Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

in three hydroelectric power plants and is currently constructing a fourth, earns income from power sales and maintain stable towns close to the river. We both get the benefits of improved hydroelectric power

2

Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation Cooperative Corporation * Generation and Transmission Cooperative headquartered in Little Rock * Wholesale power provider for 16 distribution cooperatives * Serves about 62% of Arkansas with over 400,000 consumers O b 2 600 MW f i 12 * Owns about 2,600 MW of generation at 12 different facilities. Arkansas Electric Cooperative Corporation Cooperative Corporation 2009 G i b S f A CC 2009 Generation by Energy Source for AECC Owned and Co-Owned Plants * Natural Gas and Oil 4.0% * Wyoming Coal 88.8% * Water 7.2% Water 7.2% Arkansas Electric Cooperative Corporation Cooperative Corporation E i ti H d l t i Existing Hydroelectric Generating Resources

3

Development of an HTS hydroelectric power generator for the hirschaid power station  

Science Journals Connector (OSTI)

This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

Ruben Fair; Clive Lewis; Joseph Eugene; Martin Ingles

2010-01-01T23:59:59.000Z

4

A HIRARC model for safety and risk evaluation at a hydroelectric power generation plant  

Science Journals Connector (OSTI)

Abstract There are many formal techniques for the systematic analysis of occupational safety and health in general, and risk analysis in particular, for power generation plants at hydroelectric power stations. This study was initiated in order to create a HIRARC model for the evaluation of environmental safety and health at a hydroelectric power generation plant at Cameron Highlands in Pahang, Malaysia. The HIRARC model was used to identify the primary and secondary hazards which may be inherent in the system which were determined as a serious threat for plant operation and maintenance. The primary tools of the model consisted of, generic check-lists, work place inspection schemes which included task observation and interview, safety analysis as well as accident and incident investigation. For risk assessment, the Likert scale was complemented by the severity matrix analysis in order to determine the probability and extent of safety and health at the study power generation plant. These were used to identify and recommend control measures which included engineering and administrative aspects as well as the use of personal protective equipment (PPE). A total of forty-one important hazard items were identified in the system at target power generation plant. These hazards were mainly identified by means of checklists which were sourced from literature and subsequently customized for the current purpose. Risk assessment was conducted by initially classifying the hazards into three levels such as Low, Medium and High. Generally 66% of the hazards identified were at low risk, 32% at medium and 2% at high risk. This indicated that there was sufficient awareness and commitment to safety and health at the study power station. Meanwhile the Power Station was also certified by MS 1722:2005, OHSAS 18001, MS ISO 14001:2004, MS ISO 9001:2000 and scheduled waste regulation 2005 which give credibility to the current study in creating a working model which may find widespread application in the future.

A.M. Saedi; J.J. Thambirajah; Agamuthu Pariatamby

2014-01-01T23:59:59.000Z

5

Chapter 21 - Hydroelectric Power  

Science Journals Connector (OSTI)

Hydroelectric power (hydropower) is a renewable energy source where electrical power is derived from the energy of water moving from higher to lower elevations. It is a proven, mature, predictable and price competitive technology. Hydropower has the best conversion efficiencies among all known energy sources (about 90 % efficiency, water to wire). It requires relatively high initial investment, but has a long lifespan with very low operation and maintenance costs. The existing hydropower system has an annual generation capacity of 3500 TW·h·a?1 and contributes to 16 % of the annual electricity generation worldwide. There is still a large potential for further development, as the total technical potential has been estimated to be roughly 15 000 TW·h. Out of this, about 8000 TW·h has been classified as economical potential. In Europe close to 50 % of technical potential has already been developed, in Asia 25 % and in Africa only 8 %. Significant potential can also be found in existing infrastructure that currently lacks generating units (e.g. existing barrages, weirs, dams, canal fall structures, water supply schemes) by adding new hydropower facilities. Only 25 % of the existing 45 000 large dams in the world are currently used for hydropower, the other 75 % are used exclusively for other purposes (e.g. irrigation, flood control, navigation and urban water supply schemes). Hydropower offers significant potential for carbon emissions reductions, since greenhouse gas (GHG) emissions are generally very low, typically less than 1 % of that from coal power plants. Hydropower is cost competitive, with levelised cost of energy (LCOE) typically in the range (3 to 5) USc·(kW·h)?1, which is comparable to the cost of energy from thermal power plants. Hydropower has an energy payback ratio (EPR) of 200–300, highest of all types of renewable energies. Hydropower can provide both energy and water management services and also help to support other variable renewable energy sources like wind and solar, by providing storage and load balancing services.

Ånund Killingtveit

2014-01-01T23:59:59.000Z

6

Energy 101: Hydroelectric Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Hydroelectric Power Energy 101: Hydroelectric Power Energy 101: Hydroelectric Power August 13, 2013 - 2:27pm Addthis Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Humans have been using water to generate power for thousands of years. Hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity, which is then fed into the electrical grid to be used in homes and businesses. This edition of Energy 101 shows how the Energy Department is supporting the development of new hydropower technologies to produce clean, renewable, and reliable power here in the United States. For more information on hydropower from the Office of Energy Efficiency and

7

Spring-Supported thrust bearings for hydroelectric generators: Influence of oil viscosity on power loss  

Science Journals Connector (OSTI)

Energy losses in the spring-supported thrust bearings used in many large hydroelectric generator units were estimated to be small compared to the rate of energy (power) generation but, nevertheless, commercially significant. The purpose of the present study was examine the influence of oil viscosity on power loss. Experiments were performed using a test facility containing a thrust bearing of 1.2 m outer diameter and both power loss and temperature rise were measured for oils of ISO grade 32, 46 and 68, all at various oil pot temperatures. Power loss and temperature rise decreased as the viscosity of the oil in the oil pot decreased. Minimum oil film thicknesses were predicted with numerical analysis using a specialized software package (GENMAT). The accuracy of this calculation was supported by the good agreement between the temperature rise predicted by numerical analysis and the experimentally determined values. Provided film thickness were adequate to avoid any danger of wiping (10 – 15 ?m), the present study showed clearly that significant energy savings could be realized in the large spring-supported thrust bearings and associated guide bearings by lowering oil viscosities.

J.H. Ferguson; J.H. Yuan; J.B. Medley

1998-01-01T23:59:59.000Z

8

Definition: Hydroelectric power | Open Energy Information  

Open Energy Info (EERE)

power power Jump to: navigation, search Dictionary.png Hydroelectric power The use of flowing water to power a turbine to produce electrical energy.[1] View on Wikipedia Wikipedia Definition Hydroelectricity is the term referring to electricity generated by hydropower; the production of electrical power through the use of the gravitational force of falling or flowing water. It is the most widely used form of renewable energy, accounting for 16 percent of global electricity generation - 3,427 terawatt-hours of electricity production in 2010, and is expected to increase about 3.1% each year for the next 25 years. Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. China is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010,

9

The role of hydroelectric generation in electric power systems with large scale wind generation .  

E-Print Network [OSTI]

??An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to… (more)

Hagerty, John Michael

2012-01-01T23:59:59.000Z

10

The role of hydroelectric generation in electric power systems with large scale wind generation  

E-Print Network [OSTI]

An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

Hagerty, John Michael

2012-01-01T23:59:59.000Z

11

Automation of hydroelectric power plants  

SciTech Connect (OSTI)

This paper describes how the author's company has been automating its hydroelectric generating plants. The early automations were achieved with a relay-type supervisory control system, relay logic, dc tachometer, and a pneumatic gate-position controller. While this system allowed the units to be started and stopped from a remote location, they were operated at an output that was preset by the pneumatic control at the generating site. The supervisory control system at the site provided such information as unit status, generator breaker status, and a binary coded decimal (BCD) value of the pond level. The generating units are started by energizing an on-site relay that sets the pneumatic gate controller to a preset value above the synchronous speed of the hydroelectric generator. The pneumatic controller then opens the water-wheel wicket gates to the preset startup position. As the hydroelectric generator starts to turn, the machine-mounted dc tachometer produces a voltage. At a dc voltage equivalent to synchronous speed, the generator main breaker closes, and a contact from the main breaker starts a field-delay timer. Within a few seconds, the field breaker closes. Once the cycle is complete, a relay changes the pneumatic setpoint to a preset operating point of about 8/10 wicket gate opening.

Grasser, H.S. (Consolidated Papers, Inc., Wisconsin Rapids, WI (US))

1990-03-01T23:59:59.000Z

12

Model-Free Based Water Level Control for Hydroelectric Power Plants  

E-Print Network [OSTI]

Model-Free Based Water Level Control for Hydroelectric Power Plants Cédric JOIN Gérard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned, the set-point is followed even in severe operating conditions. Keywords: Hydroelectric power plants

Paris-Sud XI, Université de

13

Hydroelectric Voltage Generation Based on Water-Filled Single-Walled Carbon Nanotubes  

Science Journals Connector (OSTI)

Hydroelectric Voltage Generation Based on Water-Filled Single-Walled Carbon Nanotubes ... The hydroelectric voltage generator can be expressed by the model illustrated in Figure 6a and b. ... Individual water-filled single-walled carbon nanotubes as hydroelectric power converters ...

Quanzi Yuan; Ya-Pu Zhao

2009-04-21T23:59:59.000Z

14

Karnataka power sector: a case for hydroelectric power  

Science Journals Connector (OSTI)

Karnataka, a southern state in India, flanked by the rich tropical forests of the Western Ghats, has a large potential for hydroelectric power, only a third of which has been harnessed so far. Only about two decades back, this state had surplus power/energy. The state has of late been going through an acute power crisis due to the unplanned growth of industry, unmetered energy supply to the agricultural sector, large losses in transmission, distribution and inefficient utilisation of electrical energy. Stalling of some hydroelectric projects on environmental issue and delaying the completion of some due to shortage of funds have aggravated the crisis. Coal-based thermal generators are already providing 630 MW of power and more are to be installed soon. A 470 MW nuclear generating station is about to be completed. While this drive for increasing power generation is on, the sustainability of this effort from the economic and environmental view point is being seriously questioned. An alternative end-use-oriented approach to energy planning has been proposed which is described as an 'environmentally sound development pathway'. It seems unlikely, however, that this path will be followed to its end, not at least in the near future. A prudent combination of: (a) hydroelectric power generation, large and small, (b) energy conservation and end-use-oriented energy utilisation to the extent feasible, may be the most economically and environmentally suitable option for some time to come - particularly for Karnataka State.

D.P. Sen Gupta

1997-01-01T23:59:59.000Z

15

Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric | Open  

Open Energy Info (EERE)

Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Jump to: navigation, search Tool Summary Name: Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Agency/Company /Organization: United States Agency for International Development Sector: Energy Resource Type: Training materials Website: www.energytoolbox.org/gcre/mod_4/index.shtml Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric Screenshot References: Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric[1] Logo: Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric GCREhydro.JPG References ↑ "Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric" Retrieved from "http://en.openei.org/w/index.php?title=Grid-Connected_Renewable_Energy_Generation_Toolkit-Hydroelectric&oldid=375082

16

Canadian Hydro-Electric Power Development  

Science Journals Connector (OSTI)

... to investigate more widely, though admittedly in a superficial manner, the present stage of hydroelectric power development in the province of Quebec, where he visited power-sites and waterfalls ... Out of the impressive total, whatever it may be, so far the actual utiHsable turbine installations established at the present time yield only 4| million h.p.-a very ...

BRYSSON CUNNINGHAM

1927-08-27T23:59:59.000Z

17

Hybrid Modeling and Control of a Hydroelectric Power Plant  

E-Print Network [OSTI]

Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

Ferrari-Trecate, Giancarlo

18

Electromagnetic Analysis of Rotating Permanent Magnet Exciters for Hydroelectric Generators.  

E-Print Network [OSTI]

??The purpose of this project is to analyse different design possibilities for a rotating permanent magnet exciter for a hydroelectric generator. This is done through… (more)

Nöland, Jonas

2013-01-01T23:59:59.000Z

19

Lost films chronicle dawn of hydroelectric power in the Northwest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lost-films-chronicle-dawn-of-hydroelectric-power-in-the-Northwest Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects &...

20

Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sichuan Province, China Sector: Hydro Product: China-based developer and operator of small hydro plants. References: Asia Power (Leibo) Hydroelectricity Co Ltd1 This article...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Unusual Condition Mining for Risk Management of Hydroelectric Power Plants  

Science Journals Connector (OSTI)

Kyushu Electric Power Co.,Inc. collects different sensor data and weather information to maintain the safety of hydroelectric power plants while the plants are running. In this paper, we consider that the abnormal condition sign may be unusual condition. ...

Takashi Onoda; Norihiko Ito; Hironobu Yamasaki

2006-12-01T23:59:59.000Z

22

Market Offering Strategies for Hydroelectric Generators  

Science Journals Connector (OSTI)

This paper considers the problem of offering electricity produced by a series of hydroelectric reservoirs to a pool-type central market. The market model is a simplified version of the New Zealand wholesale electricity market, with prices modelled by ... Keywords: Dynamic programming: finite state, markov, Natural resources: energy, water resources, Probability: markov processes

G. Pritchard; G. Zakeri

2003-07-01T23:59:59.000Z

23

HYDROELECTRIC SYSTEM DESIGN.  

E-Print Network [OSTI]

??Hydroelectric power generation is not a viable option as a prime source of electrical energy for the Pico Blanco Boy Scout Camp, as determined by… (more)

Brown, Timothy McDonnell

2010-01-01T23:59:59.000Z

24

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

25

Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control Approach  

E-Print Network [OSTI]

Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control of Waterloo, Waterloo ON, Canada N2L 3G1 Abstract. In this paper, we value hydroelectric power plant cash operational constraints may considerably overestimate the value of hydroelectric power plant cashflows. 1

Forsyth, Peter A.

26

Strategic analysis of the Great Canadian Hydroelectric Power Conflict  

Science Journals Connector (OSTI)

Abstract The contract negotiation that led to the 1969 agreement between Newfoundland and Labrador, and Quebec, is systemically analyzed within the framework of Graph Model for Conflict Resolution. The Great Canadian Hydroelectric Power Conflict has been ongoing since 1963 and shows no signs of ending. In this dispute, the Province of Quebec has the right to buy almost all of the power generated from the Upper Churchill Falls, which is located in the Labrador territory in Newfoundland and Labrador, at a very low price. Originally, the contract was signed by Churchill Falls Labrador Corporation to secure finances for the Upper Churchill Falls development. The unpopularity of the contract led to several unsuccessful attempts by the Newfoundland and Labrador Government to escape its provisions. Newfoundland and Labrador is currently negotiating to develop the Lower Churchill Project and seeking to avoid the mistakes of the first contract. Furthermore, the automatic renewal clause of the original contract is expected to cause another round of conflict in 2016. The analysis shows that, given the circumstances in which the agreement was signed, the outcome was almost inevitable. A third party intervener rule could have remediated the damage caused by the conflict.

Yasser T. Matbouli; Keith W. Hipel; D. Marc Kilgour

2014-01-01T23:59:59.000Z

27

CLIMATE CHANGE IMPACTS ON HYDROELECTRIC POWER G.P. Harrison(1),  

E-Print Network [OSTI]

CLIMATE CHANGE IMPACTS ON HYDROELECTRIC POWER G.P. Harrison(1), H.W. Whittington(1) and S.W. Gundry implications for the design, operation and viability of hydroelectric power stations. This describes attempts to predict and quantify these impacts. It details a methodology for computer based modelling of hydroelectric

Harrison, Gareth

28

Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS  

SciTech Connect (OSTI)

This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

Hodge, B.-M.; Lew, D.; Milligan, M.

2011-07-01T23:59:59.000Z

29

Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint  

SciTech Connect (OSTI)

This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-10-01T23:59:59.000Z

30

Underwater noise generated by Columbia River hydroelectric dams  

Science Journals Connector (OSTI)

Low?frequency (10–1000 Hz) underwater noise measurements have been made in water within and upstream from four Columbia River hydroelectric dams. The motivation for these measurements was to map out the sound field within and upstream from the power dams as a first step in understanding the effect of this field on the behavior of migrating salmonids that must choose between the bypass system or intakes to the turbines. Eventually sound may be used to guide the juvenile fish safely past the turbine intakes and into the bypass system. Thus far single hydrophonemeasurements have been made in the bypass slots within the dam and at a number of locations upstream from the dam. The noise level varies with location decreasing as the hydrophone is moved upsteam from the dam and as the hydrophone is moved closer to the water surface immediately upstream of the dam as well as in the bypass slot. The noise spectra below 200 Hz are highly modulated displaying one or more sharp peaks which indicates resonances in the structural generating mechanism or propagation path. The spectrum level and modulation vary significantly from one dam to another and sometimes from one configuration to another (e.g. when one of the turbines is on or off). A final set of measurements will be made at the Bonneville Dam using several hydrophones placed at a number of locations in the vicinity of the intake channel and these may help identify sources and propagation paths to the hydrophone. [Work sponsored by U. S. Army Corps of Engineers.

Robert T. Miyamoto; Steven O. McConnell; James J. Anderson; Blake E. Feist

1989-01-01T23:59:59.000Z

31

Induced hydroelectric energy generated by compressing a single-walled carbon nanotube hydrogel  

Science Journals Connector (OSTI)

Using single-walled carbon nanotubes (SWCNTs) for energy harvesting and storage have attracted much attention recently because SWCNTs have supercapacity performance. In this paper we report a simple electromechanical approach for the generation of induced electrical potential by the compression of a SWCNT-triggered sodium deoxycholate hydrogel. This hydrogel enhances the electrical potential generated under compression and this is mainly because of the generation of hydroelectric power by the flow of water over the SWCNTs. The induced voltage was 63.1?mV upon the compression of a 4% SWCNT hydrogel to a compression ratio of 50% which is superior to values reported previously. The enhancement in hydroelectric potential increased with SWCNT loading in the hydrogel and with the compression ratio because of an enhancement of the impact frequency between water molecules and the SWCNTs.

2014-01-01T23:59:59.000Z

32

E-Print Network 3.0 - alto hydroelectric power Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Renewable Energy 17 RENEWABLE RESOURCES DEVELOPMENT REPORT Summary: hydroelectric, and solar (photovoltaic and concentrated solar power) in California is more than 262,000...

