Sample records for hydroelectric energy landfill

  1. Energy 101: Hydroelectric Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  2. Hydroelectric energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergyHydrocarbonHydroelectric)

  3. Energy 101: Hydroelectric Power

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  4. Energy Department Seeks Feedback on Draft Guidance for the Hydroelectr...

    Energy Savers [EERE]

    Feedback on Draft Guidance for the Hydroelectric Production Incentive Program Energy Department Seeks Feedback on Draft Guidance for the Hydroelectric Production Incentive Program...

  5. Hydroelectric energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydra

  6. Community Renewable Energy Success Stories: Landfill Gas-to-Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

  7. Turning waste into energy beats landfilling

    E-Print Network [OSTI]

    Columbia University

    Turning waste into energy beats landfilling By Christopher Hume The Hamilton Spectator (Nov 16, the fact remains that dumping garbage in a landfill site is far more environmentally destructive, damaging wrong with that picture: it describes landfill, where spontaneous combustion occurs regularly

  8. Huaiji Hydroelectric Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizon FuelHuaiji Hydroelectric Power

  9. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,New York:Lake,Slovenia:EnergySmall))

  10. Marine Hydroelectric Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource HistoryMarianiHydroelectric

  11. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSlough Heat and Power

  12. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Environmental Management (EM)

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and...

  13. Clean Energy and Climate First Principles-How To Frame the Strategic...

    Broader source: Energy.gov (indexed) [DOE]

    Type: Renewables Portfolio Standard Eligible Technologies: Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Geothermal Electric, Recycled Energy,...

  14. Landfill Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:

  15. Ningguo Liucunba Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNewNingguo Liucunba Hydroelectric Co Ltd

  16. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChina Huadian New

  17. Hebei Hydroelectric Company Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarneysourceHeartHebei

  18. Shimen Boyuan Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong LusaShelby,SoopowerShimen Boyuan Hydroelectric

  19. List of Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum, Maryland:source History View New Pages

  20. Lessons Learned: Pangue Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopold Kostal GmbH Co

  1. Clean energy funds: An overview of state support for renewable energy

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

    2001-01-01T23:59:59.000Z

    ocean thermal, wave, or tidal energy; fuel cells; landfill gas; naturally flowing water and hydroelectric; low emission, advanced biomass power conversion

  2. Renewable Energy 32 (2007) 12431257 Methane generation in landfills

    E-Print Network [OSTI]

    Columbia University

    2007-01-01T23:59:59.000Z

    dioxide. In his 2003 review of energy recovery from landfill gas, Willumsen [2,3] reported that as of 2001 followed by Germany and United Kingdom (Table 1). The capacity of most landfill gas-fuelled generators, close to Los Angeles California; the biogas is combusted in a steam boiler that powers a 50-MW turbine

  3. July 17, 2012, Webinar: Landfill Gas-to-Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

  4. Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

  5. WC Landfill Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph Home Wzeng'sVortex Energy JumpWATT

  6. Landfill Energy Systems LES | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O Lakes

  7. "Maximum recycling of Material and Energy, Minimum of Landfilling"

    E-Print Network [OSTI]

    Columbia University

    Recycling (incl. composting) Waste-to Energy Landfi ll #12;16 Treatment of Municipal Solid Waste in the EU 27 in 2006 Source: EUROSTAT 41% of Municipal Solid Waste across the EU 27 is still landfilled Rylander, CEO SYSAV, South Scania Waste Company, Sweden #12;2 The Waste Problem can only be solved

  8. Policy Analysis Landfill-Gas-to-Energy Projects

    E-Print Network [OSTI]

    Jaramillo, Paulina

    perspectives in comparison to current subsidies. It was found that the private breakeven price of electricityPolicy Analysis Landfill-Gas-to-Energy Projects: Analysis of Net Private and Social Benefits P A U gas also has the potential to be used to generate electricity.In1994,the

  9. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long| OpenLandfill Phase II

  10. Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfill Gas Recovery

  11. Penrose Landfill Gas Conversion LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,ParleInformationPenobscot County, Maine:Landfill Gas

  12. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook, Minnesota: Energy Resources

  13. Acme Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00AboutAchille,

  14. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,KasVinod Private investor JumpPhase

  15. Girvin Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation,GilaGirasole Srl Jump to:

  16. Milliken Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet Name: MidwestTreaty

  17. Dane County Landfill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNADaly City,Danbury,Dane County

  18. Colton Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformationInformation

  19. BKK Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas JumpBE GeothermalBGIBIOBIOHAUSBKBKK

  20. Bangor Hydro-Electric Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagleyBangladesh: Energy Resources

  1. Tribal Renewable Energy Foundational Course: Hydroelectric | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation Work Package|Department ofEnergy

  2. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska: EnergyStrategyInformationEnergy

  3. Hunan Caishi Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus Group JumpHunanHunan

  4. Hunan Jishou Sanlian Hydroelectric Investment Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus

  5. Hunan Mayang Hengyuan Hydroelectric Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumusInformation Hunan

  6. Cangxi Jianghe Hydroelectric Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridge

  7. IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas

    E-Print Network [OSTI]

    EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fćlles analyser. biogas fra anaerob udrĺdning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

  8. Qiyang Haojie Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZipQingdaoEnergy Information

  9. Qiyang Yangguang Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZipQingdaoEnergy InformationQiyang

  10. Shangri La County Minhe Hydroelectric Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong Lusa New EnergyShanghaiShanghaiYuke

  11. List of Small Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy Jump

  12. Jinping Guoneng Hydroelectric Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co Ltd Jump

  13. Hunan Zhexi hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy Development Co LtdHunan Zhexi

  14. Bihar State Hydroelectric Power Corp BSHPC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative Sources ofBeyondPV CoSandy,

  15. Xinhuang Xincun Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhua Chengyuan HydropowerXinhuang

  16. Xuan en Tongziying Hydroelectric Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhuaHenengXinyiXjet

  17. Yingjiang County Binglang River Hydroelectric Power Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunaga

  18. Zhijiang Peace Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Generating EngineeringZhicheng Champion akaZhijiang

  19. Zixing Liyujiang Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind GeneratingZhongshengZibo Storage

  20. Sangzhi Zhongyuan Hydroelectric Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:EnergysourceRamon,Sandur Power CompanySangzhi

  1. Shaowu Jinwei Hydroelectric Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong Lusa NewInformation ShanxiShaowu

  2. Sichuan Bahe Hydroelectric Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirke Biofuels JumpSi Pro AS

  3. Dongkou Zhexiang hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem Co Jump to:Dongkou Zhexiang

  4. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHK Projects Jump to:Notnac,

  5. Title 16 USC 823a Conduit Hydroelectric Facilities | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New5661°,Open470a

  6. Lintan Luertai Hydroelectric Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City YujiangLincolnLinjiawuLinn

  7. Lushui County Quande Hydroelectrical Power Development Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation, searchCentury

  8. Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama:Ashworths

  9. Wuxi Longshui Hydroelectric Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxi Guofei Green

  10. Forest Service Handbook 2709.15 - Hydroelectric Handbook | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity, Florida:Oklahoma:

  11. Golmud Kunlun Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGolden Spread ElectricGoldenwestGolmud

  12. Guangxi Baise City Chenyu Hydroelectric Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods |Grundy ElectricGuangdongGuangwei New

  13. Guangxi Shenghui Haihe Hydroelectric Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods |GrundyInformation Guangxi

  14. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13T23:59:59.000Z

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  15. Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado PowerSouthwestern PublicSovelloEnergySpadra

  16. CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal

    E-Print Network [OSTI]

    Florida, University of

    CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW February 2007 Available online 9 April 2007 Abstract Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential

  17. LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

  18. Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective

    SciTech Connect (OSTI)

    Lukes, G.C.; Willoughby, O.H. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste (United States)

    2007-07-01T23:59:59.000Z

    A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay; primary and secondary geo-synthetics (60 mil HDPE, geo-fabric and geo-textile); a two foot soil protective cover; tertiary geo-synthetics (80 mil HDPE, geo-fabric and geo-textile); and a final two foot soil protective cover. The Utah Department of Environmental Quality Division of Solid and Hazardous Waste (UDEQ/DSHW) oversees the construction process and reviews the documentation after the construction is complete. If all aspects of the construction process are met, the Executive Secretary of the Utah Solid and Hazardous Waste Control Board approves the landfill cell for disposal. It is the role of the regulator to ensure to the stakeholders that the landfill cell has been constructed in accordance with the State-issued permit and that the cell is protective of human health and the environment. A final determination may require conflict resolution between the agency and the facility. (authors)

  19. I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long| OpenLandfill Phase

  20. Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public UtilitiesBaldHomes

  1. Des Plaines Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas: Energy Resources JumpGruneDesPlaines

  2. Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska:Longboard CapitalEnergy Information

  3. Byxbee Park Sanitary Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: EnergyByron Center,

  4. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPaw Paw,Paxton,FacilityPearl

  5. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister Area (DOEPrairie,PricesPrima

  6. HMDC Kingsland Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville ElectricControlon State -HDOT FormsHMDC

  7. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity, New Jersey:

  8. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of StateOklahomaField,Olde WestInformation

  9. Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch CreekWarrior, Nevada:Blackburn

  10. Albany Landfill Gas Utilization Project Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit

  11. Winnebago County Landfill Gas Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPoleWisconsin:Wing,Winn,

  12. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: PointsGas Reductions - Case Study,

  13. Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio:

  14. List of Landfill Gas Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouseEvaporativesource HistorysourceGas

  15. Mid Valley Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet LtdMicroturbine SystemsMid

  16. Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuano Energias

  17. Cuyahoga Regional Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine:1983) |Falls, Ohio:Regional

  18. Distributed Generation Study/Modern Landfill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <Site Description Other Utility

  19. Landfill Methane Project Development Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O LakesMethane Project

  20. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbullGlobal Map-Annex 1EIA Country

  1. RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada < RAPID‎78.6048 -458

  2. Rodefeld Landfill Ga Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:Rockwall County,Ridge, Ohio:River,

  3. Four Hills Nashua Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, NewCorners International

  4. 7.4 Landfill Methane Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015 PeerBased onR.KATHLEEN HOGAN07.4

  5. ITP Industrial Distributed Energy: Powering Microturbines With Landfill Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 The United States

  6. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01T23:59:59.000Z

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  7. Optimizing Profits from Hydroelectricity Production

    E-Print Network [OSTI]

    Potvin, Jean-Yves

    Optimizing Profits from Hydroelectricity Production Daniel De Ladurantaye Michel Gendreau Jean the profits obtained by the stochastic model. Keywords: Hydroelectricity, electricity market, prices, dams countries deregulate their electricity market, new challenges appear for hydroelectricity producers

  8. South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-07-01T23:59:59.000Z

    The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

  9. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartment of Energy ThisRTUOverview andS ENERGY POLICY

  10. MHK Projects/Lock and Dam No 2 Hydroelectric Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformationGriffinCABend

  11. Hydroelectric Plants (Iowa)

    Broader source: Energy.gov [DOE]

    A permit is required from the Executive Council of Iowa for the construction, maintenance, or operation of any hydroelectric facility. All applications will be subject to a public hearing.

  12. Energy Department Accepting Applications for a $3.6 Million Hydroelectric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog Energy Blog RSS JanuaryProduction

  13. PP-89-1 Bangor Hydro-Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLCPP-63-1 Northern75 The8285-2PP-89PP-89-1

  14. EK131/312: Clean Energy Boston University Fall 2014 College of Engineering

    E-Print Network [OSTI]

    Lin, Xi

    . In the process we will learn about different clean energy technologies, learn the physical principles solutions to real world problems. Topics will include batteries, biofuels, biomass, combined heat and power, fuel cells, geothermal, landfill gas, photovoltaics, small hydroelectric, solar cooking, solar thermal

  15. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    compliance with the RPS. Keywords: Biodiesel, biogas, biomass, certificates, certification, conduit hydroelectric, digester gas, electrolysis, eligibility, fuel cell, gasification, geothermal, hydrogen, landfill

  16. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  17. Long term performance of boilers using landfill gas

    SciTech Connect (OSTI)

    Gulledge, J.; Cosulich, J.; Ahmed, S.L.

    1996-11-01T23:59:59.000Z

    The US EPA estimates that approximately 600 to 700 landfills produce sufficient gas for profitable energy production in the United States. The gas from these landfills could provide enough electricity for about 3 million homes. Yet, there are only about 120 operating landfill gas to energy facilities. A lack of information on successful projects may cause part of this shortfall. This paper provides information on 4 successful projects using landfill gas fired boilers, some of which have operated over a decade. Natural gas fired boilers can be easily converted to bum landfill gas. Several modifications to Districts` boilers, described in this paper, have resulted in many years of safe and corrosion free operation. Most of the modifications are minor. Conversion can be accomplished for under $100,000 in many cases. Information on the reliability and longevity of landfill gas supplies is also provided. Gas from a given landfill is generally available over 99.5% of the time with about 5 brief flow interruptions annually. Actual data from 3 landfills document the high availability of landfill gas. To show the longevity of landfill gas flows, data from the Palos Verdes Landfill are provided. The Palos Verdes Landfill closed in 1980. The Palos Verdes. Landfill Gas to Energy Facility is currently producing over 8 megawatts. Landfill gas pretreatment is not required for boilers. In cases where the landfill gas is being piped offsite, it is usually cost effective to dehydrate the landfill gas. Landfill gas bums cleaner than natural gas. NO{sub x} emissions from landfill gas fired boilers are lower because of the carbon dioxide in the landfill gas. Trace organic destruction efficiency is usually over 99% in landfill gas fired boilers. In addition, flare emissions are eliminated when landfill gas is used to displace fossil fuels in boilers.

  18. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric

    E-Print Network [OSTI]

    Kohfeld, Karen

    and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can diversification can be maximized. Keywords: Wind power; Hydroelectricity; Renewable energy; Climate variability

  19. Annual Energy Outlook 2015 - Appendix A

    U.S. Energy Information Administration (EIA) Indexed Site

    capacity includes 0.2 gigawatts of uprates. 7 Includes conventional hydroelectric, geothermal, wood, wood waste, all municipal waste, landfill gas, other biomass, solar, and wind...

  20. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R. [Wheelabrator Clean Air Systems, Inc., Schaumburg, IL (United States)

    1996-05-01T23:59:59.000Z

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  1. alternative landfill cover: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    words: landfills; energy recovery; sustainability; management Management of Municipal Solid Wastes (household garbage and rubbish, street sweepings, construction unknown authors...

  2. Landfill gas energy utilization experience: Discussion of technical and non-technical issues, solutions, and trends. Final report, January 1992-September 1994

    SciTech Connect (OSTI)

    Doorn, M.; Pacey, J.; Augenstein, D.

    1995-03-01T23:59:59.000Z

    The report discusses technical and non-technical considerations associated with the development and operation of landfill gas to energy projects. Much of the report is based on interviews and site visits with the major developers and operators of the more than 110 projects in the U.S. The report also provides the history and trends of the landfill gas industry in the U.S. Graphs illustrate how the influence of reciprocating internal combustion (RIC) engines, compared to other utilization options, has steadily increased over time. The report summarizes information on new landfill gas utilization technologies, including vehicular fuel systems and fuel cells. Overall results of programs to demonstrate the operational feasibility of innovative technologies appear quite promising. Some of the non-technical problems and solutions described in the report are associated with the development of energy utilization options including project economics, barriers, and incentives.

  3. U.S. Virgin Islands- Renewables Portfolio Targets

    Broader source: Energy.gov [DOE]

    Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems.

