE APPLICATION KLAMATH RIVER HYDROELECTRIC PROJECT FERC NO. 2082 Application (Application) to relicense its Klamath River Hydroelectric Project, FERC Project No. 2082 (Project by ensuring that the characterization and valuation of the project's hydroelectric generation are done

100

The northeast Georgia hydroelectric plants.  

E-Print Network (OSTI)

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these… (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydroelectric energy | Open Energy Information  

Open Energy Info (EERE)

Add description List of Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleHydroelectricenergy&oldid277908" Category: Articles with outstanding...

102

Assistant Secretary Patricia Hoffman's Remarks at the 2011 FERC Reliability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assistant Secretary Patricia Hoffman's Remarks at the 2011 FERC Assistant Secretary Patricia Hoffman's Remarks at the 2011 FERC Reliability Technical Conference -- As Prepared for Delivery Assistant Secretary Patricia Hoffman's Remarks at the 2011 FERC Reliability Technical Conference -- As Prepared for Delivery November 30, 2011 - 1:42pm Addthis Thank you for the opportunity to join you today. Everyone in this room shares a commitment to ensuring the reliability of our nation's electric grid. Together, we are committed to ensuring the safe and secure delivery of electricity to consumers. And, together, we share a commitment to doing this in a way that is economically viable, affordable, protects public health, and is environmentally sound. Historically, the electric utility sector has a strong track record of protecting the reliability of our Nation's electric grid. Working

103

Toward More Comprehensive Assessments of FERC Electricity Restructuring  

NLE Websites -- All DOE Office Websites (Extended Search)

Toward More Comprehensive Assessments of FERC Electricity Restructuring Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies: A Review of Recent Benefit-Cost Studies of RTOs Title Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies: A Review of Recent Benefit-Cost Studies of RTOs Publication Type Journal Article LBNL Report Number lbnl-62571 Year of Publication 2006 Authors Eto, Joseph H., Douglas R. Hale, and Bernard C. Lesieutre Journal The Electricity Journal Volume 19 Start Page 50 Issue 10 Date Published 12/2006 Type of Article Journal Keywords electricity markets, electricity markets and policy group Abstract Definitive assessment of Federal Energy Regulatory Commission policies on regional transmission organizations is not currently possible because of uncertainties in the data and methods used in recent benefit-cost studies as well as lack of investigation of key impacts of the formation of RTOs.

104

FERC dismisses return to reregulation despite setbacks and skepticism  

SciTech Connect

Disappointed with performance of competitive electricity markets, some politicians are in favor of returning to more regulatory oversight. A recent report points to selective evidence indicating that consumers in states with deregulated energy markets pay considerably more for electricity. The chairman of the Federal Energy Regulatory Commission recently declared that the U.S. 'isn't going to change its policy of allowing competitive markets to determine prices.' Strictly speaking, FERC has little to say or do when it comes to state-level regulation of electricity markets; that's the prerogative of local legislatures. Nevertheless, what FERC says does matter.

NONE

2008-04-15T23:59:59.000Z

105

Marine Hydroelectric Company | Open Energy Information  

Open Energy Info (EERE)

Marine Hydroelectric Company Jump to: navigation, search Name Marine Hydroelectric Company Address 24040 Camino Del Avion A 107 Place Monarch Beach Sector Marine and Hydrokinetic...

106

DOE Office of Indian Energy Foundational Course: Hydroelectric  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydroelectric Hydroelectric Presented by the National Renewable Energy Laboratory Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Resource Map & Project Scales  Technology Overview: - Siting - Costs  Successful Project Examples  Policies Relevant to Project Development  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian lands and homes. As part of this commitment and on behalf of DOE, the Office of Indian Energy is leading education and capacity building efforts in

107

Potential for hydroelectric development in Alaska  

Science Conference Proceedings (OSTI)

Testimony concerning Alaskan hydroelectricity development is presented. Various public and private organizations were represented.

Not Available

1981-01-01T23:59:59.000Z

108

MHK Projects/NPI 021 | Open Energy Information  

Open Energy Info (EERE)

? Main Overseeing Organization Northland Power Mississippi River LLC Project Licensing FERC License Docket Number P-13989 Environmental Monitoring and Mitigation Efforts See...

109

Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Assistant Secretary Patricia Hoffman Addresses Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference November 30, 2011 - 1:50pm Addthis WASHINGTON, D.C. - Department of Energy Assistant Secretary for Electricity Delivery and Energy Reliability Patricia Hoffman today addressed the 2011 Federal Energy Regulatory Commission technical conference in Washington, D.C. In remarks prepared for delivery, Assistant Secretary Hoffman discussed recent evaluations of proposed Environmental Protection Agency (EPA) rules and the impact those rules could be expected to have on our nation's electrical grid. Hoffman noted an emerging consensus that the new rules are not expected to create

110

Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assistant Secretary Patricia Hoffman Addresses Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference November 30, 2011 - 1:50pm Addthis WASHINGTON, D.C. - Department of Energy Assistant Secretary for Electricity Delivery and Energy Reliability Patricia Hoffman today addressed the 2011 Federal Energy Regulatory Commission technical conference in Washington, D.C. In remarks prepared for delivery, Assistant Secretary Hoffman discussed recent evaluations of proposed Environmental Protection Agency (EPA) rules and the impact those rules could be expected to have on our nation's electrical grid. Hoffman noted an emerging consensus that the new rules are not expected to create

111

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

112

File:Ferc wsr-act.pdf | Open Energy Information  

Open Energy Info (EERE)

Ferc wsr-act.pdf Ferc wsr-act.pdf Jump to: navigation, search File File history File usage File:Ferc wsr-act.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 105 KB, MIME type: application/pdf, 17 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 19:02, 20 October 2012 Thumbnail for version as of 19:02, 20 October 2012 1,275 × 1,650, 17 pages (105 KB) Klein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

113

GRR/Section 8-FD-a - FERC Order No. 2003 Process | Open Energy Information  

Open Energy Info (EERE)

8-FD-a - FERC Order No. 2003 Process 8-FD-a - FERC Order No. 2003 Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-FD-a - FERC Order No. 2003 Process 08FDAFERCOrderNo2003Process.pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Regulations & Policies FERC Order No. 2003 FERC Order No. 2003 Appendix C Triggers None specified Click "Edit With Form" above to add content 08FDAFERCOrderNo2003Process.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative FERC Order No. 2003 requires all public utilities that own, control or operate facilities used for transmitting electric energy in interstate

114

With stroke of pen, FERC puts DR on par with supply side options  

SciTech Connect

In mid October 2008, the Federal Energy Regulatory Commission (FERC) finalized new rules intended to strengthen the operation and improve the competitiveness of organized U.S. wholesale electric markets. FERC intends to increase the use of demand response (DR), encourage long-term power contracts, strengthen the role of market monitors, and enhance the responsiveness of regional transmission organizations (RTOs) and independent system operators (ISOs). The FERC order applies to existing U.S. organized wholesale markets.

NONE

2009-01-15T23:59:59.000Z

115

EIS-0492-FERC-NOI-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Federal Register 3 Federal Register / Vol. 77, No. 189 / Friday, September 28, 2012 / Notices and access roads). Our EA for this Project will document our findings on the impacts on historic properties and summarize the status of consultations under section 106. Currently Identified Environmental Issues We have already identified several issues that we think deserve attention based on a preliminary review of the planned facilities, the environmental information provided by Dominion, and comments received by the public. This preliminary list of issues may be changed based on your comments and our analysis: * Construction and operational impacts on nearby residences in proximity to the existing LNG terminal and compressor stations; * Impacts on forested land; * Impacts on air quality and noise;

116

Manual of small-scale hydroelectric generation in South Dakota  

SciTech Connect

This document contains a preliminary inventory of small scale hydroelectric potential in South Dakota and a simplified methodology for calculating economic feasibility of a project. In addition, the various technologies presently on the market, sources of technical and financial assistance and the various permits required for development are also discussed.

1980-01-01T23:59:59.000Z

117

Hydroelectric Conventional | OpenEI  

Open Energy Info (EERE)

Hydroelectric Conventional Hydroelectric Conventional Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

118

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Final Environmental Impact Statement Cushman Hydroelectric Project (FERC No. 0456) http:energy.govnepadownloadseis-0456-epa-notice-avail...

119

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network (OSTI)

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

120

Advances in Hydroelectric Turbine Manufacturing and Repair  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Sponsorship ...

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Materials Science and Technology in Hydroelectricity  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Presentation ...

122

Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand.  

E-Print Network (OSTI)

??Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows… (more)

Kear, Gareth

2011-01-01T23:59:59.000Z

123

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric reservoirs  

E-Print Network (OSTI)

of hydroelectric and fuel cell facilities, respectively.) The Energy Commission recognizes the importance Edition OCTOBER 2011 CEC3002011008SD CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr., Governor #12;CALIFORNIA ENERGY COMMISSION CARLA PETERMAN Lead Commissioner Kate Zocchetti Project Manager Tony

124

International Energy Outlook 2000 - Hydroelectricity and Other Renewable  

Gasoline and Diesel Fuel Update (EIA)

The renewable energy share of total world energy consumption is expected to continue at a level of about 8 percent from 1997 through 2020, despite a projected 54-percent increase in consumption of hydroelectricity and other renewable resources. The renewable energy share of total world energy consumption is expected to continue at a level of about 8 percent from 1997 through 2020, despite a projected 54-percent increase in consumption of hydroelectricity and other renewable resources. The development of renewable energy sources is constrained in the International Energy Outlook 2000 (IEO2000) reference case projections by expectations that fossil fuel prices will remain low and, as a result, renewables will have a difficult time competing. Although energy prices rebounded in 1999 from 1998 lows, it remains unlikely that renewable energy can compete economically over the projection period. Failing a strong worldwide commitment to environmental considerations, such as the limitations and reductions of carbon emissions outlined in the Kyoto

125

Optimizing profits from hydroelectricity production  

Science Conference Proceedings (OSTI)

This paper presents a deterministic and a stochastic mathematical model for maximizing the profits obtained by selling electricity produced through a cascade of dams and reservoirs in a deregulated market. The first model is based on deterministic electricity ... Keywords: Hydroelectricity, Market, Mathematical programming, Production, Stochastic programming

Daniel De Ladurantaye; Michel Gendreau; Jean-Yves Potvin

2009-02-01T23:59:59.000Z

126

List of Hydroelectric Incentives | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Incentives Hydroelectric Incentives Jump to: navigation, search The following contains the list of 1298 Hydroelectric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1298) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government

127

The impact of FERC orders on the value of bidders in PJM  

Science Conference Proceedings (OSTI)

A study of the responses of share prices of major bidders in the PJM auctions from the mid-1990s through 2006 finds statistically significant effects for some FERC decisions for a portfolio of bidders. In contrast to publicly stated policy objectives, the analysis shows that some FERC decisions significantly raised market expectations regarding the future profitability of bidders. (author)

Peters, Lon L.

2009-08-15T23:59:59.000Z

128

Supreme court agrees: FERC must regulate wholesale markets  

SciTech Connect

The author believes that wholesale markets in the United States would have a greater likelihood of ultimately benefiting consumers if the Federal Energy Regulatory Commission did not have the mandate under the Federal Power Act (FPA) to ensure that wholesale prices are ''just and reasonable.'' However, he continues to believe that the FERC cannot avoid having an ex post criteria for asssessing whether market prices are just and reasonable. Moreover, changes in the design and regulatory oversight of U.S. wholesale electricity markets in recent years, including the recent Supreme Court decision, have caused him to believe even more strongly in the guardrails-for-market-outcomes approach. Finally, several questions are addressed which relate to the pricing of fixed-price, long-term contracts and the impact of these obligations on the behavior of suppliers in short-term wholesale markets that are directly relevant to answering the two major questions that the Supreme Court remanded to FERC in its recent decision.

Wolak, Frank A. (Holbrook Working Professor of Commodity Price Studies, Department of Economics, Stanford University)

2008-08-15T23:59:59.000Z

129

Hydrologic scales, cloud variability, remote sensing, and models: Implications for forecasting snowmelt and streamflow  

E-Print Network (OSTI)

Energy Regulatory Commission (FERC) licenses (project No. ):CVP, Modesto ID, Turlock ID, Merced ID SWP, CVP FERC,FERC, FERC, FERC, FERC, FERC, FERC, FERC, FERC, U.S. Forest

Simpson, James J; Dettinger, M D; Gehrke, F; McIntire, T J; Hufford, G L

2004-01-01T23:59:59.000Z

130

EA-1942-FERC-NOI-FR-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Federal Register 1 Federal Register / Vol. 77, No. 189 / Friday, September 28, 2012 / Notices 1 The appendices referenced in this notice are not being printed in the Federal Register. Copies of appendices were sent to all those receiving this notice in the mail and are available at www.ferc.gov using the link called ''eLibrary'' or from the Commission's Public Reference Room, 888 First Street NE., Washington, DC 20426, or call (202) 502-8371. For instructions on connecting to eLibrary, refer to the last page of this notice. Dated: September 21, 2012. Nathaniel J. Davis, Sr., Deputy Secretary. [FR Doc. 2012-23943 Filed 9-27-12; 8:45 am] BILLING CODE 6717-01-P DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF12-16-000] Dominion Cove Point LNG, LP; Notice

131

Hydroelectric Webinar Presentation Slides and Text Version  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on hydroelectric renewable energy. 

132

Hydroelectric power resources form regional clusters - Today ...  

U.S. Energy Information Administration (EIA)

Hydroelectric power generation resources are spread unevenly across North America. Some regions, like the Pacific Northwest, generate a significant amount of their ...

133

GRR/Section 8-FD-b - FERC Order No. 2006 Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-FD-b - FERC Order No. 2006 Process GRR/Section 8-FD-b - FERC Order No. 2006 Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-FD-b - FERC Order No. 2006 Process 08FDBFERCOrderNo2006Process.pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Regulations & Policies FERC Order No. 2006 Small Generator Interconnection Procedures Triggers None specified Click "Edit With Form" above to add content 08FDBFERCOrderNo2006Process.pdf 08FDBFERCOrderNo2006Process.pdf 08FDBFERCOrderNo2006Process.pdf Error creating thumbnail: Page number not in range. Flowchart Narrative The Small Generator Interconnection Procedures (SGIP) contains the technical procedures the Interconnection Customer and Transmission Provider

134

"FERC423",2005,1,195,"Alabama Power Co",3,"Barry","AL","C",,...  

U.S. Energy Information Administration (EIA) Indexed Site

"Holcomb","KS","F",,"Gas","NG",,,,,,"AQUILLA",3006,0.993,0,0,585 "FERC423",2005,1,803,"Arizona Public Service Co",113,"Cholla","AZ","C",,"Coal","SUB",18,"NM","S","McKinley",31,"MCK...

135

"FERC423",2003,1,195,"Alabama Power Co",3,"Barry","AL","C",,...  

U.S. Energy Information Administration (EIA) Indexed Site

Generation & Tran Coop",7790,"Bonanza","UT","S",,"Petroleum","FO2",,,,,,"WIND RIVER PETROLEUM",1,5.796,0,0,717.4 "FERC423",2003,7,17698,"Southwestern Electric...

136

Miniature Hydroelectric Power Plant : EnergySmart School Inventors  

NLE Websites -- All DOE Office Websites (Extended Search)

Miniature Hydroelectric Power Plant EnergySmart School Inventors EnergySmart School Inventors Miniature Hydroelectric Power Plant Michael Torrey Inventor: Michael Torrey The...

137

Water-Power Development, Conservation of Hydroelectric Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia)...

138

Energy 101: Hydroelectric Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Hydroelectric Power Energy 101: Hydroelectric Power Energy 101: Hydroelectric Power August 13, 2013 - 2:27pm Addthis Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Humans have been using water to generate power for thousands of years. Hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity, which is then fed into the electrical grid to be used in homes and businesses. This edition of Energy 101 shows how the Energy Department is supporting the development of new hydropower technologies to produce clean, renewable, and reliable power here in the United States. For more information on hydropower from the Office of Energy Efficiency and

139

Assessment of the impacts of demand curtailments in the DAMs: issues in and proposed modifications of FERC Order No. 745.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC), in its initiative to incentivize demand response resources (DRRs) to participate in the day-ahead markets (DAMs), enacted Order No.… (more)

Castillo, Isaac

2013-01-01T23:59:59.000Z

140

Fish and hydroelectricity; Engineering a better coexistence  

Science Conference Proceedings (OSTI)

This paper reports on the problems that hydroelectric plants have regarding fish populations. The utilities that operate these plants are finding that accommodating migrating fish presents unique engineering challenges, not the least of which involves designing and building systems to protect fish species whose migratory behavior remains something of a mystery. Where such systems cannot be built, the status of hydroelectric dams may be in doubt, as is now the case with several dams in the United States. A further twist in some regions in the possibility that certain migratory fish will be declared threatened or endangered-a development that could wreak havoc on the hydroelectric energy supply in those regions.

Zorpette, G.

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

International Energy Outlook 2001 - Hydroelectricity and Other...  

Gasoline and Diesel Fuel Update (EIA)

4 years to complete. Mexico Renewable energy sources remain only a small part of the energy mix in Mexico. Hydroelectricity and other renewables accounted for only 7 percent of...

142

Hydroelectric Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes the leasing of state lands for the development of hydroelectric resources. It provides regulations for the granting and duration of leases, as well as for the inspection of...

143

GRR/Section 17-FD-b - WSR FERC Process | Open Energy Information  

Open Energy Info (EERE)

7-FD-b - WSR FERC Process 7-FD-b - WSR FERC Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-FD-b - WSR FERC Process 17FDBWSRFERCProcess.pdf Click to View Fullscreen Contact Agencies National Park Service United States Forest Service Bureau of Land Management Fish and Wildlife Service Federal Energy Regulatory Commission Regulations & Policies Wild and Scenic Rivers Act Triggers None specified Click "Edit With Form" above to add content 17FDBWSRFERCProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Wild and Scenic Rivers Act prohibits the Federal Energy Regulatory

144

Arrangement for hydroelectric power plants  

SciTech Connect

Hydroelectric power plant contains a flow tube for the water, an inlet tube leading to the flow tube and a discharge tube leading from the flow tube. In the flow tube a turbine is arranged to be driven by the flowing water and which via a drive shaft drives an electric generator. Accentuated sub-divisioning as between mechanical unit and portions of an installation nature is provided. The turbine and generator are located in the direct vicinity of each other and together with the drive shaft form a unit which in its entirety is situate in the flow tube and arranged to be traversed by flowing water. The unit is so arranged that the turbine can be in contact with the water flow while the generator has a watertight enclosure into which the drive shaft extends through a watertight bushing. Furthermore an electric cable for transmitting the electricity produced is connected. The installation components, the said tubes, are made from prefabricated concrete components. The flow tube is essentially vertical and exhibits a support for the unit and, at its upper end, an aperture through which the unit can be lowered.