33

Optimization of Technical Diagnostics Procedures for Hydroelectric Power Plants  

Science Journals Connector (OSTI)

In this paper, a mathematical model is proposed for determination of the optimal solution for the maintenance system of a specific steel structure – the hydraulic power plant. The aim is to obtain the maximum efficiency of the plant within existing conditions and limitations. The objective of a mathematical model is to select the diagnostics parameters, which define knowledge of the permissible reliability level and certain analytic expression, which corresponds to precisely described state of hydroelectric power plant components assembly. Model of technical diagnostics procedures optimization represents a specific approach to problems of preventive maintaining according to state. It is related to the concept of state parameters change, which represents a basis for obtaining the optimal solution for procedures of technical diagnostics. It also creates direct relations between the law of the state parameter changes and reliability of the considered power plant components.

D. Nikoli?; R.R. Nikoli?; B. Krsti?; V. Lazi?; I.Ž. Nikoli?; I. Krsti?; V. Krsti?

2012-01-01T23:59:59.000Z

34

Water-Power Development, Conservation of Hydroelectric Power Dams and Works  

Broader source: Energy.gov (indexed) [DOE]

Water-Power Development, Conservation of Hydroelectric Power Dams Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission It is the policy of the Commonwealth of Virginia to encourage the utilization of its water resources to the greatest practicable extent, to control the waters of the Commonwealth, and also to construct or reconstruct dams in any rivers or streams within the Commonwealth for the

35

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

36

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

37

"1. Robert Moses Niagara","Hydroelectric","New York Power Authority",2353  

U.S. Energy Information Administration (EIA) Indexed Site

York" York" "1. Robert Moses Niagara","Hydroelectric","New York Power Authority",2353 "2. Ravenswood","Gas","TC Ravenswood LLC",2330 "3. Nine Mile Point Nuclear Station","Nuclear","Nine Mile Point Nuclear Sta LLC",1773 "4. Oswego Harbor Power","Petroleum","NRG Oswego Harbor Power Operations Inc",1648 "5. Northport","Gas","National Grid Generation LLC",1569 "6. Astoria Generating Station","Gas","U S Power Generating Company LLC",1315 "7. Roseton Generating Station","Gas","Dynegy Northeast Gen Inc",1212 "8. Blenheim Gilboa","Pumped Storage","New York Power Authority",1160

38

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Broader source: Energy.gov [DOE]

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

39

Proceedings of: ''Formal Methods Europe'', March 1996, Oxford, UK, LNCS 1051, Springer Automatic Verification of a Hydroelectric Power  

E-Print Network [OSTI]

Verification of a Hydroelectric Power Plant 1 Rosario Pugliese Enrico Tronci Dip. di Scienze dell@univaq.it Abstract. We analyze the specification of a hydroelectric power plant by ENEL (the Italian Electric Company we report on the analysis of a hydroelectric power plant by ENEL (the Italian Electric Company). Our

Tronci, Enrico

40

Abstract--Limiting the emissions of greenhouse gases from power generation will depend, among other things, on the  

E-Print Network [OSTI]

................................................................................................. 17 3.3.5 Hydroelectric Power

Harrison, Gareth

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)  

E-Print Network [OSTI]

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

Bookhagen, Bodo

42

What is the role of hydroelectric power in the United States?  

Reports and Publications (EIA)

The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

2011-01-01T23:59:59.000Z

43

Vibrant fault diagnosis for hydroelectric generator units with a new combination of rough sets and support vector machine  

Science Journals Connector (OSTI)

The fault diagnosis for hydroelectric generator unit (HGU) is significant to prevent dangerous accidents from occurring and to improve economic efficiency. The faults of HGU involve overlapping fault patterns which may denote a kind of faults in the ... Keywords: Fault diagnosis, Hydroelectric generator unit, Rough sets, Support vector machine

Xiaoyuan Zhang; Jianzhong Zhou; Jun Guo; Qiang Zou; Zhiwei Huang

2012-02-01T23:59:59.000Z

44

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve  

SciTech Connect (OSTI)

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

Jager, Yetta [ORNL; Smith, Brennan T [ORNL

2008-02-01T23:59:59.000Z

45

"1. Brownlee","Hydroelectric","Idaho Power Co",744 "2. Dworshak","Hydroelectric","USCE-North Pacific Division",400  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "1. Brownlee","Hydroelectric","Idaho Power Co",744 "2. Dworshak","Hydroelectric","USCE-North Pacific Division",400 "3. Cabinet Gorge","Hydroelectric","Avista Corp",255 "4. Rathdrum Power LLC","Gas","Rathdrum Operating Services Co., Inc.",248 "5. Evander Andrews Power Complex","Gas","Idaho Power Co",247 "6. Palisades","Hydroelectric","U S Bureau of Reclamation",176 "7. Bennett Mountain","Gas","Idaho Power Co",164 "8. Rathdrum","Gas","Avista Corp",132 "9. Goshen Phase II","Other Renewables","AE Power Services LLC",125

46

Pumped storage for hydroelectric power. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 198 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

47

Pumped storage for hydroelectric power. (Latest citations from Fluidex data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 192 citations and includes a subject term index and title list.)

Not Available

1992-09-01T23:59:59.000Z

48

A novel KICA–PCA fault detection model for condition process of hydroelectric generating unit  

Science Journals Connector (OSTI)

Abstract Fault detection and diagnosis of hydroelectric generating unit (HGU) have significant importance to the security of hydropower plant and the power system. In recent years, many fault detection methods based on spectral characteristic of vibration signals have been published. However, some faults cannot be effectively recognized just with spectral features for condition process monitoring of HGU. Thus, this study presents a novel fault detection model based on kernel independent component analysis and principal component analysis (KICA–PCA) monitoring model for condition process of HGU. Each of the condition processes is equivalent to a multivariate statistical process monitoring (MSPM). KICA–PCA model of the specific MSPM is trained by normal condition process data at first. Then, confidence limits of two monitoring indices (Hotelling’s T2 statistic and SPE statistic) of the trained KICA–PCA model are used to monitor the same condition process and detect fault online. Moreover, the proposed monitoring model is applied to a real condition process of HGU. Compared to ICA–PCA and PCA monitoring model, the proposed model has superior performance in fault detection.

Wenlong Zhu; Jianzhong Zhou; Xin Xia; Chaoshun Li; Jian Xiao; Han Xiao; Xinxin Zhang

2014-01-01T23:59:59.000Z

49

Efficiency analysis of hydroelectric generating plants: A case study for Portugal  

Science Journals Connector (OSTI)

This paper estimates changes in total productivity, breaking this down into technically efficient change and technological change, by means of data envelopment analysis (DEA) applied to the hydroelectric energy generating plants of EDP — the Portugal Electricity Company. The aim of this procedure is to seek out those best practices that will lead to improved performance in the energy market. We rank the plants according to their change in total productivity for the period 2001–2004, concluding that some plants experienced productivity growth while others experienced a decrease in productivity. The implications arising from the study are that EDP should adopt an internal benchmark management procedure in order to evaluate the relative position of each hydroelectric generating plant and to adopt managerial strategies designed to catch up with the frontier of “best practices”. As the frontier is shifting along the time, constant efforts are needed in this respect along the time.

Carlos Pestana Barros

2008-01-01T23:59:59.000Z

50

Energy Department Accepting Applications for a $3.6 Million Hydroelectric Production Incentive Program  

Broader source: Energy.gov [DOE]

The Energy Department today announced an incentive program for developers adding hydroelectric power generating capabilities to existing non-powered dams throughout the United States.

51

Canadian Hydro-Electric Power Development during 1929  

Science Journals Connector (OSTI)

... be found that the present recorded water power resources of the Dominion will permit of turbine installations aggregating about 43,700,000 horse-power.

BRYSSON CUNNINGHAM

1930-05-31T23:59:59.000Z

52

Power production of hydroelectric stations calculated for providing fuel to power systems with a large share of hydroelectric stations  

Science Journals Connector (OSTI)

1. With the existing capacity of fuel depots at thermal power stations in the Siberian power pool, the following...

A. Sh. Reznikovskii; M. I. Rubinshtein

1997-03-01T23:59:59.000Z

53

Hydroelectric power plant management relying on neural networks and expert system integration  

Science Journals Connector (OSTI)

The use of Neural Networks (NN) is a novel approach that can help in taking decisions when integrated in a more general system, in particular with expert systems. In this paper, an architecture for the management of hydroelectric power plants is introduced. This relies on monitoring a large number of signals, representing the technical parameters of the real plant. The general architecture is composed of an Expert System and two NN modules: Acoustic Prediction (NNAP) and Predictive Maintenance (NNPM). The NNAP is based on Kohonen Learning Vector Quantization (LVQ) Networks in order to distinguish the sounds emitted by electricity-generating machine groups. The NNPM uses an ART-MAP to identify different situations from the plant state variables, in order to prevent future malfunctions. In addition, a special process to generate a complete training set has been designed for the ART-MAP module. This process has been developed to deal with the absence of data about abnormal plant situations, and is based on neural nets trained with the backpropagation algorithm.

J.M. Molina; P. Isasi; A. Berlanga; A. Sanchis

2000-01-01T23:59:59.000Z

54

Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Wind Power High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Prepared under Task No. WE110810 Technical Report NREL/TP-5500-52251 July 2011 NOTICE

55

Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including a  

E-Print Network [OSTI]

Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including that minimizes losses in the transmission and costs in the generation of a hydroelectric power system, formulated such perturbing parameter. Keywords-- Hydroelectric power system, Network flow, Predispatch, Primal-dual interior

Oliveira, Aurélio R. L.

56

Floating type ocean wave power station equipped with hydroelectric unit  

Science Journals Connector (OSTI)

The authors have invented the unique ocean wave power station, which is composed of the floating ... wave pitch and the counter-rotating type wave power unit, its runners are submerged in the ... as requested, be...

Shun Okamoto; Toshiaki Kanemoto; Toshihiko Umekage

2013-10-01T23:59:59.000Z

58

rom the beginning of time, the power of water has captured the human imagination and influenced  

E-Print Network [OSTI]

is an essential water-supply reservoir for irrigation, hydroelectric power generation,81 and municipal demands

59

Unsupervised neural network for forecasting alarms in hydroelectric power plant  

Science Journals Connector (OSTI)

Power plant management relies on monitoring many signals that represent the technical parameters of the real plant. The use of neural networks (NN) is a novel approach that can help to produce decisions when i...

P. Isasi-Viñuela; J. M. Molina-López…

1997-01-01T23:59:59.000Z

60

A New Hydro-Electric Power Scheme in Sweden  

Science Journals Connector (OSTI)

... in the south consists of a high-voltage feeder carried direct down to a main substation at Horndal in South Dalecarlia. It is thus within convenient range of Stockholm and ... weight is 427 tons. The main transmission line connects the generating station to the Horndal substation, and as the transmission conductors work at 220 kilovolts, it was necessary to make ...

1937-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Impacts of Wind Power Integration on Sub-Daily Variation in River Flows Downstream of Hydroelectric Dams  

Science Journals Connector (OSTI)

The Impacts of Wind Power Integration on Sub-Daily Variation in River Flows Downstream of Hydroelectric Dams ... Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. ... In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). ...

Jordan D. Kern; Dalia Patino-Echeverri; Gregory W. Characklis

2014-07-25T23:59:59.000Z

62

Legal obstacles and incentives to the development of small scale hydroelectric power in New York  

SciTech Connect (OSTI)

The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The first step the small scale hydroelectric developer must take is that of acquiring title to the real property comprising the development site. The real estate parcel must include the requisite interest in the land adjacent to the watercourse, access to the underlying streambed and where needed, the land necessary for an upstream impoundment area. Land acquisition may be effectuated by purchase, lease, or grant by the state. In addition to these methods, New York permits the use of the eminent domain power of the state for public utilities under certain circumstances.

None,

1980-05-01T23:59:59.000Z

63

Kingairloch Hydroelectric Scheme  

Science Journals Connector (OSTI)

Worldwide today the installed capacity of hydroelectric power stations is of the order of...9) supplying some 3,000 TWh (where T = 1012).

Dr. Reginald W. Herschy

2012-01-01T23:59:59.000Z

64

Membrane-based processes for sustainable power generation using water  

Science Journals Connector (OSTI)

... 18 GW of salinity-gradient power. Although 800 GW of power is currently obtained from hydroelectric processes globally, salinity-gradient energy remains a large and untapped resource. Capturing this energy ... not ions — through the membranes to produce pressurized water that generates electricity using mechanical turbines. RED uses membranes for ion — but not water — transport, and the electrical ...

Bruce E. Logan; Menachem Elimelech

2012-08-15T23:59:59.000Z

65

upper (hydroelectric) development  

Science Journals Connector (OSTI)

upper (hydroelectric) development, upper (hydroelectric) station, upstream (hydroelectric) development, upstream (hydroelectric) station ? Oberstufe f, oberes Wasserkraftwerk n, Oberliegerkraftwerk

2014-08-01T23:59:59.000Z

66

Innovative reservoir sediments reuse and design for sustainability of the hydroelectric power plants  

Science Journals Connector (OSTI)

Abstract In the process of producing hydroelectricity, plants all over the world are faced with the problem of reservoir sediment. If this sediment is removed but not properly disposed of, it can become a secondary pollutant. This study proposes a way to resolve this problem through reuse and recycling. In this study, the process is based on Design for Six Sigma (DFSS) where reservoir sediment and the masonry waste from the construction industry are combined with cement and a curing agent. The resulting mixture transforms into a high strength, non-sintered cured brick after 28 days of natural curing. This product is a new walling material that is friendly to environment, fulfill the goal of energy conservation, waste recycle, protect ecosystems, and promote sustainable development. Large scale recycling of reservoir sediment solves the problems that reservoir sediment poses, as well as increasing the capacity of reservoirs and the effectiveness of hydroelectric power plants. The green milestone reached by the technology is of great industrial, economic and social significance.

Yung-Lung Cheng; Hui-Ming Wee; Ping-Shun Chen; Yu-Yu Kuo; Guang-Jin Chen

2014-01-01T23:59:59.000Z

67

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

68

S. 522: A Bill to provide for a limited exemption to the hydroelectric licensing provisions of part I of the Federal Power Act for certain transmission facilities associated with the El Vado Hydroelectric Project in New Mexico. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session  

SciTech Connect (OSTI)

This report discusses a bill that provides for a limited exemption to part I of the Federal Power Act dealing with the hydroelectric licensing provisions for certain transmission facilities associated with the El Vado Hydroelectric project in New Mexico.

NONE

1995-12-31T23:59:59.000Z

69

Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand.  

E-Print Network [OSTI]

??Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows… (more)

Kear, Gareth

2011-01-01T23:59:59.000Z

70

E-Print Network 3.0 - assessment uri hydroelectric Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

uri hydroelectric Search Powered by Explorit Topic List Advanced Search Sample search results for: assessment uri hydroelectric Page: << < 1 2 3 4 5 > >> 1 FUTURE HYDROELECTRIC...

71

Influence of Modern Hydro-Electric Power Development on the British Coal Trade  

Science Journals Connector (OSTI)

... rise to a pertinent and interesting inquiry as to the influence this widespread creation of hydroelectric energy is having, and is likely to have, upon the output and use of ... abroad.

BRYSSON CUNNINGHAM

1931-09-05T23:59:59.000Z

72

Angara–Yenisei Hydroelectric Schemes  

Science Journals Connector (OSTI)

... the Rivers Angara and Yenisei will have 'cascades' of six dams, providing power for hydroelectric stations. The largest of these, situated at Bratsk, on the River Angara, was ...

1961-10-14T23:59:59.000Z

73

A case study on thrust bearing failures at the SÃO SIMÃO hydroelectric power plant  

Science Journals Connector (OSTI)

Abstract After twenty years without any apparent problems on their combined guide and thrust bearings, the six 280 MW hydrogenerators of the São Simão Hydroelectric Power Plant were failing. The source of the failure was the melting of the thrust pad babbitt lining. The machines began showing performance failures, leading to a sudden interruption in their operation. This caused considerable losses with high direct and indirect costs. The solution proposed by the bearing manufacturer was an improvement in the bearing design and the installation of new water–oil heat exchangers. The direct cost of their solution was estimated to be US $2,400,000.00. In a search for a less expensive alternative, CEMIG started a parallel study focused on the heat exchangers. A methodology based on heat transfer was applied, indicating that an increase in the heat exchange surface area could solve the problem. A third heat exchanger was added in one machine that already possessed two. The results fulfilled the preliminary predictions, eliminating the risk of additional babbitt lining failures. As a consequence of this success modeling, heat exchangers were replaced by stainless steel plate ones in all machines. This alternative solution had a total direct cost of US $600,000.00.

Matheus P. Porto; Licínio C. Porto; Ricardo N.N. Koury; Ernani W. Soares; Fernanda G. Coelho; Luiz Machado

2013-01-01T23:59:59.000Z

74

Life cycle assessment of a community hydroelectric power system in rural Thailand  

Science Journals Connector (OSTI)

Rural electrification and the provision of low cost, low emission technology in developing countries require decision makers to be well informed on the costs, appropriateness and environmental credentials of all available options. While cost and appropriateness are often shaped by observable local considerations, environmental considerations are increasingly influenced by global concerns which are more difficult to identify and convey to all stakeholders. Life cycle assessment is an iterative process used to analyse a product or system. This study iteratively applies life cycle assessment (LCA) to a 3 kW community hydroelectric system located in Huai Kra Thing (HKT) village in rural Thailand. The cradle to grave analysis models the hydropower scheme’s construction, operation and end of life phases over a period of twenty years and includes all relevant equipment, materials and transportation. The study results in the enumeration of the environmental credentials of the HKT hydropower system and highlights the need to place environmental performance, and LCA itself, in a proper context. In the broadest sense, LCA results for the HKT hydropower system are found to reflect a common trend reported in hydropower LCA literature, namely that smaller hydropower systems have a greater environmentally impact per kWh – perform less well environmentally - than larger systems. Placed within a rural electrification context, however, the HKT hydropower system yields better environmental and financial outcomes than diesel generator and grid connection alternatives.

Andrew Pascale; Tania Urmee; Andrew Moore

2011-01-01T23:59:59.000Z

75

Hydroelectric Developments and Engineering A Practical and Theoretical Treatise on the Development, Design, Construction, Equipment, and Operation of Hydroelectric Transmission Plants  

Science Journals Connector (OSTI)

... HYDROELECTRIC power plants do not call for the same attention in this country as in America ... The mountains and the forests, the streams and the waterfalls—for the generating stations of hydroelectric plants are usually away out among the beauties of nature—all bring back memories of ...