  4. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Haberl, J. S.; Ramirez, E. J.; Champeau, K.

    : solar photovoltaic, solar thermal, hydroelectric, geothermal, and landfill gas-fired power plants. However, information on wind energy farms has been omitted in this report due to the fact that a more complete ESL report on this subject has already...-based Emissions Reduction Calculator. This program is able to calculate weather-normalized NOx emissions estimates for energy efficiency and renewable sources projects, such as solar photovoltaic, solar thermal, and wind. Annual energy savings from renewable...

  5. Capture and Utilisation of Landfill Gas

    E-Print Network [OSTI]

    Columbia University

    . In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were thermal energy, or 20,000 tonnes of methane (CH4) per year. LANDFILLING OF MUNICIPAL SOLID WASTE 40 Austria 15 Switzerland 10 Norway 20 Denmark 21 Sweden 70 Finland 10 Poland 10 Czech Republic 5

  6. Renewable Energy Holdings Landfill Gas Wales Ltd REH Wales | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesys Holdings LtdInformation

  7. Environmental Impacts of Increased Hydroelectric Development...

    Energy Savers [EERE]

    Environmental Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes...

  8. Biological Removal of Siloxanes from Landfill and Digester Gases

    E-Print Network [OSTI]

    Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges S U) presents challenges for using landfill and digester gases as energy fuels because of the formation volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced

  9. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect (OSTI)

    Pantelis K. Panteli

    2012-01-10T23:59:59.000Z

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  10. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    1999-01-11T23:59:59.000Z

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  11. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect (OSTI)

    Barton & Loguidice, P.C.

    2010-01-07T23:59:59.000Z

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  12. A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    energy was supplied by hydroelectric power. needed for powerprovide flood control, hydroelectric power, and But they arewas generated by hydroelectric power. is also needed for

  13. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  14. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

    2013-11-15T23:59:59.000Z

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  15. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01T23:59:59.000Z

    development of hydroelectric power. Energy, 20(10), 977–981.plants in place of hydroelectric power for instance, but

  16. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2000-01-01T23:59:59.000Z

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2002-01-01T23:59:59.000Z

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. University of Washington Montlake Landfill Oversight Committee

    E-Print Network [OSTI]

    Wilcock, William

    University of Washington Montlake Landfill Oversight Committee Montlake Landfill Project Guide Department with the review and approval of the Montlake Landfill Oversight Committee. #12;Montlake Landfill ...................................................................................................................................3 Figure 1 ­ Approximate Boundaries of the Montlake Landfill

  19. Briefing: DOE EM Landfill Workshop & Path Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: ChallengesEnergy For Persons WithDepartment

  20. Optimization Online - Managing Hydroelectric Reservoirs over an ...

    E-Print Network [OSTI]

    Pierre-Luc Carpentier

    2013-07-07T23:59:59.000Z

    Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

  1. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  2. ITP Industrial Distributed Energy: CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 |Final

  3. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 |Finalfor

  4. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State7/109T.M.TRUPACT-III

  5. If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity

    E-Print Network [OSTI]

    If current capacity were to be expanded so that all of the non-recycled municipal solid waste at Columbia University assessed the energy value of municipal solid waste that is currently sent to U so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we

  6. Vermont Water Quality Certification Application for Hydroelectric...

    Open Energy Info (EERE)

    Vermont Water Quality Certification Application for Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Vermont Water Quality...

  7. Dam and Hydroelectric Powerplant University of Hawai`i CEE 491University of Hawai`i CEE 491

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    Karun 3 Dam and Hydroelectric Powerplant University of Hawai`i ­ CEE 491University of Hawai`i ­ CEE;Location #12;Description/Background Hydroelectric dam on Karun River Help with national energy needs #12;Social & Economic Benefits Flood Control Dam reservoirs help to control floods Mitigate high peak

  8. Planning document for the Advanced Landfill Cover Demonstration

    SciTech Connect (OSTI)

    Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Center for Ecological Risk Assessment & Management; Bostick, K.V. [Los Alamos National Lab., NM (United States). Environmental Science Group

    1994-10-01T23:59:59.000Z

    The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ``low-permeability`` cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration.

  9. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26T23:59:59.000Z

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  10. Photovoltaic olar nergy Development on Landfills

    E-Print Network [OSTI]

    .pvnavigator.com environmentally sensitive desert lands, as is the case for some largescale solar developments impacts of natural lands developed for solar energy at high environmental costs. InnovativePhotovoltaic olar nergy Development on Landfills ENVIRONMENTAL AREA RESEARCH PIER Environmental

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    of Michigan. (2001a). Landfill Gas Recovery at Ford Waynein their boilers with landfill gas from a nearby landfill,American energy usage from landfill gas by the end of 2001 (

  12. Controlling landfill closure costs

    SciTech Connect (OSTI)

    Millspaugh, M.P.; Ammerman, T.A. [Spectra Engineering, Latham, NY (United States)

    1995-05-01T23:59:59.000Z

    Landfill closure projects are significant undertakings typically costing well over $100,000/acre. Innovative designs, use of alternative grading and cover materials, and strong project management will substantially reduce the financial impact of a landfill closure project. This paper examines and evaluates the various elements of landfill closure projects and presents various measures which can be employed to reduce costs. Control measures evaluated include: the beneficial utilization of alternative materials such as coal ash, cement kiln dust, paper mill by-product, construction surplus soils, construction debris, and waste water treatment sludge; the appropriate application of Mandate Relief Variances to municipal landfill closures for reduced cover system requirements and reduced long-term post closure monitoring requirements; equivalent design opportunities; procurement of consulting and contractor services to maximize project value; long-term monitoring strategies; and grant loan programs. An analysis of closure costs under differing assumed closure designs based upon recently obtained bid data in New York State, is also provided as a means for presenting the potential savings which can be realized.

  13. Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Environmental Protection, Mitigation and Enhancement at Hydroelectric Projects ----10 Fish Passage Tour ---...

  14. Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Minnesota Methane owns a landfill gas facility located infor example, that wind or landfill gas energy was conveyed,

  15. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    thermal, solar PV, and landfill gas, while PGE initiallywave energy, solar, landfill gas, and MSW, but excluded each

  16. Foote Hydroelectric Plant spillway rehabilitation

    SciTech Connect (OSTI)

    Sowers, D.L. [Consumers Power Co., Jackson, MI (United States); Hasan, N.; Gertler, L.R. [Raytheon Infrastructures Services, New York, NY (United States)

    1996-10-01T23:59:59.000Z

    In 1993 the spillway of the 9 MW Foote Hydroelectric Plant located on the AuSable River, near Oscoda, Michigan was rehabilitated. The Foote Plant, built in 1917, is owned and operated by Consumers Power Company. In the 76 years of continuous operation the spillway had deteriorated such that much of the concrete and associated structure needed to be replaced to assure safety of the structure. The hydro station includes an earth embankment with concrete corewall, a concrete spillway with three tainter gates and a log chute, a penstock structure and a steel and masonry powerhouse. The electric generation is by three vertical shaft units of 3,000 KW each. A plan of the plant with spillway and an elevation of the spillway section is shown. This paper describes the evaluation and repair of the plant spillway and associated structure.

  17. Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-02-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of a system.

  18. Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment Studyreatment Studyreatment Studyreatment Study continued on p

    E-Print Network [OSTI]

    Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment, the County of Hawaii is considering an expansion of the South Hilo Sanitary Landfill (SHSL

  19. Hydroelectric Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes the leasing of state lands for the development of hydroelectric resources. It provides regulations for the granting and duration of leases, as well as for the inspection of...

  20. Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Cada, G.F.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Dauble, D.D. [Pacific Northwest Lab., Richland, WA (United States); Hunt, R.T. [Hunt (Richard) Associates, Inc., Concord, NH (United States); Costello, R.J. [Northwest Water Resources Advisory Services (United States)

    1994-01-01T23:59:59.000Z

    This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

  1. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

  2. GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES Jorge G. Zornberg1 , M. ASCE Abstract: Geosynthetic reinforcement in landfill applications in the US has involved conventional reinforced soil structures and veneer stabilization with reinforcements placed along the landfill slope

  3. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

  4. Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report

    SciTech Connect (OSTI)

    None

    1983-09-01T23:59:59.000Z

    The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

  5. Water quality and sedimentation implications of installing a hydroelectric dam on the Río Baker in Chilean Patagonia

    E-Print Network [OSTI]

    Leandro, Gianna Dee

    2009-01-01T23:59:59.000Z

    HidroAysen, a Chilean corporation operated by energy giant Endesa, has proposed to build two hydroelectric dams on the Rio Baker in the Aysin Region of Chilean Patagonia. The proposed dams have been met with a variety of ...

  6. Energy Department Accepting Applications for a $3.6 Million Hydroelect...

    Office of Environmental Management (EM)

    Accepting Applications for a 3.6 Million Hydroelectric Production Incentive Program Energy Department Accepting Applications for a 3.6 Million Hydroelectric Production Incentive...

  7. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22T23:59:59.000Z

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  8. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15T23:59:59.000Z

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  9. LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND

    E-Print Network [OSTI]

    Boyer, Edmond

    LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND PRELIMINARY MODELING RESULTS O.BOUR*, E,UniversitéLaval, Sainte-Foy, Canada SUMMARY: Lateral landfill gas migration occurs in the surroundings of a MSW landfill complementary physical measures were used to build a conceptual model of lateral landfill gas migration

  10. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...

    Energy Savers [EERE]

    Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may...

  11. Public choice in water resource management: two case studies of the small-scale hydroelectric controversy

    SciTech Connect (OSTI)

    Soden, D.L.

    1985-01-01T23:59:59.000Z

    Hydroelectric issues have a long history in the Pacific Northwest, and more recently have come to focus on developing environmentally less-obtrusive means of hydroelectric generation. Small-scale hydroelectric represents perhaps the most important of these means of developing new sources of renewable resources to lessen the nation's dependence on foreign sources of energy. Each potential small-scale hydroelectric project, however, manifests a unique history which provides a highly useful opportunity to study the process of collective social choice in the area of new energy uses of water resources. Utilizing the basic concepts of public choice theory, a highly developed and increasingly widely accepted approach in the social sciences, the politicalization of small-scale hydroelectric proposals is analyzed. Through the use of secondary analysis of archival public opinion data collected from residents of the State of Idaho, and through the development of the two case studies - one on the Palouse River in Eastern Washington and the other at Elk Creek Falls in Northern Idaho, the policy relevant behavior and influence of major actors is assessed. Results provide a useful test of the utility of public-choice theory for the study of cases of natural-resources development when public involvement is high.

  12. Hybrid Modeling and Control of a Hydroelectric Power Plant

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

  13. annual international landfill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100Landfill Instability and Its Implications for Operation, Construction,...

  14. Generating CO{sub 2}-credits through landfill in situ aeration

    SciTech Connect (OSTI)

    Ritzkowski, M., E-mail: m.ritzkowski@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Harburger Schlossstr. 36, D-21079 Hamburg (Germany); Stegmann, R. [Consultants for Waste Management, Prof. R. Stegmann and Partner, Schellerdamm 19-21, D-21079 Hamburg (Germany)

    2010-04-15T23:59:59.000Z

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO{sub 2-eq}. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the 'Avoidance of landfill gas emissions by in situ aeration of landfills' (). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

  15. Hydroelectric Reservoirs -the Carbon Dioxide and Methane

    E-Print Network [OSTI]

    Fischlin, Andreas

    and contribute to global warming. The problem of greenhouse gases and their impact on global warming have become gas source. #12;1 1. Introduction The electricity produced by hydroelectric reservoirs is commonly greenhouse gases. One good point to know by dealing with these two greenhouse gases is that the global

  16. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergy FactorsID-11263 January 2006 Feasibility

  17. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01T23:59:59.000Z

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  18. A survey of state clean energy fund support for biomass

    E-Print Network [OSTI]

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    ocean thermal energy, wave or tidal energy, fuel cells, landfill gas, hydrogen production and hydrogen conversion

  19. Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants

    SciTech Connect (OSTI)

    Douglas G. Hall

    2006-01-01T23:59:59.000Z

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  20. Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities

    E-Print Network [OSTI]

    Columbia University

    Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities Arun to minimize public health and environmental impacts. Landfilling is the process by which residual solid waste is placed in a landfill. #12;Case in Supreme Court · Pathetic condition of Solid waste practices in India

  1. Illinois Turning Landfill Trash into Future Cash

    Broader source: Energy.gov [DOE]

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  2. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2001-01-01T23:59:59.000Z

    7 2. LANDFILL BIODEGRADATIONof methanogenic activities in a landfill bioreactor treatingmethane production from landfill bioreactor, J. Env. Eng. ,

  3. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    SciTech Connect (OSTI)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19T23:59:59.000Z

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  4. Lost films chronicle dawn of hydroelectric power in the Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lost-films-chronicle-dawn-of-hydroelectric-power-in-the-Northwest Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects &...

  5. Exploring Hydroelectricity (9 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdahoExceptions to

  6. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01T23:59:59.000Z

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  7. Bringing new life to old landfills

    SciTech Connect (OSTI)

    Rabasca, L.

    1996-01-01T23:59:59.000Z

    On the West Coast, Waste Management, Inc. is bringing new life to old landfills. The Bradley Landfill in Sun Valley, CA, just outside of Los Angeles, is being transformed into a recycling park, while a few hundred miles north, in the San Francisco Bay Area, an old landfill is now home to a transfer station and recycling center. WMI began transforming the landfill in the early 1990s.The first change was to process wood and green waste rather than landfilling it. In 1993, WMI added a sorting facility, and in 1994, after the Jan. 17 Northridge earthquake, the company added a construction and demolition debris (C and D) facility. There also is a landfill gas collection facility on the site. In the future, WMI hopes to add the following facilities: composting, railhaul, alternative fuels production, tire processing, and soil remediation. WMI also hopes several companies that use recycled materials as feedstock will build their plants at the landfill.

  8. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29T23:59:59.000Z

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  9. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    SciTech Connect (OSTI)

    Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

    1998-09-01T23:59:59.000Z

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

  10. Asa Hurst, Jonathan Shimazu, Kate Fabian Energy Systems, Winter Quarter 2008

    E-Print Network [OSTI]

    -scale hydroelectric power generation. Hydroelectric power, while not always considered `green energy," since-up Assessing the Feasibility of Pico Hydroelectric Technology on TESC Abstract: As a research team our hope was to assess the hydroelectric potential of the streams on The Evergreen State College. We hoped to utilize

  11. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect (OSTI)

    White, Steven

    2012-11-15T23:59:59.000Z

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

  12. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  13. Certification report for final closure of Y-12 Centralized Sanitary Landfill II, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This report represents the Geotek Engineering Company, Inc., (Geotek) record of activities to support certification of final closure Of the subject Y-12 Centralized Sanitary Landfill II. Ex as noted herein, final closure of the landfill was completed in accordance with the Y-12 Centralized Sanitary Landfill 11 Closure/Post Closure Plan, Revision 2, submitted by the US Department of Energy (DOE) to the Tennessee Department of Environment and Conservation (TDEC) on April 14, 1992, and approved by TDEC on May 27, 1994 (the ``Closure Plan``). minor modification to the Closure Plan allowing partial closure of the Y-12 Centralized Sanitary Landfill II (Phase 1) was approved by TDEC on August 3, 1994. The Phase I portion of the closure for the subject landfill was completed on March 25, 1995. A closure certification report entitled Certification Report for Partial Closure of Y-12 Centralized Sanitary Landfill II was submitted to Lockheed Martin Energy Systems, Inc., (LMES) on March 28, 1995. The final closure represents the completion of the closure activities for the entire Y-12 Centralized Sanitary Landfill II Site. The contents of this report and accompanying certification are based on observations by Geotek engineers and geologists during closure activities and on review of reports, records, laboratory test results, and other information furnished to Geotek by LMES.