Osterberg, T.V.

1984-03-13T23:59:59.000Z

145

Potential hydroelectric power Mora Canal Drop. Final report  

DOE Green Energy (OSTI)

The feasibility of installing a hydroelectric power plant on the Mora Canal Drop site in Idaho was studied. It was recommended that a 1900 kW unit be installed to generate 8,113,000 kWh per year. The project should cost approximately $1.8 million. The generating cost would be between 20.3 and 22.2 mills/kWh. A local utility has offered to buy all power produced at 26 mills/kWh. No adverse environment, safety, or socio-economic effects are foreseen. (LCL)

Willer, D.C.

1978-12-01T23:59:59.000Z

146

Data collection and analysis in support of risk assessment for hydroelectric stations  

DOE Green Energy (OSTI)

This project is to provide the U.S. Army Corps of Engineers with a risk analysis that evaluates the non-routine closure of water flow through the turbines of powerhouses along the Columbia and Snake Rivers. The project is divided into four phases. Phase 1 efforts collected and analyzed relevant plant failure data for hydroelectric generating stations in the United States and Canada. Results from the Phase 1 efforts will be used to assess the risk (probability times consequences) associated with non-routine shut down of hydroelectric stations, which will be performed in the remaining phases of the project. Results of this project may be used to provide policy recommendations regarding operation and maintenance of hydroelectric stations. The methodology used to complete the Phase 1 of the project is composed of data collection and analysis activities. Data collection included performing site visits, conducting a data survey of hydroelectric stations, conducting an expert panel workshop, and reviewing and tabulating failure data from generic sources. Data analysis included estimating failure rates obtained from the survey data, expert judgment elicitation process, generic data, and combining these failure rates to produce final failure rate parameters. This paper summarizes the data collection analysis, results and discussions for the Phase 1 efforts.

Vo, T.V.; Mitts, T.M.; Phan, H.K.; Blackburn, T.R.; Casazza, L.O.

1995-10-01T23:59:59.000Z

147

Ziad Khaled Elias SHAWWASH PERSONAL DATA  

E-Print Network (OSTI)

PRELIMINARY ASSESSMENT OF ENERGY ISSUES ASSOCIATED WITH THE KLAMATH HYDROELECTRIC PROJECT Kevin OF ENERGY ISSUES ASSOCIATED WITH THE KLAMATH HYDROELECTRIC PROJECT Summary As requested by the California Hydroelectric Project (FERC No. 2082). Staff's assessment indicates that, from the perspective of potential

Froese, Thomas

148

List of Small Hydroelectric Incentives | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Incentives Hydroelectric Incentives Jump to: navigation, search The following contains the list of 1253 Small Hydroelectric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1253) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

149

"FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","C",,...  

U.S. Energy Information Administration (EIA) Indexed Site

6,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4 "FERC423",2006,1,195,"Alabama Power...

150

A review of FERC's technical reports on incentive regulation. [Contains bibliography  

SciTech Connect

In late 1989 two reports on incentive regulation were prepared by the Federal Energy Regulatory Commission (FERC). Prepared under the auspices of the Office of Economic Policy, one report supports giving natural gas pipelines more flexibility in pricing their services and in levels of profitability, while the other supports the same approach for natural gas pipelines and wholesale electric suppliers. Thus far, FERC has used the reports for discussion purposes only and is not expected to rely on them in the foreseeable future to initiate a notice of proposed rulemaking or in any other formal way. The significance of the reports lies in their thorough and analytical overview of different incentive systems. Such incentive systems likely will be proposed before state public utility commissions over the next several years. The FERC reports help to crystalize the major issues, thereby facilitating states' efforts to determine the acceptibility of proposed incentive systems. The incentive systems discussed in the FERC reports are transferable to retail markets falling under the jurisdiction of state commissions, and can be applied at the state level either in part or in whole. 36 refs., 1 fig., 5 tabs.

Costello, K.W.; Cho, Sung-Bong.

1991-05-01T23:59:59.000Z

151

Definition: Hydroelectric power | Open Energy Information  

Open Energy Info (EERE)

power power Jump to: navigation, search Dictionary.png Hydroelectric power The use of flowing water to power a turbine to produce electrical energy.[1] View on Wikipedia Wikipedia Definition Hydroelectricity is the term referring to electricity generated by hydropower; the production of electrical power through the use of the gravitational force of falling or flowing water. It is the most widely used form of renewable energy, accounting for 16 percent of global electricity generation - 3,427 terawatt-hours of electricity production in 2010, and is expected to increase about 3.1% each year for the next 25 years. Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. China is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010,

152

Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric | Open  

Open Energy Info (EERE)

Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Jump to: navigation, search Tool Summary Name: Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Agency/Company /Organization: United States Agency for International Development Sector: Energy Resource Type: Training materials Website: www.energytoolbox.org/gcre/mod_4/index.shtml Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Screenshot References: Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric[1] Logo: Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric GCREhydro.JPG References ↑ "Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric" Retrieved from "http://en.openei.org/w/index.php?title=Grid-Connected_Renewable_Energy_Generation_Toolkit-Hydroelectric&oldid=375082

153

Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation...

154

April 16, 2007 To all retail providers  

E-Print Network (OSTI)

with the Klamath Hydroelectric Project6 (Energy Assessment) in May 2003. The Energy Commission Staff submits with the Klamath Hydroelectric Project, California Energy Commission Staff Report, Publication No. 700-03-007, May Division (72 FERC 61,027), the Commission's approach to evaluating the overall economics of a hydroelectric

155

ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR HYDROPOWER PILOT PROJECT LICENSE Admiralty Inlet Pilot Tidal Project-FERC Project No. 12690-005 (DOE/EA-1949) Washington Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 1617 Cole Boulevard Golden, Colorado 80401 January 15, 2013 20130115-3035 FERC PDF (Unofficial) 01/15/2013 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

156

Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility  

Science Conference Proceedings (OSTI)

Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

Jack Q. Richardson

2012-06-28T23:59:59.000Z

157

Hydroelectric reservoir optimization in a pool market  

Science Conference Proceedings (OSTI)

For a price-taking generator operating a hydro-electric reservoir in a pool electricity market, the optimal stack to offer in each trading period over a planning horizon can be computed using dynamic programming. However, the market trading period (usually ...

G. Pritchard; A. B. Philpott; P. J. Neame

2005-07-01T23:59:59.000Z

158

Market Offering Strategies for Hydroelectric Generators  

Science Conference Proceedings (OSTI)

This paper considers the problem of offering electricity produced by a series of hydroelectric reservoirs to a pool-type central market. The market model is a simplified version of the New Zealand wholesale electricity market, with prices modelled by ... Keywords: Dynamic programming: finite state, markov, Natural resources: energy, water resources, Probability: markov processes

G. Pritchard; G. Zakeri

2003-07-01T23:59:59.000Z

159

International Energy Outlook 1999 - Hydroelectricity and Other Renewable  

Gasoline and Diesel Fuel Update (EIA)

hydroelectricty.gif (7905 bytes) hydroelectricty.gif (7905 bytes) Renewable energy use is projected to increase by 62 percent between 1996 and 2020. Almost half the increase is expected in the developing world, where large-scale hydroelectric projects still are being undertaken. Low prices for oil and natural gas in world energy markets continued to diminish the potential for rapid development of renewable energy sources worldwide. Oil prices hit 20-year lows in 1998, in part because the Asian economic crisis resulted in lower worldwide demand. Even production cut agreements by some major oil producers, such as Saudi Arabia, Mexico, and Venezuela, failed to provide measurable price recovery during 1998. On the positive side, the Kyoto Climate Change Protocol proposals to cut greenhouse gas emissions levels may provide an opportunity for growth in

160

Microsoft Word - FERC IT Final Report 6 30 04.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of the Federal Energy Management of the Federal Energy Regulatory Commission's Information Technology Program DOE/IG-0652 June 2004 2 The effectiveness of the Commission's system development activities could have been improved by developing an enterprise architecture, implementing a capital planning and investment control process, and by thoroughly applying project management techniques. Absent such tools, management lacked information needed to determine what systems and features were required for mission accomplishment, could not adequately evaluate progress to completion, or could not effectively determine the necessary total system investment. Without improvement, the Commission risks incurring unnecessary costs for systems that face premature obsolescence

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Environmental requirements at hydroelectric power plants  

DOE Green Energy (OSTI)

Hydroelectric power is the most mature and widely implemented of the renewable energy technologies. The energy of flowing water has been used to perform work directly since ancient times, and the use of hydropower turbines to generate electricity traces back to the 19th century. Two commonly used turbine types, the Francis and Kaplan turbines, are essentially refinements of the simple reaction turbine of Hero of Alexandria, dating from about 100 B.C. (NAS 1976). Hydroelectric power production provides over 10% of the net electrical generation in the US, more than petroleum or natural gas and far more than the other renewable energy technologies combined. On a regional basis, hydroelectric power represents 14% of the net electrical power generation in the Rocky Mountain states and nearly 63% along the Pacific Coast. Those states that have the largest percentages of their electricity generated by hydropower (e.g., Idaho, Oregon, Montana, and Washington) also tend to have the lowest average cost of electricity per kilowatt-hour.

Cada, G.F. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Francfort, J.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1993-12-31T23:59:59.000Z

162

Lessons Learned: Pangue Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

Lessons Learned: Pangue Hydroelectric Lessons Learned: Pangue Hydroelectric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Lessons Learned: Pangue Hydroelectric Agency/Company /Organization: International Finance Corporation Sector: Energy Focus Area: Renewable Energy, Hydro Topics: Background analysis Resource Type: Lessons learned/best practices Website: www.ifc.org/ifcext/sustainability.nsf/AttachmentsByTitle/p_pangue_summ Country: Chile UN Region: Latin America and the Caribbean Coordinates: -35.675147°, -71.542969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-35.675147,"lon":-71.542969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Annual Energy Outlook 2006 with Projections to 2030 - Legislation...  

Gasoline and Diesel Fuel Update (EIA)

of the original license conditions. The impacts of these provisions on the cost of developing or relicensing hydroelectric projects are not clear, and they are not included...

164

Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sichuan Province, China Sector Hydro Product China-based developer and operator of small hydro plants. References Asia Power (Leibo) Hydroelectricity Co Ltd1 LinkedIn...

165

Developing an acoustic discharge measurement technique for hydroelectric performance testing.  

E-Print Network (OSTI)

??The efficient operation of hydroelectric generating plants requires an accurate definition of the performance relationships of each turbine/generator unit. Of the information obtained by performance… (more)

Gawne, Kevin D.

1997-01-01T23:59:59.000Z

166

Today in Energy - Seasonal hydroelectric output drives down ...  

U.S. Energy Information Administration (EIA)

Increased hydroelectric output in the Pacific Northwest drove daily, on-peak prices of electricity below $10 per megawatthour in late April (see chart above) at the ...

167

DOE Office of Indian Energy Foundational Course: Hydroelectric  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

produce enough electricity for a home, farm, ranch, or village. Source: http:www1.eere.energy.govwaterhydroplanttypes.html Types of Hydroelectric Power 9 * Waterwheels, used...

168

Northwest hydroelectric output above five-year range for much ...  

U.S. Energy Information Administration (EIA)

The 2011 hydro season began earlier and lasted significantly longer than in recent years, well into the summer months (see chart above). Hydroelectric generation in ...

169

PP-89-1 Bangor Hydro-Electric Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PP-89-1 Bangor Hydro-Electric Company PP-89-1 Bangor Hydro-Electric Company Presidental permit authorizing Bangor Hydro-Electric Company to construc, operate and maintain electric...

170

PP-89-1 Bangor Hydro-Electric Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 Bangor Hydro-Electric Company PP-89-1 Bangor Hydro-Electric Company Presidental permit authorizing Bangor Hydro-Electric Company to construc, operate and maintain electric...

171

Delineating River Bottom Substrate using Very High-Resolution Digital Imagery derived from Large Scale Aerial Photography.  

E-Print Network (OSTI)

??Progress Energy is currently relicensing the Tillery and Blewett Falls developments (i.e., Yadkin-Pee Dee River Hydroelectric Project No. 2206) with the Federal Regulatory Commission (FERC).… (more)

Lemonds, Rodney Wade

2007-01-01T23:59:59.000Z

172

Annual Review of BPA-Funded Fish and Wildlife Projects in Montana, November 28-29, 1984.  

DOE Green Energy (OSTI)

Brief summaries of projects investigating the impacts of hydroelectric power projects in Montana on fish and wildlife values are presented. (ACR)

Drais, Gregory

1985-01-01T23:59:59.000Z

173

ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America  

E-Print Network (OSTI)

addresses only those measures that affect the operation of the Northwest's hydroelectric power system of the hydroelectric power system. Some energy is lost when it is spilled and some energy is shifted out of winter to maintain current river operations. However, as more information is gathered and more research is conducted

Paris-Sud XI, Université de

174

Interactive Trouble Condition Sign Discovery for Hydroelectric Power Plants  

Science Conference Proceedings (OSTI)

Kyushu Electric Power Co.,Inc. collects different sensor data and weather information (hereafter, operation data) to maintain the safety of hydroelectric power plants while the plants are running. It is very rare to occur trouble condition in the plants. ... Keywords: Data Mining, Hydroelectric Power Plant, Support Vector Machine, Trouble Condition Detection

Takashi Onoda; Norihiko Ito; Hironobu Yamasaki

2009-07-01T23:59:59.000Z

175

On construction sequence optimization of cascaded hydroelectric stations  

Science Conference Proceedings (OSTI)

In basin planning, many hydroelectric stations are to be constructed in a river in order to develop the water energy cascadedly. If there were no constraints on financial resources, material resources, and manpower, all the stations would be constructed ... Keywords: algorithm, hydroelectric station, optimization, profits

Xingming Sun; Huowang Chen; Jianping Yin; Xinhai Jin; Aiming Yang; Changyun Li

2002-01-01T23:59:59.000Z

176

EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Sabine Pass Liquefaction Project, Cameron County, LA 45: Sabine Pass Liquefaction Project, Cameron County, LA EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA Summary DOE participated as a cooperating agency with the Federal Energy Regulatory Commission (FERC) in preparing an EA for the Sabine Pass Liquefaction Project to analyze the potential environmental impacts associated with applications submitted by Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P., to FERC and to DOE's Office of Fossil Energy (FE) seeking authorization to site, construct, and operate liquefaction and export facilities at the existing Sabine Pass LNG Terminal in Cameron Parish, Louisiana. DOE adopted FERC's EA and issued a finding of no significant impact on August 7, 2012. Additional information is available at DOE/FE's Docket 10-111-LNG and

177

EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Sabine Pass Liquefaction Project, Cameron County, LA 45: Sabine Pass Liquefaction Project, Cameron County, LA EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA Summary DOE participated as a cooperating agency with the Federal Energy Regulatory Commission (FERC) in preparing an EA for the Sabine Pass Liquefaction Project to analyze the potential environmental impacts associated with applications submitted by Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P., to FERC and to DOE's Office of Fossil Energy (FE) seeking authorization to site, construct, and operate liquefaction and export facilities at the existing Sabine Pass LNG Terminal in Cameron Parish, Louisiana. DOE adopted FERC's EA and issued a finding of no significant impact on August 7, 2012. Additional information is available at DOE/FE's Docket 10-111-LNG and

178

Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source  

DOE Green Energy (OSTI)

Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

Not Available

1980-07-01T23:59:59.000Z

179

EIS-0488: Cameron Liquefaction Project, Cameron Parish, Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

88: Cameron Liquefaction Project, Cameron Parish, Louisiana 88: Cameron Liquefaction Project, Cameron Parish, Louisiana EIS-0488: Cameron Liquefaction Project, Cameron Parish, Louisiana SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS for a proposal to expand an existing liquefied natural gas (LNG) import terminal to enable it to liquefy and export LNG and to expand an existing pipeline by 21 miles. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. PUBLIC COMMENT OPPORTUNITIES To comment on the Draft EIS, use one of the following methods and refer to FERC Dockets CP13-25-000 and CP13-27-000. FERC requests to receive comments

180

STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

Regulatory Commission (FERC) to continue operating its Klamath River Hydroelectric Project, which is located Hydroelectric Project, California Energy Commission Consultant Report, Publication No.700-2006-010, November COMMISSION 1516 NINTH STREET SACRAMENTO, CA 95814-5512 www.energy.ca.gov October 29, 2007 Mr. Paul Clanon

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PACIFICORP'S FINAL LICENSE APPLICATION KLAMATH RIVER HYDROELECTRIC PROJECT  

E-Print Network (OSTI)

all thermal power plant sites and related facilities in California with installed capacity of 50 megawatts (MW) or more. The Energy Commission's power plant siting program is fully certified under pertaining to large power plants and related facilities throughout the State of California. In carrying out

182

FOURTH OF JULY CREEK HYDROELECTRIC PROJECT Table of Contents  

E-Print Network (OSTI)

SECTION 1.- APPLICANT INFORMATION............................................................................ 2 1.1. Applicant point of contact.................................................................................................... 2 1.2. Applicant minimum requirements....................................................................................... 2

unknown authors

2008-01-01T23:59:59.000Z

183

Vermont Marble Company, Proctor, Vermont: Otter Creek hydroelectric feasibility report  

DOE Green Energy (OSTI)

Vermont Marble Company (VMCO) owns and operates four hydroelectric projects in a 50-mile reach of Otter Creek in west central Vermont. This study concerns three of the installations - Center Rutland, Beldens, and Huntington Falls. The fourth site is known as Proctor and will be studied separately. All four plants operate as run-of-river stations, and the limited reservoir storage capacity places severe limitations on any other type of operation. The plants are presently operating at much lower outputs than can be obtained, because they do not use the available discharge and head. The results show that, under the assumptions made in this study, Beldens and Huntington Falls can be economically improved. The rehabilitation of the Center Rutland plant did not look economically attractive. However, the improvement of Center Rutland should not be eliminated from further consideration, because it could become economically attractive if the cost of energy starts escalating at a rate of around 10% per year. The study included a brief appraisal of the existing generating facilities and condition of existing concrete structures, a geological reconnaissance of the sites, analysis of the power potential, flood studies, technical and economic investigations and comparative evaluations of the alternatives for developing the streamflow for power generation, selection of the most suitable alternative, financial analysis, preparation of drawings, and preparation of detailed quantity and cost estimates.

None

1979-02-01T23:59:59.000Z

184

Blasting aids in the reconstruction of a hydroelectric plant  

SciTech Connect

The replacement of failed impeller chambers in a hydroelectric plant is described in this article. The emphasis of the article is on the use of a blast-generating unit (BGU) for crushing reinforced concrete. The BGU feeds kerosene and nitrogen tetroxide from separate tanks to form a jet of liquid explosive mixture. The BGU performed safely and efficiently, and has been recommended for use at other hydroelectric plants. 1 ref., 1 fig., 1 tab.