STANLEY P. SMITH

1910-12-15T23:59:59.000Z

76

Wind power generating system  

SciTech Connect (OSTI)

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

77

Brookfield Renewable Power Corp formerly Brascan Power Corp ...  

Open Energy Info (EERE)

Sector: Hydro, Wind energy Product: Toronto-based owner, operator and developer of hydroelectric power facilities, co-generation and wind power assets. Coordinates: 43.64856,...

78

rom the beginning of time, the power of water has captured the human imagination and influenced  

E-Print Network [OSTI]

construction as part of the Pirrís hydroelectric power project in Costa Rica, designed to generate 128 MW

79

Peak power ratio generator  

DOE Patents [OSTI]

A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

Moyer, Robert D. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

80

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Siemens Power Generation, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Pittsburgh Coal Conference 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 © Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic Combustor for Fuel Flexible Turbines W. R. Laster Siemens Westinghouse Power Corporation Abstract Siemens has been working on a catalytic combustor for natural gas operation for several years using the Rich Catalytic Lean (RCL TM ) design. The design has been shown to produce low NOx emissions on natural gas operation. By operating the catalyst section fuel rich, the design shows considerable promise for robust operation over a wide range of fuel compositions including syngas. Under the sponsorship of the U. S. Department of Energy' s National Energy Technology Laboratory, Siemens Westinghouse is conducting a three year

82

Cost assessment of efficiency losses in hydroelectric plants  

Science Journals Connector (OSTI)

Some important real-time tasks of the independent system operator (ISO) are the monitoring and control of power system events (load deviations and contingencies). These events are usually managed by the ISO using operating reserve ancillary services. These services represent an additional capacity (MW) available in generators and some interruptible loads. Generators must change their operating points in order that this capacity can remain available. These changes might lead to efficiency losses in energy production. In systems with a high percentage of hydroelectric production, hydroelectric plants need to know the impact of ancillary services on their profits. This work therefore analyzes the cost of efficiency losses due to operating reserve availability in hydroelectric generators. A method to calculate this cost component is proposed using a unit commitment dispatch for a single hydroelectric plant. This dispatch is performed without considering the operating reserve availability and is compared with the traditional dispatch, which takes into account the availability of operating reserve. The proposal is used to calculate the cost of efficiency losses on a Brazilian hydroelectric generator. We found that the cost of efficiency losses can be considerable when compared to the incomes of a hydroelectric plant in the short-term market.

J.C. Galvis; A. Padilha-Feltrin; J.M. Yusta Loyo

2011-01-01T23:59:59.000Z

83

Active noise within the generating/pumping groups of a large hydroelectric plant  

Science Journals Connector (OSTI)

This work is related to a feasibility study for the implementation of an active noise control system to reduce the hydraulic turbomachine’s noise in the Presenzano power plant. Previous studies showed that interested turbines are low frequencies noise sources generating pure tones at 150 and 200 Hz (third and fourth harmonics of the turbine’s BPF). At these frequencies passive noise control systems are ineffective in front of relevant costs and an active approach was so decided to be tested. In accordance with a classical architecture the preliminary system was composed of four error microphones four secondary noise sources and a digital controller implementing an adaptive digital filter. Main performed activities could be identified through four successive steps: (i) analysis of the turbomachine’s generated primary field levels and space distribution (ii) secondary sources generated noise field measurement ten different loudspeakers locations were investigated at this stage; (iii) sensor and actuator locations’ optimization by the use of a genetic algorithm’s procedure and (iv) active noise control tests. A mean reduction of 15 dB at 150 Hz and 7.5 dB at 200 Hz was measured at the error sensors during these tests revealing the good opportunities of such an approach but also the opportune improvement to pass at a practical implementation.

Leonardo Lecce; Massimo Viscardi; Bruno Maja; Vincenzo Limone; Mario D’Ischia; Francesco Di Maso

1999-01-01T23:59:59.000Z

84

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

85

Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland  

SciTech Connect (OSTI)

The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

None,

1980-05-01T23:59:59.000Z

86

"1. Oahe","Hydroelectric","USCE-Missouri River District",714  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Oahe","Hydroelectric","USCE-Missouri River District",714 "2. Big Bend","Hydroelectric","USCE-Missouri River District",520 "3. Big Stone","Coal","Otter Tail Power Co",476 "4. Fort Randall","Hydroelectric","USCE-Missouri River District",360 "5. Angus Anson","Gas","Northern States Power Co - Minnesota",338 "6. Buffalo Ridge II LLC","Other Renewables","Iberdrola Renewables Inc",210 "7. Groton Generating Station","Gas","Basin Electric Power Coop",169 "8. MinnDakota Wind LLC","Other Renewables","Iberdrola Renewables Inc",150

87

GENERATION OF ENSEMBLE STREAMFLOW FORECASTS USING AN ENHANCED VERSION OF THE SNOWMELT RUNOFF MODEL1  

E-Print Network [OSTI]

this article: Manuel Prieto & Carl Bauer (2012): Hydroelectric power generation in Chile: an institutional 2012, 131­146 Hydroelectric power generation in Chile: an institutional critique of the neutrality instructions for authors and subscription information: http://www.tandfonline.com/loi/rwin20 Hydroelectric

Walden, Von P.

88

A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW  

E-Print Network [OSTI]

photovoltaic (PV), wind power, and even diesel generators.are also used in some wind power systems, in which thewas solar, wind, and hydroelectric power, with a significant

Greacen, Chris

2014-01-01T23:59:59.000Z

89

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

90

Power Generation and the Environment  

Science Journals Connector (OSTI)

...such as hydro and gas tur- bines. It...these increases in power costs will be a...aspects of power generation: the exploration...residual fuels for power plants, as well...concepts of oil-fired power generation plants for the...

Rolf Eliassen

1971-01-01T23:59:59.000Z

91

BPA Power Generation (pbl/main)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Power Generation Hydro Power Federal Columbia River Power System (FCRPS) Hydro Projects FCRPS...

92

The potential contribution of small hydroelectric generation to meeting electrical demand on Vancouver Island.  

E-Print Network [OSTI]

??This work focuses on the electrical contribution small hydro generation can make to meeting Vancouver Island's electrical demand, today, and as further development proceeds. A… (more)

Schuett, Matthew T.

2008-01-01T23:59:59.000Z

93

Ris-R-1380(EN) Wind Power Projects in the CDM  

E-Print Network [OSTI]

factors comes about partly as a result of including hydroelectric power in the baseline scenario. Hydroelectric resources constitute around 21% of the generation capacity in Egypt, and, if excluding hydropower

94

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

95

Dynamic power systems for power generation  

SciTech Connect (OSTI)

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

96

Spring-supported thrust bearings used in hydroelectric generators: Limit ofhydrodynamic lubrication  

Science Journals Connector (OSTI)

The fluid film breakdown in large spring-supported thrust bearings was examined experimentally for low rotor speeds. Under these conditions, the lubrication was hydrodynamic rather than thermohydrodynamic and thus, the limit of hydrodynamic lubrication was sought. A thrust bearing test facility was used to test three bearings with various loads, speeds, and lubricant viscosities. Power loss and oil temperatures were measured and, using elementary theory, these measured quantities were linked to friction and average fluid film thickness in the bearing. A dimensionless performance number was developed and correlated with the coefficient of friction based on the power loss measurements. The breakdown of fluid film lubrication at the limit of hydrodynamic lubrication was established for an average performance number. The accuracy of the experimental findings was explored by comparing the friction and film thickness calculated from the measurements with the predictions of a comprehensive software package. Some general agreement was obtained. The relationship between the lambda ratio and a modified performance number was also examined based on typical surface roughness measurements. Although the procedures developed did not provide a high level of precision, some clear insights were gained into the thrust bearing behaviour at the limit of hydrodynamic lubrication. In particular, a large spring-supported thrust bearing under a typical load with a common lubricant was shown to sustain predominantly hydrodynamic lubrication at rotational speeds as low as 10 rpm.

A.L. Brown; J.B. Medley; J.H. Ferguson

2000-01-01T23:59:59.000Z

97

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls Hydroelectric Project: Final technical and construction cost report  

SciTech Connect (OSTI)

The purpose of this report is to fulfill part of the requirement of the US Department of Energy (DOE) Cooperative Agreement Number FC07-80ID12125 of the Small Scale Hydropower Program and is submitted on behalf of the Broad River Electric Cooperative, Inc. of Gaffney, South Carolina. The project was initially studied in 1978 with construction commencing in January, 1984. The primary work elements of the project consisted of the renovation of an existing dam and a new powerhouse. The dam was rehabilitated and flashboards were installed along the top of the structure. The powerhouse was supplied with a single open pit turbine and a new substation was constructed. The project generated power in December of 1985 but has been plagued with numerous problems compounded by a flood in March, 1987 causing extensive damages. The flood of March, 1987 resulted in filing of litigative action by the developers against their project managers and engineers which has yet to reach settlement and will possibly culminate in court sometime during the fall of 1988.

Not Available

1988-06-01T23:59:59.000Z

98

A practical design for an integrated HVDC unit - connected hydro-electric generating station  

SciTech Connect (OSTI)

To date, several authors (see reference list) have proclaimed benefits which can be achieved by integrating HVDC converter stations directly with generating units. The cost of a significant amount of plant and facilities found in conventional schemes is thereby eliminated. So far as is known however, no detailed studies have been done to quantify these benefits. This paper outlines the results of a study made recently by the Manitoba HVDC Research Centre to determine the practicality of such a scheme. To give credence to the results an actual hydro station design was used incorporating a HVDC thyristor valve scheme in a hypothetical situation. Financial and other benefits were determined for this example together with conclusions and recommendations for future specific projects and further areas of study.

Ingram, L. (Manitoba HVDC Research Centre, Winnipeg (CA))

1988-10-01T23:59:59.000Z

99

Mesofluidic magnetohydrodynamic power generation  

E-Print Network [OSTI]

Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

Fucetola, Jay J

2012-01-01T23:59:59.000Z

100

Small Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Jump to: navigation, search TODO: Add description List of Small Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSmallHydroelectric&ol...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

List of Small Hydroelectric Incentives | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Incentives Hydroelectric Incentives Jump to: navigation, search The following contains the list of 1253 Small Hydroelectric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1253) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

102

Tide operated power generating apparatus  

SciTech Connect (OSTI)

An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

Kertzman, H. Z.

1981-02-03T23:59:59.000Z

103

Experience gained from the operation of the hydromechanical and power equipment of the tereblya-riksk hydroelectric power station  

Science Journals Connector (OSTI)

1. The long, trouble-free operation of the water power and electrical equipment of the Tereblya-Riksk hydroelect...

M. V. Derzkho

1969-10-01T23:59:59.000Z

104

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Sayano-Shushenskaia Hydroelectric Power Plant is Siberia’ssome of the largest hydroelectric power plants in the worldplant, Sayano-Shushenskaia Hydroelectric Power Plant (SSGES,

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

105

Power Generation and Human Health  

Science Journals Connector (OSTI)

Emissions from power generation are associated with adverse health and ecological effects. Fossil fuel-based power plants (such as coal, oil, and to a lesser extent, natural gas) are associated with emissions of particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), and a variety of organic contaminants such as mercury and volatile organic compounds (VOCs). Exposure to emissions from power plants has been associated with a variety of respiratory symptoms, typically based on short-term (e.g., from 5–10 min to 24 h) increases in ambient concentrations. In addition, exposure to constituents from emissions generated by fossil fuels has been associated with increases in premature mortality, particularly in the elderly, and a variety of respiratory and cardiovascular illnesses. Fossil fuels, particularly coal-fired power plants, are responsible for generating the majority of emissions to which humans are exposed.

K. von Stackelberg

2011-01-01T23:59:59.000Z

106

Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development  

E-Print Network [OSTI]

cycle inventory for hydroelectric generation: a Brazilianfuture development of hydroelectric dam projects will depend

Zheng, Nina

2014-01-01T23:59:59.000Z

107

British Hydro-Electric Development  

Science Journals Connector (OSTI)

... and availability of skilled labour also enter into the problem. The interconnexion of steam and hydroelectric power plants will, in certain cases, promote the best economic results by utilising the ... England and Wales. They state that the technical difficulties in obtaining efficient results from water turbines operating under the onerous conditions of a widely fluctuating head of water have now been ...

1934-12-29T23:59:59.000Z

108

Energy 101: Hydroelectric Power  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

109

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

110

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

111

Using Backup Generators: Alternative Backup Power Options  

Broader source: Energy.gov [DOE]

In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options.

112

Solid state pulsed power generator  

DOE Patents [OSTI]

A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

2014-02-11T23:59:59.000Z

113

Tribal Renewable Energy Foundational Course: Hydroelectric  

Broader source: Energy.gov [DOE]

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on hydroelectric renewable energy by clicking on the .swf link below. You can also download the PowerPoint...

114

Solar energy power generation system  

SciTech Connect (OSTI)

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

115

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

116

Repurposing a Hydroelectric Plant.  

E-Print Network [OSTI]

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as… (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

117

Optimizing Profits from Hydroelectricity Production  

E-Print Network [OSTI]

Optimizing Profits from Hydroelectricity Production Daniel De Ladurantaye Michel Gendreau Jean the profits obtained by the stochastic model. Keywords: Hydroelectricity, electricity market, prices, dams countries deregulate their electricity market, new challenges appear for hydroelectricity producers

Potvin, Jean-Yves

118

Small Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

Small)) Jump to: navigation, search TODO: Add description List of Small Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSmallHydroelectric&oldid26...

119

Hydroelectric energy | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric) Jump to: navigation, search TODO: Add description List of Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleHydroelectricenergy&oldid...

120

Power generation using solar power plant.  

E-Print Network [OSTI]

??Pursuing the commitment of California State to generate at least 20 percent of total generated energy from the renewable source by the year 2010 rather… (more)

Amin, Parth

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-290 Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290 Ontario Power...

122

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

123

Geothermal, an alternate energy source for power generation  

SciTech Connect (OSTI)

The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

Espinosa, H.A.

1985-02-01T23:59:59.000Z

124

Decision-making in Electricity Generation Based on Global Warming Potential and Life-cycle Assessment for Climate Change  

E-Print Network [OSTI]

A case study of a hydroelectric power plant (Glen Canyon)over time. In the case of hydroelectric plants, besidesthe decommissioning of hydroelectric power plants. Although

Horvath, Arpad

2005-01-01T23:59:59.000Z

125

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

126

Conditions on Electric Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

127

Analysis of legal obstacles and incentives to the development of low-head hydroelectric power in Maine  

SciTech Connect (OSTI)

The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maine is discussed. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined. The first step any developer of small-scale hydropower must take is to acquire right, title, or interest in the real property. In Maine, that step requires acquisition in some form of both river banks, the river bed, and where necessary, the land needed for the upstream impoundment area. The developer must acquire the river banks to be considered a riparian owner. Classification as a riparian is important, for only a use of water by a riparian owner is deemed a reasonable use and hence a legal use. A non-riparian could not draw water from a stream to increase the water level of an impoundment area on another stream. Apart from the usual methods of land acquisition involving sale, lease, or perhaps gift, Maine has two somewhat unique methods a developer may use for property acquisition. These methods, authorized by statute, are use of the abandoned dams law and use of the Mill Dam Act for flowage of upstream impoundment areas.

None,

1980-05-01T23:59:59.000Z

128

Diagnosing Unilateral Market Power in Electricity Reserves Market  

E-Print Network [OSTI]

scheduled to be served by hydroelectricity plus 7 percent ofwith Pumped storage hydroelectricity is a method of storinga turbine, generating hydroelectricity. a heat rate of

Knittel, Christopher R; Metaxoglou, Konstantinos

2008-01-01T23:59:59.000Z

129

Hydroelectric energy | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleHydroelectricenergy&oldid277908...

130

The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric  

E-Print Network [OSTI]

The Impacts of Wind Speed Trends and Long- term Variability in Relation to Hydroelectric Reservoir and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can

Kohfeld, Karen

131

Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project in Bolivia  

E-Print Network [OSTI]

Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project a hydroelectric power plant instead of subsidized diesel plants in the Bolivian Pando Province. Simulations show

Paris-Sud XI, Université de

132

Power generation of a thermoelectric generator with phase change materials  

Science Journals Connector (OSTI)

In this paper, a thermoelectric generator that embeds phase change materials for wasted heat energy harvesting is proposed. The proposed thermoelectric generator embeds phase change materials in its device structure. The phase change materials store large amounts of heat energy using the latent heat of fusion. When the heat source contacts the thermoelectric generator, dissipated heat from the heat source is stored in the phase change materials. When the heat source is removed from the thermoelectric generator, the output power of the thermoelectric generator slowly decreases, while the output power of conventional thermoelectric generators decreases rapidly without the heat source. The additional air layer in the proposed thermoelectric generator disturbs the heat dissipation from the phase change materials, so the thermoelectric generator can maintain the power generation for longer without a heat source. The experimental results for the thermoelectric generator fabricated clearly show the latent heat effect of the phase change materials and the embedded air layer.

Sung-Eun Jo; Myoung-Soo Kim; Min-Ki Kim; Yong-Jun Kim

2013-01-01T23:59:59.000Z

133

Hydroelectric Plants (Iowa)  

Broader source: Energy.gov [DOE]

A permit is required from the Executive Council of Iowa for the construction, maintenance, or operation of any hydroelectric facility. All applications will be subject to a public hearing.

134

Scottish Hydroelectric Schemes  

Science Journals Connector (OSTI)

... completed his study of the report into the Enquiry into the Fado-Fionn and Laidon hydroelectric schemes. The report concluded that neither scheme was needed, at least up to 1975 ...

1965-12-18T23:59:59.000Z

135

Microsoft PowerPoint - TeamCumberland_Nov13.pptx  

Broader source: Energy.gov (indexed) [DOE]

Hydroelectric Design Center Hydroelectric Design Center "Leaders in Hydropower Engineering" Leaders in Hydropower Engineering Presentation for Team Cumberland Nashville, Tennessee Steven R. Miles, PE, PMP Director, HDC 13 November 2013 US Army Corps of Engineers BUILDING STRONG ® Hydroelectric Design Center HDC performs planning, engineering and design, HDC performs planning, engineering and design, maintains expertise, and develops standards for the US Army Corps of Engineers hydroelectric power facilities and large pumping plants. BUILDING STRONG ® HYDROELECTRIC DESIGN CENTER 2 USACE Hydropower Locations = HDC Locations BUILDING STRONG ® HYDROELECTRIC DESIGN CENTER 3 Major Producers of Hydropower in the U.S. Hydroelectric Generation Capacity in Megawatts (includes Pumped Storage) PacifiCorp Consumers Energy Co.