  14. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  15. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  16. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect (OSTI)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15T23:59:59.000Z

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  17. Technology Overview Using Case Studies of Alternative Landfill Technologies

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics Prepared by Interstate Technology & Regulatory Council Alternative Landfill Technologies of Alternative Landfill Technologies and Associated Regulatory Topics March 2003 Prepared by Interstate

  18. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG: Update on the World's Largest Landfill Gas to LNG Plant Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant Success story about LNG from landfill gas....

  19. assessing landfill performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bhanpur Landfil Site CiteSeer Summary: The most common means for disposing of municipal solid waste is burial in a sanitary landfill. However, many landfill are underestimate the...

  20. Industrial Solid Waste Landfill Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law...

  1. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Hydroelectric Ocean Energy Fossil Fuels immense imrnense NilHydroelectric Ocean Energy Fossil Fuels Nil iI This tablelargely on fossil fuels for its energy, especially oil and

  2. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and turns it into electricity for our homes and businesses. http:energy.goveerevideosenergy-101-hydroelectric-power Video Energy 101: Marine and Hydrokinetic Energy See...

  4. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Lab. December 16, 2014 Flexible hydropower: boosting energy Abiquiu Dam's low-flow turbine for hydroelectric generation creates a flexible energy source when water levels are...

  5. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect (OSTI)

    Gharabaghi, B. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: bgharaba@uoguelph.ca; Singh, M.K. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Inkratas, C. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: cinkrata@uoguelph.ca; Fleming, I.R. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada)], E-mail: ian.fleming@usask.ca; McBean, E. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: emcbean@uoguelph.ca

    2008-07-01T23:59:59.000Z

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

  6. Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill

    SciTech Connect (OSTI)

    Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B. [Radian International, LLC, Austin, TX (United States)] [Radian International, LLC, Austin, TX (United States)

    1998-08-01T23:59:59.000Z

    The most common disposal method in the US for municipal solid waste (MSW) is burial in landfills. Until recently, air emissions from these landfills were not regulated. Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. This paper summarizes speciated nonmethane organic compound (NMOC) measurement data collected during an intensive, short-term field program. Over 250 separate landfill gas samples were collected from emission sources at the Fresh Kills landfill in New York City and analyzed for approximately 150 different analytes. The average total NMOC value for the landfill was 438 ppmv (as hexane) versus the regulatory default value of 4,000 ppmv (as hexane). Over 70 individual volatile organic compounds (VOCs) were detected and quantified in the landfill gas samples. The typical gas composition for this landfill was determined as well as estimates of the spatial, temporal, and measurement variability in the gas composition. The data for NMOC show that the gas composition within the landfill is equivalent to the composition of the gas exiting the landfill through passive vents and through the soil cover.

  7. Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility

    SciTech Connect (OSTI)

    Jack Q. Richardson

    2012-06-28T23:59:59.000Z

    Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

  8. Legal obstacles and incentives to the development of small scale hydroelectric potential in Wisconsin

    SciTech Connect (OSTI)

    None,

    1980-05-01T23:59:59.000Z

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The initial obstacle that all developers confront in Wisconsin is obtaining the authority to utilize the bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Wisconsin follows the riparian theory of water law.

  9. alto hydroelectric power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 and 2, and the renewable project 5, clearly perform at the best plant 2001-01-01 12 Cold Climate Problems of a Micro- Hydroelectric Development on CiteSeer Summary:...

  10. Recirculation of municipal landfill leachate

    E-Print Network [OSTI]

    Pinkowski, Brian Jude

    1987-01-01T23:59:59.000Z

    . Under the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), land disposal of hazardous waste in new facilities cannot take place unless these three conditions are met: 1. There are no other means available for disposal, 2. Double... as it passes through the landfill and liners are used to stop the migration oF the leachate into the groundwater by acting as a barrier. Style of the Water Pollution Control Federation RCRA defines hazardous waste as "a solid waste, or combination of solid...

  11. Data:Ed92721d-a8d5-4bb1-8cb5-e081e4a36925 | Open Energy Information

    Open Energy Info (EERE)

    Electric Rate Assistant Program Sector: Residential Description: Adjustments Hydroelectric Adjustment + Renewable Energy Surcharge + Greenhouse Gas Surcharge + State Energy...

  12. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  13. Mixed waste landfill annual groundwater monitoring report April 2005.

    SciTech Connect (OSTI)

    Lyon, Mark L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2006-01-01T23:59:59.000Z

    Annual groundwater sampling was conducted at the Sandia National Laboratories' Mixed Waste Landfill (MWL) in April 2005. Seven monitoring wells were sampled using a Bennett{trademark} pump in accordance with the April 2005 Mini-Sampling and Analysis Plan for the MWL (SNL/NM 2005). The samples were analyzed off site at General Engineering Laboratories, Inc. for a broad suite of radiochemical and chemical parameters, and the results are presented in this report. Sample splits were also collected from several of the wells by the New Mexico Environment Department U.S. Department of Energy Oversight Bureau; however, the split sample results are not included in this report. The results of the April 2005 annual groundwater monitoring conducted at the MWL showed constituent concentrations within the historical ranges for the site and indicated no evidence of groundwater contamination from the landfill.

  14. Pricing landfill externalities: Emissions and disamenity costs in Cape Town, South Africa

    SciTech Connect (OSTI)

    Nahman, Anton, E-mail: anahman@csir.co.za [Environmental and Resource Economics Group, Natural Resources and the Environment, Council for Scientific and Industrial Research, P.O. Box 320, Stellenbosch 7599 (South Africa)

    2011-09-15T23:59:59.000Z

    Highlights: > The paper estimates landfill externalities associated with emissions, disamenities and transport. > Transport externalities vary from 24.22 to 31.42 Rands per tonne. > Costs of emissions (estimated using benefits transfer) vary from 0.07 to 28.91 Rands per tonne. > Disamenities (estimated using hedonic pricing) vary from 0.00 to 57.46 Rands per tonne. > Overall, external costs for urban landfills exceed those of a regional landfill. - Abstract: The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill.

  15. Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

  16. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy.goveerevideosenergy-101-wind-turbines-2014-update Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns...

  17. ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Budnitz, R.J.

    2011-01-01T23:59:59.000Z

    Geothermal Hydroelectric Ocean Energy Fossil Fuels ImmenseOcean Thermal Energy Conversion: Environmental Program P.during 1978. OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL

  18. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2012-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Search results Enter terms Search Showing 1 - 2 of 2 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focus on the importance of renewable energy resources for a sustainable future. Current renewable energy technologies (solar, wind, biomass, hydrogen, hydroelectric, and...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy resources for a sustainable future. Current renewable energy technologies (solar, wind, biomass, hydrogen, hydroelectric, and geothermal) are discussed. Information on...

  2. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2001-01-01T23:59:59.000Z

    activities in a landfill bioreactor treating the organicproduction from landfill bioreactor, J. Env. Eng. , August,Version 1.0: Landfill Bioreactor Model for TOUGH2 Curtis M.

  3. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    biodegradation, landfill, gas generation, simulationPower, H. Landfill emission of gases into the atmosphere:a new approach to landfill operations that controls gas and

  4. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    boundary conditions for the mesoscale landfill bioreactor. (and Biodegradation in a Mesoscale Landfill Bioreactor Curtisapplied it to our own mesoscale laboratory aerobic landfill

  5. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  6. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01T23:59:59.000Z

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site`s B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  7. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01T23:59:59.000Z

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site's B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  8. Hazardous materials in Fresh Kills landfill

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1997-12-31T23:59:59.000Z

    No environmental monitoring and corrective action programs can pinpoint multiple locations of hazardous materials the total amount of them in a large landfill. Yet the consequences of hazardous materials in MSW landfills are considerable, in terms of public health concerns, environmental damage, and cleanup costs. In this paper a rough estimation is made of how much hazardous material may have been disposed in Fresh Kills landfill in Staten Island, New York. The logic and methods could be used for other MSW landfills. Fresh Kills has frequently been described as the world`s largest MSW landfill. While records of hazardous waste disposal at Fresh Kills over nearly 50 years of operation certainly do not exist, no reasonable person would argue with the conclusion that large quantities of hazardous waste surely have been disposed at Fresh Kills, both legally and illegally. This study found that at least 2 million tons of hazardous wastes and substances have been disposed at Fresh Kills since 1948. Major sources are: household hazardous waste, commercial RCRA hazardous waste, incinerator ash, and commercial non-RCRA hazardous waste, governmental RCRA hazardous waste. Illegal disposal of hazardous waste surely has contributed even more. This is a sufficient amount to cause serious environmental contamination and releases, especially from such a landfill without an engineered liner system, for example. This figure is roughly 1% of the total amount of waste disposed in Fresh Kills since 1948, probably at least 200 million tons.

  9. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  10. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01T23:59:59.000Z

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  11. Passive drainage and biofiltration of landfill gas: Australian field trial

    SciTech Connect (OSTI)

    Dever, S.A. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia) and GHD Pty. Ltd., 10 Bond Street, Sydney, NSW 2000 (Australia)]. E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: r.stuetz@unsw.edu.au

    2007-07-01T23:59:59.000Z

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

  12. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    SciTech Connect (OSTI)

    Joe Taddeucci, P E

    2013-03-29T23:59:59.000Z

    The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: �¢���¢ Increasing safety at Boulder Canyon Hydro �¢���¢ Increasing protection of the Boulder Creek environment �¢���¢ Modernizing and integrating control equipment into Boulder�¢����s municipal water supply system, and �¢���¢ Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to

  13. Federal Register Notice EPAct 2005 Section 242 Hydroelectric Incentive Program: January 2015

    Broader source: Energy.gov [DOE]

    Federal Register Notice for the EPAct 2005 Section 242 Hydroelectric Incentive Program application period announcement: January, 2015.

  14. Agricultural Biomass and Landfill Diversion Incentive (Texas) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof Energy and Landfill

  15. Intergrated Nox Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs across State Agencies in Texas

    E-Print Network [OSTI]

    Baltazar, J.C.; Haberl, J.; Yazdani, B.

    2014-01-01T23:59:59.000Z

    Landfill Gas McCommas Bluff Landfill, Dallas, TX Biomass Aspen Power Biomass Plant, Lufkin, TX Ground Source Heat Pump Geothermal SAVINGS FROM RENEWABLES Wind Green Mountain Energy Wind Farm, Fluvanna, Texas p. 12 INTERNATIONAL CONFERENCE FOR ENHANCED... Renewables: Biomass, Hydro, Landfill Gas, Solar, Wind Wind energy is the largest portion Solar has considerable increased over 2013 Biomass Solar Landfill Hydro Excluding Wind Steady in Landfill over 2013 Considerable decreased in hydro over 2013 Also...

  16. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

  17. PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric reservoirs

    E-Print Network [OSTI]

    LETTERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric * Hydroelectric reservoirs cover an area of 3.4 Ă? 105 km2 and comprise about 20% of all reservoirs. In addition dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed

  18. Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including a

    E-Print Network [OSTI]

    Oliveira, Aurélio R. L.

    that minimizes losses in the transmission and costs in the generation of a hydroelectric power system, formulated such perturbing parameter. Keywords-- Hydroelectric power system, Network flow, Predispatch, Primal-dual interiorPrimal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including

  19. Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera

    E-Print Network [OSTI]

    Jüttler, Bert

    Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera , B. J Abstract We present a method for constructing blades of hydroelectric turbines and ship propellers based. Keywords: CAD-model, B-spline representation, hydroelectric turbine blade, propeller blade, medial axis

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Olis, D.; Salasovich, J.; Mosey, G.; Healey, V.

    2013-04-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  1. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  2. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Simon, J.; Mosey, G.

    2013-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  3. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Price Landfill Site in Pleasantville, New Jersey. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-05-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  4. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Crazy Horse Landfill Site in Salinas, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-03-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  5. Hazards assessment for the INEL Landfill Complex

    SciTech Connect (OSTI)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01T23:59:59.000Z

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  6. Legal obstacles and incentives to the development of small scale hydroelectric potential in Michigan

    SciTech Connect (OSTI)

    None,

    1980-05-01T23:59:59.000Z

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level is described. The Federal government also exercises extensive regulatory authority in the area. The first obstacle which any developer must confront in Michigan is obtaining the authority to utilize the river bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed, and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Michigan follows the riparian theory of water law. The direct regulation; indirect regulation; public utilities regulation; financing; and taxation are discussed.

  7. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  8. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the importance of renewable energy resources for a sustainable future. Current renewable energy technologies (solar, wind, biomass, hydrogen, hydroelectric, and geothermal) are...

  9. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .microparticles. Annals of Nuclear Energy, [96] F.B. Brown,In Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  11. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    GEOTHERMAL ENERGY RENEWABLE OCEAN ENERGY RESOURCES Potential9 Potential of Various Ocean Energy Resources for CaliforniaGeothermal Hydroelectric Ocean Energy Fossil Fuels immense

  12. Swift Creek Hydroelectric Project rehabilitation, Swift Creek Power Company, Inc

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The purpose of this report is to re-evaluate and update the original environmental analysis of the Swift Crook Hydroelectric Project rehabilitation. That analysis and the decision to allow the proponent toproceed with the project as described in the EA alternatives 3, 4, and 5 was completed an May 8, 1981. Since that decision, no action has been taken and no special-use permit has ever been issued. The Bridger-Trton National Forest completed a Forest Plan in March of 1990 which sets current direction for all lands within the Forest and new and significant issues pertaining to the amount of water to be bypassed have been raised by the public in response to this proposed project. The original proponent, Lower Valley Power and Light, sold the project and existing facilities to Swift Crack Power Company Inc. in 1984. Swift Crock Power Company has submitted a proposal to rehabilitate the existing power generation facility in Swift Creek Canyon, which will involve some significant construction and alteration of the river corridor. Theyhave also submitted an application for relicense to the Federal Energy Regulatory Commission who has asked for the Forest Service to comment on the application and to submit recommended conditions for approval (4e requirements). The proposed rehabilitation of existing facilities includes replacement of the existing damaged penstock (pipe) with a new, larger one; dredging two existing reservoirs and removal, refurbishment, and reinstallation of the turbines and generators in the two powerhouses with relocation and reconstruction of the lower powerhouse that is located on privately owned land below the Forest boundary.

  13. Potential Climate Change Impacts to the NW Hydroelectric System

    E-Print Network [OSTI]

    Page 1 Potential Climate Change Impacts to the NW Hydroelectric System NW Power and Conservation Council Symposium on Greenhouse Gases June 4, 2013 1 Source of Data · 2009 International Panel on Climate Change (IPCC-4) data but prior to River Management Joint Operating Committee's (RMJOC) processing

  14. EIS-0184: South Fork Tolt River Hydroelectric Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

  15. Wasting Time : a leisure infrastructure for mega-landfill

    E-Print Network [OSTI]

    Nguyen, Elizabeth M. (Elizabeth Margaret)

    2007-01-01T23:59:59.000Z

    Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

  16. Landfill Instability and Its Implications Operation, Construction, and Design

    E-Print Network [OSTI]

    landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100 occurred involving liner systems during construction and waste containment closures. Recently an older

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind-energy-technology-basics Article Hydropower Technology Basics Hydropower, or hydroelectric power, is the most common and least expensive source of renewable...