Benderskii, L.F.; Evlikov, A.A.; Stupel`, R.O. [and others

1995-01-01T23:59:59.000Z

185

Analysis of environmental issues related to small-scale hydroelectric development. III. Water level fluctuation  

DOE Green Energy (OSTI)

Potential environmental impacts in reservoirs and downstream river reaches below dams that may be caused by the water level fluctuation resulting from development and operation of small scale (under 25MW) hydroelectric projects are identified. The impacts discussed will be of potential concern at only those small-scale hydroelectric projects that are operated in a store and release (peaking) mode. Potential impacts on physical and chemical characteristics in reservoirs resulting from water level fluctuation include resuspension and redistribution of bank and bed sediment; leaching of soluble organic matter from sediment in the littoral zone; and changes in water quality resulting from changes in sediment and nutrient trap efficiency. Potential impacts on reservoir biota as a result of water level fluctuation include habitat destruction and the resulting partial or total loss of aquatic species; changes in habitat quality, which result in reduced standing crop and production of aquatic biota; and possible shifts in species diversity. The potential physical effects of water level fluctuation on downstream systems below dams are streambed and bank erosion and water quality problems related to resuspension and redistribution of these materials. Potential biological impacts of water level fluctuation on downstream systems below dams result from changes in current velocity, habitat reduction, and alteration in food supply. These alterations, either singly or in combination, can adversely affect aquatic populations below dams. The nature and potential significance of adverse impacts resulting from water level fluctuation are discussed. Recommendations for site-specific evaluation of water level fluctuation at small-scale hydroelectric projects are presented.

Hildebrand, S.G. (ed.)

1980-10-01T23:59:59.000Z

186

Are state renewable feed-in tariff initiatives truly throttled by Federal statutes after the FERC California decision?  

Science Conference Proceedings (OSTI)

For the last few years, several local and state governments have adopted ''feed-in tariffs'' to promote development of dispersed, small-scale renewable generation through incentive pricing. Most FITs are intended to stimulate development of small solar or renewable energy facilities. In July, FERC issued a decision restating that the Federal Power Act and PURPA 210, not state (or local) legislation, govern the price that local utilities may pay under FITs. (author)

Yaffe, David P.

2010-10-15T23:59:59.000Z

187

Post-Project Appraisal for the Winter Creek Restoration Redwood Grove, UC Botanical Gardens at Berkeley  

E-Print Network (OSTI)

a Federal Energy Regulatory Commission (FERC) license or anamendment to a FERC license unless the pertinentspecifically identified that a FERC license or amendment to

Fiala, Shannon; Janes, Kelly; Sousa, Ricardo

2010-01-01T23:59:59.000Z

188

Regulatory Considerations for Developing Generation Projects on Federal Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mason Emnett Mason Emnett Office of Energy Policy and Innovation Jonathan First Office of the General Counsel February 6, 2013 NOTE: Comments herein do not represent the views of the Federal Energy Regulatory Commission or its Commissioners Regulatory Considerations for Developing Generation Projects on Federal Lands 2 Purpose of this Presentation * Describe the types of transactions that fall under FERC jurisdiction * Describe pertinent federal laws and how they apply - What does it mean to be a "public utility" or "transmitting utility" under federal law? - How does ownership and usage of a generation facility impact regulatory considerations? - When are parties required to register with NERC? 3 FERC-Related Statutes * Federal Power Act

189

Regulatory Considerations for Developing Generation Projects on Federal Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Mason Emnett Mason Emnett Office of Energy Policy and Innovation Jonathan First Office of the General Counsel February 6, 2013 NOTE: Comments herein do not represent the views of the Federal Energy Regulatory Commission or its Commissioners Regulatory Considerations for Developing Generation Projects on Federal Lands 2 Purpose of this Presentation * Describe the types of transactions that fall under FERC jurisdiction * Describe pertinent federal laws and how they apply - What does it mean to be a "public utility" or "transmitting utility" under federal law? - How does ownership and usage of a generation facility impact regulatory considerations? - When are parties required to register with NERC? 3 FERC-Related Statutes * Federal Power Act

190

Bangor Hydro-Electric Co | Open Energy Information  

Open Energy Info (EERE)

Bangor Hydro-Electric Co Bangor Hydro-Electric Co Jump to: navigation, search Name Bangor Hydro-Electric Co Place Maine Service Territory Maine Website www.bhe.com/ Green Button Landing Page secure.bhe.com/webPortal/ Green Button Reference Page www.bhe.com/about-us/news Green Button Implemented Yes Utility Id 1179 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 9 (General Service Rate) Commercial Commercial space heating- Single meter Commercial

191

Microsoft Word - P-12711 Cobscook Bay Project EA.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project-FERC Project No. 12711-005 (DOE/EA1916) Maine Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 January 2012 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

192

Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint  

DOE Green Energy (OSTI)

This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-10-01T23:59:59.000Z

193

Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS  

DOE Green Energy (OSTI)

This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

Hodge, B.-M.; Lew, D.; Milligan, M.

2011-07-01T23:59:59.000Z

194

EIS-0493: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Corpus Christi LNG Terminal and Pipeline Project, Nueces 3: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San Patricio Counties, Texas EIS-0493: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San Patricio Counties, Texas SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas export and import terminal on the north shore of Corpus Christi Bay in Nueces and San Patricio Counties, Texas; a marine berth connecting the terminal to the adjacent La Quinta Channel; and an approximately 23-mile-long natural gas transmission pipeline and associated facilities. In June 2012, FERC issued a notice of intent to prepare an EA; in October 2012, FERC announced that

195

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

196

The frequency that wouldn't die hydroelectric generators  

Science Conference Proceedings (OSTI)

North America's Niagara River is the site of operating 25 hertz hydroelectric generators that date to the dawn of the electrical age. The reasons why 25 Hz was chosen for such a large block of power and why that obsolete frequency has lived on for the ...

R. D. Barnett

1990-10-01T23:59:59.000Z

197

Hydroelectric power potential, Woonsocket Falls Dam, Woonsocket, Rhode Island  

DOE Green Energy (OSTI)

The feasibility of developing a hydroelectric power plant at an existing flood control dam of the city of Woonsocket, RI was examined considering environmental, economic, technical and engineering factors. It was concluded that the City should proceed with plans to develop a hydro plant. (LCL)

Daly, J C; Dowdell, R B; Kelly, W E; Koveos, P E; Krikorian, Jr, J S; Lengyel, G; Prince, M J; Seely, S; Tromp, L; Urish, D W

1979-01-01T23:59:59.000Z

198

Assessment of Aerating Hydroelectric Turbine Developments and Related Research Needs  

Science Conference Proceedings (OSTI)

Aerating hydroelectric turbine developments and research needs were assessed in four separate but complementary areas. This report expands on previous work and describes industry experience with aerating  minimum and environmental flow units; with aerating Kaplan, propeller units, and diagonal flow units; and with environmental optimization of aerating turbines. In addition, the report discusses results from data analyses of the long-term ...

2013-12-17T23:59:59.000Z

199

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1995 Annual Report.  

DOE Green Energy (OSTI)

The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia river in 1995. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program focuses on protecting, mitigating, and enhancing fish populations affected by the development and operation of hydroelectric power plants on the Columbia River. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide FPC with species and project specific real time data from John Day and Bonneville Dams.

Martinson, Rick D.; Graves, Richie J.; Langeslay, Michael J. (Northwest and Alaska Fisheries Science Center, Environmental and Technical Services Division, Portland, OR)

1996-12-01T23:59:59.000Z

200

Feasibility report on the potential hydroelectric development at Combie Dam. [3. 5 MW, 70-ft head  

DOE Green Energy (OSTI)

The results of an investigation of the technical, environmental, economic and financial feasibility of installing a hydroelectric powerplant at the existing Combie Dam on the Bear River in Nevada and Placer Counties, California, are discussed. This dam is owned and operated by the Nevada Irrigation District (the District) to act as a diversion and provide some storage for District water supply. The power plant would utilize flows which presently pass over the dam's spillway. The project would involve expanding the existing four foot diameter outlet on the southern gravity portion of the dam, installing a penstock (approximately 175 feet long, 102 inches in diameter) and constructing a 3500 kilowatts (kW) power plant on the south bank of the river below the dam. The capital cost of the project, including interest during construction, would total approximately $4,500,000 in July 1980 dollars. The unit capacity cost of the project at the 1980 price level would be $1,285 per kilowatt. The energy production unit cost would be 41.4 mills per kilowatt hour in 1980, and 56.3 mills per kilowatt hour in 1984. Environmental impacts of the Combie Power Project would be minimal. The primary conclusion from this study is that the Combie Power Project is economically, environmentally and institutionally viable, at the present time if an adequate power purchase agreement can be reached. Continued escalation of energy values will make this project even more attractive. (WHK)

Not Available

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Review of Recent RTO Benefit-Cost Studies: Toward MoreComprehensive Assessments of FERC Electricity RestructuringPolicies  

Science Conference Proceedings (OSTI)

During the past three years, government and private organizations have issued more than a dozen studies of the benefits and costs of Regional Transmission Organizations (RTOs). Most of these studies have focused on benefits that can be readily estimated using traditional production-cost simulation techniques, which compare the cost of centralized dispatch under an RTO to dispatch in the absence of an RTO, and on costs associated with RTO start-up and operation. Taken as a whole, it is difficult to draw definitive conclusions from these studies because they have not examined potentially much larger benefits (and costs) resulting from the impacts of RTOs on reliability management, generation and transmission investment and operation, and wholesale electricity market operation. This report: (1) Describes the history of benefit-cost analysis of FERC electricity restructuring policies; (2)Reviews current practice by analyzing 11 RTO benefit-cost studies that were published between 2002 and 2004 and makes recommendations to improve the documentation of data and methods and the presentation of findings in future studies that focus primarily on estimating short-run economic impacts; and (3) Reviews important impacts of FERC policies that have been overlooked or incompletely treated by recent RTO benefit-cost studies and the challenges to crafting more comprehensive assessments of these impacts based on actual performance, including impacts on reliability management, generation and transmission investment and operation, and wholesale electricity market operation.

Eto, Joseph H.; Lesieutre, Bernard C.

2005-12-01T23:59:59.000Z

202

Multiproject baselines for evaluation of electric power projects  

E-Print Network (OSTI)

the coal and natural gas power plants. The coal plant coulda new natural gas plant and imported hydroelectric power (natural gas power project may claim that it offsets electricity from a coal power plant

2003-01-01T23:59:59.000Z

203

Wildlife and Wildlife Habitat Loss Assessment Summary at Federal Hydroelectric Facilities; Willamette River Basin, 1985 Final Report.  

DOE Green Energy (OSTI)

Habitat based assessments were conducted of the US Army Corps of Engineers' hydroelectric projects in the Willamette River Basin, Oregon, to determine losses or gains to wildlife and/or wildlife habitat resulting from the development and operation of the hydroelectric-related components of the facilities. Preconstruction, postconstruction, and recent vegetation cover types at the project sites were mapped based on aerial photographs. Vegetation cover types were identified within the affected areas and acreages of each type at each period were determined. Wildlife target species were selected to represent a cross-section of species groups affected by the projects. An interagency team evaluated the suitability of the habitat to support the target species at each project for each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the projects. The Willamette projects extensively altered or affected 33,407 acres of land and river in the McKenzie, Middle Fork Willamette, and Santiam river drainages. Impacts to wildlife centered around the loss of 5184 acres of old-growth conifer forest, and 2850 acres of riparian hardwood and shrub cover types. Impacts resulting from the Willamette projects included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, furbearers, spotted owls, pileated woodpeckers, and many other wildlife species. Bald eagles and ospreys were benefited by an increase in foraging habitat. The potential of the affected areas to support wildlife was greatly altered as a result of the Willamette projects. Losses or gains in the potential of the habitat to support wildlife will exist over the lives of the projects. Cumulative or system-wide impacts of the Willamette projects were not quantitatively assessed.

Noyes, J.H.

1986-02-01T23:59:59.000Z

204

Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation Cooperative Corporation * Generation and Transmission Cooperative headquartered in Little Rock * Wholesale power provider for 16 distribution cooperatives * Serves about 62% of Arkansas with over 400,000 consumers O b 2 600 MW f i 12 * Owns about 2,600 MW of generation at 12 different facilities. Arkansas Electric Cooperative Corporation Cooperative Corporation 2009 G i b S f A CC 2009 Generation by Energy Source for AECC Owned and Co-Owned Plants * Natural Gas and Oil 4.0% * Wyoming Coal 88.8% * Water 7.2% Water 7.2% Arkansas Electric Cooperative Corporation Cooperative Corporation E i ti H d l t i Existing Hydroelectric Generating Resources

205

A Study of United States Hydroelectric Plant Ownership  

Science Conference Proceedings (OSTI)

Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

Douglas G Hall

2006-06-01T23:59:59.000Z

206

Model documentation report: Short-Term Hydroelectric Generation Model  

DOE Green Energy (OSTI)

The purpose of this report is to define the objectives of the Short- Term Hydroelectric Generation Model (STHGM), describe its basic approach, and to provide details on the model structure. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with the Energy Information Administration`s (AYE) legal obligation to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). The STHGM performs a short-term (18 to 27- month) forecast of hydroelectric generation in the United States using an autoregressive integrated moving average (UREMIA) time series model with precipitation as an explanatory variable. The model results are used as input for the short-term Energy Outlook.

Not Available

1993-08-01T23:59:59.000Z

207

Short-term hydroelectric generation model. Model documentation report  

DOE Green Energy (OSTI)

The purpose of this report is to define the objectives of the Energy Information Administration`s (EIA) Short-Term Hydroelectric Generation Model (STHGM), describe its basic approach, and to provide details on the model structure. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with the EIA`s legal obligation to provide adequate documentation in support of its models.

NONE

1996-12-01T23:59:59.000Z

208

Results from Case Studies of Conventional Hydroelectric Plants  

Science Conference Proceedings (OSTI)

Detailed plant performance analyses for three conventional hydroelectric plants were conducted using unit and plant performance characteristics and 1-minute plant operational data from 2008, 2009, and 2010. This report describes results from detailed performance analyses that evaluated reductions in overall plant efficiencies under a variety of operation-related and market-related conditions for the plants. Results show that the non-market operation of the conventional plant exhibited more efficient ...

2012-09-14T23:59:59.000Z

209

DOE/EIS-0372; Draft Environmental Impact Statement for the Bangor Hydro-Electric Company Northeast Reliability Interconnect (August 2005)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheet Northeast Reliability Interconnect DEIS Sheet Northeast Reliability Interconnect DEIS iii COVER SHEET Responsible Federal Agency: U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Cooperating Agencies: U.S. Department of the Interior, U.S. Fish and Wildlife Service (USFWS) and U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA Fisheries) Title: Draft Environmental Impact Statement for the Bangor Hydro-Electric Company Northeast Reliability Interconnect Location: Hancock, Penobscot, and Washington Counties, Maine. Contacts: For additional information on this Draft Environmental Impact Statement (EIS), contact: Dr. Jerry Pell, Project Manager Office of Electricity Delivery and Energy

210

USAEE/IAEE North American Conference, Washington, D.C., July 8-10, 2004 Testing the Reliability of FERC's Wholesale Power Market Platform  

E-Print Network (OSTI)

@iastate.edu Abstract: In April 2003 the U.S. Federal Energy Regulatory Commission proposed the Wholesale Power Market the Reliability of FERC's Wholesale Power Market Platform: An Agent-Based Computational Economics Approach Deddy-1070 Corresponding Author: Leigh Tesfatsion, Professor of Economics and Mathematics Address/Contact Information

Tesfatsion, Leigh

211

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency.

212

Feasibility study for a low-head hydroelectric installation at Archusa Creek Dam. Final report to the Pat Harrison Waterway District  

DOE Green Energy (OSTI)

The rising cost, uncertain future supply, and environmental problems associated with energy sources have resulted in serious investigation of energy sources that have not previously been considered economically and technically feasible. One such source involves low-head hydroelectric generation. The Department of Energy has funded several feasibility studies for the installation of hydroelectric generators at existing low-head dams. Such a feasibility study for the Archusa Creek Dam near Quitman, Mississippi, is described. The study indicates that there are no apparent technical dificulties to prevent such a project and that a suitable turbine-generator could be obtained. The study further indicates that the project should be economically feasible for the Pat Harrison Waterway District (owners of the dam and lake) to construct if arrangements could be completed for interconnecting with the local utility and selling the energy to the utility. The utility (Mississippi Power Company) has expressed interest in such an arrangement.

Carlson, K.W.; Herring, J.W. Jr.

1979-02-26T23:59:59.000Z

213

EIS-0456: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Final Environmental EPA Notice of Availability of the Final Environmental Impact Statement EIS-0456: EPA Notice of Availability of the Final Environmental Impact Statement Cushman Hydroelectric Project (FERC No. 0456) Notice of Availability for the Final Environmental Impact Statement for the Cushman Hydroelectric Project (FERC No. 0456), Design and Construction of New 3.6-MW Powerhouse on the North Fork of the Skokomish River, Mason County, Washington. Notice of Availability for the Final Environmental Impact Statement Cushman Hydroelectric Project (FERC No. 0456), Design and Construction of New 3.6-MW Powerhouse on the North Fork of the Skokomish River, Mason County, Washington, DOE/EIS-0456 (October 2010 - 75 FR 62386) More Documents & Publications EIS-0409: EPA Notice of Availability of the Final Environmental Impact

214

EIS-0456: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

456: EPA Notice of Availability of the Final Environmental 456: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0456: EPA Notice of Availability of the Final Environmental Impact Statement Cushman Hydroelectric Project (FERC No. 0456) Notice of Availability for the Final Environmental Impact Statement for the Cushman Hydroelectric Project (FERC No. 0456), Design and Construction of New 3.6-MW Powerhouse on the North Fork of the Skokomish River, Mason County, Washington. Notice of Availability for the Final Environmental Impact Statement Cushman Hydroelectric Project (FERC No. 0456), Design and Construction of New 3.6-MW Powerhouse on the North Fork of the Skokomish River, Mason County, Washington, DOE/EIS-0456 (October 2010 - 75 FR 62386) More Documents & Publications EIS-0409: EPA Notice of Availability of the Final Environmental Impact

215

Attitudes to Hydroelectricity in Chile: The Roles of Trust and Social Identities .  

E-Print Network (OSTI)

??New large hydroelectricity (hydro) power plants have been characterised as an essential component for Chile’s economic development. Rivers are the only locally available natural resource… (more)

Elgueta, Herman

2013-01-01T23:59:59.000Z

216

Maximizing Gross Margin of a Pumped Storage Hydroelectric Facility Under Uncertainty in Price and Water Inflow.  