136

Aircraft Power Generators: Hybrid Modeling and  

E-Print Network [OSTI]

Aircraft Power Generators: Hybrid Modeling and Simulation for Fault Detection ASHRAF TANTAWY University Integrated drive generators (IDGs) are the main source of electrical power for a number, and a majority of the existing FDI techniques for the electrical subsystem (brushless generator) are based

Koutsoukos, Xenofon D.

137

EA-290-B Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-B Ontario Power Generation, Inc. EA-290-B Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290-B Ontario...

138

EA-290-A Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-A Ontario Power Generation, Inc. EA-290-A Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290-A Ontario...

139

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls, South Carolina: Final operations and maintenance report  

SciTech Connect (OSTI)

The purpose of this report is to give a final accounting of the costs and benefits derived from the first two years of operation of the Cherokee Falls, Broad River Hydroelectric Demonstration Project which was built at Cherokee Falls, South Carolina. Prior to construction, Broad River Electric Cooperative, Inc. (BREC) executed a Cooperative Agreement with the US Department of Energy (DOE) Number FC07-80ID12125 which provided $1,052,664 toward the construction of the facility. This agreement requires that BREC document for DOE a summary of the complete operating statistics, operating and maintenance cost, and revenues from power sales for a two-year operating period. A complete reporting covering the design, technical, construction, legal, institutional, environmental and other related aspects of the total project was furnished to DOE previously for publication as the ''Final Technical and Construction Cost Report''. For this reason these elements will not be addressed in detail in this report. In order to make this account a more meaningful discussion of the initial two-year and four month production period, it is necessary to detail several unique events concerning the project which set Cherokee Falls apart from other projects developed under similar Cooperative Agreements with DOE. Accordingly, this report will discuss certain major problems experienced with the design, operation and maintenance, energy production, as well as the operation and maintenance cost and value of the power produced for the first 28 months of operation. 3 figs.

Not Available

1988-08-01T23:59:59.000Z

140

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

142

Nuclear power eyed to generate industrial heat  

Science Journals Connector (OSTI)

Nuclear power eyed to generate industrial heat ... The American Nuclear Society has called for "an aggresssive national policy aimed at demonstrating specific capabilities and providing incentives for the application of nuclear power to meeting industrial energy needs." ...

1983-10-24T23:59:59.000Z

143

Power Generating Inc | Open Energy Information  

Open Energy Info (EERE)

while consuming on-site emissions of volatile organic compounds (VOC's). References: Power Generating Inc1 This article is a stub. You can help OpenEI by expanding it. Power...

144

Power Generation and the Environment  

Science Journals Connector (OSTI)

...this session, Richard Post reported on the current status and hopes for the future of power genera- tion by controlled thermonuclear fusion. The possibility of achieving a thermal efficiency approximating 90% in a rela- tively "clean" power reactor...

Rolf Eliassen

1971-01-01T23:59:59.000Z

145

Recent developments of thermoelectric power generation  

Science Journals Connector (OSTI)

One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, ...

Luan Weiling; Tu Shantung

2004-06-01T23:59:59.000Z

146

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network [OSTI]

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

147

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bell, Lon E; Crane, Douglas Todd

2013-05-21T23:59:59.000Z

148

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

2009-10-27T23:59:59.000Z

149

Rotordynamics in alternative energy power generation.  

E-Print Network [OSTI]

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

150

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

151

Power Generation and the Environment  

Science Journals Connector (OSTI)

...transmission and distribution of electric power. Systems...decision-making and planning. Simulation...Symposium on Energy for the Future...increasing role in planning for the location...furnishing electric power, such...transmission and distribution of electric power. Sys...making and planning. Simulation...meet the energy needs for...

Rolf Eliassen

1971-01-01T23:59:59.000Z

152

IEEE POWER ENGINEERING SOCIETY ENERGY DEVELOPMENT AND POWER GENERATION COMMITTEE  

E-Print Network [OSTI]

--Price Cap Regulation: Stimulating Efficiency in Electricity Distribution in Latin America. (Luiz Barroso Sponsored by: International Practices for Energy Development and Power Generation Chairs: Luiz Barroso, PSR

Catholic University of Chile (Universidad Católica de Chile)

153

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

154

Water development for hydroelectric in southeastern Anatolia project (GAP) in Turkey  

Science Journals Connector (OSTI)

Southeastern Anatolia Project (GAP) region in Turkey is rich in water for irrigation and hydroelectric power. The Euphrates and Tigris rivers represent over 28% of the nation’s water supply by rivers, and the economically irrigable areas in the region make up 20% of those for the entry country. On the other hand, 85% of the total hydro capacity in operation has been developed by DSI, corresponding to 9931 MW (49 hydro plants) and 35,795 GWh/year respectively. The largest and most comprehensive regional development project ever implemented by DSI in Turkey is “The Southeast Anatolian (GAP) Project”, which is located in the region of Southeast Anatolia on the Euprates and Tigris rivers and their tributaries, which originate in Turkey. The energy potential of the Tigris and Euphrates is estimated as 12,000 GWh and 35,000 GWh, respectively. These two rivers constitute 10% and 30% of the total hydroelectric energy potential. The GAP region will be an important electric power producer with 1000 MW installed capacity from the Karakaya dam, 2400 MW installed capacity from the Atatürk dam and 1360 MW installed capacity from the Keban dam. The GAP region has a 22% share of the country’s total hydroelectric potential, with plans for 22 dams and 19 hydroelectric power plants. Once completed, 27 billion kWh of electricity will be generated annually.

Ibrahim Yuksel

2012-01-01T23:59:59.000Z

155

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

156

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

157

Hydroelectric | OpenEI  

Open Energy Info (EERE)

Hydroelectric Hydroelectric Dataset Summary Description This dataset presents summary information related to world hydropower. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords Hydro Hydroelectric Data application/vnd.ms-excel icon book_wote_energy_hydro.xls (xls, 83.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited" Rate this dataset Usefulness of the metadata

158

Chapter 10 - Novel Power Generating Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, some novel power generating systems are discussed. It is believed that sustainable thermal energy sources such as industrial waste heat recovery, concentrated solar radiation, ocean thermal energy, nuclear heat, and biomass combustion will gradually become more important. The first part of the chapter presents a novel system for power conversion from low-grade heat. This is an advanced ammonia–water-based power cycle able to operate with minimal exergy destruction due to an excellent match of temperature profiles at the heat source and sink. The chapter continues with thermoelectric power generators that can address the challenge of efficient power generation from high-grade thermal energy. Chemical looping combustion systems for power generation are treated thereafter for situations when carbon emissions must be reduced by carbon dioxide separation and sequestration or partial recycling. The last section of the chapter presents a number of selected novel systems for power generation, including magneto-hydrodynamic generators, thermoacoustic generators, and cryogenic compression oxy-combustion power plants with supercritical carbon dioxide and some novel integrated systems.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

159

Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility  

SciTech Connect (OSTI)

Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

Jack Q. Richardson

2012-06-28T23:59:59.000Z

160

Power Generation and the Environment  

Science Journals Connector (OSTI)

...fuels) leads to waste heat which the environment...duction, and the waste heat to be dissipated to the...matter, carbon monoxide, hydrocarbons, nitrogen oxides, and...5 3.1 5.9 Waste heat generated (1015) Btu...resulting from fossil fuel combustion to the year 2000 might...

Rolf Eliassen

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

SciTech Connect (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

162

"1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 "2. Chief Joseph","Hydroelectric","USCE-North Pacific Division",2456 "3. Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1596 "4. Rocky Reach","Hydroelectric","PUD No 1 of Chelan County",1254 "5. Columbia Generating Station","Nuclear","Energy Northwest",1097 "6. Wanapum","Hydroelectric","PUD No 2 of Grant County",1059 "7. Boundary","Hydroelectric","Seattle City of",1040 "8. Priest Rapids","Hydroelectric","PUD No 2 of Grant County",932

163

Cascading Closed Loop Cycle Power Generation  

E-Print Network [OSTI]

marketed as WOWGen®. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

Romero, M.

2008-01-01T23:59:59.000Z

164

Analysis of power generation processes using petcoke  

E-Print Network [OSTI]

Petroleum coke or petcoke, a refinery byproduct, has generally been considered as an unusable byproduct because of its high sulfur content. However energy industries now view petcoke as a potential feedstock for power generation because it has...

Jayakumar, Ramkumar

2009-05-15T23:59:59.000Z

165

The Industrialization of Thermoelectric Power Generation Technology  

Broader source: Energy.gov [DOE]

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

166

Application of IGCC Technology to Power Generation  

Science Journals Connector (OSTI)

Improved efficiency and low cost are two of the objectives in the development and commercialization of power generation cycles. With the advent of today’s commercial advanced gas turbines and high-temperature gas

R. E. Ayala

1998-01-01T23:59:59.000Z

167

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

168

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

169

Protection from ground faults in the stator winding of generators at power plants in the Siberian networks  

SciTech Connect (OSTI)

The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

Vainshtein, R. A., E-mail: vra@tpu.ru [Tomsk Polytechnical University (Russian Federation); Lapin, V. I. [ODU Sibiri (Integrated Dispatcher Control for Siberia), branch of JSC 'SO EES' (Russian Federation); Naumov, A. M.; Doronin, A. V. [JSC NPP 'EKRA' (Russian Federation); Yudin, S. M. [Tomsk Polytechnical University (Russian Federation)

2010-05-15T23:59:59.000Z

170

Safe Operation of Backup Power Generators  

E-Print Network [OSTI]

E-395 04/06 Portable generators are useful when temporary or remote electric power is needed, but they can also be deadly. The primary hazards to avoid when us- ing a generator are carbon monoxide (CO) poison- ing from generator exhaust fumes..., electrocution and fire. Carbon monoxide danger Carbon monoxide is an odorless, colorless gas byproduct of incomplete combustion of fuels, such as natural gas, heating oil and diesel. This toxic gas interferes with the blood?s ability to carry oxygen...

Smith, David

2006-04-19T23:59:59.000Z

171

salt-water pumped-storage hydroelectric plant  

Science Journals Connector (OSTI)

salt-water pumped-storage hydroelectric plant, saltwater pumped-storage hydroelectric station, seawater pumped-storage hydroelectric plant, seawater pumped-storage hydroelectric station ? Salzwasser-...

2014-08-01T23:59:59.000Z

172

"1. John Day","Hydroelectric","USCE-North Pacific Division",2160  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "1. John Day","Hydroelectric","USCE-North Pacific Division",2160 "2. The Dalles","Hydroelectric","USCE-North Pacific Division",1823 "3. Bonneville","Hydroelectric","USCE-North Pacific Division",1093 "4. McNary","Hydroelectric","USCE-North Pacific Division",991 "5. Hermiston Power Partnership","Gas","Hermiston Power Partnership",615 "6. Boardman","Coal","Portland General Electric Co",585 "7. Beaver","Gas","Portland General Electric Co",487 "8. Klamath Cogeneration Plant","Gas","Pacific Klamath Energy Inc",470

173

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

174

The Nelson River hydroelectric development : a public utility investment affecting both regional and national development.  

E-Print Network [OSTI]

??This is a study of the decision to develop hydroelectric power on the Nelson River. An historical account is given of the events leading to… (more)

Cline, John Alexander

2009-01-01T23:59:59.000Z

175

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

176

Sixth Northwest Conservation and Electric Power Plan Appendix L: Climate Change and Power  

E-Print Network [OSTI]

............................................................................................................................. 10 Hydroelectric Generation and Cost demand and change precipitation patterns, river flows and hydroelectric generation. Second, policies demand for electricity and production of hydroelectric generation. Global climate change models all seem

177

Management Letter on the Western Federal Power System's Fiscal...  

Office of Environmental Management (EM)

Administration (Western), a component of the U.S. Department of Energy, and the hydroelectric power generating functions of the U.S. Department of the Interior, Bureau of...

178

AUDIT REPORT Southwestern Federal Power System's Fiscal Year...  

Broader source: Energy.gov (indexed) [DOE]

As described in note 1(a), the combined financial statements include all of the hydroelectric generating and power operations of the U.S. Army Corps of Engineers (the...

179

Exploitation of temporary water flow by hybrid PV-hydroelectric plant  

Science Journals Connector (OSTI)

The paper presents a new type of Renewable Energy Sources (RES) suitable for exploitation watercourse with periodical-temporary water flow. This innovative solution consist of Hydroelectric Plant (HEP) and solar Photovoltaic (PV) generator working together as one hybrid power plant, producing green energy with the same characteristics as classical hydroelectric plants. The main objective of this hybrid solution is achievement of optimal renewable energy production in order to increase the share of RES in an Electricity Power System (EPS). As a paradigm of such exploitation of RES, the example of HEP Zavrelje/Dubrovnik in Croatia was used, where it was ascertained that the proposed solution of hybrid PV-HEP system is natural, realistic and very acceptable, which enhances the characteristics of both energy sources. The application of such hybrid systems would increase the share of high quality RES in energy systems.

Jure Margeta; Zvonimir Glasnovic

2011-01-01T23:59:59.000Z

180

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

182

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

183

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

position in the power generation field. It is the second largest commercial supplier of power generation gas turbines in the United States and the fourth single largest supplier...

184

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

185

Electric Power Generation from Coproduced Fluids from Oil and...  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

186

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

187

Datang Jilin Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jilin Power Generation Co Ltd Jump to: navigation, search Name: Datang Jilin Power Generation Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: Set up...

188

Velagapudi Power Generation Ltd VPGL | Open Energy Information  

Open Energy Info (EERE)

Velagapudi Power Generation Ltd VPGL Jump to: navigation, search Name: Velagapudi Power Generation Ltd. (VPGL) Place: Vijayawada, Andhra Pradesh, India Zip: 520 007 Sector: Biomass...

189

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in...

190

The northeast Georgia hydroelectric plants.  

E-Print Network [OSTI]

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these… (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

191

Chapter 14 - Marine Power Generation Technologies  

Science Journals Connector (OSTI)

Abstract There are four ways in which the world’s oceans can provide an energy source for power generation. Marine currents around coastlines, inlets, and estuaries can be exploited with underwater turbines. Ocean waves are also a source of energy that can be tapped using a variety of different devices that convert the oscillating motion of waves into a motion that can be used to provide electricity generation. The world’s oceans, particularly in the tropical regions, are massive solar collectors, absorbing heat that creates a hot layer on the surface of the sea. This hot water can be used to drive a heat engine, with cooling taken from the ocean depths where the temperature remains low. The mixing of fresh and salt water also releases energy, and this too can be tapped in a number of ways to generate electricity. All of these are being developed as means of power generation.

Paul Breeze

2014-01-01T23:59:59.000Z

192

Microelectromechanical power generator and vibration sensor  

DOE Patents [OSTI]

A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

2006-11-28T23:59:59.000Z

193

Electric generating prospects for nuclear power  

Science Journals Connector (OSTI)

Most of the nuclear power plants in the U.S. today are of the light-water variety. In many parts of the U.S. these plants are competitive with plants burning coal, but the electricity that they generate will be more costly in the future as uranium supplies ...

Manson Benedict

1970-07-01T23:59:59.000Z

194

Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Siemens Power Generation Place Erlangen, Bavaria, Germany Zip 91058 Product Erlangen-based subsidiary of Siemens AG that develops, manufactures, and installs power plants and related equipment such as turbines. Its fuel cell subsidiary is Siemens Westinghouse. Coordinates 49.59795°, 11.00258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.59795,"lon":11.00258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Environmental Impacts of Increased Hydroelectric Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes...

196

Peer Reviewed: Experimenting with Hydroelectric Reservoirs  

Science Journals Connector (OSTI)

Peer Reviewed: Experimenting with Hydroelectric Reservoirs ... Researchers created reservoirs in Canada to explore the impacts of hydroelectric developments on greenhouse gas and methylmercury production. ...

R. A. Bodaly; Kenneth G. Beaty; Len H. Hendzel; Andrew R. Majewski; Michael J. Paterson; Kristofer R. Rolfhus; Alan F. Penn; Vincent L. St. Louis; Britt D. Hall; Cory J. D. Matthews; Katharine A. Cherewyk; Mariah Mailman; James P. Hurley; Sherry L. Schiff; Jason J. Venkiteswaran

2004-09-15T23:59:59.000Z

197

Isotope powered Stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

Tingey, G.L.; Sorensen, G.C. [Pacific Northwest Lab., Richland, WA (United States); Ross, B.A. [Stirling Technology Co., Richland, WA (United States)

1995-01-01T23:59:59.000Z

198

Isotope powered stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Tingey, G.L.; Sorensen, G.C. [Battelle, Paific Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Ross, B.A. [Stirling Technology Company, 2952 George Washington Way, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

199

Federal Energy Management Program: New and Underutilized Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New and New and Underutilized Power Generation Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Power Generation Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Power Generation Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Power Generation Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Power Generation Technologies on AddThis.com... Energy-Efficient Products Technology Deployment

200

Coal Gasification for Power Generation, 3. edition  

SciTech Connect (OSTI)

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

NONE

2007-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect (OSTI)

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

202

Health and environmental impacts of the hydroelectric fuel cycle  

Science Journals Connector (OSTI)

The impacts on health and the environment and the associated damage costs caused by the hydroelectric fuel cycle are assessed in this paper. To this purpose, a large hydroelectric project along the Nestos river in northern Greece has been selected as an example. A large number of impacts have been identified. Occupational accidents, impacts on agriculture and forests, noise produced during the operation of the plant, impacts on biodiversity due to the physical presence of the dams, and alterations to the local water balance are the most important of them. The results of the analysis show that the major contributors to the damage cost of the hydroelectric fuel cycle are impacts on biodiversity and fatal occupational accidents, especially those that occur during the construction phase of the project. Nonetheless hydroelectricity is an environmentally-friendly energy source that exhibits lower damage values compared to other electricity generating technologies.