  18. Search results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and societal aspects of hydropower to secondary students http:energy.goveereeducationdownloadsexploring-hydroelectricity-9-activities Download Power to the Plug: An...

  19. DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

  20. Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

  1. Aluminum Reactions and Problems in Municipal Solid Waste Landfills

    E-Print Network [OSTI]

    Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from: Solid wastes; Aluminum; Chemicals; Waste disposal; Landfills. Author keywords: Solid waste; Leachate

  2. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  3. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  4. Pilot-scale experiment on anaerobic bioreactor landfills in China

    SciTech Connect (OSTI)

    Jiang, Jianguo [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China (China)], E-mail: jianguoj@tsinghua.edu.cn; Yang, Guodong; Deng, Zhou; Huang, Yunfeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China (China); Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping [Xiaping Solid Waste Landfill, Shenzhen 518019, PR China (China)

    2007-07-01T23:59:59.000Z

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m{sup 3} leachate and 0.1 m{sup 3} tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  5. Intrinsic bioremediation of landfills interim report

    SciTech Connect (OSTI)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14T23:59:59.000Z

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  6. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect (OSTI)

    None,

    1980-05-01T23:59:59.000Z

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  7. Response of spawning lake sturgeons to change in hydroelectric facility operation

    SciTech Connect (OSTI)

    Auer, N.A. [Michigan Technological Univ., Houghton, MI (United States)

    1996-01-01T23:59:59.000Z

    Spawning of lake sturgeon Acipenser fulvescens was documented from 1987 to 1992 below the Prickett hydroelectric facility on the Sturgeon River, a tributary to Portage Lake, Michigan. Lake sturgeons were captured at the spawning site with dip nets during periods of reduced flow. A change in the spawning characteristics of the population was noted that corresponded to a changed in the operation of the hydroelectric facility. In 1987 and 1988 the facility operated in a peaking mode, which resulted in large daily fluctuations in river flows. The years 1989 and 1990 were years of transition, and in 1991 and 1992 the facility released near run-of-the-river (ROR) flows. Under near-ROR flows, which were more natural, adult lake sturgeons spent 4-6 weeks less at the spawning sites, 74% more fish were observed, weights were greater due to a 68% increase in number of females, and fish had increased reproductive readiness. The change in flow regime was the result of a Federal Energy Regulatory Commission relicensing action. The positive response observed in lake sturgeon spawning activity that resulted from the change of facility operation to near-ROR flows should be beneficial to the survival and perpetuation of this population. Similar results may be experienced in other lake sturgeon waters affected by manipulated flow regimes. 28 refs., 5 figs., 6 tabs.

  8. Appropriate technology for planning hydroelectric power projects in Nepal: the need for assumption analysis

    SciTech Connect (OSTI)

    Chandler, C.G.

    1981-06-01T23:59:59.000Z

    The study focuses on the project development process for hydroelectric project planning in Nepal. Chapter I describes the contrast between the vast potential for hydroelectric power development in Nepal and the current energy shortage within the country, not only for electricity, but for firewood and other fuel sources as well. Chapter II explores some of the unknown factors facing hydropower project planners in Nepal, where data for hydrologic, geologic, environmental, and sociological project components are lacking. The chapter also examines institutional and fiscal factors which constrain the planning process. Chapter III describes the critical role of assumptions in the project development process, and details the stages that a project goes through as it is planned. The chapter introduces the concept of assumption analysis as a technique for project planning, listing the potential conflict between the assumptions of foreign consultants and the host-country users of project outputs as an ingredient in the project's success or failure. Chapter IV demonstrates the mechanics and usefulness of assumption analysis through an Assumption Analysis Chart, which shows the interaction among project objectives, project alternatives, project assumptions, and the project development process. Assumption analysis techniques are expected to be useful among bilateral and multilateral aid donors servicing less developed countries.

  9. The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research effort for sustainable hydroelectricity generation and water management. The NHAAP conducts research on new

    E-Print Network [OSTI]

    The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water conducts research on new development opportunities and provides a comprehensive hydropower database integrating information about existing hydropower plants. Research Summary and Resources Example: · Existing

  10. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    resources can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Daylighting, Comprehensive MeasuresWhole Building, Wind (Small), Hydroelectric (Small) Green Energy Loans Illinois business owners, non-profit organizations, and local...

  12. BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark

    E-Print Network [OSTI]

    BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark University strength of MSW. The back-analysis of failed waste slopes in the Gnojna Grora landfill in Poland, Istanbul Landfill in Turkey, Hiriya Landfill in Israel, and Payatas Landfill in Philippines are presented

  13. Vermont Water Quality Certification Application for Hydroelectric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| OpenInformationFacilities |

  14. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    COMPOSTING FOR ENERGY GENERATION AT YOLO COUNTY CENTRAL LANDFILL MAY 2012 CEC5002012063 Prepared for Generation Project (FullScale Bioreactor Landfill Project) are shared under research contracts from at Yolo County Central Landfill. California Energy Commission, PIER Renewable Energy Technologies

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    April 17, 2012 This map demonstrates the potential capacity to generate clean hydroelectric energy at existing non-powered dams across the U.S. Powering up America's Waterways A...

  16. Decomposition of forest products buried in landfills

    SciTech Connect (OSTI)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Padgett, Jennifer M. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Powell, John S. [Department of Chemical and Biomolecular Engineering, Campus Box 7905, North Carolina State University, Raleigh, NC 27695-7905 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2013-11-15T23:59:59.000Z

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup ?1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  17. Request for Qualifications for Sacramento Landfill

    Broader source: Energy.gov [DOE]

    This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

  18. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2001-01-01T23:59:59.000Z

    M. , 1998, Modeling landfill gas generation and migration inPower, 1999, Landfill emission of gases into the atmosphere:1.0 modern landfill operators to control gas and leachate

  19. GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

    E-Print Network [OSTI]

    Lu, Zhenmei

    2010-01-01T23:59:59.000Z

    Diversity in Norman Landfill Zhenmei Lu 1,2 , Zhili He 2,4 ,projects/norlan / ABSTRACT The Norman Landfill is a closedmunicipal solid waste landfill located on an alluvium

  20. Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference

    E-Print Network [OSTI]

    Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference of Enhanced Landfill Mining. Held at the Greenville (Center of Cleantech of old landfills, each containing valuable resources that are untapped

  1. Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India

    E-Print Network [OSTI]

    Nagar, Bharat Bhushan; Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    DRASTIC Method The prepared landfill project is supposed toAssessment of Sanitary Landfill Project at Jammu City, Indiaimpact of a proposed landfill facility for the city of Jammu

  2. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    1179. Popov, V. ; Power, H. Landfill emission of gases intoC.M. T2LBM Version 1.0: Landfill bioreactor model forand recovery from landfills, Ann Arbor Science Publishers,

  3. Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India

    E-Print Network [OSTI]

    Nagar, Bharat Bhushan; Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    of Sanitary Landfill Project at Jammu City, India Bharata proposed landfill facility for the city of Jammu in India.landfill projects have been conceived, designed, and completed in India.

  4. Evaluation of three geophysical methods to locate undocumented landfills

    E-Print Network [OSTI]

    Brand, Stephen Gardner

    1991-01-01T23:59:59.000Z

    Metal Object. The Arrows Are Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 45: Magnetic Profile over Area Fill, Station 19, Brenham Landfill. 84 Figure 46: Magnetic Profile over Undisturbed Area, Station... and the road. Thus the northern portion of the entrance way loop especially on the western side was not landfilled. The pond on the north western boundary of the landfill in the well buffer zone was installed for fire control purposes. After the entrance...

  5. Analysis of Vegetative on Six Different Landfill Cover Profiles in an Arid Environment.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; McClellan, Yvonne; Reavis, Bruce A.; Dwyer, Brian P.; Newman, Gretchen; Wolters, Gale

    2005-05-01T23:59:59.000Z

    A large-scale field demonstration comparing final landfill cover designs was constructed and monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle 'D' Soil Cover and a RCRA Subtitle 'C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for arid environments. The demonstration was intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. A portion of this project involves the characterization of vegetation establishment and growth on the landfill covers. The various prototype landfill covers were expected to have varying flux rates (Dwyer et al 2000). The landfill covers were further expected to influence vegetation establishment and growth, which may impact site erosion potential and long-term site integrity. Objectives of this phase were to quantify the types of plants occupying each site, the percentage of ground covered by these plants, the density (number of plants per unit area) of plants, and the plant biomass production. The results of this vegetation analysis are presented in this report.3 DRAFT07/06/14AcknowledgementsWe would like to thank all technical and support staff from Sandia and the USDA Forest Service's Rocky Mountain Station not included in the authors' list of this document for their valuable contributions to this research. We would also like to acknowledge the Department of Energy's Subsurface Contaminants Focus Area for funding this work.4

  6. Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)

    SciTech Connect (OSTI)

    Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

    1992-10-01T23:59:59.000Z

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of {sup 238}U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of {sup 226}Ra and {sup 230}Th with much lower concentrations of {sup 238}U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for {sup 238}U, {sup 226}Ra, and/or {sup 230}Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

  7. Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)

    SciTech Connect (OSTI)

    Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

    1992-10-01T23:59:59.000Z

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of [sup 238]U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of [sup 226]Ra and [sup 230]Th with much lower concentrations of [sup 238]U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for [sup 238]U, [sup 226]Ra, and/or [sup 230]Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

  8. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  9. UNFCCC-Consolidated baseline and monitoring methodology for landfill...

    Open Energy Info (EERE)

    UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline...

  10. Modeling Analysis of Biosparging at the Sanitary Landfill

    SciTech Connect (OSTI)

    Jackson, D.

    1998-11-25T23:59:59.000Z

    This report presents the results of a groundwater modeling study that evaluates the performance of the biosparging system at the Sanitary Landfill.

  11. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  12. U.S DEPARTlIIENT OF ENERGY EERE PROJECT MAN AGE M ENT CEN TER

    Broader source: Energy.gov (indexed) [DOE]

    the Milam landfill Gas to Energy Plant II. The landfill already has a permitted gas-te-energy plant at the site. The facility will be located on the north side of the Milam...

  13. Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks 

    E-Print Network [OSTI]

    Sprague, Stephen M.

    2011-02-22T23:59:59.000Z

    -to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines...

  14. BP Statistical Review of World Energy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    32 Reserves 32 Prices 34 Production 35 Consumption Nuclear energy 36 Consumption Hydroelectricity 38 Consumption Primary energy 40 Consumption 41 Consumption by fuel 43 R/P ratios Appendices 44 Approximate 1965 for many sections. · Additional data for natural gas, coal, hydroelectricity, nuclear energy

  15. Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

  16. GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

    E-Print Network [OSTI]

    Lu, Zhenmei

    2010-01-01T23:59:59.000Z

    is a closed municipal solid waste landfill located on anis a closed municipal solid waste landfill sited on thecollection system, received solid waste for surface disposal

  17. FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995

    E-Print Network [OSTI]

    FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995 to Columbia River Basin fish and wildlife by hydropower development and operations in the past. But the future drainage basins that contain important anadromous fish habitat. However, most new hydroelectric development

  18. THE LOW-TEMPERATURE THRESHOLD FOR PINK SALMON EGGS IN RELATION TO A PROPOSED HYDROELECTRIC INSTALLATION

    E-Print Network [OSTI]

    Alaska would alter the seasonal pattern of stream temperatures and pose a threat to the natural (now the Alaska Power Administration) started feasibil- ity studies on a hydroelectric installation of the water from Grace Creek through a hydroelectric plant and back into Grace Creek about 1.2 km from tide

  19. GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian Aquatic Ecosystems

    E-Print Network [OSTI]

    Cooke, Steven J.

    GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian with Fisheries and Oceans Canada (6 scientists) and 3 major hydroelectric companies (Nalcor, Manitoba Hydro. Power (U. of Waterloo, m3power@sciborg.uwaterloo.ca) and R. Randall (DFO-Burlington) Effects

  20. An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System

    E-Print Network [OSTI]

    DRAFT 1 An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System September 26, 2005 The best way to assess the hydroelectric system's peaking capability is to simulate its. This is an ominous task and requires the use of sophisticated simulation software. The Bonneville Power

  1. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect (OSTI)

    Bedrossian, Karen L.

    1984-08-01T23:59:59.000Z

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  2. Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control Approach

    E-Print Network [OSTI]

    Forsyth, Peter A.

    Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control of Waterloo, Waterloo ON, Canada N2L 3G1 Abstract. In this paper, we value hydroelectric power plant cash. The power plant valuation problem under a ramping constraint is characterized as a bounded stochastic

  3. Model-Free Based Water Level Control for Hydroelectric Power Plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-Free Based Water Level Control for Hydroelectric Power Plants CĂ©dric JOIN GĂ©rard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned for cascaded power plants. Numerous dynamic simulations show that with a simple and robust control algorithm

  4. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  5. BPA offering grants in science and energy education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on hydroelectricity, wind and other sources of electric power, methods of conserving electricity, studies of energy and environment, programs on engineering and technology...

  6. 1981 Memorandum of Understanding between the Federal Energy Regulatory...

    Open Energy Info (EERE)

    Service Abstract Establishes a process to promote the non-Federal development of hydroelectric energy at existing Water and Power (Reclamation) facilities. Author FERC...

  7. Energy Department Seeks Additional Feedback on Draft Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    implementation of Section 242 of the Energy Policy Act of 2005, the "Hydroelectric Production Incentive Program." Public comments on the initial Section 242 Draft Guidance were...

  8. Feasibility Assessment of the Water Energy Resources of the United...

    Energy Savers [EERE]

    Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A Feasibility...

  9. Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada: an isotopic approach

    E-Print Network [OSTI]

    Long, Bernard

    Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada Hydroelectric reservoirs emit greenhouse gases (GHGs). Although a few hypothesis have been put forward at the surface of a large boreal hydroelectric reservoir of eastern Canada (Robert-Bourassa) as well

  10. Proceedings of: ''Formal Methods Europe'', March 1996, Oxford, UK, LNCS 1051, Springer Automatic Verification of a Hydroelectric Power

    E-Print Network [OSTI]

    Tronci, Enrico

    Verification of a Hydroelectric Power Plant 1 Rosario Pugliese Enrico Tronci Dip. di Scienze dell@univaq.it Abstract. We analyze the specification of a hydroelectric power plant by ENEL (the Italian Electric Company we report on the analysis of a hydroelectric power plant by ENEL (the Italian Electric Company). Our

  11. Holy Cross Energy- WE CARE Renewable Energy Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers a $1.50-per-watt DC incentive for renewable energy generation using wind, hydroelectric, photovoltaic...

  12. LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

    E-Print Network [OSTI]

    LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson: Geosynthetics: Lessons Learned from Failures International Geosynthetics Society editors J.P. Giroud, K.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

  13. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  14. Landfill Disposal of CCA-Treated Wood with Construction and

    E-Print Network [OSTI]

    Florida, University of

    Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

  15. Sustainable EnergiesSustainable Energies & Their Environmental Impacts& Their Environmental Impacts

    E-Print Network [OSTI]

    Budker, Dmitry

    ? Hydroelectricity: Regional dependent Solar Energy: Technological dependent #12;Environmental Impacts of Solar Energy non-Recyclable waste produced #12;Environmental Impacts of Solar Energy Silicon tetrachlorideSustainable EnergiesSustainable Energies & Their Environmental Impacts& Their Environmental Impacts

  16. Energy Department Seeks Feedback on Draft Guidance for the Hydroelectric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and FuelDefense asDepartment ofCareer

  17. Construction Costs of Six Landfill Cover Designs

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-12-23T23:59:59.000Z

    A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

  18. Cost comparisons of alternative landfill final covers

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1997-02-01T23:59:59.000Z

    A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle ``D`` Soil Cover and a RCRA Subtitle ``C`` Compacted Clay Cover) were constructed of uniform size, side-by-side. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

  19. Austin - Renewables Portfolio Standard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste products, including landfill gas. Funding to achieve the 5% increase in renewable energy resources was authorized to be provided by Austin Energy's green pricing program --...