E-Print Network (OSTI)

??The operation of a pumped storage hydroelectric facility is subject to uncertainty. This is especially true in today’s energy markets. Published models to achieve optimal… (more)

Ikudo, Akina

2009-01-01T23:59:59.000Z

217

"1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 "2. Chief Joseph","Hydroelectric","USCE-North Pacific Division",2456 "3. Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1596 "4. Rocky Reach","Hydroelectric","PUD No 1 of Chelan County",1254 "5. Columbia Generating Station","Nuclear","Energy Northwest",1097 "6. Wanapum","Hydroelectric","PUD No 2 of Grant County",1059 "7. Boundary","Hydroelectric","Seattle City of",1040 "8. Priest Rapids","Hydroelectric","PUD No 2 of Grant County",932

218

Assessment of the feasibility of recommissioning the French Landing Hydroelectric Facility in Van Buren Township, Michigan. Final report  

DOE Green Energy (OSTI)

The results of a study of the feasibility of recommissioning a small, low-head hydroelectric facility in southeastern Michigan are presented. The study concludes that there are several cost-effective designs for recommissioning the site, based on the use of vertical turbines and the sale of power to nearby industrial markets. In terms of the bulk sale of power to the local electric utility, no cost-effective alternatives were found to exist. A major burden on project cost-effectiveness was found to be the relatively large costs for structural repairs to the dam and powerhouse needed to insure safe operation and on adequate service life. From an engineering standpoint it was found that the items of equipment needed to recommission the site are readily available from both US and foreign manufacturers. A variety of hydraulic turbine designs could be successfully adapted to the existing powerhouse, without extensive new construction. It was determined that the production capacity of the facility had an important influence on the cost-effectiveness of the project. A detailed benefit/cost analysis was conducted to identify the optimum facility size in terms of incremental costs and revenues. A detailed environmental assessment using an impact matrix methodology concluded that the development of the facility for hydroelectric generation would have important positive environmental consequences related to improved impoundment and flow management techniques as well as enhanced public safety due to structural repairs to the dam. The institutional and regulatory implications of developing the site for hydroelectric generation were found to be significant but manageable.

Not Available

1979-02-01T23:59:59.000Z

219

Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish.  

DOE Green Energy (OSTI)

The fundamental influence of fluid dynamics on aquatic organisms is receiving increasing attention among aquatic ecologists. For example, the importance of turbulence to ocean plankton has long been a subject of investigation (Peters and Redondo 1997). More recently, studies have begun to emerge that explicitly consider the effects of shear and turbulence on freshwater invertebrates (Statzner et al. 1988; Hart et al. 1996) and fishes (Pavlov et al. 1994, 1995). Hydraulic shear stress and turbulence are interdependent natural fluid phenomena that are important to fish, and consequently it is important to develop an understanding of how fish sense, react to, and perhaps utilize these phenomena under normal river flows. The appropriate reaction to turbulence may promote movement of migratory fish or prevent displacement of resident fish. It has been suggested that one of the adverse effects of flow regulation by hydroelectric projects is the reduction of normal turbulence, particularly in the headwaters of reservoirs, which can lead to disorientation and slowing of migration (Williams et al. 1996; Coutant et al. 1997; Coutant 1998). On the other hand, greatly elevated levels of shear and turbulence may be injurious to fish; injuries can range from removal of the mucous layer on the body surface to descaling to torn opercula, popped eyes, and decapitation (Neitzel et al. 2000a,b). Damaging levels of fluid stress can occur in a variety of circumstances in both natural and man-made environments. This paper discusses the effects of shear stress and turbulence on fish, with an emphasis on potentially damaging levels in man-made environments. It defines these phenomena, describes studies that have been conducted to understand their effects, and identifies gaps in our knowledge. In particular, this report reviews the available information on the levels of turbulence that can occur within hydroelectric power plants, and the associated biological effects. The final section provides the preliminary design of an experimental apparatus that will be used to expose fish to representative levels of turbulence in the laboratory.

Cada, Glenn F.; Odeh, Mufeed

2001-01-01T23:59:59.000Z

220

Applications of Wavelet-Packet in Fault Analysis of Hydroelectric Sets  

Science Conference Proceedings (OSTI)

This paper presents a new method using wavelet packet transform to fault diagnosis of the hydroelectric generating. The use of wavelet packet analysis unit to achieve multi-level vibration signals of wavelet packet decomposition, the analysis provides ... Keywords: wavelet packet, fault diagnosis, hydroelectric generating sets

Liu Haiying; Dai Luping

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluating Wind-Following and Ecosystem Services for Hydroelectric Dams in PJM  

Science Conference Proceedings (OSTI)

Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. We model the decision of a hydroelectric generator to shift power capacity away from the day-ahead energy market into a "wind-following" service ... Keywords: Hydroelectric power, wind, PJM, drought, energy policy

Alisha Fernandez; Seth Blumsack; Patrick Reed

2012-01-01T23:59:59.000Z

222

GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian Aquatic Ecosystems  

E-Print Network (OSTI)

. C. CAUDILL Fish Ecology Research Laboratory, Department of Fish and Wildlife Resources, College ascension and fallback over a series of large hydroelectric dams within the migration corridor, were hydroelectric dams, a behaviour termed `fallback'. On average, 15­22% of the fishes from studied runs of chinook

Cooke, Steven J.

223

Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control Approach  

E-Print Network (OSTI)

, uranium, hydroelectric, and geothermal. It also comes indirectly from wind, tidal and geo-solar sources/clean: hydroelectric, wind, tidal/wave, geothermal, and hydrogen Conventional fuels: coal, oil, oil-sand natural gas Research on Minerals, Metals and Materials (CERM3) Department of Mining and Mineral Process Engineering

Forsyth, Peter A.

224

CLIMATE CHANGE IMPACTS ON HYDROELECTRIC POWER G.P. Harrison(1),  

E-Print Network (OSTI)

Report of the Independent Scientific Advisory Board Regarding a Research Proposal for Inclusion Estimates of the effects of the hydroelectric system on the health of salmon populations are essential the hydroelectric system. Yet while it has been technically feasible to gather highly detailed information to guide

Harrison, Gareth

225

SMI 2012: Full Paper: Medial design of blades for hydroelectric turbines and ship propellers  

Science Conference Proceedings (OSTI)

We present a method for constructing blades of hydroelectric turbines and ship propellers based on design parameters that possess a clear hydraulic meaning. The design process corresponds to the classical construction of a blade using the medial surface ... Keywords: B-spline representation, CAD-model, Hydroelectric turbine blade, Medial axis-based design, Propeller blade

M. Rossgatterer; B. Jüttler; M. Kapl; G. Della Vecchia

2012-08-01T23:59:59.000Z

226

Design of a SOA-oriented E-diagnostics system for hydroelectric generating sets  

Science Conference Proceedings (OSTI)

In order to resolve existing problems such as low efficiency, high cost and lack of technical resource in current maintenance, it is necessary to realize remote diagnosis for hydroelectric generating sets (HGSs). In this work, basing on the Service-Oriented ... Keywords: E-diagnostics system, SOA, hydroelectric generating sets, web services

Liangliang Zhan; Yongchuan Zhang; Jianzhong Zhou; Yucheng Peng; Zheng Li

2007-06-01T23:59:59.000Z

227

"1. John Day","Hydroelectric","USCE-North Pacific Division",2160  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "1. John Day","Hydroelectric","USCE-North Pacific Division",2160 "2. The Dalles","Hydroelectric","USCE-North Pacific Division",1823 "3. Bonneville","Hydroelectric","USCE-North Pacific Division",1093 "4. McNary","Hydroelectric","USCE-North Pacific Division",991 "5. Hermiston Power Partnership","Gas","Hermiston Power Partnership",615 "6. Boardman","Coal","Portland General Electric Co",585 "7. Beaver","Gas","Portland General Electric Co",487 "8. Klamath Cogeneration Plant","Gas","Pacific Klamath Energy Inc",470

228

DOE Office of Indian Energy Foundational Course on Hydroelectric Renewable Energy Text Version  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydroelectric Webinar Hydroelectric Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Hydroelectric." Amy Hollander: Hello. I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on hydroelectricity as a renewable energy, sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's brand new, state of the art, net zero energy research support facility in Golden, Colorado. Our hydroelectricity presentation today is one of nine foundational webinars in the series from the DOE Office of Indian Energy Education Initiative, designed to assist tribes with

229

Analysis of environmental issues related to small scale hydroelectric development. II. Design considerations for passing fish upstream around dams. Environmental Sciences Division Publication No. 1567  

DOE Green Energy (OSTI)

The possible requirement of facilities to move migrating fish upstream around dams may be a factor in determining the feasibility of retrofitting small dams for hydroelectric generation. Basic design considerations are reported that should be evaluated on a site-specific basis if upstream fish passage facilities are being considered for a small scale hydroelectric project (defined as an existing dam that can be retrofitted to generate 25 MW or less). Information on general life history and geographic distribution of fish species that may require passage is presented. Biological factors important in the design of upstream passage facilities are discussed: gas bubble disease, fish swimming speed, oxygen consumption by fish, and diel and photo behavior. Three general types of facilities (fishways, fish locks, and fish lifts) appropriate for upstream fish passage at small scale hydroelectric projects are described, and size dimensions are presented. General design criteria for these facilities (including fish swimming ability and behavior) and general location of facilities at a site are discussed. Basic cost considerations for each type of passage facility, including unit cost, operation and maintenance costs, and costs for supplying attraction water, are indicated.

Hildebrand, S.G. (ed.)

1980-08-01T23:59:59.000Z

230

Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams  

DOE Green Energy (OSTI)

Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

1982-01-01T23:59:59.000Z

231

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

232

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA 49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA SUMMARY This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2013 EA-1949: FERC Notice of Availability Errata Sheet

233

Potential hydroelectric power. Vertical turbine: spillway combine Broadwater Dam. Final report  

DOE Green Energy (OSTI)

A feasibility study was made of the hydroelectric power potential at Broadwater Dam in western Montana. Two alternative configurations for the potential project were evaluated and the economics of four possible sources of project funding were assessed. The configurations analyzed were an apron-mounted configuration, in which the turbine-generator units are located on the downstream apron of the existing dam, and a conventional configuration, in which the units are located in a new powerhouse adjacent to the existing dam. The funding sources considered were the Department of Energy loan program, the United States Bureau of Reclamation PL-984 loan program and conventional revenue bonds, both taxable and tax-exempt. The optimal project alternative was determined to be the apron-mounted configuration. The final choice of funding would be dependent on the power purchaser. It was shown that, regardless of the configuraton or funding source selected, the project would be feasible. The cost of the apron-mounted configuration, which would consist of four turbine-generator units for a total installed capacity of 9.76 MW, was estimated as $13,250,000 with financing provided by either a PL-984 loan or tax-exempt bonds. The cost per installed kilowatt was therefore $1,350, and the cost per kilowatt-hour was 19.6 mills. The average annual energy was estimated to be 56.44 million kWh, the equivalent of approximately 87,000 barrels of oil per y. It is therefore recommended that the Montana Department of Natural Resources and Conservation proceed with the project and that discussions be initiated with potential power purchasers as soon as possible.

Willer, D.C.

1979-04-23T23:59:59.000Z

234

California Energy Commission DRAFT COMMISSION REPORT  

E-Print Network (OSTI)

Via E-Filing RE: Klamath Hydroelectric Project (FERC Project No. 2082). California Energy Commission COMMISSION 1516 NINTH STREET SACRAMENTO, CA 95814-5512 www.energy.ca.gov April 19, 2007 Ms. Philis Posey Acting Secretary Federal Energy Regulatory Commission 888 First Street NE ­ Room 1A Washington, DC 20246

235

Woodruff Narrows low head hydroelectric power plant feasibility determination  

DOE Green Energy (OSTI)

Woodruff Narrows Reservoir, owned by the State of Utah, was built in 1961 as an irrigation reservoir. The reservoir outlet works and spillway are in need of repair, and plans have been made to enlarge the reservoir from its present capacity of 28,000 acre-feet to 53,200 acre-feet when these repairs are made. The purpose of this study was to determine if it is feasible to add hydropower facilities when the reservoir is repaired and enlarged. A computer simulation model based on mean monthly values, utilizing 26 years of recorded streamflow into the reservoir, was used to determine the mean annual energy potential for the following configurations: (1) present dam, (2) the proposed enlarged dam, (3) a new dam at the lower site with a maximum head of 65 feet, and (4) a new dam at the lower site which would store water to the same elevation as the proposed enlarged dam. Results of the simulation study show that maximum power capacities are respectively 2.1, 3.0, 3.9, and 4.5 megawatts. The marketing potential for this electric power, cost estimates and financial analysis, and environmental, social, and regulatory aspects of the proposed hydropower facilities were evaluated. The results showed the addition of hydroelectric power development at the Woodruff Narrows site would have minimal social and environmental effects on the area, would result in little or no changes in the present patterns of water and land use, income, population, and employment and would not result in any significant changes of the social structure or characteristics of the area. However, hydroelectric power development at the Woodruff Narrows site is not economically feasible at the present time. (LCL)

Not Available

1979-03-01T23:59:59.000Z

236

Feasibility study for Boardman River hydroelectric power. Final report  

DOE Green Energy (OSTI)

The feasibility of generating additional hydroelectric power from five consecutive existing dams located on the Boardman River in Grand Traverse County and Traverse City, Michigan, was investigated. The potential hydropower production capabilities, in terms of base load power and peak load power, the legal-institutional-environmental constraints, and the economic feasibility, including capital investment, operating costs and maintenance costs, were evaluated for each of the five dam sites individually and as a series of co-dependent facilities. The impact of installing fish passages at each site was analyzed separately. The feasibility assessment utilized the present worth analytical method, considering revenue based on thirty mills/kWh for power, 0.4% general economy escalation rate, and a 6% net income to the municipal utility. The sensitivity of fuel costs increasing at a different rate than the general price-escalation was tested by allowing the increase in fuel costs to vary from 3 to 8% per year. Assuming fuel costs increase at the same rate as the general economy, it is feasible to update, retrofit, renovate, and install hydroelectric generating capacity at Sabin, Boardman and Brown Bridge. Rehabilitation of Union Street and Keystone is also feasible but somewhat less attractive. Operating the dams as a co-dependent system has environmental advantages and can provide additional revenue through peak load power rates. A development plan to implement the above is outlined utilizing an ownership arrangement whereby Grand Traverse County provides easements for Sabin and Boardman Dams. The plan calls for operation of the system by Traverse City.

None

1979-02-22T23:59:59.000Z

237

EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91: Lake Charles Liquefaction Project, Calcasieu Parish, 91: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2013 EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana September 25, 2012

238

"1. Oahe","Hydroelectric","USCE-Missouri River District",714  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Oahe","Hydroelectric","USCE-Missouri River District",714 "2. Big Bend","Hydroelectric","USCE-Missouri River District",520 "3. Big Stone","Coal","Otter Tail Power Co",476 "4. Fort Randall","Hydroelectric","USCE-Missouri River District",360 "5. Angus Anson","Gas","Northern States Power Co - Minnesota",338 "6. Buffalo Ridge II LLC","Other Renewables","Iberdrola Renewables Inc",210 "7. Groton Generating Station","Gas","Basin Electric Power Coop",169 "8. MinnDakota Wind LLC","Other Renewables","Iberdrola Renewables Inc",150

239

Small scale hydroelectric power potential in Nevada: a preliminary reconnaissance survey  

DOE Green Energy (OSTI)

This preliminary reconnaissance survey is intended to: develop a first estimate as to the potential number, location and characteristics of small-scale (50 kW to 15 MW) hydroelectric sites in Nevada; provide a compilation of various Federal and state laws and regulations, including tax and financing regulations, that affect small-scale hydroelectric development and provide information on sources of small-scale hydroelectric generation hardware and consultants/ contractors who do small scale hydroelectric work. The entire survey has been conducted in the office working with various available data bases. The site survey and site evaluation methods used are described, and data are tabulated on the flow, power potential, predicted capital expenditures required, etc. for 61 potential sites with measured flows and for 77 sites with derived flows. A map showing potential site locations is included. (LCL)

Cochran, G.F.; Fordham, J.W.; Richard, K.; Loux, R.

1981-04-01T23:59:59.000Z

240

''Rancho Hydro'': a low-head, high volume residential hydroelectric power system, Anahola, Kauai, Hawaii  

DOE Green Energy (OSTI)

The site is a 1.75 acre residential site with two households. The Anahola stream intersects the property line. Design of the proposed hydroelectric system is described, along with the permit process. Construction is in progress. (DLC)

Harder, J.D.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Small-Hydroelectricity and Landscape Change in the Bitterroot Mountains: Public Perceptions and Attitudes.  

E-Print Network (OSTI)

??Newman, Chad, M.A. December 2007 Geography Small-Hydroelectricity and Landscape Change in the Bitterroot Mountains: Public Perceptions and Attitudes Chairperson: Dr. David D. Shively The development… (more)

Newman, Chad E

2008-01-01T23:59:59.000Z

242

Hydroelectricity and landscape protection in the Highlands of Scotland, 1919 - 1980.  

E-Print Network (OSTI)

??This thesis employs twentieth-century hydroelectric development ventures in the Highlands of Scotland as a means of exploring conflicting demands of socio-economic development and landscape protection… (more)

Payne, Jill

2008-01-01T23:59:59.000Z

243

Mechanisms for Evaluating the Role of Hydroelectric Generation in Ancillary Service Markets  

Science Conference Proceedings (OSTI)

New opportunities to provide system support and ancillary services are attracting the interest of hydroelectric generators. This research focuses primarily on three classes of reserve service (regulation, spinning, and supplemental reserves) and their relation to real power production planning.

1998-12-16T23:59:59.000Z

244

Automation of a hydroelectric power station using variable-structure control systems  

Science Conference Proceedings (OSTI)

This article presents the basis and conception of, and some experimental results obtained from, the automation of a hydroelectric power station. The principle of this automation, the purpose of which was to maximize the active power supplied by the station, ...

J. Erschler; F. Roubellat; J. P. Vernhes

1974-01-01T23:59:59.000Z

245

Hydroelectric plant construction cost and annual production expenses. Eighteenth annual supplement, 1974. [1974 data  

SciTech Connect

Tabulated data are presented on the generating capacity, construction costs, and production expenses for each of 432 conventional or pumped storage hydroelectric power plants in the U.S. (LCL)

1976-11-01T23:59:59.000Z

246

Independent review of estimated load reductions for PJM's small customer load response pilot project  

E-Print Network (OSTI)

AMR CSP DOE DR ELRP ETS EWH FERC HV ISO LBNL M&V MV PURPAto participate, consistent with FERC policy direction. PJMLoad Response Program, FERC Electric Tariff First Revised

Heffner, G.; Moezzi, M.; Goldman, C.