I.G. Kollas; S. Mirasgedis

2002-01-01T23:59:59.000Z

203

NAFTA opportunities: Electrical equipment and power generation  

SciTech Connect (OSTI)

The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

Not Available

1993-01-01T23:59:59.000Z

204

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

205

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

206

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

207

Financing future power generation in Italy  

SciTech Connect (OSTI)

Under Italian law, independent power generation fueled by renewable and so-called ``assimilated'' sources must be given incentives. To implement this provision, a resolution known as ``CIP 6'' and a decree setting forth the procedure to sell such electricity to ENEL were issued. CIP 6 has recently been revoked and new incentives have been announced. In the meantime, CIP 6 continues to apply to various projects which have been approved but not yet constructed.

Esposito, P.

1998-07-01T23:59:59.000Z

208

IEP - Water-Energy Interface: Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Water Management Power Plant Water Management The availability of clean and reliable sources of water is a critical issue across the United States and throughout the world. Under the Innovations for Existing Plants Program (IEP), the National Energy Technology Laboratory (NETL) has pursued an integrated water-energy R&D program that addresses water management issues relative to coal-based power generation. This initiative intended to clarify the link between energy and water, deepen the understanding of this link and its implications, and integrate current water-related R&D activities into a national water-energy R&D program. Please click on each research area for additional information. Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water

209

Cummins Power Generation SECA Phase 1  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

Charles Vesely

2007-08-17T23:59:59.000Z

210

Potential for hydroelectric development in Alaska  

SciTech Connect (OSTI)

Testimony concerning Alaskan hydroelectricity development is presented. Various public and private organizations were represented.

Not Available

1981-01-01T23:59:59.000Z

211

Water Power Program | Department of Energy  

Office of Environmental Management (EM)

Water Power Program Now Accepting Applications: 3.6 Million Hydroelectric Production Incentive Program Now Accepting Applications: 3.6 Million Hydroelectric Production Incentive...

212

The Bowersock Mills and Power Company 1874  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Incremental Hydroelectric Energy The Bowersock Mills and Power Co., Lawrence, KS Hydroelectric Energy Potential for U.S. BMPC Plant At Forefront of Development Curve "In our...

213

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Sayano-Shushenskaia Hydroelectric Power Plant is Siberia’scounts some of the largest hydroelectric power plants in theofficial at Bratsk hydroelectric dam, one of the world’s

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

214

Effects of Climate Change on the Hydroelectric The Council is not tasked, nor does it have the resources to resolve existing uncertainties  

E-Print Network [OSTI]

Effects of Climate Change on the Hydroelectric System SUMMARY The Council is not tasked, nor does at hydroelectric dams when Northwest demands and power market values are likely to grow due to higher air

215

Simulation of a generator for a wind-power unit  

Science Journals Connector (OSTI)

Analysis of excitation systems of generators for wind-power units is carried out, a software package for generator simulation is presented, and the sequence of the...

I. M. Kirpichnikova; A. S. Mart’yanov; E. V. Solomin

2013-10-01T23:59:59.000Z

216

Generation Technologies  

E-Print Network [OSTI]

Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

Green Power

2005-01-01T23:59:59.000Z

217

Geothermal Binary Power Generation System Using Unutilized Energy  

Science Journals Connector (OSTI)

Binary power generating system is based on the Rankine cycle with geothermal fluid as heating source and low boiling ... can generate electric power from low temperature (energy) source. Employing the binary powe...

Hiroaki Shibata; Hiroshi Oyama…

2007-01-01T23:59:59.000Z

218

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...  

Open Energy Info (EERE)

Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation, search Name: Datang Jilin Resourceful New Energy Power Generation Co Ltd...

219

Overview of Thermoelectric Power Generation Technologies in Japan  

Broader source: Energy.gov [DOE]

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

220

ELECTRICAL LOAD MANAGEMENT FOR THE CALIFORNIA WATER SYSTEM  

E-Print Network [OSTI]

sections of aqueducts. Hydroelectric power generated withinthe CVP generates only hydroelectric power, its By importing

Krieg, B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases  

E-Print Network [OSTI]

in the winter months when hydroelectric power generation isare located and hydroelectric power generation is naturally

2008-01-01T23:59:59.000Z

222

Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky  

E-Print Network [OSTI]

or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from highElectromagnetic Generators for Portable Power Applications by Matthew Kurt Senesky B.A. (Dartmouth

Sanders, Seth

223

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

8125332,120043024,117354244,123024655,120529191,116813173,115014081,84.7,62.6,52.8 "Hydroelectric",414161,383655,429024,527746,386435,410436,631936,515744,729876,510835,488329,5107...

224

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

2021,66097259,65425002,67538611,61558991,61434530,65138291,65295742,64.3,58.1,48.5 "Hydroelectric",1110719,1230678,1142977,1234066,1247863,1146768,1381242,1355963,1420178,1242987,1...

225

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

6688,31876730,29714368,27453911,28990113,27666494,26027968,25188557,59.1,40.3,34.8 "Hydroelectric",1145514,1506941,2808788,3552573,3811273,3065862,623579,2630361,2976676,1798412,19...

226

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

2082,31952337,30276010,31401250,30456351,30001882,28922906,29602738,79.5,67.8,65.4 "Hydroelectric",1429682,1915427,1430172,1726853,1877868,1625544,1676432,1283074,1076897,1156217,1...

227

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

45514,100857561,96799645,93951561,100390066,102198817,100359157,101996271,18.2,0,0 "Hydroelectric",1034634,1754726,1071626,1153050,1199048,1077389,1294569,1016202,1666727,1745193,1...

228

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

676411,27930011,24442870,22448944,24722481,22676018,21939027,21000180,44,29.3,17.8 "Hydroelectric",969358,1131815,1424606,1396112,947412,1182353,1270707,1391152,1490114,1669793,840...

229

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

875331,84659818,82539467,79897442,81722246,73476309,71713851,70500461,84.5,92.7,92 "Hydroelectric",2353476,2959628,2571440,3308064,1912432,1666237,2591701,2961193,3780251,3948052,4...

230

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

2658,30307236,25801600,26993543,26532193,23013743,23165807,22874805,41.4,35.9,29.2 "Hydroelectric",1366895,1511339,2313465,2277232,1100451,1523502,1766438,2858778,2382225,3590944,1...

231

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9080,16040775,16079519,14002015,14739783,12402148,13562815,12658464,63.3,63.4,72.1 "Hydroelectric",1257054,1617228,1313856,433690,346456,347444,893386,871473,913021,980110,1097486,...

232

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9058,55504189,57971909,52132070,59559596,49995747,46671234,50186951,63.3,51.3,44.1 "Hydroelectric",7672522,9575639,8137795,10211962,5646073,4939601,7167342,8537997,9649206,11087048...

233

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

799,104413600,103774522,102043025,98776088,95745949,96526976,96012872,92,82.4,75.4 "Hydroelectric",433505,408779,453712,503470,436780,449936,489515,438282,443721,423953,411270,5706...

234

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

219281,30780575,31710476,38072165,37020817,34602347,32306088,31636037,45.7,38.8,36 "Hydroelectric",6716934,9174092,6622160,6427345,7285902,6597671,6792904,6410064,6973147,7074984,7...

235

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

348089,1500879,1727583,1527874,3814009,3502742,3682715,2814199,1297978,7.3,7.5,4.3 "Hydroelectric",39110869,42017194,30292810,32790841,33557956,33367317,37603801,30765882,32896035,...

236

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

4471,27529906,26336456,27099914,27048924,26864520,25750792,25092696,92.5,81.6,77.9 "Hydroelectric",2477230,2580042,2042118,1475251,1252790,1305393,1521034,1341824,1545864,1723904,1...

237

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

6318,73598580,68553249,62768480,66758044,60689987,57897011,53301276,61.8,41.1,29.7 "Hydroelectric",7435223,8883598,8704254,12535373,6136148,4136114,7251786,10144581,10626221,126648...

238

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

608,12488802,11500536,10586608,10209727,9815909,10949228,11861344,11273069,2.8,0,0 "Hydroelectric",229801,280709,237957,285205,270771,185169,587468,289822,230973,228399,207646,1195...

239

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,5016223,5300592,5042015,4605062,6745833,7422851,7917440,7900814,8429403,0,0.4,0.4 "Hydroelectric",25548491,40157205,31946754,26407034,22871073,26926661,47127134,38826653,33608686,...

240

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

5652,9290499,6965990,8042462,5877093,9800260,8803840,9625252,7903796,7351520,3,0,0 "Hydroelectric",89197478,91552096,68054577,72727385,77431888,78613750,81791115,71894440,71393131,...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9551,63230856,65880095,64727519,63295811,58235454,59985395,67564750,63.8,52.7,32.9 "Hydroelectric",2211810,2679135,3288341,3248591,2120372,2215776,2544122,4004150,3663002,4107318,2...

242

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

67,21752103,20444407,19943312,20859090,21819763,24921250,24938199,24616655,2.9,0,0 "Hydroelectric",20727642,22801091,20888744,22590043,21703390,20907191,21791238,21752786,21774373,...

243

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

034628,65782399,61864438,60770030,61889050,61631012,61122819,59073203,35,24.5,19.3 "Hydroelectric",150511,182042,177474,208202,206158,154446,203422,266159,265258,262667,184114,1477...

244

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9517,38144842,36863872,35282695,33558049,32740540,33489286,32144557,68.8,60.9,50.1 "Hydroelectric",1332251,1908535,1890101,1226149,1427741,1313600,1446192,1498881,1748442,1623369,2...

245

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

4409921,12242093,14655727,16487675,13774690,17126218,16131955,14902659,1.2,1.1,0.9 "Hydroelectric",7692976,8740211,5855389,5889817,6566946,6012303,6611293,6292487,5705581,5678997,6...

246

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

0970,24339185,21506397,19780738,18025615,20030355,19573925,19160989,54.9,43.3,36.9 "Hydroelectric",2155601,2918734,3606689,4140964,4658215,3236203,1550558,3085749,3647768,2653347,3...

247

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3073,57176084,53582211,48592766,40688696,46829678,47907503,48501751,81.8,81.1,79.1 "Hydroelectric",714269,1185144,1539347,1816693,2046773,1204326,199214,1159326,1479914,652477,1356...

248

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

50606,14656868,13971824,15324714,15627860,16443169,16365730,15053277,53.4,15.9,8.4 "Hydroelectric",2398716,2144091,2117746,2425588,1742489,2003191,2057626,1702380,1605203,1747938,2...

249

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1392,64097781,55698342,53234497,59383147,54011457,46762330,46631040,58.7,53.8,41.9 "Hydroelectric",3311488,3858555,4709155,5125576,3007639,2682904,2695832,3826791,3933276,5059386,2...

250

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3255364,122149283,122667859,128266337,118673068,118085107,118354490,36.5,15.3,13.3 "Hydroelectric",548864,523147,1218623,983369,989185,1593542,611491,1288469,1266098,858933,1076338...

251

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,13511823,12230805,10062854,7303193,9022654,6260025,8281502,8617977,84.9,71.4,68.6 "Hydroelectric",10005187,12470416,8418903,9690596,8663674,8371252,10400442,7959080,7737744,767146...

252

SunShot Initiative: Baseload Concentrating Solar Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

253

Bangor Hydro-Electric Co | Open Energy Information  

Open Energy Info (EERE)

Bangor Hydro-Electric Co Bangor Hydro-Electric Co Jump to: navigation, search Name Bangor Hydro-Electric Co Place Maine Service Territory Maine Website www.bhe.com/ Green Button Landing Page secure.bhe.com/webPortal/ Green Button Reference Page www.bhe.com/about-us/news Green Button Implemented Yes Utility Id 1179 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 9 (General Service Rate) Commercial Commercial space heating- Single meter Commercial

254

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

255

New power politics will determine generation's path  

SciTech Connect (OSTI)

The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

Maize, K.; Neville, A.; Peltier, R.

2009-01-15T23:59:59.000Z

256

Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information  

Open Energy Info (EERE)

Rayapati Power Generation Pvt Ltd RPGPL Rayapati Power Generation Pvt Ltd RPGPL Jump to: navigation, search Name Rayapati Power Generation Pvt. Ltd. (RPGPL) Place Hyderabad, Andhra Pradesh, India Zip 500 082 Sector Biomass Product Biomass plant developer and operater. References Rayapati Power Generation Pvt. Ltd. (RPGPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rayapati Power Generation Pvt. Ltd. (RPGPL) is a company located in Hyderabad, Andhra Pradesh, India . References ↑ "[ Rayapati Power Generation Pvt. Ltd. (RPGPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Rayapati_Power_Generation_Pvt_Ltd_RPGPL&oldid=350208" Categories: Clean Energy Organizations

257

A Method of Decreasing Power Output Fluctuation of Solar Chimney Power Generating Systems  

Science Journals Connector (OSTI)

Severe fluctuation of power output is a common problem in the various generating systems of renewable energies. The hybrid energy storage system with water and soil is adopted to decrease the fluctuation of solar chimney power generating systems in the ... Keywords: Solar chimney power generating system, power output fluctuation, hybrid energy storage layer, collector, chimney

Meng Fanlong; Ming Tingzhen; Pan Yuan

2011-01-01T23:59:59.000Z

258

Hydroelectric Conventional | OpenEI  

Open Energy Info (EERE)

Hydroelectric Conventional Hydroelectric Conventional Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

259

Power generation from nuclear reactors in aerospace applications  

SciTech Connect (OSTI)

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

260

Modelling the GHG emission from hydroelectric reservoirs  

Science Journals Connector (OSTI)

A mechanistic model has been constructed to compute the fluxes of CO2 and CH4 emitted from the surface of hydroelectric reservoirs. The structure of the model has been designed to be adaptable to hydroelectric re...

Normand Thérien; Ken Morrison

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Power of Water Renegotiating the Columbia River Treaty  

E-Print Network [OSTI]

, and release: - Agriculture and food security (THE BIGGEST ISSUE) - Hydroelectric power - Other nonagricultural

262

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network [OSTI]

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

Pierre-Luc Carpentier

2013-07-07T23:59:59.000Z

263

EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington  

Broader source: Energy.gov [DOE]

This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

264

Potential Climate Change Impacts to the NW Hydroelectric System  

E-Print Network [OSTI]

Page 1 Potential Climate Change Impacts to the NW Hydroelectric System NW Power and Conservation Council Symposium on Greenhouse Gases June 4, 2013 1 Source of Data · 2009 International Panel on Climate Change (IPCC-4) data but prior to River Management Joint Operating Committee's (RMJOC) processing

265

The Optimal Power Tracking Control Strategy of Grid-Connected Excited Synchronous Wind Power Generator.  

E-Print Network [OSTI]

??In this thesis, the wind power system is a coaxial coupling structure between servo motor and excited synchronous wind power generator. By using the excited… (more)

Cheng, Wen-kai

2014-01-01T23:59:59.000Z

266

Using Backup Generators: Alternative Backup Power Options | Department of  

Broader source: Energy.gov (indexed) [DOE]

Alternative Backup Power Options Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options. Battery-stored backup power-Allows you to continue operating lights, refrigerators and other appliances, fans, and communications during a power outage. These systems can connect to renewable sources of energy, like solar panels and small-scale wind generators, to help the batteries stay charged during an emergency. You can also recharge many of these battery systems with diesel generators. The length of time you will be able to draw electricity from your batteries will depend on the size of your

267

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

268

Hydroelectric Real Options.  

E-Print Network [OSTI]

?? Structural estimation is an important technique in analyzing economic data. Unfortunately, it is often computationally expensive to implement the most powerful and efficient statistical… (more)

Foss, Marius Øverland

2011-01-01T23:59:59.000Z

269

Coal pulverizing systems for power generation  

SciTech Connect (OSTI)

The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

Sligar, J.

1993-12-31T23:59:59.000Z

270

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8–7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

271

Burbank Water and Power SBX1 2 Compliance Plan  

E-Print Network [OSTI]

impact hydroelectric generation, digester gas, municipal solid waste, landfill gas, ocean wave, ocean

272

EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description  

E-Print Network [OSTI]

. Environmental impact of electric generation (3 lectures) 9. Advanced energy conversion systems (geothermalEEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description: Generation of electric power using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean

Zhang, Junshan

273

Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map  

Science Journals Connector (OSTI)

In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

Yaoyao He; Shanlin Yang; Qifa Xu

2013-01-01T23:59:59.000Z

274

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

275

Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project  

SciTech Connect (OSTI)

The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: �¢���¢ Increasing safety at Boulder Canyon Hydro �¢���¢ Increasing protection of the Boulder Creek environment �¢���¢ Modernizing and integrating control equipment into Boulder�¢����s municipal water supply system, and �¢���¢ Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to

Joe Taddeucci, P E

2013-03-29T23:59:59.000Z

276

The Need for Speed and Stability in Data Center Power Capping Arka A. Bhattacharya, David Culler  

E-Print Network [OSTI]

because from the power generation standpoint, the cost and environmental impact for large scale power generation plants such as hydro-electric plants as well as green energy installations such as solar or wind by pro- visioning expensive electrical equipment (such as UPS, diesel generators, and cooling capacity

Hunt, Galen

277

Loranger Power Generation Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Loranger Power Generation Wind Farm Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Loranger Power Generation Developer Loranger Power Generation Location Berlin NH Coordinates 44.501183°, -71.231588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.501183,"lon":-71.231588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Assessment of postcombustion carbon capture technologies for power generation  

Science Journals Connector (OSTI)

A significant proportion of power generation stems from coal-combustion processes and accordingly represents one of the largest point sources of CO2 emissions worldwide. Coal power plants are major assets with la...

Mikel C. Duke; Bradley Ladewig; Simon Smart…

2010-06-01T23:59:59.000Z

279

Future Trends in Nuclear Power Generation [and Discussion  

Science Journals Connector (OSTI)

...Future Trends in Nuclear Power Generation [and Discussion...the Calder Hall reactors were ordered...building and operating nuclear power stations...situations, a high nuclear share of new capacity...1980s. The fast reactor, prototypes of...

1974-01-01T23:59:59.000Z

280

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network [OSTI]

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

List of Hydroelectric Incentives | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Incentives Hydroelectric Incentives Jump to: navigation, search The following contains the list of 1298 Hydroelectric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1298) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government

282

OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,  

E-Print Network [OSTI]

-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat (the approach used in the traditional electric power paradigm), DPG systems employ numerous, but small¨EL BLOEMHOF, JOOST BOSMAN§, DAAN CROMMELIN¶, JASON FRANK , AND GUANGYUAN YANG Abstract. In electrical power

Frank, Jason

283

Ames Lab 101: Next Generation Power Lines  

SciTech Connect (OSTI)

Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

Russell, Alan

2010-01-01T23:59:59.000Z

284

Intelligent Control of Energy-Saving Power Generation System  

Science Journals Connector (OSTI)

Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind ... solar electric generation system integration. Develop...