  20. Alternative Landfill Cover. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    NONE

    2000-12-01T23:59:59.000Z

    The primary purpose of an engineered cover is to isolate the underlying waste. A key element to isolating the wastes from the environment, engineered covers should minimize or prevent water from infiltrating into the landfill and coming into contact with the waste, thereby minimizing leachate generation. The U.S. EPA construction guidelines for soil hydraulic barriers specify that the soil moisture content and compactive effort may be increased to ensure that the barrier achieves a specified permeability of 1 x 10{sup {minus}7} cm/sec. However, constructing a soil barrier with high moisture content makes the soil more difficult to work and increases the required compactive effort to achieve the specified density, ultimately increasing the construction cost of the barrier. Alternative landfill cover designs rely on soil physical properties, hydraulic characteristics, and vegetation requirements to lower the flux rate of water through the cover. They can achieve greater reliability than the prescriptive RCRA Subtitle C design, especially under arid or semi-arid environmental conditions. With an alternative cover design, compacted soil barriers can be constructed with a soil moisture content that makes placement and compaction of the soil easier and less expensive. Under these conditions, the soil barrier has more capacity to absorb and control moisture within it, thereby enhancing the reliability of the barrier. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance, data.

  1. PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER QUALITY MODEL (RZWQM) AND

    E-Print Network [OSTI]

    Abstract PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER into the waste, earthen landfill covers are constructed once a landfill reaches its capacity. Formation earthen landfill covers during service. Most commonly used water balance models that are used

  2. The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the

    E-Print Network [OSTI]

    The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

  3. Renewable Energy Resources and Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities. Solar Wind Geothermal Biomass Landfill Gas...

  4. Data:9cf92054-ddca-4523-a4b6-f9d51b524b02 | Open Energy Information

    Open Energy Info (EERE)

    Utilities electric customer as a means to purchase renewable energy certificates from renewable energy resources, including but not limited to, wind, hydroelectric, solar,...

  5. Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008

    SciTech Connect (OSTI)

    Karen Koslow

    2009-08-31T23:59:59.000Z

    This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

  6. Legal obstacles and incentives to the third development of small-scale hydroelectric potential in the six New England states: executive summary

    SciTech Connect (OSTI)

    None,

    1980-05-01T23:59:59.000Z

    This executive summary describes the relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities. It also highlights important features of the constitutional law, statutory law, case law, and regulations of each of the six New England states. The summary may serve as a concise overview of and introduction to the detailed reports prepared by the Energy Law Institute on the legal and regulatory systems of each of the six states. The dual regulatory system is a function of the federalist nature of our government. This dual system is examined from the standpoint of the appropriate legal doctrine, i.e., the law of pre-emption, and the application of this law to the case of hydroelectric development. The regulation of small dams are discussed and flow diagrams of the regulations are presented for each of the six states - Maine, Massachusetts, Vermont, New Hampshire, Vermont, and Connecticut.

  7. Landfill mining: A critical review of two decades of research

    SciTech Connect (OSTI)

    Krook, Joakim, E-mail: joakim.krook@liu.se [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, Niclas; Eklund, Mats [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

  8. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    tJ 'J Table IV-4 Electrical Energy Generation and Sales forand hydroelectric generation, as in Table IV-4. s~own

  9. EIA-An Updated Annual Energy Outlook 2009 Reference Case - Preface...

    U.S. Energy Information Administration (EIA) Indexed Site

    the reintroduction of CAIR have impacts in specific sectors. Figure 1. Non-Hydroelectric Renewable Generation (billion kilowatthours). Need help, contact the National Energy...

  10. Modeling of leachate generation in municipal solid waste landfills

    E-Print Network [OSTI]

    Beck, James Bryan

    1994-01-01T23:59:59.000Z

    and the inclusion of compaction effects and leachate generation and movement effects by Mehevec (1994) should provide the user with a tool for estimating leachate generation values and landfill capacity figures for a variety of initial design and operational...

  11. Installation of geosynthetic clay liners at California MSW landfills

    SciTech Connect (OSTI)

    Snow, M.; Jesionek, K.S.; Dunn, R.J.; Kavazanjian, E. Jr.

    1997-11-01T23:59:59.000Z

    The California regulations for liner systems at municipal solid waste (MSW) landfills require that alternatives to the prescriptive federal Subtitle D liner system have a containment capability greater than that of the prescriptive system. Regulators may also require a demonstration that use of the prescriptive system is burdensome prior to approval of an alternative liner design. This paper presents seven case histories of the design and installation of geosynthetic clay liners (GCL) as an alternative to the low-permeability soil component of the prescriptive Subtitle D composite liner system at MSW landfills in California. These case histories cover GCLs from different manufacturers and landfill sites with a wide range of conditions including canyon landfills with slopes as steep as 1H:1V.

  12. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  13. Applying guidance for methane emission estimation for landfills

    SciTech Connect (OSTI)

    Scharff, Heijo [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: h.scharff@afvalzorg.nl; Jacobs, Joeri [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: j.jacobs@afvalzorg.nl

    2006-07-01T23:59:59.000Z

    Quantification of methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. Both the United Nations and the European Union have adopted protocols to ensure quantification of methane emission from individual landfills. The purpose of these protocols is to disclose emission data to regulators and the general public. Criteria such as timeliness, completeness, certainty, comparability, consistency and transparency are set for inclusion of emission data in a publicly accessible database. All methods given as guidance to landfill operators to estimate landfill methane emissions are based on models. In this paper the consequences of applying six different models for estimates of three landfills are explored. It is not the intention of this paper to criticise or validate models. The modelling results are compared with whole site methane emission measurements. A huge difference in results is observed. This raises doubts about the accuracy of the models. It also indicates that at least some of the criteria previously mentioned are not met for the tools currently available to estimate methane emissions from individual landfills. This will inevitably lead to compiling and comparing data with an incomparable origin. Harmonisation of models is recommended. This may not necessarily reduce uncertainty, but it will at least result in comparable, consistent and transparent data.

  14. A finite element simulation of biological conversion processes in landfills

    SciTech Connect (OSTI)

    Robeck, M., E-mail: markus.robeck@uni-due.de [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Ricken, T. [Institute of Mechanics/Computational Mechanics, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, R. [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

    2011-04-15T23:59:59.000Z

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  15. Resource Letter PSEn-1: Physics and Society: Energy Department of Physics, University of Arkansas, Fayetteville, AR 72701, email

    E-Print Network [OSTI]

    Hobson, Art

    (including hydroelectric, biofuels, wind, photovoltaics, direct solar, geothermal, hydrogen, and energy the photoelectric effect, to 15 minutes about automobile engine efficiencies during a discussion of the second law

  16. The Brasfield Hydroelectric Project: A model-prototype comparison

    SciTech Connect (OSTI)

    Gulliver, J.S.; Voigt, R.L. Jr.; Hibbs, D.E. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-12-31T23:59:59.000Z

    Observations made during start-up and operation of the 3 MW Brasfield Hydroelectric Project provide an excellent means of comparing physical model results with the prototype installation. During start-up, the turbine generator unit was operated without the surface vortex suppression grid in place to allow engineers to observe vortex formation without, and later with, the grid. The model performance is reproduced in the prototype with regard to surface vortices. Field data has also been obtained at 0.7 in depth increments to provide dissolved oxygen (D.O.) concentrations profiles in the reservoir and in the nearfield zone surrounding the intake. Parallel D.O. measurements at the powerhouse outlet and 1.6 km downstream of the outlet provide a good means of determining the average depth of water column from which the water was removed. Measurements of model velocities, scaled to the prototype, multiplied times the field measurements of dissolved oxygen (D.O.) concentration and water temperature provide a model-predicted downstream D.O. concentration that also compares well to that measured in the prototype. This paper provides support for an unconventional design technique which may be applicable to many other sites facing similar environmental constraints. The model-prototype comparison also provides a strong verification of the combined use of both physical and mathematical models to solve such a design problem.

  17. Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI

    SciTech Connect (OSTI)

    Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

    2006-08-29T23:59:59.000Z

    A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

  18. The influence of atmospheric pressure on landfill methane emissions

    SciTech Connect (OSTI)

    Czepiel, P.M.; Shorter, J.H.; Mosher, B.; Allwine, E.; McManus, J.B.; Harriss, R.C.; Kolb, C.E.; Lamb, B.K

    2003-07-01T23:59:59.000Z

    Landfills are the largest source of anthropogenic methane (CH{sub 4}) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH{sub 4} emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH{sub 4} emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m{sup 3} CH{sub 4} min{sup -1}. A simple regression model of our results was used to calculate an annual emission rate of 8.4x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These data, along with CH{sub 4} oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH{sub 4} generation at this landfill. A reported gas collection rate of 7.1x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} and an estimated annual rate of CH{sub 4} oxidation by cover soils of 1.2x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} resulted in a calculated annual CH{sub 4} generation rate of 16.7x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.

  19. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect (OSTI)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01T23:59:59.000Z

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and once in ten year events, respectively, whereas corresponding values for runoff were 13% and 16%; these changes were accompanied by corresponding decreases in evapotranspiration, which accounted for 86% and only 78% of the precipitation occurring on the average and once in ten year even~ respectively.

  20. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01T23:59:59.000Z

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  1. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect (OSTI)

    Ustohalova, Veronika [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)]. E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim [Institute of Mechanics, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, Renatus [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

    2006-07-01T23:59:59.000Z

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  2. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01T23:59:59.000Z

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres of land....

  4. Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis

    E-Print Network [OSTI]

    Schrab, Gregory Ernst

    1990-01-01T23:59:59.000Z

    municipal landfill leachates were determined to have mean estimated cumulative cancer risks on the same order of magnitude (10 4) as leachates from co-disposal and hazardous waste landfills. The use of a battery of acute and chronic toxicity bioassays..., chemical analysis, and an estimated cancer risk calculation resulted in data providing evidence that municipal solid waste landfill leachates are as acutely and chronically toxic as co-disposal and hazardous waste landfill leachates. ACKNOWLEDGEMENTS...

  5. Biomass gasification project gets funding to solve black liquor safety and landfill problems

    SciTech Connect (OSTI)

    Black, N.P.

    1991-02-01T23:59:59.000Z

    This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

  6. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    SciTech Connect (OSTI)

    Kirkeby, Janus T.; Birgisdottir, Harpa [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark); Bhander, Gurbakash Singh; Hauschild, Michael [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Lyngby (Denmark); Christensen, Thomas H. [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)], E-mail: thc@er.dtu.dk

    2007-07-01T23:59:59.000Z

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  7. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JULY 1999 / 583 RETENTION OF FREE LIQUIDS IN LANDFILLS UNDERGOING

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    LIQUIDS IN LANDFILLS UNDERGOING VERTICAL EXPANSION By Jorge G. Zornberg,1 Member, ASCE, Bruce L. Jernigan undergoing compression due to a landfill vertical expansion. The mechanism of free liquid generation thickness that a landfill could reach without releasing liquids stored within the waste. The proposed

  8. Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system

    E-Print Network [OSTI]

    Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system T. D. Stark containment, Strength, Stability, Shearbox test, Failure, Final cover system, Landfill REFERENCE: Stark, T. D. & Newman, E. J. (20 I0). Design of a landfill final cover systcm. Geosynthetics [ntemational17, No.3, 124

  9. Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy

    E-Print Network [OSTI]

    , drainage, hydraulic conductivity, landfill, recycling, tires #12;3 Introduction Over 280 million used1 Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy of shredded scrap tire drainage layers in landfill covers. Laboratory clogging tests were conducted using soil

  10. Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills

    E-Print Network [OSTI]

    ; Landfills; Recycling; Slope stability; Drainage. Author keywords: Waste tires; Landfill cover; DrainageBeneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills Krishna R. Reddy1 ; Timothy D. Stark2 ; and Aravind Marella3 Abstract: Over 280 million tires

  11. Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills

    E-Print Network [OSTI]

    Aydilek, Ahmet

    Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption in solid waste landfills. DOI: 10.1061/ ASCE 1090-0241 2008 134:8 1166 CE Database subject headings

  12. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

    2008-07-01T23:59:59.000Z

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  13. 14 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir in

    E-Print Network [OSTI]

    Long, Bernard

    Hydroelectric reservoirs and lakes in boreal Québec produce greenhouse gases (GHG) mainly in the form of CO214 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir. No method exists, however, which can directly measure the flux of CO2 across the air-water interface

  14. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect (OSTI)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15T23:59:59.000Z

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  15. Radioactive material in the West Lake Landfill: Summary report

    SciTech Connect (OSTI)

    none,

    1988-06-01T23:59:59.000Z

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab.

  16. Sanitary Landfill groundwater monitoring report. First quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  17. Sanitary Landfill groundwater monitoring report. Second quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  18. Sanitary Landfill groundwater monitoring report. Third quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  19. Sanitary landfill groundwater monitoring report (U): second quarter 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  20. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    SciTech Connect (OSTI)

    Chase, J.A.

    1995-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  1. Sanitary Landfill groundwater monitoring report. Second quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report represents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  2. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    SciTech Connect (OSTI)

    Chase, J.

    1999-12-08T23:59:59.000Z

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  3. Sanitary Landfill groundwater monitoring report: Third quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established the US Environmental Protection Agency, the South Carolina final PDWS for lead (Appendix A), or the SRS flagging criteria.

  4. Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999

    SciTech Connect (OSTI)

    Chase, J.

    1999-07-29T23:59:59.000Z

    This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  5. Sanitary landfill groundwater monitoring report: Third quarter 1996

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  6. Sanitary landfill groundwater monitoring report. Third quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  7. Model to aid the design of composite landfill liners

    E-Print Network [OSTI]

    Mohammed, Kifayathulla

    1993-01-01T23:59:59.000Z

    MODEL TO AID THE DESI(iN OF COMPOSITE LANDFILL LINERS A Thesis by KIFAYATHULLA MOHAMMED Submitted to the School of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1993... Major Subject: Safety Engineering MODEL TO AID THE DESIGN OF COMPOSITE LANDFILL LINERS A Thesis by Kifayathulla Mohammed Approved as to style and content by: Kevin J. Mclnnes (Co-chairman of Committee) Richard P. Kon n (Member John P. Wagner...