2004-01-01T23:59:59.000Z

247

EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71: Golden Pass LNG Export and Pipeline Project, Texas and 71: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes approximately 8 miles of pipeline connecting to existing pipelines in Calcasieu Parish, Louisiana, and Jefferson County. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 16, 2013 EA-1971: FERC Notice of Intent to Prepare an Environmental Assessment

248

Feasibility assessment of low-head hydroelectric development at the Peninsular Paper Company dam in Ypsilanti, Michigan. Final report  

DOE Green Energy (OSTI)

The results of a study into the feasibility of developing a small, low-head dam site for hydroelectric generation in southeastern Michigan are presented. Average hydraulic head at the site is 13.0 ft, mean stream flow is 498 cfs. Economic, environmental and institutional factors were considered. Seven specific hypothetical designs were examined in detail, including vertical, bulb, cross-flow and tubular turbine designs. It was determined that the production capacity of the facility had an important influence on the cost-effectiveness of the project. A detailed benefit/cost analysis was conducted to identify the optimum facility size in terms of incremental costs and benefits. From an economic standpoint, it was found that the most cost-effective design for developing the site, although profitable, would not be financially attractive to the owner compared to other investment opportunities with which the company is faced. The projected after-tax return on investment for the project, based on current costs, was projected to be from 2 to 6%, depending upon the depreciation basis used. The project would, however, have a favorable effect on the corporation's working capital. The environmental issues associated with the development of the site would be relatively minor. The most important consequence would be enhanced public safety due to structural repairs to the dam and the availability of a small, independent source of electric generation that could be called on in times of power outages or natural disaster.

Not Available

1979-03-01T23:59:59.000Z

249

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 13, 2010 October 13, 2010 CX-004253: Categorical Exclusion Determination Northwest Natural Devine Road Land Use Review Request CX(s) Applied: B4.9 Date: 10/13/2010 Location(s): Clark County, Washington Office(s): Bonneville Power Administration October 13, 2010 CX-004252: Categorical Exclusion Determination Replace Two Broken Transformers Near the Roza Dam Adult Trap Facility CX(s) Applied: B4.6 Date: 10/13/2010 Location(s): Kittitas County, Washington Office(s): Bonneville Power Administration October 8, 2010 EIS-0456: Final Environmental Impact Statement Cushman Hydroelectric Project (FERC Project No. 460) October 8, 2010 EIS-0456: Final Environmental Impact Statement (Appendices) Cushman Hydroelectric Project (FERC Project No. 460), Washington Comments and responses to DEIS-0456: Cushman Hydroelectric Project.

250

Storing hydroelectricity to meet peak-hour demand  

Science Conference Proceedings (OSTI)

This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

Valenti, M.

1992-04-01T23:59:59.000Z

251

TidGen Power System Commercialization Project  

SciTech Connect

ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

Sauer, Christopher R. [President & CEO; McEntee, Jarlath [VP Engineering & CTO

2013-12-30T23:59:59.000Z

252

"1. Brownlee","Hydroelectric","Idaho Power Co",744 "2. Dworshak","Hydroelectric","USCE-North Pacific Division",400  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "1. Brownlee","Hydroelectric","Idaho Power Co",744 "2. Dworshak","Hydroelectric","USCE-North Pacific Division",400 "3. Cabinet Gorge","Hydroelectric","Avista Corp",255 "4. Rathdrum Power LLC","Gas","Rathdrum Operating Services Co., Inc.",248 "5. Evander Andrews Power Complex","Gas","Idaho Power Co",247 "6. Palisades","Hydroelectric","U S Bureau of Reclamation",176 "7. Bennett Mountain","Gas","Idaho Power Co",164 "8. Rathdrum","Gas","Avista Corp",132 "9. Goshen Phase II","Other Renewables","AE Power Services LLC",125

253

Active NEPA Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active NEPA Projects Active NEPA Projects Active NEPA Projects List of Active NEPA Projects EIS-0497: CE FLNG Project, Plaquemines Parish, Louisiana The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities. Last Update: January 8, 2014 EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated

254

FERC Pleading Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan for Conduct of 2012 Electric Plan for Conduct of 2012 Electric Transmission Congestion Study RE: Preparation of the 2012 Congestion Study COMMENTS OF TRANSMISSION ACCESS POLICY STUDY GROUP The Transmission Access Policy Study Group ("TAPS") appreciates the opportunity to respond to the Department of Energy's ("Department") request for comments on its Notice of the Plan for Conduct of 2012 Electric Transmission Congestion Study, which was published in the Federal Register on November 10, 2011. 1 TAPS urges the Department, in carrying out its responsibilities, to: (a) address congestion where it meets the real needs of load-serving entities ("LSEs"), thereby

255

FERC Pleading Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rapid Response Team for Transmission OE Docket No. RRTT-IR-001 COMMENTS OF TRANSMISSION ACCESS POLICY STUDY GROUP The Transmission Access Policy Study Group ("TAPS") appreciates the opportunity to respond to the Department of Energy's ("Department") February 27, 2012 request for information concerning incongruent development timelines for generation and transmission. 1 As the RFI explains, "[t]he differential in development times between generation and transmission creates a Catch-22 that inhibits the development of both." Id. at 11,517. TAPS welcomes the Department's leadership in addressing this problem.

256

FERC Pleading Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coordination of Federal Authorizations for Electric Transmission Facilities: Proposed 216(h) Regulations RIN 1901-AB18 COMMENTS OF TRANSMISSION ACCESS POLICY STUDY GROUP On...

257

FERC Pleading Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coordination of Federal Authorizations for Electric Transmission Facilities: Proposed 216(h) Regulations RIN 1901-AB18 COMMENTS OF TRANSMISSION ACCESS POLICY STUDY GROUP On December 13, 2011, the Department of Energy (-Department‖) issued a Notice of Proposed Rulemaking (-NOPR‖) concerning the coordination of Federal authorizations for proposed interstate electric transmission facilities. 1 The Transmission Access Policy Study Group (-TAPS‖) appreciates the opportunity to respond to the Department's proposal. TAPS supports getting needed transmission built and recognizes that prompt resolution of Federal authorization requests is critically important to that objective. We

258

FERC Pleading Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13 Findings of Fact, Conclusions of Law, and Order Issuing an HVTL Route Permit to Xcel Energy and Great River Energy, In re N. States Power Co., Docket No. TL-09-246,...

259

FERC Pleading Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Findings of Fact, Conclusions of Law, and Order Issuing an HVTL Route Permit to Xcel Energy and Great River Energy, In re N. States Power Co., Docket No. TL-09-246,...

260

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

CRT DC DSM EHV ESI FACTS FERC GIS HHI IEC IEPR IID IOU IPPEnergy Regulatory Commission (FERC), followed by California’case of municipal utilities). FERC authorizes tariffs for

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fish & Wildlife Annual Project Summary, 1983.  

Science Conference Proceedings (OSTI)

BPA's Division of Fish and Wildlife was created in 1982 to develop, coordinate and manage BPA's fish and wildlife program. Division activities protect, mitigate, and enhance fish and wildlife resources impacted by hydroelectric development and operation in the Columbia River Basin. At present the Division spends 95% of its budget on restoration projects. In 1983, 83 projects addressed all aspects of the anadromous fish life cycle, non-migratory fish problems and the status of wildlife living near reservoirs.

United States. Bonneville Power Administration.

1984-07-01T23:59:59.000Z

262

Water-Power Development, Conservation of Hydroelectric Power Dams and Works  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water-Power Development, Conservation of Hydroelectric Power Dams Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission It is the policy of the Commonwealth of Virginia to encourage the utilization of its water resources to the greatest practicable extent, to control the waters of the Commonwealth, and also to construct or reconstruct dams in any rivers or streams within the Commonwealth for the

263

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

16 XIV. Hydroelectricity Generation in the State ofFOR ELEC GENERATION HYDROELECTRICITY IN AMAPA ALCOHOL/DIESELXIV. Hydroelectricity Generation in the State of Amapá

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

264

The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations  

DOE Green Energy (OSTI)

One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

Cada, Glenn F [ORNL; Schweizer, Peter E [ORNL

2012-04-01T23:59:59.000Z

265

Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States  

DOE Green Energy (OSTI)

The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

Chas. T. Main, Inc.

1982-03-01T23:59:59.000Z

266

Design of MIDA, a Web-Based Diagnostic Application for Hydroelectric Generators  

Science Conference Proceedings (OSTI)

Up to 95% of Hydro-Québec’s electrical power is produced by hydroelectric generators. The remainder comes from conventional thermal and nuclear generators and wind turbines. Implementing a cost-effective general maintenance program for generators ... Keywords: evolutionary prototyping, software development methodology, object-oriented prototyping tool

Luc Vouligny; Claude Hudon; Duc Ngoc Nguyen

2009-08-01T23:59:59.000Z

267

Small-hydroelectric-turbine generating system. Final report, June 30, 1981-December 31, 1982  

DOE Green Energy (OSTI)

The historical development of the Pelton waterwheel and the basics of impulse turbines are reviewed. A guide is given for do-it-yourself construction of small hydroelectric plants. Steps to follow in determining the requirements for a do-it-yourself plant are outlined. Final considerations are also given. (DLC)

Kennedy, B.W.

1983-03-15T23:59:59.000Z

268

What is the role of hydroelectric power in the United States?  

Reports and Publications (EIA)

The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

2011-11-26T23:59:59.000Z

269

HydroNode: an underwater sensor node prototype for monitoring hydroelectric reservoirs  

Science Conference Proceedings (OSTI)

The research of underwater sensor networks (UWSNs) is gaining attention due to its possible applications in many scenarios, such as ecosystem preservation, disaster prevention, oil and gas exploration and freshwater reservoirs management. The main elements ... Keywords: hydroelectric, monitoring, reservoirs, underwater sensor networks, underwater sensor node

Luiz F. M. Vieira; Marcos A. M. Vieira; David Pinto; José Augusto M. Nacif; Sadraque S. Viana; Alex B. Vieira

2012-11-01T23:59:59.000Z

270

DOE/EA-1649: Sabine Pass LNG Export Project Environmental Assessment (February 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sabine Sabine Pass LNG, L.P. Docket Nos. CP04-47-001 CP05-396-001 SABINE PASS LNG EXPORT PROJECT Environmental Assessment Cooperating Agency: U.S. Department of Energy DOE/EA - 1649 DOE Docket No. FE-08-77-LNG FEBRUARY 2009 20090223-4000 FERC PDF (Unofficial) 02/23/2009 ENVIRONMENTAL ASSESSMENT SABINE PASS LNG EXPORT PROJECT TABLE OF CONTENTS Page 1.0 PROPOSED ACTION ..................................................................................................................... 1 1.1 Introduction......................................................................................................................... 1 1.2 Proposed facilities............................................................................................................... 2 1.3 Project Purpose

271

Small-scale hydroelectric power in Watauga County, North Carolina  

DOE Green Energy (OSTI)

We have completed both the installation of the demonstration project and the assessment of the stream flows in Watauga County, North Carolina. The 17 kW, high head (178'), project on Laurel Creek in Watauga County has produced about 60,000 kWh over its first nine months of operation despite some electrical and other problems. It is currently producing 16 to 17 kW on a steady basis and is functioning as a popular site for visits by people who plan to install their own similar plants in areas throughout the Southeast. The stream assessment proved to be less satisfactory than the subsequently developed method for predicting long term stream flows. The latter method has been applied to all western North Carolina and this report presents its general conclusions.

Ayers, H G

1983-02-22T23:59:59.000Z

272

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction  

NLE Websites -- All DOE Office Websites (Extended Search)

88: Cameron Pipeline Expansion Project and Cameron LNG 88: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES Comment Period Ends: 03/03/14 DOCUMENTS AVAILABLE FOR DOWNLOAD January 10, 2014

273

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Cameron Pipeline Expansion Project and Cameron LNG 8: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 13, 2012 EIS-0488: Notice of Intent to Prepare an Environmental Impact Statement

274

EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87: Freeport LNG Liquefaction Project, Brazoria County, Texas 87: Freeport LNG Liquefaction Project, Brazoria County, Texas EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal on Quintana Island in Brazoria County, Texas, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 25, 2012 EIS-0487: Notice of Intent to Prepare an Environmental Impact Statement Freeport LNG Liquefaction Project, Brazoria County, Texas

275

Review of Pacific Northwest Laboratory research on aquatic effects of hydroelectric generation and assessment of research needs  

DOE Green Energy (OSTI)

This report is an overview of Pacific Northwest Laboratory's (PNL) research on how hydroelectric generation affects aquatic biota and environments. The major accomplishments of this research are described, and additional work needed to permit optimal use of available data is identified. The research goals are to: (1) identify impacts of hydroelectric generation, (2) provide guidance in allocating scarce water resources, and (3) develop techniques to avoid or reduce the impacts on aquatic communities or to compensate for unavoidable impacts. Through laboratory and field experiments, an understanding is being developed of the generic impacts of hydrogeneration. Because PNL is located near the Columbia River, which is extensively developed for hydroelectric generation, it is used as a natural laboratory for studying a large-scale operating system. Although the impacts studied result from a particular system of dams and operating procedures and occur within a specific ecosystem, the results of these studies have application at hydroelectric generating facilities throughout the United States.

Fickeisen, D.H.; Becker, C.D.; Neitzel, D.A.

1981-05-01T23:59:59.000Z

276

Water quality and sedimentation implications of installing a hydroelectric dam on the Río Baker in Chilean Patagonia  

E-Print Network (OSTI)

HidroAysen, a Chilean corporation operated by energy giant Endesa, has proposed to build two hydroelectric dams on the Rio Baker in the Aysin Region of Chilean Patagonia. The proposed dams have been met with a variety of ...

Leandro, Gianna Dee

2009-01-01T23:59:59.000Z

277

Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA  

Science Conference Proceedings (OSTI)

Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to merging and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.

Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.; Khan, Fenton; Mueller, Robert P.; Nagy, William T.; Richmond, Marshall C.; Weiland, Mark A.

2008-07-29T23:59:59.000Z

278

Electricity - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Analysis of FERC's Final EIS for Electricity Open Access & Recovery of Stranded Costs.

279

Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

High Wind Power High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Prepared under Task No. WE110810 Technical Report NREL/TP-5500-52251 July 2011 NOTICE

280

Effects of Markets and Operations on the Suboptimization of Pumped Storage and Conventional Hydroelectric Plants  

Science Conference Proceedings (OSTI)

Detailed plant performance analyses were conducted using unit performance data, market data, and plant operational data from 2008, 2009, and 2010 for five pumped storage plants and three conventional hydroelectric plants. These eight case studies encompass three markets (MISO, PJM, and NYISO) and two regions (Southeast area and Western area). Owners for the eight plants include three investor-owned utilities, two state power authorities, and one federal power corporation. This report expands on ...

2013-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIS-0497: CE FLNG Project, Plaquemines Parish, Louisiana | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

497: CE FLNG Project, Plaquemines Parish, Louisiana 497: CE FLNG Project, Plaquemines Parish, Louisiana EIS-0497: CE FLNG Project, Plaquemines Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities. The project would include two floating liquefied natural gas (FLNG) vessels that would pretreat, liquefy, store, and offload LNG; a berth for the FLNG vessels; and a berth and turning basin for traditional LNG carriers. PUBLIC COMMENT OPPORTUNITIES

282

Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.  

DOE Green Energy (OSTI)

The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

Yde, Chis

1990-06-01T23:59:59.000Z

283

5-appendix_c - final.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

head for the plant listed in the Hydroelectric Power Resource Assessment Database (FERC 1998). The calculated flow rate for the reach was compared to the average annual mean...

284

"1. Colstrip","Coal","PPL Montana LLC",2094 "2. Noxon Rapids","Hydroelectric","Avista Corp",568  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "1. Colstrip","Coal","PPL Montana LLC",2094 "2. Noxon Rapids","Hydroelectric","Avista Corp",568 "3. Libby","Hydroelectric","USCE-North Pacific Division",525 "4. Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428 "5. Yellowtail","Hydroelectric","U S Bureau of Reclamation",287 "6. Kerr","Hydroelectric","PPL Montana LLC",206 "7. Fort Peck","Hydroelectric","USCE-Missouri River District",200 "8. J E Corette Plant","Coal","PPL Montana LLC",154 "9. Judith Gap Wind Energy Center","Other Renewables","Invenergy Services LLC",135

285

Relicensing: Adding an extra stage of consultation  

Science Conference Proceedings (OSTI)

Recognizing the value of getting public feedback about its hydro facilities, Montana Power Company is voluntarily going one step beyond FERC's prescribed three-stage consultation process during relicensing of its Missouri-Madison hydro project. Montana Power's attempt to get all the players in the game led the utility to add an extra step to FERC's three-step consultation process for relicensing a hydro project. The additional step gave the utility an opportunity to learn more about the needs and concerns of the public and resource agencies. Simultaneously, it allowed the public an opportunity to gain a better understanding of Montana Power, the project, relicensing, and hydroelectricity in general. The three steps of FERC's consultation process require the applicant to meet with agencies and the public; to perform studies and write a draft application; and to file a final application with FERC and the consulting agencies. The public is given a chance to make comments about the project at each stage of the process. Montana Power started the relicensing process for its Missouri-Madison Project (FERC No. 2188) in the summer of 1989. The license for the project will expire in November 1994. After completing the meetings with the agencies and the public in the first step, Montana Power decided to add an extra stage of consultation with the agencies and public before writing the draft application.

Sullivan, M.G. (Montana Power Company, Butte, MT (United States))

1992-09-01T23:59:59.000Z

286

Real Time Runoff Forecasts for Two Hydroelectric Stations Based on Satellite Snow Cover Monitoring  

E-Print Network (OSTI)

Seasonal and short-term runoff forecasts for two hydroelectric stations in the upper Rhine basin are carried out in real time based on snow cover monitoring by Landsat and SPOT satellites. Evaluation of snow reserves on 1 April 1993 from satellite data reveals uncertainties in estimates using point measurements on the ground as index. Runoff is computed by the SRM model with snow covered areas as well as temperature and precipitation forecasts as input variables. A SRM menu system has been installed for operational data acquisition and management. The runoff forecasts can be exploited, among other purposes, for optimizing the hydropower production and for timely decisions on the electricity market.

Klaus Seidel; Walter Brüsch; Charlotte Steinmeier; Jaroslav Martinec; Jürg Wiedemeier; Klaus Seidel Walter Br Usch; J Urg Wiedemeier

1995-01-01T23:59:59.000Z

287

EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, 4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal consisting of two floating liquefaction, storage and offloading units and a 29-mile pipeline header system to transport natural gas from existing pipeline systems to the LNG terminal facilities. PUBLIC COMMENT OPPORTUNITIES None at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 2013 EIS-0494: Notice of Intent to Prepare an Environmental Impact Statement

288

EIS-0489: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific Connector Pipeline Project (Coos, Klamath, Jackson, and Douglas Counties, OR)  

Energy.gov (U.S. Department of Energy (DOE))

Federal Energy Regulatory Commission (FERC) will prepare an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas facility in Coos County, Oregon, and to construct and operate a natural gas pipeline project that would cross Klamath, Jackson, Douglas, and Coos Counties, Oregon. DOE, along with U.S. Army Corps of Engineers (COE), U.S. Department of Agriculture (Forest Service), and the U.S. Department of the Interior (Bureau of Land Management, Bureau of Reclamation, and Fish and Wildlife Service), are cooperating agencies.