Zhiyuan Zhang; Guoqing Zhang; Zhizhong Guo

2013-01-01T23:59:59.000Z

285

Combined desalination and power generation using solar energy.  

E-Print Network [OSTI]

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while… (more)

Zhao, Y

2009-01-01T23:59:59.000Z

286

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

287

Kraftwerk Union KWU Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Services Product: KWU is a provider of components and services to the commercial nuclear utility industry. References: Kraftwerk Union (KWU) - Siemens Power Generation.1...

288

Proactive Strategies for Designing Thermoelectric Materials for Power Generation  

Broader source: Energy.gov [DOE]

New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat.

289

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

290

Novel NDE techniques in the power generation industry.  

E-Print Network [OSTI]

??The thesis presented here comprises the work undertaken for research into novel NDE techniques in the power generation industry. This has been undertaken as part… (more)

Ward, Christopher M. S.

2010-01-01T23:59:59.000Z

291

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

292

Analysis of solar power generation on California turkey ranches.  

E-Print Network [OSTI]

??The objective of this thesis is to conduct a net present value analysis of installing a solar power generation system on company owned turkey grow… (more)

Palermo, Rick

2009-01-01T23:59:59.000Z

293

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

294

Forced response analysis of hydroelectric systems  

Science Journals Connector (OSTI)

At off-design operating points, Francis turbines develop cavitation vortex rope in the draft tube which may interact with the hydraulic system. Risk resonance assessment by means of eigenmodes computation of the system is usually performed. However, the system response to the excitation source induced by the cavitation vortex rope is not predicted in terms of amplitudes and phase. Only eigenmodes shapes with related frequencies and dampings can be predicted. Besides this modal analysis, the risk resonance assessment can be completed by a forced response analysis. This method allows identifying the contribution of each eigenmode into the system response which depends on the system boundary conditions and the excitation source location. In this paper, a forced response analysis of a Francis turbine hydroelectric power plant including hydraulic system, rotating train, electrical system and control devices is performed. First, the general methodology of the forced response analysis is presented and validated with time domain simulations. Then, analysis of electrical, hydraulic and hydroelectric systems are performed and compared to analyse the influence of control structures on pressure fluctuations induced by cavitation vortex rope.

S Alligné; P C O Silva; A Béguin; B Kawkabani; P Allenbach; C Nicolet; F Avellan

2014-01-01T23:59:59.000Z

295

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

used  directly   for   hydroelectric  power  generation,  produces  at  its  hydroelectric  facilities  more  power  2010).   6.4.4 Hydroelectric  power   Hydroelectricity  is  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

296

SunShot Initiative: Baseload Concentrating Solar Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Generation Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost Heliostat Development Infinia: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System for Solar Plants

297

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

298

Reservoir Management in Mediterranean Climates through the European Water Framework Directive  

E-Print Network [OSTI]

future use, or for hydroelectric power generation (Palmierias supply, irrigation, hydroelectric power and recreation (

O'Reilly, Clare; Silberblatt, Rafael

2009-01-01T23:59:59.000Z

299

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9273,3549008,3222785,7800149,2668381,9015544,8075919,8334852,9518506,9063595,0,0,0 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,2781,516242,1820306,1779887,2115695,1658481,1681717,15755...

300

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

4945,83257133,76690297,77063151,70491516,71708390,70648850,76635718,95.9,69.4,63.6 "Hydroelectric",483167,461787,482024,571541,445779,431101,546033,471916,326253,322664,235958,2109...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

01,156188,171053,237165,229129,309232,294615,322564,289529,325914,311960,3,2.8,3.1 "Hydroelectric",1575045,1344746,1433141,1323744,1171801,1291223,1223607,1463942,1498020,1582536,1...

302

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3065,4077225,3309695,3367488,3181654,3263241,3187087,3168054,2959203,26.4,13.9,6.6 "Hydroelectric",324399,358905,327960,401855,396042,325226,342231,376576,322498,331491,263087,2248...

303

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,155530,160057,168518,191912,139742,194804,148148,186369,186241,151825,0.4,0.6,0.7 "Hydroelectric",739679,1217033,686235,826996,659033,533021,737659,770779,439919,412899,451521,500...

304

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

5335,39551555,38804539,41380267,39301199,41153537,37862584,38681220,95.3,87.5,85.3 "Hydroelectric",883286,1214158,1014175,966572,835275,729424,843316,808375,593147,593555,583615,87...

305

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

8660,26357179,26121447,26752349,25507029,25348413,22129312,25826928,85.4,70.7,68.2 "Hydroelectric",222819,194766,217010,270963,312288,267978,198211,164993,138947,170699,264591,2373...

306

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,0,0,1482608,2557934,2367889,2269352,2104045,1907826,2148078,2117781,2351049,0,0,0 "Hydroelectric",26512,53253,32238,42188,46319,27974,46330,41014,35842,45857,20535,29065,146980,36...

307

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9404,28282531,28426101,26497930,26642524,24843631,25869811,24879567,81.5,68.5,58.5 "Hydroelectric",760600,916901,939097,963426,815654,961876,900488,950094,936999,780322,936688,8302...

308

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3,27394342,27780141,27369905,25394481,24890670,23625314,22622989,23299412,39.8,0,0 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,1713984,1422418,1739737,1588375,2457463,1442006,2009536,1...

309

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3537,5323432,5004219,4839820,5293892,4300537,4698045,5258829,4992578,84.2,10.9,9.5 "Hydroelectric",368890,455461,430411,474895,486207,399636,520077,415691,395734,367624,404227,3306...

310

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

091528,71514607,62735936,61213625,59764568,49814805,53955009,53865768,17.1,5.9,5.5 "Hydroelectric",49848,47157,43487,45482,60233,67950,84682,61879,72165,71078,56870,56802,60354,520...

311

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

113,3314068,2029901,2721295,2833332,2641582,2626290,2727087,2472514,37.9,32.8,24.3 "Hydroelectric",5980965,6608164,5238801,4432451,2993107,2917283,3396833,3074566,3597509,4276303,4...

312

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1067,27329077,26820765,26399834,27110850,24443013,26186299,27587603,61.7,50.6,42.4 "Hydroelectric",339300,469100,534259,529995,554068,504387,426960,574680,549598,686227,736795,6194...

313

Next Generation Power Electronics National Manufacturing Innovation...  

Energy Savers [EERE]

components of modern data center systems. WBG chips will eliminate up to 90% of the energy losses in today's rectifiers that perform these conversions. WBG-based power...

314

Optimal Power Sharing for Microgrid with Multiple Distributed Generators  

Science Journals Connector (OSTI)

Abstract This paper describes the active power sharing of multiple distributed generators (DGs) in a microgrid. The operating modes of a microgrid are 1) a grid-connected mode and 2) an autonomous mode. During islanded operation, one DG unit should share its output power with other DG units in exact accordance with the load. Unit output power control (UPC) is introduced to control the active power of DGs. The viability of the proposed power control mode is simulated by MATLAB/SIMULINK.

V. Logeshwari; N. Chitra; A. Senthil Kumar; Josiah Munda

2013-01-01T23:59:59.000Z

315

Power Electronic Control for Wind Generation Systems  

Science Journals Connector (OSTI)

...? mathematical models for wind turbines such as wind turbine (WT) with doubly fed induction generator (DFIG) and WT with direct-drive permanent magnet...

Xiao-Ping Zhang; Christian Rehtanz…

2012-01-01T23:59:59.000Z

316

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect (OSTI)

The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

Paul Tubel

2004-02-01T23:59:59.000Z

317

Power and Voltage Smooth Control of Doubly Fed Induction Generator  

Science Journals Connector (OSTI)

Doubly-fed induction generator (DFIG) is the leading in wind power technology currently. In this paper, decoupling control of DFIG is studied and a new energy storage device is used in the smooth control of DFIG system's power and voltage. This new method ... Keywords: Doubly fed induction generator, Energy storage device, Decoupling control

An-Ren Ma; Cai-Xia Wang; Zhi-Wen Zhou; Tao Wu

2012-07-01T23:59:59.000Z

318

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network [OSTI]

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

319

Wind power costs in Portugal Saleiro, Carla  

E-Print Network [OSTI]

was originated from hydroelectric power stations. Portugal assumed that the Electricity System Expansion Plan will proceed with the construction of new hydroelectric power plants with an installed power rating of more

320

Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A  

Broader source: Energy.gov [DOE]

Main Report and Appendix A: Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects.

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2D THD and 3D TEHD analysis of large spindle supported thrust bearings with pins and double layer system used in the three gorges hydroelectric generators  

Science Journals Connector (OSTI)

A 2D THD model and a 3DTEHD model for large spindle supported thrust bearings were set up and used to analyze the lubrication performance of the Three Gorges test thrust beating withpins and double layer system developed by Alstom Power. The finite difference method was employed to solve the THD model, and the thermal-elasticdeformations in the pad and runner were obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 was carried out automatically by an interface program.A detailed comparison between the experimental results and numerical predictions by the two different modelsset up in this paper was carried out. Poor agreement has been found between the theoretical results obtained by 2D THD model and experimental data, while 3D TEHD provides fairly good agreement, confirming the importance of thermal effects and thermal-elastic deformations in both pad and runner.

B Huang; Z D Wu; J L Wu; L Q Wang

2012-01-01T23:59:59.000Z

322

Siemens Westinghouse Power Generation SWPG | Open Energy Information  

Open Energy Info (EERE)

Siemens Westinghouse Power Generation SWPG Siemens Westinghouse Power Generation SWPG Jump to: navigation, search Name Siemens Westinghouse Power Generation (SWPG) Place Pittsburgh, Pennsylvania Zip PA 15235-5 Product Siemens Westinghouse Power Generation is the fuel cell subsidiary of Siemens Power Generation. It develops and manufactures stationary solide oxide fuel cells. Coordinates 40.438335°, -79.997459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.438335,"lon":-79.997459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Application Filing Requirements for Wind-Powered Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

324

Synchrophasor Applications for Wind Power Generation  

SciTech Connect (OSTI)

The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

2014-02-01T23:59:59.000Z

325

Impact of Power Generation Uncertainty on Power System Static Performance  

E-Print Network [OSTI]

--The rapid growth in renewable energy resources such as wind and solar generation introduces significant and solar generation, into the existing grid. Since these resources are highly intermittent, variable state variables, i.e., bus voltage magnitudes and angles, remain within acceptable ranges while

Liberzon, Daniel

326

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

327

FAWNdamentally Power-efficient Clusters Vijay Vasudevan, Jason Franklin, David Andersen  

E-Print Network [OSTI]

million people, is im- portant for food and energy production, with more than ten hydroelectric power

328

NET SYSTEM POWER: A SMALL SHARE OF  

E-Print Network [OSTI]

hydroelectricity. This report uses the same definition for small hydroelectric facilities, 30 megawatts or less, as is used under the state's Renewable Portfolio Standard,. Electricity from large hydroelectric facilities changes, because NW hydroelectric energy varies from year to year and because the power plant fleet within

329

2006 NET SYSTEM POWER REPORT COMMISSIONREPORT  

E-Print Network [OSTI]

hydroelectricity. This report uses the same definition for small hydroelectric facilities, 30 megawatts or less, as is used under the state's Renewable Portfolio Standard,. Electricity from large hydroelectric facilities changes, because NW hydroelectric energy varies from year to year and because the power plant fleet within

330

PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau  

E-Print Network [OSTI]

PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

Ashley, Michael C. B.

331

Main Canal, Maverick County Water Control and Improvement District above Central Power and Light hydro-electric plant, at Maverick and Kinney Counties, Texas  

E-Print Network [OSTI]

BAIN CANAL NA~ICK COUNTY WATW CONTROL AND INPROllZXBZ DISTRICT ABOVE C~ POWER AND LION HYDRO ELECTRIC PLANT& AT, SIAVERICK AND KINNEY COUNT'S, T~~S By John J. Ledbetter, Jr. Approved as to style and content by: (Che man Committee Heed of pa... Hydro Plant K'KWFS Determfnatfans vcfth Power Canal Current Later Lbiasuremsnts Made by Various Hydrographsrs Using Rated Current Meters Tabulation Shaming f&7CID Irrigated and Irrigable Areas. Tabulation Shawing Average IIumber of' Acres Irrigated...

Ledbetter, John J

2012-06-07T23:59:59.000Z

332

Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A  

Broader source: Energy.gov [DOE]

Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria.

333

Wind Power Generation’s Impact on Peak Time Demand and on Future Power Mix  

Science Journals Connector (OSTI)

Although wind power is regarded as one of the ways to actively respond to climate change, the stability of the whole power system could be a serious problem in the future due to wind power’s uncertainties. These ...

Jinho Lee; Suduk Kim

2010-01-01T23:59:59.000Z

334

Microsoft PowerPoint - SW Regional Hydropower Conference - June 2007.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Engineers® of Engineers® Vision Statement Vision Statement Be the premier stewards of entrusted hydropower resources US Army Corps of Engineers® Mission Statement Mission Statement Provide reliable hydroelectric power services at the lowest possible cost, consistent with sound business principles, in partnership with other Federal hydropower generators, the Power Marketing Administrations, and Preference Customers, to benefit the Nation. US Army Corps of Engineers® Mission Statement Mission Statement Provide reliable hydroelectric power services at the lowest possible cost, consistent with sound business principles, in partnership with other Federal hydropower generators, the Power Marketing Administrations, and Preference Customers, to benefit the Nation. US Army Corps

335

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Broader source: Energy.gov (indexed) [DOE]

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. What are the key facts? Over the last four decades, the United States has launched 26

336

Combined fuel and air staged power generation system  

SciTech Connect (OSTI)

A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

2014-05-27T23:59:59.000Z

337

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

338

Marine Hydroelectric Company | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Company Address: 24040 Camino Del Avion A 107 Place: Monarch Beach Sector: Marine and Hydrokinetic Year Founded: 1983 Phone Number: (949) 361-6474 Website: http:...

339

Hydroelectric Webinar Presentation Slides and Text Version  

Broader source: Energy.gov [DOE]

Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on hydroelectric renewable energy. 

340

Protective, Modular Wave Power Generation System  

SciTech Connect (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

342

Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators  

E-Print Network [OSTI]

This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

Pilawa, Robert

343

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Ol’khovskii; A. V. Ageev; S. V. Malakhov…

2006-07-01T23:59:59.000Z

344

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

345

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

Wind-Powered Generation Examples are: The rough running bands of hydro turbines Loadings of coal burning steam plants at which coal mills

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

346

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of four Power Marketing Administrations in the United States, Southwestern markets hydroelectric power in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas from 24 U.S....

347

Powering up America's Waterways | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

up America's Waterways up America's Waterways Powering up America's Waterways April 17, 2012 - 11:53am Addthis This map demonstrates the potential capacity to generate clean hydroelectric energy at existing non-powered dams across the U.S. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program A new report released today by the Energy Department analyzes the potential to generate clean hydroelectric energy at existing dams across the United States. Harnessing the tremendous power of the nation's waterways could help increase the supply of clean energy for American families and businesses. Thousands of dams across the country are not currently equipped to produce power. Today's report finds that if fully developed, these existing dams could provide an electrical generating capacity of more than 12 gigawatts

348

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Integration of decentralized generators with the electric power grid  

E-Print Network [OSTI]

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

351

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

352

Improving heat capture for power generation in coal gasification plants  

E-Print Network [OSTI]

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

353

Impact of GHG Emission Reduction on Power Generation Expansion Planning  

Science Journals Connector (OSTI)

In this work the impact of greenhouse gas (GHG) emission reduction on Power Generation Expansion Planning ... models, which also consider environmental constraints and GHG emission limits, is presented. After a s...

F. Careri; C. Genesi; P. Marannino; M. Montagna…

2012-01-01T23:59:59.000Z

354

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network [OSTI]

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

355

The Homopolar Generator as a Pulsed Industrial Power Supply  

E-Print Network [OSTI]

high current, low voltage electrical pulses. The homopolar generator is allowing numerous industrial joining and forming processes to be extended to larger work pieces and higher power output capabilities than were previously possible. The basic...

Weldon, J. M.; Weldon, W. F.

1979-01-01T23:59:59.000Z

356

Gasifier-based power generation: Technology and economics  

Science Journals Connector (OSTI)

The paper describes a 100 kW power generation system installed at Port Blair, Andaman and Nicobar Islands, under a project sponsored by the Department of Non-Conventional Energy Sources, Government of India. The ...

B N Baliga; S Dasappa; U Shrinivasa; H S Mukunda

1993-03-01T23:59:59.000Z

357

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

358

SECOND GENERATION REFORMS IN CHILE, POWER EXCHANGE MODEL. THE SOLUTION?  

E-Print Network [OSTI]

SECOND GENERATION REFORMS IN CHILE, POWER EXCHANGE MODEL. THE SOLUTION? David Watts Paulo Atienza to participate. Chile was the pioneer introducing this kind of reforms, through the application of a centralized

Catholic University of Chile (Universidad Católica de Chile)

359

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

360

Shawmut hydroelectric redevelopment project. Final technical and construction cost report  

SciTech Connect (OSTI)

This report describes the major steps undertaken by the Central Maine Power Company to redevelop an old existing lowhead (19 to 23 ft) hydroelectric station and, at the same time, demonstrate the commercial viability of such a venture. The report addresses the process of site selection, preliminary conceptual design for determining economic viability, licensing and the regulatory process, final design, and project construction with the objective of presenting to the reader a technical and economical guide useful for a similar undertaking.

None

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

S. 737: A Bill to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session  

SciTech Connect (OSTI)

This bill was proposed to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. The bill proposes extending the deadlines applying to certain hydroelectric projects in West Virginia, Kentucky, Washington, Oregon, and Arkansas. It proposes limited exemptions for licensing provisions for a power transmission project in New Mexico, extends Alaska`s state jurisdiction over small hydroelectric projects in the state, and amends the jurisdiction of FERC for licensing fresh water hydroelectric projects in Hawaii.

NONE

1995-12-31T23:59:59.000Z

362

Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program This document contains the Final...