  8. Image courtesy of the Image Science & Analysis Laboratory, NASA Johnson Space Center (ISS006-E-42326). The hydroelectrical potential of North-Western

    E-Print Network [OSTI]

    Borsdorf, Axel

    -42326). #12;The hydroelectrical potential of North-Western Patagonia ­ balancing economic development and ecological protection axel borsdorf #12;156 The hydroelectrical potential of North-Western Patagonia the rest an expansion of the hydroelectric potential, first proposed 30 years ago (Borsdorf 1987: 156ff), can

  9. Economic aspects of the rehabilitation of the Hiriya landfill

    SciTech Connect (OSTI)

    Ayalon, O. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel)]. E-mail: agofira@tx.technion.ac.il; Becker, N. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel); Department of Economics and Management, Tel Hai College and NRERC, University of Haifa, Haifa (Israel); Shani, E. [Dan Region Association of Towns, Sanitation and Waste Disposal (Israel)

    2006-07-01T23:59:59.000Z

    The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

  10. Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel

    E-Print Network [OSTI]

    landfill biomethane to liquefied natural gas for use as transportation fuel. The aim is to develop, and liquefaction of biomethane. The resulting liquefied natural gas will consist of cryogenically liquefied. This project will also serve as a model for similar facilities in California to use native biogas resources

  11. Acute and Genetic Toxicity of Municipal Landfill Leachate

    E-Print Network [OSTI]

    Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

    to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

  12. Acute and Genetic Toxicity of Municipal Landfill Leachate 

    E-Print Network [OSTI]

    Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

    1991-01-01T23:59:59.000Z

    to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

  13. Metals in Municipal Landfill Leachate And Their Health Effects

    E-Print Network [OSTI]

    Laughlin, Robert B.

    raw leachate contains concentrations of heavy metals in excess ofthe drinking water standards of the un- saturated zone. If municipal solid waste is placed di- rectly into ground water, or if leachateMetals in Municipal Landfill Leachate And Their Health Effects STEPHEN C. JAMES, BS, MSCE Abstract

  14. Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    ; · geosynthetic clay liners (GCLs), which are composite materials consisting of bentonite and geosynthetics and a #12;geomembrane/compacted clay liner composite as the secondary liner system. The leak detectionGeosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg Geosynthetics are extensively

  15. Story Road Landfill Solar Site Evaluation: San Jose

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  16. Swift Creek Hydroelectric Project rehabilitation, Swift Creek Power Company, Inc. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The purpose of this report is to re-evaluate and update the original environmental analysis of the Swift Crook Hydroelectric Project rehabilitation. That analysis and the decision to allow the proponent toproceed with the project as described in the EA alternatives 3, 4, and 5 was completed an May 8, 1981. Since that decision, no action has been taken and no special-use permit has ever been issued. The Bridger-Trton National Forest completed a Forest Plan in March of 1990 which sets current direction for all lands within the Forest and new and significant issues pertaining to the amount of water to be bypassed have been raised by the public in response to this proposed project. The original proponent, Lower Valley Power and Light, sold the project and existing facilities to Swift Crack Power Company Inc. in 1984. Swift Crock Power Company has submitted a proposal to rehabilitate the existing power generation facility in Swift Creek Canyon, which will involve some significant construction and alteration of the river corridor. Theyhave also submitted an application for relicense to the Federal Energy Regulatory Commission who has asked for the Forest Service to comment on the application and to submit recommended conditions for approval (4e requirements). The proposed rehabilitation of existing facilities includes replacement of the existing damaged penstock (pipe) with a new, larger one; dredging two existing reservoirs and removal, refurbishment, and reinstallation of the turbines and generators in the two powerhouses with relocation and reconstruction of the lower powerhouse that is located on privately owned land below the Forest boundary.

  17. DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN

    E-Print Network [OSTI]

    DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN: DEVELOPMENT Prepared for the Northwest Power Planning Council October 1997 97-15 #12;Published October 1997 by the Northwest Power Planning Council 851 SW 6th Avenue, Suite 1100 Portland, Oregon 97204 503-222-5161 Toll Free

  18. State of structures of the Kolyma hydroelectric station according to data of on-site observations

    SciTech Connect (OSTI)

    Kuznetsov, V.S.; Voinovich, A.P.; Matroshilina, T.V.; Krupin, V.A.; Bulatov, S.N.

    1995-10-01T23:59:59.000Z

    On-site inspections of the Kolyma hydroelectric power station have been performed since 1979. A large quantity of data has been obtained pertaining to the dam, underground powerhouse, and other structures. Over 2000 measuring instruments were installed for checking the structures and foundations.

  19. The net carbon footprint of a newly created boreal hydroelectric reservoir

    E-Print Network [OSTI]

    Long, Bernard

    The net carbon footprint of a newly created boreal hydroelectric reservoir Cristian R. Teodoru,1 present here the first comprehensive assessment of the carbon (C) footprint associated with the creation-term at rates exceeding the carbon footprint of the pre-flood landscape, although the sources of C supporting

  20. What is the role of hydroelectric power in the United States?

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

  1. FACTORS FOR DECLINE 3.4.5 EFFECTS OF HYDROELECTRIC DAMS ON VIABILITY OF WILD FISH

    E-Print Network [OSTI]

    FACTORS FOR DECLINE 3.4.5 EFFECTS OF HYDROELECTRIC DAMS ON VIABILITY OF WILD FISH The existence and operation of the Columbia River Hydrosystem poses risks to wild populations of anadromous salmonids. Run-tagged hatchery fish or a mixture of hatchery and wild fish are used as indicator stocks. In the Snake River

  2. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract This handbook outlines the requirements for hydropower licenses issued by the Federal Energy Regulatory Commission. Author Federal Energy...

  3. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    SciTech Connect (OSTI)

    Stephens, Jessica D.

    2013-05-29T23:59:59.000Z

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

  4. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    ecosystems (40, Hydroelectric power generation is currentlycould be allocated to hydroelectric power generation becausefarmland. Its eight hydroelectric power plants and one coal-

  5. Hydraulically-actuated microscale traveling energy recovery

    E-Print Network [OSTI]

    Robbins, Michael F. (Michael Frank)

    2009-01-01T23:59:59.000Z

    As the demand for portable electrical power grows, alternatives to chemical stored energy may enable users with additional system capabilities. This thesis presents a miniature hydroelectric turbine system for use in ...

  6. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  7. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  8. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    scenario, China's primary energy consumption is forecast toChina and Period Historical GDP Oil Coal Gas Fossil Energy Total Forecast:China Period Historical GDP Oil Coal Gas Nuclear Power Hydroelectricity Primary Energy Total Forecast:

  9. Isotopic constraints on off-site migration of landfill CH{sub 4}

    SciTech Connect (OSTI)

    Desrocher, S.; Lollar, B.S. [Univ. of Toronto, Ontario (Canada). Dept. of Geology

    1998-09-01T23:59:59.000Z

    Occurrences of CH{sub 4} in residential areas in the vicinity of the Beare Road landfill, Toronto, Canada, have raised public concern about potential off-site migration of CH{sub 4} from the landfill site. Carbon isotopic analysis of dissolved and gas phase CH{sub 4} at the Beare Road site, however, indicates that CH{sub 4} in the ground water systems in the vicinity of the landfill is related to naturally occurring microbial methanogenesis within these geologic units, rather than to contamination by landfill CH{sub 4}. CH{sub 4} gas in the landfill and landfill cover has {delta}{sup 13}C values typical of microbially produced gas. Concentrations of CH{sub 4} found in deep ground water in the Scarborough, Don, and Whitby Formations underlying the landfill are isotopically distinct from the landfill gases. They are isotopically and compositionally similar, however, to naturally occurring microbial CH{sub 4} identified in organic-rich glacial deposits throughout Ontario. The lack of any significant CH{sub 4} concentrations or concentration gradients in the upper tin zone between the landfill and the deep ground water aquifer is further evidence that no transport between the landfill and deep ground water is occurring.

  10. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect (OSTI)

    Chalvatzaki, E.; Kopanakis, I. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Kontaksakis, M. [Municipal Company of Solid Waste Management, Chania 73100, Crete (Greece); Glytsos, T.; Kalogerakis, N. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Lazaridis, M., E-mail: lazaridi@mred.tuc.g [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece)

    2010-11-15T23:59:59.000Z

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  11. Carbon impact of proposed hydroelectric dams in Chilean Patagonia

    E-Print Network [OSTI]

    Mar, Laura E. (Laura Elizabeth)

    2009-01-01T23:59:59.000Z

    The concern for and awareness of climate change is growing, and the world needs to react quickly and efficiently to manage the carbon intensity of the global energy industry. Making smart decisions about energy technology ...

  12. Sanitary landfill groundwater quality assessment plan Savannah River Site

    SciTech Connect (OSTI)

    Wells, D.G.; Cook, J.W.

    1990-06-01T23:59:59.000Z

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  13. Y-12 Industrial Landfill V. Permit application modifications

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.

  14. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 Federalof EnergyThorium, andExpert

  15. FERC Handbook for Hydroelectric Filings other than Licenses and Exemptions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFAC 04-08 Jump to:FC3 Group| Open

  16. FERC Hydroelectric Project Handbook for Filings other than Licenses and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFAC 04-08 Jump to:FC3Exemptions |

  17. Sanitary Landfill Groundwater Monitoring Report (Data Only) - First Quarter 1999

    SciTech Connect (OSTI)

    Chase, J.

    1999-05-26T23:59:59.000Z

    This report contains analytical data for samples taken during First Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). This report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Proteciton Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  18. Sanitary landfill groundwater monitoring report. First Quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  19. Inferred performance of surface hydraulic barriers from landfill operational data

    SciTech Connect (OSTI)

    Gross, B.A. [GeoSyntec Consultants, Austin, TX (United States); Bonaparte, R.; Othman, M.A. [GeoSyntec Consultants, Atlanta, GA (United States)

    1997-12-31T23:59:59.000Z

    There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

  20. Sanitary landfill groundwater monitoring report: First quarter 1997

    SciTech Connect (OSTI)

    Chase, J.A.

    1997-05-01T23:59:59.000Z

    This report contains analytical data for samples taken during first quarter 1997 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria. Wells LFW6R, LFW8R, LFW10A, LFW18, LFW21, and LFW23R were not sampled due to their proximity to the Sanitary Landfill Closure Cap activities. Wells LFW61D and LFW62D are Purge Water Containment Wells and contain mercury. These wells were not sampled since the purge water cannot be treated at the M-1 Air Stripper until the NPDES permit for the stripper is modified.

  1. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect (OSTI)

    Phifer, M.

    2014-11-17T23:59:59.000Z

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  2. Reliability of concrete in the main structures of the Boguchany hydroelectric station

    SciTech Connect (OSTI)

    Lyadov, Yu.D.; Semenok, S.N.; Sukhotskaya, S.S. [and others

    1995-11-01T23:59:59.000Z

    At the construction site of the Boguchany hydroelectric station more than half of the entire volume of concrete is being placed in the main structures. The stage related to the construction of the headwall of the water intakes and pressure conduits, formation of the downstream face, transfer of the diverted flow to the permanent bottom outlets, and start of concreting operations on the hydrostation powerhouse is coming.

  3. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-01-01T23:59:59.000Z

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  4. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01T23:59:59.000Z

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  5. Upper arun hydroelectric project feasibility study (phase 1). Volume 2. Appendix. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    The report was prepared for Nepal Electricity Authority (NEA). The primary objective of the study was to compare several alternative development schemes to drive an optimum development plan for exploiting the hydroelectric potential of the Upper Arun River, to be further investigated in phase 2 of the feasibility study. The report presents the result of the phase I studies investigations recommends the alternatives to be pursued to develop the Upper Arun River. Volume 2 contains tables, figures and other supporting materials.

  6. Upper arun hydroelectric project feasibility study (phase 1). Volume 1. Report. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    The report was prepared for Nepal Electricity Authority (NEA). The primary objective of the study was to compare several alternative development schemes to drive an optimum development plan for exploiting the hydroelectric potential of the Upper Arun River, to be further investigated in phase 2 of the feasibility study. The scope of work included reviewing the original project concepts establishing development alternatives investigations in the following fields: Toposurvey Mapping; Geology Geotechnics; Hydrology; Power Market; and Plan formulations.

  7. Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned

    SciTech Connect (OSTI)

    Larney, C.; Heil, M.; Ha, G. A.

    2006-12-01T23:59:59.000Z

    This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

  8. INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-05-24T23:59:59.000Z

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

  9. INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-07-21T23:59:59.000Z

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

  10. Air emissions assessment and air quality permitting for a municipal waste landfill treating municipal sewage sludge

    SciTech Connect (OSTI)

    Koehler, J. [Woodward-Clyde International -- Americas, Oakland, CA (United States)

    1998-12-31T23:59:59.000Z

    This paper presents a case study into the air quality permitting of a municipal solid waste (MSW) landfill in the San Francisco Bay Area undergoing a proposed expansion in operations to increase the life of the landfill. The operations of this facility include MSW landfilling, the treatment and disposal of municipal sewage sludge, the aeration of petroleum-contaminated soils, the construction of a new on-site plant to manufacture soil amendment products from waste wood and other organic material diverted from the landfill, and the installation of a vaporator to create steam from leachate for injection into the landfill gas flare. The emissions assessment for each project component relied upon interpretation of source tests from similar operations, incorporation of on-site measurements into emissions models and mass balances, and use of AP-42 procedures for emissions sources such as wind-blown dust, material handling and transfer operations, and fugitive landfill gas. Air permitting issues included best available control technology (BACT), emission offset thresholds, new source performance standards (NSPS), potential air toxics health risk impacts, and compliance with federal Title V operating permit requirements. With the increasing difficulties of siting new landfills, increasing pressures to reduce the rate of waste placement into existing landfills, and expanding regulatory requirements on landfill operations, experiences similar to those described in this paper are likely to increase in the future as permitting scenarios become more complex.

  11. EPAct 2005 Section 242 Hydroelectric Incentive Program - 2013 Electrical

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energyof Energy The Federal Government. It

  12. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  13. Draft Guidance for Section 242 of the Energy Policy Act of 2005...

    Office of Environmental Management (EM)

    Draft Guidance for Section 242 of the Energy Policy Act of 2005 - Hydroelectric Production Incentive Program - July 2014 Draft Guidance for Section 242 of the Energy Policy Act of...

  14. Environmental Impacts of Increased Hydroelectric Development at Existing

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties,United Statesof6Research & Development »

  15. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting FederalThorium, andEIS -Expert

  16. Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuanInformation Dayun Hydropower

  17. Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergyGo modelP e r f o r m a the

  18. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect (OSTI)

    Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Crest, Marion, E-mail: marion.crest@suez-env.com [Suez Environnement, 38 rue du President Wilson, 78230 Le Pecq (France); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Spokas, Kurt A., E-mail: kurt.spokas@ars.usda.gov [United States Department of Agriculture - Agricultural Research Service, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 (United States); Akerman, Anna, E-mail: anna.akerman@sita.fr [SITA France, Tour CB 21, 16 Place de l'Iris, 92040 Paris La Defense Cedex (France); Yuan, Lei, E-mail: lyuan@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

  19. Preparing for the peak: Energy security and Atlantic Canada

    E-Print Network [OSTI]

    Hughes, Larry

    ­ Hydroelectricity­ Uranium­ Canada is not "energy homogenous"· #12;Atlantic Canada Older housing stock· Declining-Mobil)­ No exploration­ >90% exported­ Some coal· Government and· Nova Scotia Power: Yes: FERC 888/889­ Slow: RPS­ Slower

  20. PRELIMINARY ASSESSMENT OF ENERGY ISSUES

    E-Print Network [OSTI]

    during the Federal Energy Regulatory Commission (FERC) proceedings on renewal of the hydroelectric Resources Agency and the State Water Resources Control Board (SWRCB), Energy Commission staff has completed environmental protection and restoration, water supply, energy supply and reliability, and renewable energy use

  1. Landfill Gas Resources and Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratories to create a balanced portfolio of research in biomass feedstocks and conversion technologies. This program is largely focused on biomass fuels,...