289

Notice of Intent for the Construction and Operation of the Proposed Big Stone II Power Plant and Transmission Project, South Dakota and Minnesota (5/27/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 16 Federal Register / Vol. 70, No. 102 / Friday, May 27, 2005 / Notices Regulatory Commission, 888 First Street, NE., Washington, DC 20426. Note that also there is an ''eSubscription'' link on the web site that enables subscribers to receive e- mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Comment Date: June 9, 2005. Magalie R. Salas, Secretary. [FR Doc. E5-2702 Filed 5-26-05; 8:45 am] BILLING CODE 6717-01-P DEPARTMENT OF ENERGY Western Area Power Administration Construction and Operation of the Proposed Big Stone II Power Plant and Transmission Project, South Dakota and Minnesota

290

EIS-0489: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Jordan Cove Liquefaction Project (Coos County, OR) and 9: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific Connector Pipeline Project (Coos, Klamath, Jackson, and Douglas Counties, OR) EIS-0489: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific Connector Pipeline Project (Coos, Klamath, Jackson, and Douglas Counties, OR) SUMMARY Federal Energy Regulatory Commission (FERC) will prepare an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas facility in Coos County, Oregon, and to construct and operate a natural gas pipeline project that would cross Klamath, Jackson, Douglas, and Coos Counties, Oregon. DOE, along with U.S. Army Corps of Engineers (COE), U.S. Department of Agriculture (Forest Service), and the U.S. Department of the Interior (Bureau of Land Management, Bureau

291

Effects of Climate Change on the Hydroelectric The Council is not tasked, nor does it have the resources to resolve existing uncertainties  

E-Print Network (OSTI)

GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian Aquatic Ecosystems NSERC's HydroNet is a national research network aimed at promoting sustainable with Fisheries and Oceans Canada (6 scientists) and 3 major hydroelectric companies (Nalcor, Manitoba Hydro

292

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

293

Efforts to Reduce the Impacts of Hydroelectric Power Production on Reservoir Fisheries in the United States.  

DOE Green Energy (OSTI)

Research into the environmental effects of hydroelectric power production in the United States has focused increasingly on resident and migratory fish populations. Hydropower dams and reservoirs can block fish movements in both upstream and downstream directions. These movements are essential for important stocks of anadromous and catadromous fish. In addition, some strictly freshwater fish may move long distances within a river during their life cycle.A dam can pose an impassable barrier for fish trying to move upstream unless mitigation measures in the form of ladders or lifts are provided. Fish moving downstream to the sea may become disoriented when they encounter static water within a reservoir. Both resident and migratory fish may be injured or killed by passing through the turbine or over the spillway. In the United States, a variety of organizations conduct applied research and development of measures to (1) enhance fish passage, (2) reduce the numbers of fish that are drawn into the turbine intakes, and (3) reduce the injury and mortality rates of fish that pass through the turbines. Examples of these efforts from a variety of river systems and hydroelectric power plants are described.

Cada, G. F.

1997-09-08T23:59:59.000Z

294

Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?  

Science Conference Proceedings (OSTI)

Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

Cada, G. F.; Richmond, Marshall C.

2011-07-19T23:59:59.000Z

295

Advanced, Environmentally Friendly Hydroelectric Turbines for the Restoration of Fish and Water Quality  

DOE Green Energy (OSTI)

Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world?s electrical energy. The contribution of hydroelectric generation has declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, ?environmentally friendly? turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been he AHTS program are described.

Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

1999-09-06T23:59:59.000Z

296

EA-1890: Notice of Intent to Adopt an Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Wave Park Project, Oregon The Federal Energy Regulatory Commission (FERC) issued a notice of availability on December 3, 2010 for FERC Project No. 12713-002 for...

297

Microsoft Word - HES Manual.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

project you wish to delete. Enter the FERC number of the project and select "Search." If you enter an invalid FERC number, the following message will be displayed:...

298

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

hydroelectric system using a Pelton impulse wheel, generator,hydroelectric system" The logistics for op- erating a portable generator

Case, C.W.

2012-01-01T23:59:59.000Z

299

Negotiating contentious claims to water : shifting institutional dynamics for the allocation of water between the Eel and Russian river basins  

E-Print Network (OSTI)

to ensure that in the future FERC will re-license only thoseIssuing New License (Major),” 25 FERC 61,010. Federal EnergyPotter Valley Project, FERC Project No. 77-110. ” Gottlieb,

Gilless, J. Keith; Langridge, Ruth

2004-01-01T23:59:59.000Z

300

City of Redding: Lake Redding Power Project, feasibility assessment report  

DOE Green Energy (OSTI)

The feasibility of constructing a low-head hydroelectric power generating facility on the Sacramento River in California was investigated considering technical, economic, legal, and environmental factors. It was concluded that the proposed plant is feasible and, with 5 generating units operating on a gross head of 14 ft, 79 GWh could be generated annually. The cost of the project with a 1984 completion date is estimated at $44.3 million. (LCL)

None

1979-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EA-1942: Cove Point Liquefaction Project, Lusby, MD | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Cove Point Liquefaction Project, Lusby, MD 2: Cove Point Liquefaction Project, Lusby, MD EA-1942: Cove Point Liquefaction Project, Lusby, MD SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA, to analyze the potential environmental impacts of a proposal to add natural gas liquefaction and exportation capabilities to an existing Cove Point LNG Terminal located on the Chesapeake Bay in Lusby, Maryland. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 28, 2012 EA-1942: Notice of Intent to Prepare an Environmental Assessment Cove Point Liquefaction Project, Lusby, MD September 24, 2012 EA-1942: Notice of Intent of to Prepare an Environmental Assessment Cove Point Liquefaction Project, Lusby, MD

302

THE DEVELOPMENT OF HYDROELECTRIC POWER In the early 1880s the first central power-generating station  

E-Print Network (OSTI)

fostered the growth of power companies interested in potential profits. Earlier advances in dam materialsTHE DEVELOPMENT OF HYDROELECTRIC POWER In the early 1880s the first central power-generating station opened in New York City, and a plant in Appleton, Wisconsin, first utilized falling water

US Army Corps of Engineers

303

Hydroelectric feasibility study: Chubb River Sites, Village of Lake Placid, New York  

DOE Green Energy (OSTI)

This study was performed to determine if the re-installation and re-activation of hydroelectric generating facilities at the Mill Pond and Power Pond dams in the Village of Lake Placid, N.Y. would be technically, environmentally, and economically feasible. The study includes a description and evaluation of the conditions of the existing facilities, an estimate of the potential generation at the two sites, a review of regulatory requirements, an economic analysis, and an implementation schedule for installing the facilities. The results show that the installation of new generating equipment within the existing powerhouse may be economically advantageous. Installation of generating facilities at the Mill Pond site would be uneconomical due to low head, aesthetic, environmental costraints, and therefore, is not recommended. The benefits which would be realized by installing equipment at the powerhouse are long term and station operation would initially have to be subsidized for a number of years. (LCL)

Not Available

1979-01-01T23:59:59.000Z

304

Feasibility determination for hydroelectric development at Thermalito Afterbay with STRAFLO turbine-generators. Final report  

DOE Green Energy (OSTI)

This study addresses the development of the Thermalito Afterbay, in California. Presently, the outlet of the afterbay dissipates the afterbay's useful energy through five radial gates into the Feather River complex. The feasibility of constructing a hydroelectric facility to recover this wasted energy through the use of STRAFLO hydro turbines is appraised, and data relevant to the future economic benefits of such a facility as compared to alternate energy alternatives are presented. In addition, the regulatory, ecological, and socio-institutional impacts which form additional considerations to a future thermalito afterbay site development are summarized. The study shows an annual generation potential of 48.82 GWh. The cost of developing the site is estimated to be $23.5 million. Social and environmental effects would be minimal. The final feasibility of development is contingent on power contracts which the state of California will be negotiating in 1983. (LCL)

Mueller, B.L.

1979-06-01T23:59:59.000Z

305

"1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250 "3. Gila River Power Station","Gas","Gila River Power Station LP",2060 "4. Springerville","Coal","Tucson Electric Power Co",1618 "5. Glen Canyon Dam","Hydroelectric","U S Bureau of Reclamation",1312 "6. Santan","Gas","Salt River Project",1227 "7. Mesquite Generating Station","Gas","Mesquite Power LLC",1073 "8. Harquahala Generating Project","Gas","New Harquahala Generating Co, LLC",1054 "9. Hoover Dam","Hydroelectric","U S Bureau of Reclamation",1040

306

Utility stresses environmental programs, research projects  

Science Conference Proceedings (OSTI)

B.C. Hydro, the provincial electric utility of British Columbia, views environmental programs and research projects as an important part of its business. Many of these activities stem from some aspect of hydroelectric generation as the utility relies on 39 reservoirs and 30 hydro stations for the bulk of its electricity production. These programs and research projects are featured in B.C. Hydro's first annual Report on the Environment, which summarizes the utility's work to minimize the effects of operations on the natural and social environment. Some programs and research projects were initiated some years ago, while others are new. B.C.'s environmental programs include environmental audits and fish and wildlife compensation (mitigation) programs. In 1988, the utility and the province's Ministry of Environment, Lands and Parks began developing compensation programs to address water license requirements for B.C. Hydro's hydroelectric developments. Today, compensation programs for the Peace and Columbia river area serve as models for future programs. The utility also reports it is reviewing all operating orders for its water system to identify opportunities to make operations more sensitive to environmental concerns. Additionally, work is under way on a preliminary strategy for addressing fish and water quality issues and setting minimum flow requirements. And in an effort to control dust storms, B.C. Hydro reports it is studying native perennial plants that can endure the flooding/drawdown cycle typical of a water storage reservoir.

Not Available

1993-02-01T23:59:59.000Z

307

Marcellus natural gas pipeline projects to primarily benefit New ...  

U.S. Energy Information Administration (EIA)

On October 17, the Federal Energy Regulatory Agency (FERC) authorized the start of initial service on these expansions. New England consumers, however, ...

308

Project sponsors are seeking Federal approval to export domestic ...  

U.S. Energy Information Administration (EIA)

LNG operators must obtain separate authorizations from DOE to export LNG and from FERC to construct liquefaction facilities. High capital investment.

309

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Power Price Source: FERC 2006 and 2004 “State of the12 projects 691 MW Source: FERC 2006 "State of the Market"the strong competi- Source: FERC 2006 "State of the Market"

2008-01-01T23:59:59.000Z

310

Survey of Critical Wetlands and Riparian Areas in Mesa County  

E-Print Network (OSTI)

Memorandum of Agreement/Cooperative Agreement . . . . . . . . . . . . . 9 Kingsley Dam FERC Relicensing projects in the front range area. The FERC relicensing proceedings for Kingsley Dam have demonstrated stakeholders. The Kingsley Dam FERC relicensing procedures demonstrate the necessity for developing

311

Problems of hydroelectric development at existing dams: an analysis of institutional, economic, and environmental restraints in Pennsylvania, New Jersey, and Maryland  

DOE Green Energy (OSTI)

The methodology that has been developed to analyze the impact of possible government actions on the development of small-scale hydroelectric power in the United States is described. The application of the methodology to a specific region of the United States is also described. Within the Pennsylvania-New Jersey-Maryland (PJM) region, the methodology has been used to evaluate the significance of some of the existing institutional and economic constraints on hydroelectric development at existing dams. The basic process for the analysis and evaluation is estimation of the hydroelectric energy that can be developed for a given price of electricity. Considering the present constraints and a geographical region of interest, one should be able to quantify the potential hydroelectric energy supply versus price. Estimates of how the supply varies with possible changes in governmental policies, regulations, and actions should assist the government in making decisions concerning these governmental functions relative to hydroelectric development. The methodology for estimating the hydroelectric supply at existing dams is included.

Taylor, R.J.; Green, L.L.

1979-04-01T23:59:59.000Z

312

Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis  

SciTech Connect

This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

Rutledge, G.; Lane, D.; Edblom, G.

1980-01-01T23:59:59.000Z

313

Implications of Energy and Ancillary Service Market Structure for Hydroelectric Generation: A Survey of U.S. ISOs  

Science Conference Proceedings (OSTI)

Hydroelectric's superior technical capabilities -- flexibility, fast response, efficiency -- make it especially well suited to providing reserve services in restructured and deregulated markets. A generating unit providing reserves in a deregulated market must understand not only the energy market, but also the interrelated markets for several different classes of reserve services. This report investigates how five U.S. independent service providers (IPOs) provide reserve services.

2001-08-22T23:59:59.000Z

314

Development and Implementation of an Expert System for Vibration Monitoring and Diagnoses for Hydroelectric Pumped Storage Units  

Science Conference Proceedings (OSTI)

A reliable expert diagnostic system supports a condition-based approach to maintenance that enables plant management to extend the time between outages and plan specific maintenance efforts. This report describes the two-phase development and implementation of a rule-based expert system for performing vibration monitoring and diagnostics on four hydroelectric pumped storage units of the New York Power Authority (NYPA). Developers estimate that the system could save plants $150,000/yr in forced outage cos...

1998-11-11T23:59:59.000Z

315

20517909.tif  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF OFFICE OF HYDROPOWER LICENSING Novem ber 1996 FERC/EIS-0095F FINAL ENVIRONMENTAL IMPACT STATEMENT Volume II Appendices Cushman Hydroelectric Project (FERC Project No. 460), Washington 888 First Street, N.E., Washington, D.C. 20426 APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX H VOLUME II LIST OF APPENDICES RESPONSE TO DRAFT EIS COMMENTS Glossary Cushman Project Fish Passage Feasibility Wildlife Habitat Enhancement Parcel Evaluation and Staff-formulated Wildlife Enhancement Plan Development HEP and GIS Results Scientific Names of Plant Species Potentially Occurring in the Cushman Project Vicinity Scientific Names and Status Designations of Animal Species Potentially Occurring in the Cushman Project Vicinity

316

Observations of Velocity Conditions near a Hydroelectric Turbine Draft Tube Exit using ADCP Measurements  

Science Conference Proceedings (OSTI)

Measurement of flow characteristics near hydraulic structures is an ongoing challenge because of the need to obtain rapid measurements of time-varying velocity over a relatively large spatial domain. This paper discusses use of an acoustic Doppler current profiler (ADCP) to measure the rapidly diverging flow exiting from an operating hydroelectric turbine draft tube exit. The resolved three-dimensional velocity vectors show a highly complex and helical flow pattern developed near to and downstream of the exit. Velocity vectors were integrated across the exit and we computed an uneven percentage of flow (67%/33%) passing through the two draft tube barrels at a mid-range turbine discharge, consistent with physical model results. In addition to the three-dimensional velocity vectors, the individual one-dimensional velocities measured by each of the four ADCP beams can be separately used as calibration and validation datasets for numerical and physical models. This technique is demonstrated by comparing along-beam ADCP velocity measurements to data collected in a scaled physical model.

Cook, Christopher B.; Richmond, Marshall C.; Serkowski, John A.

2007-10-01T23:59:59.000Z

317

UGP Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

River. Seven dams and powerplants have the installed capacity of 2,610 MW. That hydroelectric power is delivered across about 7,919 circuit-miles of Federal transmission line....

318

Public Health Surveillance of Toxic Cyanobacteria in Freshwater Systems Using Remote Detection Methods  

E-Print Network (OSTI)

Vicinity of the Klamath Hydroelectric Project: April, MayReport, Klamath Hydroelectric Project, Water Resources.2010). "Klamath River Hydroelectric Project Overview."

Mackie, Trina Nicole

2010-01-01T23:59:59.000Z

319

Stochastic optimization of hydroelectric dam operations on the Biobio River in Chile  

E-Print Network (OSTI)

Growing electricity demand in Chile has prompted the proposal of new hydropower projects. In addition to evaluating new projects to satisfy demand, a holistic assessment of alternatives as well as potential gains from ...

Burrall, Kristen M

2009-01-01T23:59:59.000Z

320

Images of energy: Policy perspectives on the introduction of hydroelectricity in Italy, 1882-1914  

Science Conference Proceedings (OSTI)

This study considers the link between energy technologies and cultural attitudes. Contemporary energy policy makers lack the conceptual tools with which to evaluate culturally appropriate energy choices. A way to regain a contextual capability is needed; that is, the capacity to recognize and avert situations where technological advance is insufficiently harmonized with its embedding environment. This study explores how both policy makers and the general public form their [open quotes]images of energy.[close quotes] It does so in three parts, beginning with an examination of the concepts of [open quotes]technology,[close quotes] [open quotes]culture[close quotes] and [open quotes]cognitive map,[close quotes] and an explanation of their interrelationship. The second part presents two historical case-studies of the introduction of hydroelectricity in Italy from 1882-1914. It considers how a relatively unknown technology made its way into urban and rural life, who its primary surveyors were, and how it shaped and was shaped by the cognitive maps of those into whose lives it marched. The final part extends the investigation to contemporary socio-cultural dynamics. Through concepts derived from General System Theory, the process of technological integration is interpreted in light of events that shape the world today. The design of a model to be used by energy makers and educators alike in conceiving culturally attuned energy alternatives is proposed. Such a model would describe energy-related cognitive maps and could serve as the basis for informed decision-making on energy choice at all levels of society. The study concludes with suggestions for a research agenda to further explore individual and collective energy-related cognitive maps.

Laszlo, A.R.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Case study analysis of the legal and institutional obstacles and incentives to the development of the hydroelectric power of the Boardman River at Traverse City, Michigan  

SciTech Connect

An analytic description of one decision-making process concerning whether or not to develop the hydroelectric potential of the Boardman River is presented. The focus of the analysis is on the factor that the developers considered, or should consider in making a responsible commitment to small-scale hydroelectric development. Development of the Boardman River would occur at the five dam sites. Two existing dams, owned by the county, previously generated hydroelectricity, as did a third before being washed out. One dam has never been utilized. It is owned by the city which also owns the washed-out area. The study concludes that hydroelectric power is feasible at each. Grand Traverse County and Traverse City would engage in a joint venture in developing the resource. Chapter I presents a detailed description of the developers, the river resource, and the contemplated development. Chapter II is an analysis of the factors affecting the decision making process. Chapter III summarizes the impact of the more significant barriers and incentives and presents recommendations that, if implemented, will favorably affect decisions to develop small-scale hydroelectric generation capability.