363

Energy Department Seeks Feedback on Draft Guidance for the Hydroelectr...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedback on Draft Guidance for the Hydroelectric Production Incentive Program Energy Department Seeks Feedback on Draft Guidance for the Hydroelectric Production Incentive Program...

364

ORIGINAL PAPER Photomineralization in a boreal hydroelectric reservoir  

E-Print Network [OSTI]

ORIGINAL PAPER Photomineralization in a boreal hydroelectric reservoir: a comparison with natural dioxide Á Dissolved organic matter Á Boreal hydroelectric reservoir Á Greenhouse gas production

Long, Bernard

365

Hydro-Electric Development Works1  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers by Mr. J. W. Meares, chief engineer of the Hydroelectric Service of India, dealing with the general principles of the development and storage of ... 's paper is a general survey of the various problems connected with the inception of hydroelectric installations; it outlines the conditions essential to the satisfactory development of any scheme of ...

BRYSSON CUNNINGHAM

1919-10-23T23:59:59.000Z

366

Hungarian establishment now opposes hydroelectric project  

Science Journals Connector (OSTI)

... permission to publish its three reports on the probable environmental effect of the Gabcikovo-Nagymaros hydroelectric project. This is the latest in a sequence of events that, since the conference ... , north from its present channel, and the construction of two major 'peak-hour' hydroelectric plants at Gabcikovo in Slovakia and Nagymaros in Hungary, was originally intended as a ...

Vera Rich

1988-08-25T23:59:59.000Z

367

Mineralization of Pentachlorophenol With Enhanced Degradation and Power Generation From  

E-Print Network [OSTI]

­2221. � 2012 Wiley Periodicals, Inc. KEYWORDS: microbial fuel cell; PCP degradation rate; power production Cathode Microbial Fuel Cells Liping Huang,1 Linlin Gan,1 Ning Wang,1 Xie Quan,1 Bruce E. Logan,2 GuohuaARTICLE Mineralization of Pentachlorophenol With Enhanced Degradation and Power Generation From Air

368

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect (OSTI)

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

369

Piezoelectric and Semiconducting Coupled Power Generating Process of a  

E-Print Network [OSTI]

of the electric generator relies on the unique coupling of piezoelectric and semiconducting dual properties of ZnPiezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment Jinhui Song, Jun Zhou, and Zhong Lin Wang* School

Wang, Zhong L.

370

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

371

A novel dual stator-winding induction generator system applied in wind power generation  

Science Journals Connector (OSTI)

This paper presents a novel usage of 6/3-phase dual stator-winding induction generator (DWIG) with a static excitation power controller (SEC) as a wind power generator. This generator is composed of a standard squirrel-cage rotor and two sets of winding housed in the stator slots. One is referred to as the 6-phase power winding, and the other is defined as the 3-phase control winding. On the basis of the instantaneous power theory, the control mechanism of DWIG wind power system is analysed, and the control winding flux orientation control strategy is obtained consequently. The simulation and experimental results from a prototype of 18 kW 6/3-phase DWIG wind power system are presented to verify the correctness and feasibility of control strategy, and a desirable performance is implemented.

Bu Feifei; Huang Wenxin; Hu Yuwen; Shi Kai

2010-01-01T23:59:59.000Z

372

Lamp for generating high power ultraviolet radiation  

DOE Patents [OSTI]

The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

373

Chapter 3 - Coal Processing and Use for Power Generation  

Science Journals Connector (OSTI)

Coal is an important source of energy and raw material for electric power production. Despite climate change legislation, growth in coal consumption thus far outpaced that of other fossil fuels in the twenty-first century. Coal is a reliable energy source, abundant, easily transported, easily traded and competitive in terms of price compared to other fossil fuels. The technology of coal preparation, coal cleaning and use in power generation is discussed. It covers issues such as coal properties and how these relate to coal performance in power generation, as well as ways to remove sulphur, mineral matter and water before coal combustion to improve the efficiency of power generation and reduce emissions from coal use.

Maria E. Holuszko; Arno de Klerk

2014-01-01T23:59:59.000Z

374

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

375

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

376

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

235875,29742722,25896959,26488755,26799665,22152736,23435008,23720258,72.5,67.8,63 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9102,11769,0,0,0 "Natural...

377

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Geothermal",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "Hydroelectric",28940,19999,16719,28608,17872,14729,23656,9169,9724,2078,8533,18132,15114,18844,1...

378

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network [OSTI]

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

Abolmaesumi, Purang

379

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

380

Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

scheduling, dispatching, and accounting for capacity and energy generated at the 22 hydroelectric projects in the agencys 11-state marketing area. Southeastern has Certified...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Jiangsu Dongsheng Biomass Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongsheng Biomass Power Generation Co Ltd Dongsheng Biomass Power Generation Co Ltd Jump to: navigation, search Name Jiangsu Dongsheng Biomass Power Generation Co Ltd Place Dongtai, Jiangsu Province, China Zip 224212 Sector Biomass Product A biomass project developer in China. Coordinates 32.845699°, 120.301224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.845699,"lon":120.301224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

383

Next-Generation Distributed Power Management for Photovoltaic Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

384

Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Qingdao Hengfeng Wind Power Generator Co Ltd Qingdao Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name Qingdao Hengfeng Wind Power Generator Co Ltd Place Jiaonan, Shandong Province, China Sector Wind energy Product Shandong, Jiaonan-based wind turbine supplier. Coordinates 35.875°, 119.977203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.875,"lon":119.977203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Environmentally Protective Power Generation EPPG | Open Energy Information  

Open Energy Info (EERE)

Environmentally Protective Power Generation EPPG Environmentally Protective Power Generation EPPG Jump to: navigation, search Name Environmentally Protective Power Generation (EPPG) Place Tucson, Arizona Sector Wind energy Product Seeking financing for a Tower system, about which little has been disclosed, which would have wind and other backup. Coordinates 32.221553°, -110.969754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221553,"lon":-110.969754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Solar Power Generates Big Savings in Salinas, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

Power Generates Big Savings in Salinas, California Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

387

New San Antonio Airport Terminal Generating Clean Power | Department of  

Broader source: Energy.gov (indexed) [DOE]

San Antonio Airport Terminal Generating Clean Power San Antonio Airport Terminal Generating Clean Power New San Antonio Airport Terminal Generating Clean Power January 27, 2011 - 2:03pm Addthis The new photovoltaic system at the San Antonio International Airport. The new photovoltaic system at the San Antonio International Airport. Todd G. Allen Project Officer, Golden Field Office What are the key facts? The City of San Antonio's EECBG proram staff awarded a block grant for a solar photovoltaic (PV) system at the airport, designed and built the project, and complied with all local and federal regulations... all in seven months. In early 2010, the City of San Antonio's Energy Efficiency and Conservation Block Grant (EECBG) program staff quickly realized a golden opportunity lay right at their fingertips. The opening of the new San

388

Solar Power Generates Big Savings in Salinas, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

389

Environmental impact of fossil fuel combustion in power generation  

SciTech Connect (OSTI)

All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

1996-12-31T23:59:59.000Z

390

Fish and hydroelectricity; Engineering a better coexistence  

SciTech Connect (OSTI)

This paper reports on the problems that hydroelectric plants have regarding fish populations. The utilities that operate these plants are finding that accommodating migrating fish presents unique engineering challenges, not the least of which involves designing and building systems to protect fish species whose migratory behavior remains something of a mystery. Where such systems cannot be built, the status of hydroelectric dams may be in doubt, as is now the case with several dams in the United States. A further twist in some regions in the possibility that certain migratory fish will be declared threatened or endangered-a development that could wreak havoc on the hydroelectric energy supply in those regions.

Zorpette, G.

1990-12-01T23:59:59.000Z

391

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

392

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

393

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

394

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Power generation considerations in a solar biomodal receiver  

SciTech Connect (OSTI)

The Integrated Solar Upper Stage (ISUS), or solar bimodal stage provides both propulsive thrust for efficient orbital transfer(s) and electrical power generation for the spacecraft. The combined propulsive and power systems allow the solar bimodal system to effectively compete for a variety of missions. Once on station, thermionic converters are used to supply continuous electrical power to the satellite, even during periods when the spacecraft is in the Earth`s shadow. The key to continuous power supply is thermal energy storage. The ISUS propulsion system also benefits through the use of thermal storage. By utilizing a graphite receiver, large amounts of sensible heat can be stored for later power generation. Waste heat is radiated to space through the use of heat pipes. Clearly, the graphite mass must be minimized without sacrificing electrical power capability. Voltage and current characteristics are carefully designed to operate within acceptable ranges. The detailed design of the receiver/absorber/converter (RAC) power system must meet these requirements with as little impact to the remainder of the bimodal system as possible. This paper addresses the key design considerations of a solar bimodal receiver as a power plant. Factors including the thermal storage and heat transfer from the graphite receiver to the thermionic converters, the support structures, electrical insulation and converter string design will be discussed.

Rochow, R.F. [NovaTech, Lynchburg, VA (United States); Miles, B.J. [Babcock and Wilcox, Lynchburg, VA (United States)

1996-12-31T23:59:59.000Z

396

A Power Energy Generation Systems Ltd APWR | Open Energy Information  

Open Energy Info (EERE)

Generation Systems Ltd APWR Generation Systems Ltd APWR Jump to: navigation, search Name A-Power Energy Generation Systems Ltd (APWR) Place Shenyang, Liaoning Province, China Zip 110021 Product Chinese-based provider of power generation systems, acting as the holding company of Liaoning Gaoke Energy. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

398

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

399

Photonic microwave generation with high-power photodiodes  

E-Print Network [OSTI]

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

2013-01-01T23:59:59.000Z

400

Power and Hydrogen Co-generation from Biogas  

Science Journals Connector (OSTI)

Furthermore, the Piedmont Regional framework is very oriented toward clean transport, in both the public sector (the GTT public transportation fleet has a multitude of natural gas-fueled buses) and the private one (FIAT has decided on methane cars as a market target in the short term, and Centro Ricerche FIAT has already developed several generations of H2-fueled car prototypes). ... The first configuration (A in Figure 1) requires less water and air, produces a higher amount of hydrogen, but has a lower power generation at the turbine. ... Cannock landfill gas powering a small tubular solid oxide fuel cell - a case study ...

Samir Bensaid; Nunzio Russo; Debora Fino

2010-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

402

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

403

The next generation of power reactors - safety characteristics  

SciTech Connect (OSTI)

The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs.

Modro, S.M.

1995-01-01T23:59:59.000Z

404

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

405

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

406

Hydroelectric Resources on State Lands (Montana)  

Broader source: Energy.gov [DOE]

This chapter authorizes the leasing of state lands for the development of hydroelectric resources. It provides regulations for the granting and duration of leases, as well as for the inspection of...

407

High power terahertz generation using 1550?nm plasmonic photomixers  

SciTech Connect (OSTI)

We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-07-07T23:59:59.000Z

408

Concentrated Thermoelectric Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrated Thermoelectric Power This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D...

409

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1457,591756,0.2,0.1,0.1 "Coal",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "Natural...

410

Water and Energy Interactions  

E-Print Network [OSTI]

ecosystems (40, Hydroelectric power generation is currentlycould be allocated to hydroelectric power generation becausefarmland. Its eight hydroelectric power plants and one coal-

McMahon, James E.

2013-01-01T23:59:59.000Z

411

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

412

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

413

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

414

Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients  

Science Journals Connector (OSTI)

Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients ... solns. of different salinities. ... River mouths are potentially abundant locations for the exploitation of the clean and renewable salinity gradient energy (SGE) as here perpetually fresh water mixes with saline seawater. ...

Ngai Yin Yip; David A. Vermaas; Kitty Nijmeijer; Menachem Elimelech

2014-04-03T23:59:59.000Z

415

Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.  

SciTech Connect (OSTI)

In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

Robinett, Rush D., III; Wilson, David Gerald

2010-05-01T23:59:59.000Z

416

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect (OSTI)

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

417

High-efficiency solar dynamic space power generation system  

SciTech Connect (OSTI)

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

418

Indian River Hydroelectric Project Grant  

SciTech Connect (OSTI)

This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

Rebecca Garrett

2005-04-29T23:59:59.000Z

419

Evaluation of performance of combined heat and power systems with dual power generation units (D-CHP).  

E-Print Network [OSTI]

?? In this research, a new combined heat and power (CHP) system configuration has been proposed that uses two power generation units (PGU) operating simultaneously… (more)

Knizley, Alta Alyce

2013-01-01T23:59:59.000Z

420

Municipal Electric Power (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

equipment, and services to support its mission of marketing and delivering Federal hydroelectric power: 1569138161-kV field equipment such as circuit breakers, coupling...

422

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment Southwestern's mission of marketing and delivering Federal hydroelectric power fully supports the U.S. Department of Energy's strategic goal of improving...

423

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

424

Low-power electricity generation from dynamical systems  

Science Journals Connector (OSTI)

This talk will review our research on energy harvesting from electroelastic dynamical systems for low-power electricity generation with an emphasis on piezoelectric transduction. The transformation of vibrations into electricity using piezoelectric materials with the goal of powering small electronic components has received growing attention over the last decade. Enabling energy-autonomous small electronic components can lead to reduced maintenance costs in various wireless applications such as structural health monitoring of civil and military systems. After a brief discussion of energy harvesting methods for low-power electricity generation this talk will be focused on linear and nonlinear energy harvesting using piezoelectric materials through the topics of distributed-parameter electroelastic dynamics of energy harvesters performance and frequency bandwidth enhancement by exploiting nonlinear dynamic phenomena deterministic and stochastic excitation of monostable and bistable configurations effects of dissipative and inherent electroelastic nonlinearities electroaeroelastic flow energy harvesting using airfoil-based and bluff body-based configurations and enhanced harvesting of structure-borne propagating waves using elastoacoustic mirrors and metamaterial structures. A brief introduction to our efforts on multifunctional underwater thrust and power generation using flexible piezoelectric composites will also be given.

Alper Erturk

2013-01-01T23:59:59.000Z

425

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Upstate New York Upstate New York Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 105, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Upstate New York Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Upstate New York- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

426

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Northeast Northeast Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 102, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Northeast Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Northeast- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

427

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 104, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Long Island Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

428

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

NYC-Westchester NYC-Westchester Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

429

Research on Low Voltage Ride through of Doubly-Fed Induction Generator Wind Power System  

Science Journals Connector (OSTI)

Due to the double fed induction generator’s(DFIG) advantage of controlling active and reactive power independently and partly power converter, DFIG is becoming a popular type of wind power generation system. However, the converter is quite sensitive ...

Yongfeng Ren; Hongyan Xu; Jianlin Li; Shuju Hu

2008-12-01T23:59:59.000Z

430

E&WR - Water-Energy Interface: Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E&WR - Water-Energy Interface E&WR - Water-Energy Interface Mine Water for Thermoelectric Power Generation: A Modeling Framework The purpose of this study, conducted by the National Mine Land Reclamation Center at West Virginia University, is to develop and demonstrate a framework for assessing the costs, technical and regulatory aspects, and environmental benefits of using mine water for thermo-electric power generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering, and environmental factors to be considered and evaluated in using mine water as an alternative to traditional freshwater supply. Development and demonstration of the framework involves the following activities: A field investigation and case study conducted for the proposed Beech Hollow Power Plant located in Champion, Pennsylvania. This 300 megawatt power plant has been proposed to burn coal refuse from the Champion coal refuse pile, which is the largest coal waste pile in Western Pennsylvania. The field study, based on previous mine pool research conducted by the National Mine Land Reclamation Center (NMLRC), identifies mine water sources sufficient to reliably supply the 2,000 to 3,000 gpm power plant water requirement.

431

Concentrated solar power in the future of electricity generation: a synthesis of reasons  

Science Journals Connector (OSTI)

...electricity generation. Experience...steam-Rankine coal-fired power plants, nuclear...defaults in generation units. Large...need to have a generation system with...the unitary power will have to...and natural gas. Evidently...

2013-01-01T23:59:59.000Z

432

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network [OSTI]

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

433

Coal gasification for power generation. 2nd ed.  

SciTech Connect (OSTI)

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

NONE

2006-10-15T23:59:59.000Z

434

ADVANCED CO{sub 2} CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-07-01T23:59:59.000Z

435

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

436

Nanodevices for generating power from molecules and batteryless sensing  

DOE Patents [OSTI]

A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

2014-07-15T23:59:59.000Z

437

Nuclear Power Generation and Fuel Cycle Report 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1996 October 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1996 ii Contacts This report was prepared in the Office of Coal, Nuclear, report should be addressed to the following staff Electric and Alternate Fuels by the Analysis and Systems

438

Information discovery applied to a power generation database  

SciTech Connect (OSTI)

An information discovery system is presented that extracts knowledge from databases in a form that is much more compact and easy to understand than the original set of records. The system was tested with a subset of a real power generation database of the Federal Commission of Electricity in Mexico (CFE = Comision Federal de Electricidad). The paper discusses a machine learning algorithm for induction of rules and the heuristics used to obtain the simplest rules that define the knowledge hidden in a database.

Rodriguez, G.; Hernandez, V. [Electrical Research Inst., Cuernavaca (Mexico). Information Systems Dept.

1996-11-01T23:59:59.000Z

439

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network [OSTI]

the night, as part of hydroelectric power generation by theto manage water for hydroelectric power generation. There

2010-01-01T23:59:59.000Z

440

Next Generation Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Next Generation Power Systems Inc Next Generation Power Systems Inc Jump to: navigation, search Name Next Generation Power Systems Inc. Place Pipestone, Minnesota Zip 56164 Sector Services, Wind energy Product NextGen is a full-service company that provides site analysis, maintenance, and installation services for small-scale wind turbines and PV systems. Coordinates 43.99413°, -96.317104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.99413,"lon":-96.317104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators  

SciTech Connect (OSTI)

The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ?4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

Xu, B., E-mail: bin.xu09@imperial.ac.uk; Fobelets, K. [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London (United Kingdom)

2014-06-07T23:59:59.000Z

442

SLAC Next-Generation High Availability Power Supply  

SciTech Connect (OSTI)

SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

Bellomo, P.; MacNair, D.; /SLAC; ,

2010-06-11T23:59:59.000Z

443

Impacts of dynamic reactive power compensation devices on the performance of wind power generators  

Science Journals Connector (OSTI)

This paper investigates the main impacts of dynamic reactive power compensation devices on the performance of induction machine-based wind power generators. The dynamic reactive power compensation devices analysed are the SVC (Static Var Compensator) and the DSTATCOM (Distributed Static Synchronous Compensator). The usage of these devices as a power factor regulator or a voltage regulator is investigated. The technical factors analysed are small-signal voltage stability, transient stability and interactions with the anti-islanding protection system. The analyses are carried out by using a wind farm composed of 30 units of 1 MW induction generators. Such wind farm is connected to a 60 Hz, 33 kV distribution system. The results are a useful guideline to evaluate which control strategy and device are suitable for a determined application as well as to understand the dynamic interactions that can occur.

Walmir Freitas; Mauricio B.C. Salles; Jose C.M. Vieira; Andre Morelato; Luiz Carlos Pereira Da Silva; Vivaldo Fernando Da Costa

2005-01-01T23:59:59.000Z

444

Impact of wind power on generation economy and emission from coal based thermal power plant  

Science Journals Connector (OSTI)

The major chunk of power generation is based on coal fueled thermal power plant. Due to increasing demand of power there will be future crises of coal reservoirs and its costing. Apart from this, coal based thermal power plant is the main source of environmental emissions like carbon dioxides (CO2), sulfur dioxides (SO2) and oxides of nitrogen (NOx) which not only degrades the air quality but also is responsible for global warming, acid rain etc. This paper proposes a combined working of Doubly Fed Induction Generator (DFIG) with coal based Synchronous Generator (SG) in the MATLAB environment. STATCOM is suggested at common coupling point to maintain voltage stability and also maintain the system in synchronism. Analysis have been made for environmental emissions, coal requirement and system economy for both the cases, when the total load supplied by only SG and with the combination. Emission analysis have been also made with the application of washed coal in SG. With the impact of DFIG energy generation from SG have been reduces which proportionally affects on coal requirement, generation cost and environmental emissions. Application of washed coal improves the performance of SG and also reduces the environmental emissions.

K.B. Porate; K.L. Thakre; G.L. Bodhe

2013-01-01T23:59:59.000Z

445

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network [OSTI]

results of the power generation loading optimization based on a coal-fired power plant demonstrates algorithm in solving significant industrial problems. I. INTRODUCTION Most power generation plants have.e., heat rate/NOx vs. load, for a given plant condition. There are two objectives for the power generation

Li, Xiaodong

446

Computer controlled MHD power consolidation and pulse generation system  

SciTech Connect (OSTI)

The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

Johnson, R.; Marcotte, K.; Donnelly, M.

1990-01-01T23:59:59.000Z

447

Impacts of Western Area Power Administration`s power marketing alternatives on air quality and noise  

SciTech Connect (OSTI)

The Western Area Power Administration, which is responsible for marketing electricity produced at the hydroelectric power-generating facilities operated by the Bureau of Reclamation on the Upper Colorado River, has proposed changes in the levels of its commitment (sales) of long-term firm capacity and energy to its customers. This report describes (1) the existing conditions of air resources (climate and meteorology, ambient air quality, and acoustic environment) of the region potentially affected by the proposed action and (2) the methodology used and the results of analyses conducted to assess the potential impacts on air resources of the proposed action and the commitment-level alternatives. Analyses were performed for the potential impacts of both commitment-level alternatives and supply options, which include combinations of electric power purchases and different operational scenarios of the hydroelectric power-generating facilities.

Chun, K.C.; Chang, Y.S.; Rabchuk, J.A.

1995-05-01T23:59:59.000Z

448

Coal-fired high performance power generating system. Final report  

SciTech Connect (OSTI)

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

NONE

1995-08-31T23:59:59.000Z

449

Improvement of the effectiveness of spillway operation of high-head hydroelectric stations  

SciTech Connect (OSTI)

This article formulates the hydraulics and energetics involved in the aerated two-phase flow of water over and down the spillway of a high-head hydroelectric power plant into the receiving pools and constructs a flow model describing kinetic energy transfer and losses and air bubble compression forces for different configurations and inclinations of the spillway surface for purposes of spillway design.

Khlopenkov, P.R.

1987-10-01T23:59:59.000Z

450

Nurture over nature: Summer germinating Lupinus nanus are a result of anthropogenic germination cues and are not an independently evolving population  

E-Print Network [OSTI]

water is used for hydroelectric power and irrigation duringwater is used for hydroelectric power and irrigation duringis used to generate hydroelectric power, and refilling at

Morris, Veronica Ruth Franco

2009-01-01T23:59:59.000Z

451

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network [OSTI]

energy was supplied by hydroelectric power. needed for powerprovide flood control, hydroelectric power, and But they arewas generated by hydroelectric power. is also needed for

Benenson, P.

2010-01-01T23:59:59.000Z

452

Regulatory Science in a Developing State: Environmental Politics in Chile, 1980-2010  

E-Print Network [OSTI]

Bauer, C. (2012). Hydroelectric power generation in Chile:aquaculture and hydroelectric power damage rivers anda better way to develop hydroelectric power, he says. In 20

Barandiaran, Javiera

2013-01-01T23:59:59.000Z

453

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

the production of hydroelectric power also results in waterthe reduction in hydroelectric power production as a resultafter factoring in its hydroelectric power generation (189),

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

454

The Management of International Rivers as Demands Grow and Supplies Tighten: India, China, Nepal, Pakistan, Bangladesh  

E-Print Network [OSTI]

in the promotion of hydroelectric power is not known. Bothwas primarily focused on hydroelectric power coming from theirrigation and hydroelectric power generation schemes better

Crow, Ben; Singh, Nirvikar

2009-01-01T23:59:59.000Z

455

ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America  

E-Print Network [OSTI]

ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America: modelling service services provided to the Costa Rican and Nicaraguan hydroelectric sectors, which are crucial sectors for the conservation and restoration of forests for the services they provide to the hydroelectric sector. As such

Paris-Sud XI, Université de

456

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER...  

Broader source: Energy.gov (indexed) [DOE]

electrical power, such as steam turbine technology, nuclear power, hydroelectric and wind facilities, represent competition to the global power plant mariket. Thus grant of...

457

Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator  

SciTech Connect (OSTI)

In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

2010-07-15T23:59:59.000Z

458

Intelligent Power Management of a Hybrid Fuel Cell/Energy Storage Distributed Generator  

Science Journals Connector (OSTI)

This book chapter addresses the intelligent power management of a hybrid ( fuel cell/energy storage( distributed generator connected to a power grid. It presents...

Amin Hajizadeh; Ali Feliachi; Masoud Aliakbar Golkar

2012-01-01T23:59:59.000Z

459

Evaluation of renewable energy development in power generation in Finland  

Science Journals Connector (OSTI)

Renewable energy resources have historically played an important role for heat/electricity generation in Finland. Although diffusion costs of renewable energy utilization are higher than fossil fuels and nuclear power plants other policy aspects and operation costs of renewables cover this gap particularly in high dependent countries to fossil fuels. The current paper discusses the role of renewable portfolio in the Finland's energy action plan during 2011–2020. A system dynamics model is constructed to evaluate different costs of renewable energy utilization by 2020. Results show that total costs of new capacities of renewable energy systems as well as operation and maintenance costs of current systems bring 7% saving compared to total costs of new natural gas power plants (as a sample for second scenario) in Finland.

Alireza Aslani; Petri Helo; Marja Naaranoja

2013-01-01T23:59:59.000Z

460

Water and Energy Interactions  

E-Print Network [OSTI]

The most common type of hydroelectric generation takes placethe reservoir and reused. Hydroelectric generation causesand ecosystems (40, Hydroelectric power generation is

McMahon, James E.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Application of membrane technology to power generation waters  

SciTech Connect (OSTI)

Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

1980-03-01T23:59:59.000Z

462

Gravitational wave generation in power-law inflationary models  

E-Print Network [OSTI]

We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10^(-5) and 10^5 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning of the radiation-dominated era. We thus deem the development of gravitational wave detectors, covering the MHz/GHz range of frequencies, to be an important task for the future.

Paulo M. Sá; Alfredo B. Henriques

2008-06-06T23:59:59.000Z

463

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P. (Lakewood, CO); Lilley, Arthur (Finleyville, PA); Browne, Kingsbury III (Golden, CO); Walt, Robb Ray (Aurora, CO); Duncan, Dustin (Littleton, CO); Walker, Michael (Longmont, CO); Steele, John (Aurora, CO); Fields, Michael (Arvada, CO); Smith, Trevor (Lakewood, CO)

2011-03-22T23:59:59.000Z

464

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

2013-11-05T23:59:59.000Z

465

Next Generation Power Electronics National Manufacturing Innovation Institute  

Broader source: Energy.gov [DOE]

The Next Generation Power Electronics National Manufacturing Innovation Institute will focus on wide bandgap (WBG) semiconductors - the same materials used in LED light fixtures and many flat screen TVs. The Institute will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of three new innovation hubs announced by President Obama in his 2013 State of the Union address and part of the National Network for Manufacturing Innovation (NNMI).

466

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

467

The Prospects for Closed Cycle M.P.D. Power Generation  

Science Journals Connector (OSTI)

...P.D. Power Generation B. C. Lindley...cycles (direct nuclear, indirect nuclear...on combustion or nuclear energy, to the...restrictions. Nuclear reactors to provide temperatures...p.d. power generation is mainly in progress...

1967-01-01T23:59:59.000Z

468

Cost–Performance Analysis and Optimization of Fuel-Burning Thermoelectric Power Generators  

Science Journals Connector (OSTI)

Energy cost analysis and optimization of thermoelectric (TE) power generators burning fossil fuel show a lower initial cost ... The produced heat generates electric power. Unlike waste heat recovery systems, the ...

Kazuaki Yazawa; Ali Shakouri

2013-07-01T23:59:59.000Z

469

Thermodynamic and Energy Efficiency Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis  

Science Journals Connector (OSTI)

The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In ...

Ngai Yin Yip; Menachem Elimelech

2012-04-02T23:59:59.000Z

470

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation  

Science Journals Connector (OSTI)

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation ... These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solns., such as thermolytic salts. ... saline brines because of the higher power d. ...

Jun Gao; Wei Guo; Dan Feng; Huanting Wang; Dongyuan Zhao; Lei Jiang

2014-08-19T23:59:59.000Z

471

Electric Power Generation from Co-Produced and Other Oil Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

472

High efficiency electric power generation: The environmental role  

Science Journals Connector (OSTI)

Electric power generation system development is reviewed with special attention to plant efficiency. It is generally understood that efficiency improvement that is consistent with high plant reliability and low cost of electricity is economically beneficial, but its effect upon reduction of all plant emissions without installation of additional environmental equipment, is less well appreciated. As CO2 emission control is gaining increasing acceptance, efficiency improvement, as the only practical tool capable of reducing CO2 emission from fossil fuel plant in the short term, has become a key concept for the choice of technology for new plant and upgrades of existing plant. Efficiency is also important for longer-term solutions of reducing CO2 emission by carbon capture and sequestration (CCS); it is essential for the underlying plants to be highly efficient so as to mitigate the energy penalty of CCS technology application. Power generating options, including coal-fired Rankine cycle steam plants with advanced steam parameters, natural gas-fired gas turbine-steam, and coal gasification combined cycle plants are discussed and compared for their efficiency, cost and operational availability. Special attention is paid to the timeline of the various technologies for their development, demonstration and commercial availability for deployment.

János M. Beér

2007-01-01T23:59:59.000Z

473

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

474

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Broader source: Energy.gov [DOE]

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

475

A Game Strategy for Power Flow Control of Distributed Generators in Smart Grids  

Science Journals Connector (OSTI)

We consider the distributed power control problem of distributed generators(DGs) in smart grid. In order...

Jianliang Zhang; Donglian Qi; Guoyue Zhang…

2014-01-01T23:59:59.000Z

476

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

477

Modelling fly ash generation for UK power station coals  

SciTech Connect (OSTI)

An in-depth characterization has been made of three UK bituminous coals and the combustion products from these coals when burned at a power station and on a range of experimental combustion facilities. The coals were chosen to represent the range of ash compositions and slagging propensities found at UK power stations. CCSEM analysis of the pulverized coals has been performed to provide quantitative data on the size and chemical composition of individual mineral occurrences, and to determine the nature of the mineral-mineral and mineral-organic associations in the pulverized fuel. In a similar way the size and chemical composition of individual fly ash particle has been determined. The mineral-mineral association information has been used to predict the effects of mineral coalescence, the dominant mineral transformation process for UK power station coals. The CCSEM information correctly identifies the types of mineral-mineral association and hence the predicted effects of coalescence. The limitations of the information are inherent in the analysis of a cross-section, but useful information for the modelling of ash generation may still be obtained.

Wigley, F.; Williamson, J. [Imperial Coll., London (United Kingdom). Dept. of Materials

1996-12-31T23:59:59.000Z

478

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network [OSTI]

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

479

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

480

Electric Power Generation Systems | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Data Baseline Studies Quality Guidelines (QGESS) About Energy Analysis Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power...

Note: This page contains sample records for the topic "hydroelectric power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

the economics of power production. For example, new gas-fired combined cycle power plants are more effi- cientA Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission the behavior of the various decision-makers, who operate in a decentralized manner and include power generators

Nagurney, Anna

482

Hubei Shenzhou New Energy Power Generation Stock Co Ltd | Open Energy  

Open Energy Info (EERE)

Hubei Shenzhou New Energy Power Generation Stock Co Ltd Hubei Shenzhou New Energy Power Generation Stock Co Ltd Jump to: navigation, search Name Hubei Shenzhou New Energy Power Generation Stock Co Ltd Place Hubei Province, China Sector Biomass Product Hubei-based biomass power project developer. References Hubei Shenzhou New Energy Power Generation Stock Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hubei Shenzhou New Energy Power Generation Stock Co Ltd is a company located in Hubei Province, China . References ↑ "Hubei Shenzhou New Energy Power Generation Stock Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hubei_Shenzhou_New_Energy_Power_Generation_Stock_Co_Ltd&oldid=346655

483

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

484

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

485

Permit compliance monitoring for the power generation industry  

SciTech Connect (OSTI)

The Clean Air Act Amendments (CAAA) of 1990 authorized EPA to develop regulations requiring facilities to monitor the adequacy of emission control equipment and plant operations. Furthermore, under the CAAA, EPA is required to issue regulations to require owners and operators of large industrial facilities to enhance air pollution monitoring and certify compliance with air pollution regulations. The fossil-fueled power generation industry has been targeted with the promulgation of the Acid Rain Program regulations of 40 CFR 72, and the Continuous Emissions Monitoring requirements of 40 CFR 75. The Part 75 regulations, with a few exceptions, establish requirements for monitoring, recordkeeping, and reporting of sulfur dioxide, nitrogen oxides, and carbon dioxide emissions, volumetric flow, and opacity data from affected units under the Acid Rain Program. Depending upon the type of unit and location, other applicable emission limitations may apply for particulate emissions (both total and PM-10), carbon monoxide, volatile organic compounds and sulfuric acid mist.

Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Platt, T.B. [Commonwealth Edison Company, Waukegan, IL (United States); Miller, S.B. [Commonwealth Edison Company, Chicago, IL (United States)

1996-12-31T23:59:59.000Z

486

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

487

Sharing the burden of climate change stabilization: An energy sector perspective  

E-Print Network [OSTI]

generation from hydroelectric power plants, wind and solarWe also observe more hydroelectric power being used in the

Wagner, Fabian; Sathaye, Jayant

2006-01-01T23:59:59.000Z

488

Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California  

E-Print Network [OSTI]

., Suite 200, San Francisco, CA 94111, USA c Advanced Power and Energy Program, Department of Mechanical obstacles to transmission line additions may force even central power generation back into air basins by the year 2020. The intermittent nature of renewable sources like wind and solar power may require

Dabdub, Donald

489

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.  

SciTech Connect (OSTI)

This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

Wood, Marilyn

1984-06-01T23:59:59.000Z

490

Reservoir Management in Mediterranean Climates through the European Water Framework Directive  

E-Print Network [OSTI]

future use, or for hydroelectric power generation (Palmierias supply, irrigation, hydroelectric power and recreation (for irrigation and hydroelectric purposes. These reservoirs

O'Reilly, Clare; Silberblatt, Rafael

2009-01-01T23:59:59.000Z

491

Lessons Learned: Pangue Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

Lessons Learned: Pangue Hydroelectric Lessons Learned: Pangue Hydroelectric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Lessons Learned: Pangue Hydroelectric Agency/Company /Organization: International Finance Corporation Sector: Energy Focus Area: Renewable Energy, Hydro Topics: Background analysis Resource Type: Lessons learned/best practices Website: www.ifc.org/ifcext/sustainability.nsf/AttachmentsByTitle/p_pangue_summ Country: Chile UN Region: Latin America and the Caribbean Coordinates: -35.675147°, -71.542969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-35.675147,"lon":-71.542969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

493

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

494

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network [OSTI]

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined… (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

495

Most Viewed Documents for Power Generation and Distribution:...  

Office of Scientific and Technical Information (OSTI)

Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 34 Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 29 Recovery of Water from...

496

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

497

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

498

Middle East fuel supply & gas exports for power generation  

SciTech Connect (OSTI)

The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

Mitchell, G.K. [Merrimack Energy Co., LTD, Lowell, MA (United States); Newendorp, T. [Taylor-DeJongh, Inc., Washington, DC (United States)

1995-12-31T23:59:59.000Z

499

Impact of Wind Generation Variability on Voltage Profile of Radial Power Systems  

Science Journals Connector (OSTI)

This paper provides the results of a study conducted to assess the impacts of the "wind generation variability" on the voltage profile in a small-scale radial power system. The power network has been modeled using one of the well-known simulation programs ... Keywords: Wind Generation, Voltage Profile, Power Grids, Voltage Impacts, Minimum Singular Value, SSV index

M. O. Alruwaili; M. Y. Vaziri; S. Vadhva; S. Vaziri

2013-04-01T23:59:59.000Z

500

Optimal Placement of the Wind Generators in the Medium Voltage Power Grid  

Science Journals Connector (OSTI)

The minimization of power losses in the medium voltage (MV) grid requires adjustment of network of power sources. This problem is particularly important for renewable energy sources, for example for the farms of wind generators. Their placement and nominal ... Keywords: medium voltage power grid, wind generators, genetic algorithms, parallel processing

Andrzej Jordan; Ryszard Szczebiot; Carsten Maple; Slawomir Cieslik

2011-04-01T23:59:59.000Z