  2. Agencies plan continued DOE landfill remediation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting forForcingProtectPrinter-friendly

  3. EM Landfill Workshop Report - November 21, 2008

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Department ofNotices |Notice of38:3:1: FERC2:Collaborates|safetyField

  4. Renewable Energy Sales and Use Tax Exemption

    Broader source: Energy.gov [DOE]

    The sales of equipment used to generate electricity using fuel cells, wind, sun, biomass energy, tidal or wave energy, geothermal, anaerobic digestion or landfill gas is eligible for a 75% exempt...

  5. IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera*

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera to classify and quantify different gas/odours. Here we suggest the integration of a small form factor computer of bad odours in landfill sites. Preliminary approach to this application using commercial sensors

  6. Geophysical methods applied to characterize landfill covers with geocomposite F. Genelle1, 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Geophysical methods applied to characterize landfill covers with geocomposite F. Genelle1, 2 , C attempt to characterize with geophysical methods the state of landfill covers to detect damages that can. The geophysical methods used were the Electrical Resistivity Tomography (ERT), cartography with an Automatic

  7. Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions

    E-Print Network [OSTI]

    Columbia University

    for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard methane (CH4 )annually to the world's total CH4 emission of ~550 Tg/yr. Recycling and thermal treatment destined for landfills and to mitigating CH4 emission. Waste generation is estimated to more than double

  8. Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas

    E-Print Network [OSTI]

    Columbia University

    Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system be made as follows: Yedla, S. and Parikh, 1.K. (2001) 'Economic evaluation of a landfill system with gas.K. Parikh Economic evaluation of a landfill system with gas recovery 435 Tonnes per dayMillion tonnes per

  9. DESIGN OF A FAILED LANDFILL SLOPE By: Timothy D. Stark, W. Douglas Evans-, and Paul E. Sherry'

    E-Print Network [OSTI]

    DESIGN OF A FAILED LANDFILL SLOPE 1 ~) ~ ~ By: Timothy D. Stark, W. Douglas Evans-, and Paul E solid waste landfill in which lateral displacements of up to 900 ft (275 m) and vertical settlements municipal solid waste landfill occupies 135 acres (546 km 2 ) approximately 9 miles (15.3 km) n

  10. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Hrad, Marlies; Huber-Humer, Marion [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2013-10-15T23:59:59.000Z

    Highlights: ? The isotopic signature of ?{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ? Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ? In situ aeration of landfills can be monitored by isotope analysis in leachate. ? The isotopic analysis of leachates can be used for assessing the stability of MSW. ? ?{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of ?{sup 13}C, ?{sup 2}H and ?{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the ?{sup 13}C-value of the dissolved inorganic carbon (?{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of ?{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a ?{sup 13}C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in ?{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a ?{sup 13}C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  11. Hydroelectric Webinar Presentation Slides and Text Version | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e pShadeHybridInstituteHDEnergy

  12. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGELustre FileBimodal Cialella 1 ,

  13. Biomass Energy Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act (S.B. 243), which amended previous legislation concerning a landfill methane tax credit. The original legislation,...

  14. Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-30T23:59:59.000Z

    The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

  15. Data:E8fd505b-bab7-417b-b6f4-029693dfb860 | Open Energy Information

    Open Energy Info (EERE)

    Rate Schedule - ETS, Residential Off-Peak Rate . Rider is for the purchase of energy from renewable resources (predominantly landfill methane gas generation) South Central Indiana...

  16. Data:884c16c5-48ed-49a7-9f37-f1fdfb531118 | Open Energy Information

    Open Energy Info (EERE)

    Schedule "A" Residential and Farm Service. This rate is for the purchase of energy for renewable resources (predominantly landfill methane gas generation) and for the support of...

  17. Reaction of the dams behind the Toktoguol and Kurpsa hydroelectric power plants to repeated earthquakes

    SciTech Connect (OSTI)

    Marchuk, A.N.; Umralin, K.B.; Moldebehov, Z.I. [and others

    1994-11-01T23:59:59.000Z

    The region where the chain of Naryn hydroelectric power plants are located in the Kyrgyzstan Republic is a seismically active area of Central Tien-Shan and is comparatively well known in seismological respects. No means of measuring the dams themselves, however, were ever incorporated as an instrumental base of investigation. The seismometric possibilities of embedded monitoring-measuring apparatus were disclosed by O.Yu. Schmidt Institute of Earth Physics and have made is possible to evaluate the reactions of dams to seismic effects and of excited seismicity, when residual deformations due to repeated tremors of different force and direction are accumulated over an extended period of time.

  18. Last spring, an Ohio waste slope collapsed, displacing 1.5 million cu yd of waste. Remedial measures can prevent similar failures at ~~grandfathered" landfills.

    E-Print Network [OSTI]

    measures can prevent similar failures at ~~grandfathered" landfills. r I n the early morning hours of March of "grandfathered" landfill slopes. (Grandfathered landfills do not have an engineered liner system.) Because following case history are ap- plicable to the design, operation and expan- sion of many landfills. BEFORE

  19. Monthly energy review

    SciTech Connect (OSTI)

    Not Available

    1983-02-01T23:59:59.000Z

    This issue of the Monthly Energy Review contains preliminary energy summary data for 1982. A 4.3% decline in total energy consumption marked the third year in a row that domestic energy consumption fell. Decreases in the consumption of petroleum, natural gas, and coal contributed to the decline but were offset somewhat by increased use of hydroelectric and nuclear power. Because demand for energy was down, a lower level of imports was sufficient to meet US energy needs.

  20. Effects of Climate Change on the Hydroelectric The Council is not tasked, nor does it have the resources to resolve existing uncertainties

    E-Print Network [OSTI]

    at hydroelectric dams when Northwest demands and power market values are likely to grow due to higher airEffects of Climate Change on the Hydroelectric System SUMMARY The Council is not tasked, nor does impacts of climate change to the power system and to recommend mitigating actions whenever possible. While

  1. Camargo Waste to Energy Power Plant Hamed Zamenian1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    are discarded in landfills. The Camargo Waste to Energy (WTE) power station is an opportunity to continue pyrolysis technology to convert organic-based wastes into valuable products like pyro-gas, pyro products. This facility provides a nearly zero-landfill carbon neutral solution to the waste management

  2. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect (OSTI)

    Steinfield, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  3. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano, E-mail: dibella@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Trapani, Daniele, E-mail: ditrapani@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Viviani, Gaspare, E-mail: gviv@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2011-08-15T23:59:59.000Z

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  4. Analysis of environmental issues related to small-scale hydroelectric development. I. Dredging

    SciTech Connect (OSTI)

    Loar, J.M.; Dye, L.L.; Turner, R.R.; Hildebrand, S.G.

    1980-07-01T23:59:59.000Z

    The small hydroelectric potential (less than or equal to 15-MW capacity) at existing dams in the US has been estimated to be approximately 5000 MW. Development of this resource by retrofitting these dams for hydroelectric generation may require dredging in order to (1) reclaim reservoir storage capacity lost as a result of sediment accumulation; (2) clear intake structures; and/or (3) construct/repair powerhouses, tailraces, and headraces. Dredging and disposal of dredged material at small-scale hydro sites may result in several potential environmental impacts, and their magnitude will depend upon many site-specific factors. The physical and chemical effects of dredging and disposal, their causes, and the biological effects engendered by these physical and chemical changes are discussed. Factors that could affect the severity (magnitude) of these effects (impacts) are emphasized, with the intent of providing guidance to developers of potential sites. A discussion of environmental contraints and mitigation, as well as guidelines for the early evaluation of the environmental feasibility of dredging, are included. A general introduction is provided on dredging equipment and disposal practices, with emphasis on those practices that would be applicable to small reservoirs. Regulations applicable to dredged material disposal and wetlands protection are discussed, and a preliminary analysis of the economic costs associated with dredging and disposal is presented.

  5. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19T23:59:59.000Z

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  6. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    systems absorb large amounts of hydroelectric power. Duringthat snow melts and hydroelectric power supply increases andfrom hydroelectric dams or discards renewable power [53].

  7. Efficient bidding for hydro power plants in markets for energy and ancillary services

    E-Print Network [OSTI]

    Perekhodtsev, Dmitri

    2006-01-01T23:59:59.000Z

    In order to preserve stability of electricity supply generators must provide ancillary services in addition to energy production. Hydroelectric resources have significant ancillary service capability because of their dynamic ...

  8. Soil Insulation For Barrier Layer Protection In Landfill Covers

    E-Print Network [OSTI]

    Gregory Smith Roy

    Landfill covers are designed to isolate waste from the environment by incorporating low-permeability barrier layers. The barrier layer minimizes and controls gas escaping from the waste and the amount of infiltrating moisture available for leachate generation. Barrier layers are typically designed and constructed of a thick layer of compacted fine-grain native soil material or a manufactured geosynthetic clay liner. The barrier layer must be protected from frost damage. Freezing of a compacted soil layer has been shown to cause quick and irreversible degradation. Large increases in permeability have been demonstrated in compacted clay barriers subjected to a minimum number of freezing and thawing cycles. Design methods to protect the barrier layer from frost damage have not been addressed in the research literature. A design procedure is addressed in this paper that determines the thickness of soil required to protect a barrier layer. The procedure is based on sitespecific temperature ...

  9. Radiological survey of the Shpack Landfill, Norton, Massachusetts

    SciTech Connect (OSTI)

    Cottrell, W.D.; Haywood, F.F.; Witt, D.A.; Myrick, T.E.; Goldsmith, W.A.; Shinpaugh, W.H.; Loy, E.T.

    1981-12-01T23:59:59.000Z

    The results of a radiological survey of the Shpack Landfill, Norton, Massachusetts, are given in this report. The survey was conducted over approximately eight acres which had received radioactive wastes from 1946 to 1965. The survey included measurement of the following: external gamma radiation at the surface and at 1 m (3 ft) above the surface throughout the site; beta-gamma exposure rates at 1 cm (0.4 in.) from the surface throughout the site; concentrations of /sup 226/Ra, /sup 238/U, and /sup 235/U in surface and subsurface soil on the site; and concentrations of /sup 226/Ra, /sup 238/U, /sup 235/U, /sup 230/Th, and /sup 210/Pb in groundwater on the site and in surface water on and near the site. Results indicate that the radioactive contamination is confined to the site and to the swamp immediately adjacent to the site.

  10. Using GIS to Identify Remediation Areas in Landfills

    SciTech Connect (OSTI)

    Linda A.Tedrow

    2004-08-01T23:59:59.000Z

    This paper reports the use of GIS mapping software—ArcMap and ArcInfo Workstation—by the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

  11. Electrical power obtained from burning landfill gas into a gas turbine generator: Experience after one year of operation

    SciTech Connect (OSTI)

    Fabbri, R.; Mignani, N.

    1998-07-01T23:59:59.000Z

    A typical example of a ``waste to energy'' concept can be found also in the landfill environment. The biogas derived by fermentation process is usually burnt into gas engines. This choice is usually due to the electric efficiency that is normally higher than gas turbine application and to the size that usually, almost in Italian landfill size, does not allow power higher than 1,000 kW. On the other side gas turbine applications, typically based on generator sets greater than 1,000 kW do not require special biogas pre-treatment; require less maintenance and have an extremely higher reliability. The paper describes an application of a gas turbine generator of 4,800 kW outlining the experiences collected after one year of operation. During this period, the system fulfilled the target of a total operating time greater than 8,000 hours. Description is done of the biogas compression system feeding the turbine and also of the subsystem adopted to reach the above mentioned target reliability.

  12. Final construction quality assurance report for the Y-12 Industrial Landfill V, Area 2, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bessom, W.H. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1996-11-01T23:59:59.000Z

    Lockheed Martin Energy Systems (LMES) has finished construction of Area 2 of the Y-12 Plant Industrial Landfill (ILF-V), classified as a Class 2 Landfill. This final Construction Quality Assurance (CQA) Report provides documentation that Area 2 was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. This report applies specifically to the Area 2 excavation, compacted clay soil liner, geomembrane liner, granular leachate collection layer, protective soil cover, and the leachate collection system. An ``As-Built`` survey was performed and is included. The drawings provide horizontal and vertical information for Area 2, the anchor trench, the leachate collection pipe, the temporary access road, and cross-sections of Area 2. This report provides documentation of the following items: the excavation activities of Area 2; the maximum recompacted coefficient of hydraulic conductivity or permeability of the soil is less than 1 {times} 10{sup {minus}7} centimeters per second (cm/sec); the total thickness of the compacted clay soil liner equals a minimum of 2 feet; a 40 mil impermeable geomembrane (polypropylene) flexible membrane liner (FML) and 16 oz. geotextile fabric was placed in direct contact with the compacted clay soil liner; a 12 inch granular leachate collection layer was installed and covered with a 8 oz. geotextile separation fabric; the installation of the leachate collection piping; and the two foot protective clay soil cover.

  13. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect (OSTI)

    Hibbard, C.S.

    1999-07-01T23:59:59.000Z

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  14. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    Version 1.0: Landfill bioreactor model for TOUGH2, LawrenceFigures Biodegradation Bioreactor Aerobic CO2 + H2O + heat1. Schematic of bioreactor and T2LBM conceptualizations.

  15. Investigating the mechanism behind environmental injustice around municipal landfill sites in Scotland 

    E-Print Network [OSTI]

    Richardson, Elizabeth

    model with which neighbourhood exposure to landfills could be classified. This gave the exposure classification a degree of realism not generally incorporated in similar studies. The research revealed clear evidence that deprived neighbourhoods...

  16. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  17. Overburden effects on waste compaction and leachate generation in municipal landfills

    E-Print Network [OSTI]

    Mehevec, Adam Wade

    1994-01-01T23:59:59.000Z

    This thesis presents a model to predict the effects of overburden pressure on the formation of leachate within municipal solid waste landfills. In addition, it estimates the compaction and subsequent settlement that the waste will undergo due...

  18. MONITORING LANDFILL COVER BY ELECTRICAL RESISTIVITY1 TOMOGRAPHY ON AN EXPERIMENTAL SITE2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with geosynthetics44 (geomembranes or Geosynthetic Clay Liners), depending on the date of closure (Silvestre et45 al: landfill cover, gravelly clay material, heterogeneity, compaction, electrical30 resistivity, multivariate

  19. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01T23:59:59.000Z

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  20. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31T23:59:59.000Z

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

  1. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-01-01T23:59:59.000Z

    a landfill is nearby, landfill gas could also be burned inthe boilers. Landfill gas consists mostly of methane (CH 4 )

  2. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    SciTech Connect (OSTI)

    Sizirici, Banu, E-mail: bsy3@case.edu [Case Western Reserve University, Civil Engineering Department, 2104 Adelbert Road, Bingham Bld. Room: 216, Cleveland, OH 44106 (United States); Tansel, Berrin; Kumar, Vivek [Florida International University, Civil and Environmental Engineering Department, Miami, FL (United States)

    2011-06-15T23:59:59.000Z

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  3. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  4. Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis 

    E-Print Network [OSTI]

    Schrab, Gregory Ernst

    1990-01-01T23:59:59.000Z

    ACUTE AND CHRONIC TOXICITY OF MUNICIPAL LANDFILL LEACHATE AS DETERMINED WITH BIOASSAYS AND CHEMICAL ANALYSIS A Thesis by GREGORY ERNST SCHRAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Soil Science ACUTF AND CHRONIC TOXICITY OF MUNICIPAL LANDFILL LEACHATE AS DETERMINED WITH BIOASSAYS AND CHEMICAL ANALYSIS A Thesis by GREGORY ERNST SCHRAB Approved as to style...