1980-05-01T23:59:59.000Z

322

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation 933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA SUMMARY DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

323

"1. Robert Moses Niagara","Hydroelectric","New York Power Authority",2353  

U.S. Energy Information Administration (EIA) Indexed Site

York" York" "1. Robert Moses Niagara","Hydroelectric","New York Power Authority",2353 "2. Ravenswood","Gas","TC Ravenswood LLC",2330 "3. Nine Mile Point Nuclear Station","Nuclear","Nine Mile Point Nuclear Sta LLC",1773 "4. Oswego Harbor Power","Petroleum","NRG Oswego Harbor Power Operations Inc",1648 "5. Northport","Gas","National Grid Generation LLC",1569 "6. Astoria Generating Station","Gas","U S Power Generating Company LLC",1315 "7. Roseton Generating Station","Gas","Dynegy Northeast Gen Inc",1212 "8. Blenheim Gilboa","Pumped Storage","New York Power Authority",1160

324

DOE/EIS-0350: Record of Decision: Final Environmental Impact Statement for the Chemistry and Metallurgy Research Building Replacement, Los Alamos National Laboratory, Los Alamos, NM (02/14/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Federal Register / Vol. 69, No. 29 / Thursday, February 12, 2004 / Notices 1 Paiute Pipeline Company, 105 FERC ¶ 61,271 selecting third-party contractors will now be consistent with the approach currently used for applications for certification of natural gas facilities. The attached document provides an overview for starting the process. Additional information is available on the Commission's Web site at http:// www.ferc.gov/industries/hydropower/ enviro/third-party/tpc.asp. Magalie R. Salas, Secretary. Office of Energy Projects; Third-Party Contracting Program The Office of Energy Project's voluntary ''third-party contracting'' (3-PC) program enables applicants seeking certificates for natural gas facilities or licenses for hydroelectric power projects to fund a third-

325

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Rate Order Concerning a Power Rate Formula. SUMMARY: The Deputy Secretary of Energy confinned and approved Rate Order No. W AP A-149, placing a power rate fOlIDula for the Provo River Project (PRP) of Western Area Power Administration (Western) into effect on an interim basis. The provisional power rate formula will remain in effect on an interim basis until the Federal Energy Regulatory Commission (FERC) COnfilIDs, approves, and places it into effect on a final basis, or until the power rate formula is replaced by another power rate fOlIDula. DATES: The provisional power rate fonnula will be placed into effect on an interim basis on

326

Microsoft Word - PoRiver Project Schedule - Letter to DOE_042807.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2007 30, 2007 Lawrence Mansueti Office of Electricity Delivery and Energy Reliability U.S. Department of Energy Rm. 8H-033 1000 Independence Avenue Washington, D.C. 20585 Re: Potomac River Project Outage Schedule Clarification Dear Mr. Mansueti: I am writing to clarify the upcoming outage schedule for the Potomac River project and to explain certain discrepancies that are present in Pepco's most recent communications. 1 The monthly status report submitted to the Federal Energy Regulatory Commission ("FERC") on April 16, 2007 shows the upcoming outages for the two additional transmission circuits as May 1, 2007 through May 21, 2007 (Circuit 1) and as May 24, 2007 through June 21, 2007 (Circuit 2). In an e-mail sent by Steve Alexander on April 27, 2007, Pepco reflected the current outage schedule for Circuit 1.

327

Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.  

DOE Green Energy (OSTI)

The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding the enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as vegetation height, shrub cover, or other parameters, which are known to provide life history requisites for mitigation species. Habitat Suitability Indices range from 0 to 1, with an HSI of 1 providing optimum habitat conditions for the selected species. One acre of optimum habitat provides one Habitat Unit. The objective of continued management of the Wanaket Wildlife Mitigation Area, including protection and enhancement of upland and wetland/wetland associated cover types, is to provide and maintain 2,334 HU's of protection credit and generate 2,495 HU's of enhancement credit by the year 2004.

Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

2001-09-01T23:59:59.000Z

328

Northwest hydroelectric output above five-year range for much of ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... analysis, and projections integrated across all energy sources.

329

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

330

Coalitional Choices and Strategic Challenges: The Landless Movement in Brazil, 1970–2005  

E-Print Network (OSTI)

1998). At the same time, hydroelectric dams and reservoirsThose displaced due to hydroelectric projects had beenthe construction of hydroelectric projects in various ways (

Sinek, Wendy M.

2007-01-01T23:59:59.000Z

331

CX-003904: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

904: Categorical Exclusion Determination 904: Categorical Exclusion Determination CX-003904: Categorical Exclusion Determination Hydro Electric Project - Snohomish Public Utility District CX(s) Applied: A9, A11, B5.1 Date: 08/31/2010 Location(s): Everett, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Washington Department of Commerce will provide $153,600 in American Recovery and Reinvestment Act (ARRA) funds to Snohomish County Public Utility District Number 1 to conduct preliminary engineering analyses in support of a project to harness hydroelectric power from the Everett, Washington Reservoir 4 water transmission line. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003904.pdf More Documents & Publications EA-1949: FERC Final Environmental Assessment EA-1949: FERC Draft Environmental Assessment

332

EIS-0456: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0456: Final Environmental Impact Statement Cushman Hydroelectric Project (FERC Project No. 460) DOE is proposing to provide cost-shared, American Recovery and Reinvestment Act of 2009 funding for a project proposed by the City of Tacoma, Department of Public Utilities, Light Division. DOE funds would support improvements to the existing 131 megawatt (MW) Cushman Hydroelectric Project, namely the design and construction of a new North Fork Skokomish Powerhouse (Powerhouse) and associated infrastructure, which would include an integral fish collection facility for fish handling and sorting, and equipment for electrical interconnection. The Powerhouse would produce about 23,500 MW hours of energy. The associated fish transport system would

333

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1998 Annual Report.  

DOE Green Energy (OSTI)

Project 84-014 has been part of the annual integrated and coordinated Columbia River Basin Smolt Monitoring Program since 1984, and currently addresses measure 5.9A.1 of the 1994 Northwest Power Planning Council's (NPPC) Fish and Wildlife Program. This report presents results from the 1998 smolt monitoring at John Day and Bonneville dams and represents the fifteenth annual report under this project.

Martinson, Rick D.; Kamps, Jeffrey W.; Kovalchuk, Gregory M. (Northwest and Alaska Fisheries Science Center, Environmental and Technical Services Division, Portland, OR)

1999-03-01T23:59:59.000Z

334

DOE/EIS-0308-SA-1: Supplement Analysis Southpoint Power Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

service to existing customers; to meet the intent of requirements of Federal Energy Regulatory Commission (FERC) Order No. 888 in providing transmission access to Calpine...

335

Malheur River Wildlife Mitigation Project, Annual Report 2003.  

DOE Green Energy (OSTI)

Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

Ashley, Paul

2004-01-01T23:59:59.000Z

336

Yakima Basin Fish Passage Project, Phase 2  

DOE Green Energy (OSTI)

Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

337

World Energy Projection System model documentation  

SciTech Connect

The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

Hutzler, M.J.; Anderson, A.T.

1997-09-01T23:59:59.000Z

338

DOE/EA-1650: Freeport LNG Export Project and BOG/Truck Project Environmental Assessment (May 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Freeport LNG Development, L.P. Freeport LNG Development, L.P. Docket Nos. CP03-75-003, CP03-75-004, CP05-361-001, and CP05-361-002 FREEPORT LNG EXPORT PROJECT and BOG/TRUCK PROJECT Environmental Assessment Cooperating Agency: U.S. Department of Energy DOE/EA - 1650 DOE Docket No. FE-08-70-LNG MARCH 2009 FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 OFFICE OF ENERGY PROJECTS In Reply Refer To: OEP/DG2E/Gas 2 Freeport LNG Development, L.P. Docket Nos. CP03-75-003, CP03-75-004 CP05-361-001 and CP05-361-002 §375.308(x) TO THE PARTY ADDRESSED: The staff of the Federal Energy Regulatory Commission (FERC or Commission) and the Department of Energy (DOE), Office of Fossil Fuels, have prepared an environmental assessment (EA) on the liquefied natural gas (LNG) facilities proposed by

339

DOE/EIS-0372; Draft Environmental Impact Statement for the Bangor Hydro-Electric Company Northeast Reliability Interconnect (August 2005)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Reliability Interconnect DEIS Northeast Reliability Interconnect DEIS S-1 August 2005 SUMMARY S.1 BACKGROUND S.1.1 Purpose and Need for National Environmental Policy Act Review Executive Order (E.O.) 10485 (September 9, 1953), as amended by E.O. 12038 (February 7, 1978), requires that a Presidential permit be issued by the U.S. Department of Energy (DOE) before electric transmission facilities may be constructed, operated, maintained, or connected at the U.S. international border. Bangor Hydro-Electric Company (BHE) has applied to DOE to amend Presidential Permit PP-89, which authorizes BHE to construct a single-circuit, 345,000-volt (345-kV) alternating-current (AC) electric transmission line across the U.S. international border in the vicinity of Baileyville, Maine.

340

Analysis of environmental issues related to small-scale hydroelectric development IV: fish mortality resulting from turbine passage  

DOE Green Energy (OSTI)

This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner) has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.

Turbak, S. C.; Reichle, D. R.; Shriner, C. R.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

342

Innovative Project Helps Refloat a Local Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Helps Refloat a Local Industry Project Helps Refloat a Local Industry Innovative Project Helps Refloat a Local Industry April 4, 2012 - 1:55pm Addthis Check out the first Houseboat to Energy Efficient Residences (HBEER) prototype home located in Monticello, Kentucky. | Courtesy of University of Kentucky. Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy In 1952, the U.S. Army Corps of Engineers dammed up the Cumberland River in Eastern Kentucky for the dual purposes of flood control and to generate electricity at a hydroelectric plant. The creation of the 101 mile-long reservoir accomplished both goals, and in the process spawned a new industry -- the construction and maintenance of houseboats. By the mid-1990s, Lake Cumberland had an average of 4.5 million visitors a

343

Innovative Project Helps Refloat a Local Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Project Helps Refloat a Local Industry Innovative Project Helps Refloat a Local Industry Innovative Project Helps Refloat a Local Industry April 4, 2012 - 1:55pm Addthis Check out the first Houseboat to Energy Efficient Residences (HBEER) prototype home located in Monticello, Kentucky. | Courtesy of University of Kentucky. Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy In 1952, the U.S. Army Corps of Engineers dammed up the Cumberland River in Eastern Kentucky for the dual purposes of flood control and to generate electricity at a hydroelectric plant. The creation of the 101 mile-long reservoir accomplished both goals, and in the process spawned a new industry -- the construction and maintenance of houseboats. By the mid-1990s, Lake Cumberland had an average of 4.5 million visitors a

344

Project 244  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJECT PARTNER Advanced Technology Systems, Inc. Pittsburgh, PA PROJECT PARTNERS Ohio University Athens, OH Texas A&M University-Kingsville Kingsville, TX WEBSITES http:...

345

Projects | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Conferences Supporting Organizations Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Projects Projects 1-10 of 180 Results Prev...

346

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit...

347

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA  

Energy.gov (U.S. Department of Energy (DOE))

DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

348

Standardizing instream flow requirements at hydropower projects in the Cascade Mountains, Washington  

DOE Green Energy (OSTI)

Instream flow requirements are common mitigation measures instituted in the bypassed reaches of hydroelectric diversion projects. Currently, there are two extremes among the ways to determine instream flow requirements: generic standard-setting methods and detailed, habitat-based, impact assessment methods such as the Instream Flow Incremental Methodology (IFIM). Data from streams in Washington state show a consistent pattern in the instream flow requirements resulting from the IFIM. This pattern can be used to refine the simpler standard-setting approaches and thereby provide better estimates of flow needs during early stages of project design.

Smith, I.M.; Sale, M.J.

1993-06-01T23:59:59.000Z

349

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energycost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

350

Factors hindering the development of small-scale municipal hydropower: a case study of the Black River project in Springfield, Vermont  

DOE Green Energy (OSTI)

There are many good reasons to use New England's small-scale hydropower resources to generate electricity. But current production capacity in the three northern states is only 1300 MW, just 35% of the 3710 MW estimated to be available to the states. Though the benefits of properly designed projects seem substantial, many factors combine to hinder their development. The Black River project in Springfield, Vermont, exemplifies the problem. Even after the two has invested over five years and $1 million in its effort to develop 30 MW of capacity, it still has not received either federal or state approval to proceed with construction. The first 4 years of the Springfield experience are described and factors that have greatly increased the cost and planning time for the project are identified. The purpose is to identify changes that could facilitate efforts to develop small-scale hydropower at other acceptable sites. On the basis of this experience it is recommended that: after issuance of a FERC permit, a preliminary determination of the project's impacts should be made by FERC officials; if environmental impacts are solely local or limited, environmental analysis/determination should be placed in the hands of the state; short-form licensing should be used for all run-of-river hydro projects that utilize and do not significantly modify existing water impoundment areas and do not significantly alter downstream flow patterns; and a hydro ombudsman with power at the state level should be established to facilitate governmental inter-agency coordination and project-related information transfer: one-stop licensing. (LCL)

Peters, E.; Berger, G.; Amlin, J.; Meadows, D.

1979-03-01T23:59:59.000Z

351

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1996 Annual Report.  

DOE Green Energy (OSTI)

The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1996 The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide the FPC with species and project specific real time data from John Day and Bonneville Dams. Monitoring data collected included: river conditions; total numbers of fish; numbers of fry, adult salmon, and incidental catch; daily and seasonal passage patterns; and fish condition. 10 refs., 16 figs., 5 tabs.

Martinson, Rick D.; Kamps, Jeffrey W.; Graves, Ritchie J. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

1997-08-01T23:59:59.000Z

352

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1991 Annual Report.  

DOE Green Energy (OSTI)

The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management.

Hawkes, Lynette A.; Martinson, Rick D.; Smith, W. William (Northwest and Alaska Fisheries Science Center, Environmental and Technical Services Division, Portland, OR)

1992-04-01T23:59:59.000Z

353

Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies  

E-Print Network (OSTI)

zinc, bauxite, and the hydroelectric power needed to smeltto stop the building of a hydroelectric project by the majorbuild the Afobaka hydroelectric dam to power an aluminum

Sheller, Mimi

2013-01-01T23:59:59.000Z

354

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

HYDROELECTRIC AND PUMPED STORAGE RESOURCES GEOTHERMAL ENERGYof Power, Potential Pumped Storage Projects in the Pacificj. HYDROELECTRIC AND PUMPED STORAGE RESOURCES Hydroelectric

Authors, Various

2010-01-01T23:59:59.000Z

355

Notice of Public Hearings for the Proposed Bangor Hydro-Electric Company (BHE) Northeast Reliability Inteconnect (DOE/EIS-0372) (09/12/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Federal Register 6 Federal Register / Vol. 70, No. 175 / Monday, September 12, 2005 / Notices DEPARTMENT OF ENERGY [Docket No. PP-89-1] Notice of Public Hearings for the Proposed Bangor Hydro-Electric Company (BHE) Northeast Reliability Interconnect AGENCY: Department of Energy. ACTION: Notice of public hearings. SUMMARY: The Department of Energy (DOE) announces two public hearings on the ''Draft Environmental Impact Statement for the Bangor Hydro-Electric Company (BHE) Northeast Reliability Interconnect'' (DOE/EIS-0372). The Draft EIS was prepared pursuant to the National Environmental Policy Act of 1969 (NEPA), as amended, 42 U.S.C. 4321 et seq., the Council on Environmental Quality NEPA regulations, 40 CFR parts 1500-1508, and the DOE NEPA regulations, 10 CFR part 1021. The U.S. Fish and Wildlife

356

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1997 Annual Report.  

Science Conference Proceedings (OSTI)

All juvenile fish numbers, sample, collection, and index were down almost 50% from the previous year at John Day Dam (JDA). At Bonneville Dam, sample numbers increased while collection and index numbers stayed about the same. The following report presents results from the 1997 smolt monitoring at John Day and Bonneville dams and represents the fourteenth annual report under this project. The report also contains summaries of data for all years of the program at John Day and Bonneville dams in Appendices C and D.

Martinson, Rick D.; Kamps, Jeffrey W.; Mills, Robert B. (Northwest and Alaska Fisheries Science Center, Environmental and Technical Services Division, Portland, OR)

1998-06-01T23:59:59.000Z

357

Feasibility determination of low-head hydroelectric power development at existing sites. Final report  

DOE Green Energy (OSTI)

This report contains the feasibility study, economic analysis, and information relevant to reactivation of the dam in Bethelehem, NH. It outlines a plan of development which calls for sale of the power to a local utility for the first few years of the project and then predominately on-site use of the power in an innovative plan for controlled-environment agriculture. The economic analyses indicate that reactivation of the dam would be a successful venture based on the present market value of 4.5 cents/kWh. The success of the second phase in the dam's use rests on the increasing financial attractiveness of locally grown produce in a state that currently imports over 90% of its food and is experiencing the spiraling costs of food, energy, and inflation. The best-suited turbine package for the site is an Ossberger 750-kW unit which would provide 4,014,000 kWh per year with a plant factor of 61%. The total capital costs of the project are $827,935.

Polonsky, R.

1979-01-01T23:59:59.000Z

358

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2002 Annual Report.  

DOE Green Energy (OSTI)

The seaward migration of juvenile salmonids was monitored by the Pacific States Marine Fisheries Commission (PSMFC) at John Day Dam, located at river mile 216, and at Bonneville Dam, located at river mile 145 on the Columbia River. The PSMFC Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council's Fish and Wildlife Program and is funded by the Bonneville Power Administration. The purpose of the SMP is to monitor the timing and magnitude of the juvenile salmonid out-migration in the Columbia Basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time and survival estimates and to build a time series data set for future reference. The purpose of the PSMFC portion of the program is to provide the FPC with species and project specific real time data from John Day and Bonneville dams.

Martinson, Rick D.; Ballinger, Dean; Kamps, Jeffrey W. (Pacific States Marine Fisheries Commission, Gladstone, OR)

2003-02-01T23:59:59.000Z

359

Assessment of Natural Stream Sites for Hydroelectric Dams in the Pacific Northwest Region  

DOE Green Energy (OSTI)

This pilot study presents a methodology for modeling project characteristics using a development model of a stream obstructing dam. The model is applied to all individual stream reaches in hydrologic region 17, which encompasses nearly all of Idaho, Oregon, and Washington. Project site characteristics produced by the modeling technique include: capacity potential, principal dam dimensions, number of required auxiliary dams, total extent of the constructed impoundment boundary, and the surface area of the resulting reservoir. Aggregated capacity potential values for the region are presented in capacity categories including total, that at existing dams, within federal and environmentally sensitive exclusion zones, and the balance which is consider available for greenfield development within the limits of the study. Distributions of site characteristics for small hydropower sites are presented and discussed. These sites are screened to identify candidate small hydropower sites and distributions of the site characteristics of this site population are presented and discussed. Recommendations are made for upgrading the methodology and extensions to make the results more accessible and available on a larger scale.