  5. Field versus laboratory characterization of clay deposits for use as in situ municipal landfill liners

    E-Print Network [OSTI]

    Wechsler, Sharon Elizabeth

    1990-01-01T23:59:59.000Z

    FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Submitted to the Office of Graduate Studies Texas Aa? University in partial fulfillment... of the requirement for the degree of . KASTER OF SCIENCE Nay 1990 Major Subject: Geology FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Approved as to style...

  6. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

    1996-03-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  7. Green energy: The implementation and utilization of renewable energy in the United States

    SciTech Connect (OSTI)

    Murry, N.L. [Coastal Contractors and Engineers, Inc., West Berlin, NJ (United States)

    1998-12-31T23:59:59.000Z

    Renewable energy has become a viable solution for the United States (US) increasing demand for energy. Often referred to as Green Energy, renewable energy uses the earth`s natural resources to create energy. The wind, sun, water, and the earth`s molten core each offer an attainable form of energy. Hydroelectricity uses running water, wind power uses high speed winds, solar panels collect solar energy as heat, and geothermal energy uses the earth`s molten core to heat water. The Department of Energy classifies Renewable Energy into the following sections: Geothermal Energy, Fuel from Biomass, and Solar Electric. Solar Electric is further subdivided into Solar Thermal Electric, Photovoltaics (Solar Cells), Wind/Windmills, Ocean Thermal Electric and Hydropower/Hydroelectric Dams. Currently, renewable energy provides only 12% of the US electricity supply. Approximately 10% of this is supplied by hydroelectric sources, 1% of this is supplied by hydroelectric sources, 1% is supplied by biomass, and less than 1% is supplied by geothermal, wind and solar combined. Nationally, the generating capacity of renewable energy has increased slightly during the 1990`s. Renewable energy generation contributes to approximately 94 thousand Megawatts of electricity compared to approximately 682 thousand Megawatts of electricity generated from nonrenewables in the year 1996. The continued implementation and utilization of renewable energy in the US are dependent upon several variables. These variables include: the support from Federal and State governments, utility purchase requirements if utility deregulation is passed, and consumer education on the environmental benefits of renewable energy.

  8. Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish.

    SciTech Connect (OSTI)

    Cada, Glenn F.; Odeh, Mufeed

    2001-01-01T23:59:59.000Z

    The fundamental influence of fluid dynamics on aquatic organisms is receiving increasing attention among aquatic ecologists. For example, the importance of turbulence to ocean plankton has long been a subject of investigation (Peters and Redondo 1997). More recently, studies have begun to emerge that explicitly consider the effects of shear and turbulence on freshwater invertebrates (Statzner et al. 1988; Hart et al. 1996) and fishes (Pavlov et al. 1994, 1995). Hydraulic shear stress and turbulence are interdependent natural fluid phenomena that are important to fish, and consequently it is important to develop an understanding of how fish sense, react to, and perhaps utilize these phenomena under normal river flows. The appropriate reaction to turbulence may promote movement of migratory fish or prevent displacement of resident fish. It has been suggested that one of the adverse effects of flow regulation by hydroelectric projects is the reduction of normal turbulence, particularly in the headwaters of reservoirs, which can lead to disorientation and slowing of migration (Williams et al. 1996; Coutant et al. 1997; Coutant 1998). On the other hand, greatly elevated levels of shear and turbulence may be injurious to fish; injuries can range from removal of the mucous layer on the body surface to descaling to torn opercula, popped eyes, and decapitation (Neitzel et al. 2000a,b). Damaging levels of fluid stress can occur in a variety of circumstances in both natural and man-made environments. This paper discusses the effects of shear stress and turbulence on fish, with an emphasis on potentially damaging levels in man-made environments. It defines these phenomena, describes studies that have been conducted to understand their effects, and identifies gaps in our knowledge. In particular, this report reviews the available information on the levels of turbulence that can occur within hydroelectric power plants, and the associated biological effects. The final section provides the preliminary design of an experimental apparatus that will be used to expose fish to representative levels of turbulence in the laboratory.

  9. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30T23:59:59.000Z

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

  10. UT-Battelle Department of Energy

    E-Print Network [OSTI]

    generation, distribution, and consumption ­ Environmental impacts of energy use ­ National security Quadrillion Btu Solar, 0.07 Wind, 0.258 Geothermal, 0.349 Hydroelectric, 2.889 Biomass, 3.227 Coal, 23 diversity Increase our energy options and reduce dependence on oil Environmental impacts of energy Improve

  11. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    SciTech Connect (OSTI)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08T23:59:59.000Z

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

  12. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect (OSTI)

    Steinfeld, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  13. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect (OSTI)

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Yazdani, Ramin [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, 44090 County Rd. 28H, Woodland, CA 95776 (United States); Imhoff, Paul T., E-mail: imhoff@udel.edu [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2012-02-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  14. Resource Management Services: Water Regulation, Part 605: Applications for Diversion or Use of Water for Purposes Other Than Hydro-Electric Power Projects (New York)

    Broader source: Energy.gov [DOE]

    These rules apply to all applications for a license or a permit to take, divert, appropriate or otherwise use the waters of the State, except applications for hydro-electric power projects....

  15. Landfill cover performance monitoring using time domain reflectometry

    SciTech Connect (OSTI)

    Neher, E.R.; Cotten, G.B. [Parsons Infrastructure & Technology Group, Inc., Idaho Falls, ID (United States); McElroy, D. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)

    1998-03-01T23:59:59.000Z

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data.

  16. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa

    SciTech Connect (OSTI)

    Odusanya, David O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa); Okonkwo, Jonathan O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)], E-mail: OkonkwoOJ@tut.ac.za; Botha, Ben [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)

    2009-01-15T23:59:59.000Z

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may infiltrate into the groundwater around the sites since most of the sites are not adequately lined.

  17. GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

    SciTech Connect (OSTI)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria; Kang, Sanghoon; Deng, Ye; Nostrand, Joy Van; Masoner, Jason; Cozzarelli, Isabelle; Suflita, Joseph; Zhou, Jizhong

    2010-05-17T23:59:59.000Z

    The Norman Landfill is a closed municipal solid waste landfill located on an alluvium associated with the Canadian River in Norman, Oklahoma. It has operated as a research site since 1994 because it is typical of many closed landfill sites across the U.S. Leachate from the unlined landfill forms a groundwater plume that extends downgradient approximately 250 m from the landfill toward the Canadian River. To investigate the impact of the landfill leachate on the diversity and functional structure of microbial communities, groundwater samples were taken from eight monitoring wells at a depth of 5m, and analyzed using a comprehensive functional gene array covering about 50,000 genes involved in key microbial processes, such as biogeochemical cycling of C, N, P, and S, and bioremediation of organic contaminants and metals. Wells are located within a transect along a presumed flow path with different distances to the center of the leachate plume. Our analyses showed that microbial communities were obviously impacted by the leachate-component from the landfill. The number of genes detected and microbial diversity indices in the center (LF2B) and its closest (MLS35) wells were significantly less than those detected in other more downgradient wells, while no significant changes were observed in the relative abundance (i.e., percentage of each gene category) for most gene categories. However, the microbial community composition or structure of the landfill groundwater did not clearly show a significant correlation with the distance from well LF2B. Burkholderia sp. and Pseudomonas sp. were found to be the dominant microbial populations detected in all wells, while Bradyrhizobium sp. and Ralstonia sp. were dominant populations for seven wells except LF2B. In addition, Mantel test and canonical correspondence analysis (CCA) indicate that pH, sulfate, ammonia nitrogen and dissolved organic carbon (DOC) have significant effects on the microbial community structure. The results suggest that the leachate from unlined landfills significantly impact the structures of groundwater microbial communities, and that more distal wells recover by natural attenuation.

  18. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    SciTech Connect (OSTI)

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01T23:59:59.000Z

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  19. PP-89-1 Bangor Hydro-Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES1 Citizens0 The13

  20. Statistical comparison of leachate from hazardous, codisposal, and municipal solid waste landfills

    SciTech Connect (OSTI)

    Gibbons, R.D.; Dolan, D.G.; May, H.; O'Leary, K.; O'Hara, R.

    1999-09-30T23:59:59.000Z

    There has been considerable debate regarding the chemical characterization of landfill leachate in general and the comparison of various types of landfill leachate (e.g., hazardous, codisposal, and municipal) in particular. For example, the preamble to the US EPA Subtitle D regulation (40 CFR Parts 257 and 258) suggests that there are no significant differences between the number and concentration of toxic constituents in hazardous versus municipal solid waste landfill leachate. The purpose of this paper is to statistically test this hypothesis in a large leachate database comprising 1490 leachate samples from 283 sample points (i.e., monitoring location such as a leachate sump) in 93 landfill waste cells (i.e., a section of a facility that took a specific waste stream or collection of similar waste streams) from 48 sites with municipal, codisposal, or hazardous waste site histories. Results of the analysis reveal clear differention between landfill leachate types, both in terms of constituents detected and their concentrations. The result of the analysis is a classification function that can estimate the probability that new leachate or ground water sample was produced by the disposal of municipal, codisposal, or hazardous waste. This type of computation is illustrated, and applications of the model to Superfund cost-allocation problems are discussed.

  1. Executive summary: legal obstacles and incentives to small-scale hydroelectric development in the six middle atlantic states

    SciTech Connect (OSTI)

    None,

    1980-05-01T23:59:59.000Z

    The executive summary describes the relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities, highlighting important features of the constitutional, statutory, case law, and regulations of each of the six middle atlantic states (Maryland, Delaware, New York, New Jersey, Pennsylvania, and Virginia). Water law, direct and indirect regulation, and financial considerations for each state are presented. A flow diagram of regulation of small dams in each state is also included.

  2. The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions

    E-Print Network [OSTI]

    Accordino, Megan H.; Rajagopal, Deepak

    2012-01-01T23:59:59.000Z

    nuclear and hydroelectric power under the policy. Fullynuclear and large hydroelectric power. Nuclear and large

  3. Enforcement Letter, Lockheed Martin Energy Systems, Inc. - September...

    Broader source: Energy.gov (indexed) [DOE]

    September 4, 1997 Issued to Lockheed Martin Energy Systems, Inc., related to the Erroneous Transfer of Mixed Waste to a Landfill at the K-25 Site On September 4, 1997, the U.S....

  4. 1st International Conference on Final Sinks, September 23-25, 2010 Vienna, Austria From Sanitary to Sustainable Landfilling

    E-Print Network [OSTI]

    Szmolyan, Peter

    Rechberger (AT) Daniele Di Trapani (IT) Formation of Hanging Water Tables in Municipal Solid Waste Landfills) Investigation of polycyclic aromatic hydrocarbons (PAHs) content in several incineration residues and simple estimation of their fate in landfill Fan Lu (CN) Biostabilization of Municipal Solid Waste with High Water

  5. Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery

    E-Print Network [OSTI]

    Columbia University

    're heading, or should be heading regarding solid waste disposal. I began my environmental engineering career in New York State in the 1960's. We had many problems with polluting solid waste dumps, landfill fires, WTE facilities. We know that municipal solid waste, MSW landfills in the US are estimated to release

  6. Superfund explanation of significant difference for the record of decision (EPA Region 5): Tri-County Landfill/Waste Management Illinois, South Elgin, IL, April 23, 1998

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The Tri-County/Elgin Landfill Superfund Site (TCLF) encompasses both the Tri-County and Elgin Landfills. The purpose of this ESD is to explain why the design for the landfill cap component of the remedy differs from that set forth in the ROD (PB93-964133) and to address the cost differentials associated with the change.

  7. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

    2010-08-15T23:59:59.000Z

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  8. An Assessment of the Disposal of Petroleum Industry NORM in Nonhazardous Landfills

    SciTech Connect (OSTI)

    Arnish, John J.; Blunt, Deborah, L.; Haffenden, Rebecca A.; Herbert, Jennifer; Pfingston, Manjula; Smith, Karen P.; Williams, Gustavious P.

    1999-10-12T23:59:59.000Z

    In this study, the disposal of radium-bearing NORM wastes in nonhazardous landfills in accordance with the MDEQ guidelines was modeled to evaluate potential radiological doses and resultant health risks to workers and the general public. In addition, the study included an evaluation of the potential doses and health risks associated with disposing of a separate NORM waste stream generated by the petroleum industry--wastes containing lead-210 (Pb-210) and its progeny. Both NORM waste streams are characterized in Section 3 of this report. The study also included reviews of (1) the regulatory constraints applicable to the disposal of NORM in nonhazardous landfills in several major oil and gas producing states (Section 2) and (2) the typical costs associated with disposing of NORM, covering disposal options currently permitted by most state regulations as well as the nonhazardous landfill option (Section 4).

  9. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01T23:59:59.000Z

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  10. Kainji hydroelectric project: a socio-economic post-impact assessment

    SciTech Connect (OSTI)

    Ugochuku, R.O.

    1987-01-01T23:59:59.000Z

    The Kainji hydroelectric dam was conceived in the early 1950s as a solution to Nigeria's urgent power needs. Considerable controversy surrounded the dam project. The initial controversial issue associated with the dam was centered on a decision whether to develop a thermal or hydro technology and whether the Federal Government's money was being used to develop a particular region to the economic disadvantage of other regions. When the power problems persisted even after the dam started operation, the question of whether the dam was delivering its projected functions also became an issue. This study is in the area of Social Management of Technology which is a concept that deals with decision processes for guiding technological changes such as those associated with the Kainji Dam, to derive maximum socioeconomic benefit from the technology and to minimize the undersirable side effects. The study found that electric power problems of Nigeria can be attributed to institutional problems and the general level of the country's development. This study also found that all the additional benefits of the dam have been overestimated and those reaping the additional benefits are different from those bearing the cost.

  11. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOE Patents [OSTI]

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06T23:59:59.000Z

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  12. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20T23:59:59.000Z

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  13. Capping as an alternative for remediating radioactive and mixed waste landfills

    SciTech Connect (OSTI)

    Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1994-03-01T23:59:59.000Z

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

  14. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect (OSTI)

    Poskas, P.; Kilda, R. [Lithuanian Energy Institute, Kaunas (Lithuania); Poskas, G. [Vytautas Magnus University, Kaunas (Lithuania)

    2008-07-01T23:59:59.000Z

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  15. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31T23:59:59.000Z

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  16. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    of Waste Landfilled and Landfill Closure Dates For The Lostradeoffs between landfill and com- bined programs ofare the tradeoffs between landfill and com- bined resource

  17. Paper waste - Recycling, incineration or landfilling? A review of existing life cycle assessments

    SciTech Connect (OSTI)

    Villanueva, A. [European Topic Centre on Resource and Waste Management, Hojbro Plads 4, DK-1200 Copenhagen K (Denmark)], E-mail: alejandro@villanueva.dk; Wenzel, H. [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Kgs. Lyngby (Denmark)

    2007-07-01T23:59:59.000Z

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.

  18. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    on significant levels of hydroelectric power have a lowerhas a high share of hydroelectric power has the lowest CO 2

  19. Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-30T23:59:59.000Z

    The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

  20. Landfills a thing of the past in Germany where advanced waste management By Evridiki Bersi -Kathimerini

    E-Print Network [OSTI]

    Columbia University

    Landfills a thing of the past in Germany where advanced waste management rules By Evridiki Bersi but that day has already come in Germany. On June 1, 2005, Germany imposed a ban on traditional garbage dumps, replacing them with one of the most advanced waste-management systems in the world. In the 1970s, Germany