Douglas G. Hall; Kristin L. Verdin; Randy D. Lee

2012-03-01T23:59:59.000Z

360

New England Wind Forum: Can a Wind Project Be a Good Neighbor?  

Wind Powering America (EERE)

Can a Wind Project Be a Good Neighbor? Can a Wind Project Be a Good Neighbor? Compared to the production of energy from fossil fuels and hydroelectric (and its associated fuel procurement and delivery infrastructure, wastes, and dams), a properly located wind project can easily coexist with the community with minimal intrusion. The primary issues of potential concern include sound; shadow flicker; and radar, TV, and radio signal interference. These are examples of real impacts that can be mitigated most readily by increasing the distance between proposed projects and abutters, although achieving setbacks sufficient to completely mitigate all impacts is not always possible. These issues are typically addressed during the planning and development process of the wind project, during which the developer uses computerized tools and specialized consultants to evaluate impacts relative to the site and the surrounding community and determines whether measures are needed to minimize or mitigate any problems identified.

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

362

Analysis of environmental issues related to small-scale hydroelectric development. V. Instream flow needs for fishery resources  

NLE Websites -- All DOE Office Websites (Extended Search)

45b 45b 0554033 I . . ~ ...... . . . . . . . . _ . . _ ~ ~~ ~~ - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . , O R N U T M - 7 8 6 1 Distribution Category UC-97e 0. W-7405-eng-26 ANALYSIS OF ENVIRO RELATED TO SMALL-SCALE HYDROELECTRIC DEVELOPMENT. V. INSTREAM FLOW NEE S FOR FISHERY RESOURCES James M. Loar Michael J. Sale TAL SCIENCES D r v r S - I o N Pub1 i c a t i on No. 1829 Prepared f o r U. S. Department o f Energy, A s s i s t a n t Secretary f o r Conservation and Renewable Energy, D i v i s i o n o f H y d r o e l e c t r i c Resource Development Date Pub1 i shed: October 1981 L Tennessee 37830 UNION CARBIDE ~ O ~ ~ ~ R A T I O N f o r the ENT OF ENERGY 3 445b 0554033 B ACKNOWLEDGMENTS W e thank W i l l i a m Knapp (1I.S. F i s h and W i l d l i f e Service, Region 5) and Mark Robinson (Federal Energy Regulatory Commission) for h

363

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

364

FERC Communication Rpt Cover.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Review Program Review and Special Inquiries Federal Energy Regulatory Commission Communications DOE/IG-0610 June 2003 June 27, 2003 SUBJECT: Federal Energy Regulatory Commission Communications FROM: Gregory H. Friedman (signed) Inspector General BACKGROUND The Office of Inspector General (OIG) conducted an inquiry concerning a telephone conference call allegedly held by Chairman Wood and Commissioner Brownell of the Federal Energy Regulatory Commission (Commission) with a number of Wall Street representatives. Senators Joseph Lieberman and Maria Cantwell asked the OIG to review this matter, citing media reports suggesting that Chairman Wood and Commissioner Brownell had discussed pending contract cases during the call. At issue in these cases is

365

How the solar revolution will melt FERC  

SciTech Connect

To do its share to encourage home-based solar energy, the Federal Energy Regulatory Commission must take the unusual, but appropriate, step of announcing that it will step away from regulating net metering. (author)

Rokach, Joshua Z.

2010-01-15T23:59:59.000Z

366

FERC Ratemaking Process - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Separate the “test period cost of service” into pipeline functions such as gathering, transmission, and storage. ! Classify “functionalized” costs into demand and

367

The Bonneville Flood Debris Field as Sacred Landscape  

E-Print Network (OSTI)

Area for the CJ Strike Hydroelectric Plant, Idaho PowerWithin the Proposed Dike Hydroelectric Project Impact Area.

Pavesic, Max G

2007-01-01T23:59:59.000Z

368

CX-000642: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-000642: Categorical Exclusion Determination Recovery Act: North Little Rock Hydroelectric Department Hydroelectric Facility Improvement Project: Automated Intake Clearing...

369

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1990 Annual Report.  

DOE Green Energy (OSTI)

The seaward migration of salmonid smolts was monitored by the National Marine Fisheries Service (NMFS) at three sites on the Columbia River system in 1990. This project is a part of the continuing Smolt Monitoring Program to monitor Columbia Basin salmonid stocks coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Indian Tribes. It's purpose is to provide timely data to the Fish Passage Managers for in season flow and spill management for fish passage and post-season analysis for travel time, relative magnitude and timing and the smolt migration. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the Smolt Monitoring program, and the Dallas Dam under the Fish Spill Memorandum of Agreement'' for 1990. All pertinent fish capture, condition and brand data, as well as dam operations and river flow data were reported daily to FPC. These data were incorporated into the FPC Fish Passage Data Information System (FPDIS). 10 refs., 8 figs., 1 tab.

Hawkes, Lynette A.

1991-03-01T23:59:59.000Z

370

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1992 Annual Report.  

DOE Green Energy (OSTI)

The seaward migration of salmonid smolts was monitored by the National marine Fisheries Service (NMFS) at two sites on the Columbia River in 1992. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program to index Columbia Basin juvenile salmonied stocks. It is coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Tribes. Its purpose is to facilitate fish passage through reservoirs and at dams by providing FPC with timely smolt migration data used for flow and spill management. Data is also used for travel time, migration timing and relative run size magnitude analysis. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the 1992 Smolt Monitoring Program. All pertinent fish capture, condition, brand recovery, and flow data, were reported daily to FPC. These data were incorporated into the FPC`s Fish Passage Data System (FPDS).

Hawkes, Lynnette A.; Martinson, Rick D.; Absolon, Randall F. (Northwest and Alaska Fisheries Science Center, Environmental and Technical Services Division, Portland, OR)

1993-05-01T23:59:59.000Z

371

Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1993 Annual Report.  

DOE Green Energy (OSTI)

The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1993 (river mile 145 and 216, respectively, Figure 1). The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration. The purpose of the SMP is to index Columbia Basin juvenile salmonid stocks and develop and implement flow and spill requests intended to facilitate fish passage. Data is also used for travel time, migration timing and relative run size magnitude analysis. The purpose of the NMFS portion of the program is to provide FPC with species specific data; numbers, condition, length, brand recaptures and flow data from John Day, and Bonneville Dams on a daily basis.

Wood, Lynette A.; Graves, Ritchie J.; Killins, Susan D. (Northwest and Alaska Fisheries Science Center, Environmental and Technical Services Division, Portland, OR)

1994-04-01T23:59:59.000Z

372

Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project  

DOE Green Energy (OSTI)

The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

2012-12-29T23:59:59.000Z

373

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

374

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

375

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

376

Project 364  

NLE Websites -- All DOE Office Websites (Extended Search)

765-494-5623 lucht@purdue.edu DEVELOPMENT OF NEW OPTICAL SENSORS FOR MEASUREMENT OF MERCURY CONCENTRATIONS, SPECIATION, AND CHEMISTRY Project Description The feasibility of...

377

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State...

378

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

379

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

380

Project 283  

NLE Websites -- All DOE Office Websites (Extended Search)

NJ 07039 973-535 2328 ArchieRobertson@fwc.com Sequestration ADVANCED CO 2 CYCLE POWER GENERATION Background This project will develop a conceptual power plant design...

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project 197  

NLE Websites -- All DOE Office Websites (Extended Search)

will bring economic value to both the industrial customers and to the participating companies. * Complete project by June 2006. Accomplishments A ceramic membrane and seal...

382

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh,...

383

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford...

384

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for...

385

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* Concrete products in this project * Standard 8" concrete blocks * Standard 4' x 8' fiber-cement boards CO 2 The Goals * Maximizing carbon uptake by carbonation (at least...

386

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Evaluating Potential Groundwater Impacts and Natural Geochemical...

387

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date...

388

Project 252  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Global Climate Energy Project Terralog Technologies TransAlta University of Alaska Fairbanks Washington State Department of Natural Resources Western Interstate...

389

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

research partnership to improve the understanding of CO 2 within coal and shale reservoirs. 2 2 3 Presentation Outline * Program Goal and Benefits Statement * Project...

390

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanistic insights 5 Project Overview: Scope of work * Task 1 - Pipeline and Casing Steel Corrosion Studies * Evaluate corrosion behavior of pipeline steels in CO 2 mixtures...

391

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project Program Goals * Technical...

392

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

393

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources...

394

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number...

395

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IN-City-South Bend IN-City-South Bend Location: City South Bend IN American Recovery and Reinvestment Act: Proposed Action or Project Description: 1) Establish an Office of Energy; 2) energy audits of public buildings; 3) replace lighting in Martin Luther King Center, Howard Black Recreation Center, Park Maintenance Building, and Fire Station 6 and install sensors and high efficiency condensing gas ceiling units at Fire Station 6; 4) traffic signal optimization and route optimization for waste trucks; and 5) install an existing 50 kW hydroelectric generator into an existing turbine chamber at the city-owned dam at the East Race Waterway (city has a valid FERC license exemption) and conduct feasibility study for a 1.8 MW hydroelectric generator. Conditions: None

396

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

397

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

398

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

399

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

400

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

402

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

403

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

404

Application for Presidential Permit OE Docket No. PP-387 Soule River Hydroelectric Project: Federal Register Notice, Volume 78, No. 146- July 30, 2013  

Energy.gov (U.S. Department of Energy (DOE))

Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S - Canada Border. 

405

Factors affecting the failure of copper connectors brazed to copper bus bar segments on a 615-MVA hydroelectric generator at Grand Coulee Dam  

DOE Green Energy (OSTI)

On March 21, 1986, the United States Bureau of Reclamation experienced a ground fault in the main parallel ring assembly of Unit G19 - a 615-MVA hydroelectric generator - at Grand Coulee Dam, Washington. Inspection of the unit revealed that the ground fault had been induced by fracture of one or more of the copper connectors used to join adjacent segments of one of the bus bars in the north half of the assembly. Various experimental techniques were used to detect and determine the presence of cracks, crack morphology, corrosion products, and material microstructure and/or embrittlement. The results of these inspections and recommendations are given. 7 refs., 27 figs.

Atteridge, D.G.; Klein, R.F.; Layne, R.; Anderson, W.E.; Correy, T.B.

1988-01-01T23:59:59.000Z

406

Preliminary analysis of legal obstacles and incentives to the development of low-head hydroelectric power in the northeastern United States  

DOE Green Energy (OSTI)

A preliminary analysis of the legal obstacles and incentives to the development of the low-head hydroelectric potential of the 19 northeastern US (Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Ohio, Indiana, Michigan, Illinois, Wisconsin, Kentucky, Maryland, Delaware, Virginia, and West Virginia) is presented. The statutes and case laws of the 19 states and the Federal government which affect developers of small dams are stressed. The legal uncertainty which confronts the developer of small dams and the regulatory burden to which the developer may be subjected once the uncertainty is resolved are emphasized.

Not Available

1980-05-01T23:59:59.000Z

407

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

408

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

409

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

410

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

411

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

412

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

413

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

414

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

415

Project Title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

416

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

417

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of CO 2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural- Genetic Algorithm Project DE FE0009284 Boyun Guo, Ph.D. University of...

418

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

419

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

420

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

422

LUCF Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

423

Project 265  

NLE Websites -- All DOE Office Websites (Extended Search)

The goal of this project is to develop an on-line instrument using multi- wavelength lasers that is capable of characterizing particulate matter (PM) generated in fossil energy...

424

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

"Carbonsheds" as a Framework for Optimizing US CCS Pipeline Transport on a Regional to National Scale DOE-ARRA Project Number DE-FE0001943 Lincoln Pratson Nicholas School of the...

425

Project 114  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototech Company SRI International Kellogg, Brown, and Root ChevronTexaco Sd-Chemie, Inc. COST Total Project Value 20,320,372 DOENon-DOE Share 15,326,608 4,993,764...

426

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

427

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory U.S. Department of Energy Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

428

Project 134  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Goal To demonstrate a "whole plant" approach using by-products from a coal-fired power plant to sequester carbon in an easily quantifiable and verifiable form. Objectives...

429

MANHATTAN PROJECT  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy traces its origins to World War II and  the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the...

430

Project 310  

NLE Websites -- All DOE Office Websites (Extended Search)

carbohydrate generated from agricultural enterprises in the U.S., such as corn wet-milling. This project is studying the production of a suite of specialty chemicals by...

431

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

G., 2011, Design and package of a 14CO2 field analyzer: the Global Monitor Platform (GMP). Proceedings of SPIE, v 8156, p. 81560E 17 DOE-NETL PROJECT REVIEW MEETING 08-21-2012...

432

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

433

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

434

Project 297  

NLE Websites -- All DOE Office Websites (Extended Search)

of this project is to utilize pure oxygen at a feed rate of less than 10% of the stoichiometric requirement in demonstrating the use of oxygen-enhanced combustion in meeting...

435

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D...

436

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D....

437

Pacific Lamprey Research and Restoration Project : Annual Report 2001.  

DOE Green Energy (OSTI)

Pacific lamprey (Lampetra tridentata) has significantly declined along the Oregon coast and in the Columbia River Basin (Downey et al. 1993; Close and Jackson 2001). Declines in adults can be partially attributed to hydroelectric dams, which have impeded passage of adult Pacific lamprey in the Columbia and Snake rivers, thus effecting larval recruitment in the basin. Adult pacific lamprey also declined in numbers in the Umatilla River, a tributary of the Columbia River. In addition to hydro power dams in the Columbia River, habitat alterations and chemical treatments have been involved in the collapse of Pacific lamprey populations in the Umatilla River. To initiate the restoration effort, CTUIR began developing a restoration plan in 1998. The goal of the lamprey research and restoration project is to restore natural production of Pacific lampreys in the Umatilla River to self-sustaining and harvestable level. This report is summarizing the studies and restoration efforts concluded in 2001.

Close, David A.

2002-11-01T23:59:59.000Z

438

U.S. DEP.utTM ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utTM utTM ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DE TEInITNATION RECIPIENT:City of North Little Rock Page 1 of3 STATE: AR PROJECT TITLE: Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System Funding Opportunity Announcement Number DE·FOA.()()()()I20 Procu~ment Instrument Number DE·EEOOO2674 NEPA Control Number em Number GF0-0002674-003 G02674 Based on my review ortbe information concerning the proposed action, as NEPA Compliance Officer (authOrized under DOE Order 4Sl.IA),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Dewription: 85.1 (a) Actions to conserve energy or water, demonstrate potential energy or water conservation, and promote energy

439

Conforth Ranch (Wanaket) Wildlife Mitigation Project : Draft Management Plan and Draft Environmental Assessment.  

SciTech Connect

Bonneville Power Administration (BPA) proposes to mitigate for loss of wildlife habitat caused by the development of Columbia River Basin hydroelectric projects, including McNary dam. The proposed wildlife mitigation project involves wildlife conservation on 1140 hectares (ha)(2817 acres) of land (including water rights) in Umatilla County, Oregon. BPA has prepared an Environmental Assessment (EA)(DOE/EA- 1016) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

United States. Bonneville Power Administration; Confederated Tribes of the Umatilla Reservation, Oregon.

1995-03-01T23:59:59.000Z

440

Department of Energy Appropriate Energy Technology projects for the US Pacific Islands. Final report, 1982  

Science Conference Proceedings (OSTI)

This report describes the status of 18 of the 33 Department of Energy (DOE) Appropriate Energy Technology (AET) Projects on the US Pacific Islands (excluding the Hawaiian Islands) as of August 1, 1982. The projects include: shallow lens water pumping on the Marshall Islands; hydroelectric power systems on Micronesia; hospital solar hot water system on Micronesia; wind and solar equipment for the Aramas Kapw school in Micronesia; sail powered fishing boat in Micronesia; wind electric power project in Micronesia; smokeless cooking stoves in the Marshall Islands; demonstration programs in the Mariana Islands; typhoon-proof greenhouse on Guam; evaporative cooling for buildings in Guam, solar photovoltaic refrigerator in Micronesia; and a solar dryer demonstration in Micronesia.

Case, C.W.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydroelectric Real Options.  

E-Print Network (OSTI)

?? Structural estimation is an important technique in analyzing economic data. Unfortunately, it is often computationally expensive to implement the most powerful and efficient statistical… (more)

Foss, Marius Øverland

2011-01-01T23:59:59.000Z

442

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

443

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

444

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

445

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

446

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

447

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

448

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

449

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

450

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

451

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

452

Project Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

453

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

454

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

455

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

456

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

457

Research projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

458

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

459

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

460

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

462

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

463

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

464

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

465

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

466

Hallmark Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

467

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

468

Hydroacoustic Technologies for Environmental Assessment at Hydro Projects  

Science Conference Proceedings (OSTI)

Hydroacoustic technologies can aid the hydroelectric community in detection, assessment, and monitoring of underwater physical and biological objects and provide the information necessary to manage effectively both hydroelectric resources and aquatic resources. The emphasis of this report is remote sensing and measurement of in-water geophysical and biological features using sound, particularly in rivers and as it relates to hydroelectric applications. Understanding the science of hydroacoustics and ...

2013-12-23T23:59:59.000Z

469

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 3160 of 28,905 results. 51 - 3160 of 28,905 results. Download EM Quality Assurance Centralized Training Platform Project Plan for 2009-2010 Project plan for the development of a centralized quality assurance training platform to develop a consistent approach and methodology to training personnel. http://energy.gov/em/downloads/em-quality-assurance-centralized-training-platform-project-plan-2009 Download EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas (October 2011) http://energy.gov/nepa/downloads/eis-0407-record-decision-0 Download EIS-0456: EPA Notice of Availability of the Final Environmental Impact Statement Cushman Hydroelectric Project (FERC No. 0456)

470

Sanderson, P., Memisevic, R., & Wong, B.-L. W. (2004). Analysing cognitive work of hydroelectricity generation in a dynamic deregulated market. Paper to be published in Proceedings of the 48th  

E-Print Network (OSTI)

electrical generation in the developed world is now conducted within deregulated energy markets, providing. The market component of the work domain analysis appears not to be readily amendable to breakdown); (Vicente, 1999) for hydroelectricity generation in a deregulated market in a way that usefully informs

Queensland, University of

471

Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.  

DOE Green Energy (OSTI)

This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

Childs, Allen B.

2002-03-01T23:59:59.000Z

472

Independent review of estimated load reductions for PJM's small customer load response pilot project  

E-Print Network (OSTI)

Abbreviations ADDF ALM AMR CSP DOE DR ELRP ETS EWH FERC HVa Curtailment Service Provider (CSP) at PJM’s request. LBNLof load control tests. The CSP collected hourly load data

Heffner, G.; Moezzi, M.; Goldman, C.

2004-01-01T23:59:59.000Z

473

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

474

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

475

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

476

Irene Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

477

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

478

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

479

Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

480

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

Note: This page contains sample records for the topic "hydroelectric project ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

482

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

483

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

484

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

485

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO