National Library of Energy BETA

Sample records for hydrodynamics hydrodynamic testing

  1. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities...

  2. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be...

  3. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security ... Home About Us Our Programs Defense Programs Research, Development, Test, and ...

  4. Dual Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility ...

  5. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to...

  6. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT,

  7. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  8. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  9. Pennsylvania State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield...

  10. University of Minnesota Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Minnesota Address St. Anthony Falls Laboratory, 2 Third Avenue SE Place...

  11. University of Michigan Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Michigan Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Michigan Address 1085 South University Avenue Place Ann Arbor,...

  12. Development and Implementation of Radiation-Hydrodynamics Verification Test Problems

    SciTech Connect (OSTI)

    Marcath, Matthew J.; Wang, Matthew Y.; Ramsey, Scott D.

    2012-08-22

    Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale numerical simulation software that solves the same set of equations. The one-dimensional, spherically symmetric Coggeshall No.9 and No.11 analytic solutions, cell-averaged over a uniform-grid have been developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE solutions with and without the heat conduction module. Solution convergence was analyzed based on radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-order convergence was expected for both cases. The global L1 errors were used to estimate the convergence rates with and without the heat conduction module implemented.

  13. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles

    SciTech Connect (OSTI)

    Hendon, Raymond C.; Ramsey, Scott D.

    2012-08-22

    As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

  14. Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program

    Office of Environmental Management (EM)

    Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program DOE/IG-0930 December 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 December 16, 2014 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program" BACKGROUND A primary mission of the National Nuclear

  15. Skew resisting hydrodynamic seal

    DOE Patents [OSTI]

    Conroy, William T. (Pearland, TX); Dietle, Lannie L. (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX); Kalsi, Manmohan S. (Houston, TX)

    2001-01-01

    A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

  16. Colorado State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus...

  17. University of Maine Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website...

  18. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331...

  19. Sandia National Laboratories Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydro | Hydrodynamic Testing Facilities Name Sandia National Laboratories Address P.O. Box 5800 Place Albuquerque, NM Zip 87185 Sector Hydro Website http:www.sandia.gov...

  20. Hydrodynamic blade guide

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA); Davis, Pete J. (Pleasanton, CA); Landram, Charles S. (Livermore, CA)

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  1. A class of self-similar hydrodynamics test problems

    SciTech Connect (OSTI)

    Ramsey, Scott D; Brown, Lowell S; Nelson, Eric M; Alme, Marv L

    2010-12-08

    We consider self-similar solutions to the gas dynamics equations. One such solution - a spherical geometry Gaussian density profile - has been analyzed in the existing literature, and a connection between it, a linear velocity profile, and a uniform specific internal energy profile has been identified. In this work, we assume the linear velocity profile to construct an entire class of self-similar sol utions in both cylindrical and spherical geometry, of which the Gaussian form is one possible member. After completing the derivation, we present some results in the context of a test problem for compressible flow codes.

  2. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  3. Los Alamos conducts important hydrodynamic experiment in Nevada

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear testing," said Webster. These experiments with surrogate materials provide a principle linkage with scaledfull-scale hydrodynamic tests, the suite of prior underground...

  4. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    SciTech Connect (OSTI)

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  5. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship In...

  6. University of New Hampshire Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Name University of New Hampshire Address Chase Ocean Engineering Laboratory, 24 Colovos Road Place Durham, NH Zip 03824 Sector Hydro Phone number...

  7. Livermore Unstructured Lagrange Explicit Shock Hydrodynamics

    Energy Science and Technology Software Center (OSTI)

    2010-09-21

    LULESH v1.0 is a 3D unstructured Lagrange hydrodynamics simulation written specifically to solve a standard analytical test problem, known as the Sedov problem. In this problem, a quantum of energy is deposited into a gas and propagates through the gas over time.

  8. Hydrodynamic effects on coalescence. (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Hydrodynamic effects on coalescence. Citation Details In-Document Search Title: Hydrodynamic effects on coalescence. The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression

  9. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect (OSTI)

    Waltz, Jacob I.

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  10. Foundation of Hydrodynamics of Strongly Interacting Systems

    SciTech Connect (OSTI)

    Wong, Cheuk-Yin

    2014-01-01

    Hydrodynamics and quantum mechanics have many elements in common, as the density field and velocity fields are common variables that can be constructed in both descriptions. Starting with the Schroedinger equation and the Klein-Gordon for a single particle in hydrodynamical form, we examine the basic assumptions under which a quantum system of particles interacting through their mean fields can be described by hydrodynamics.

  11. Analysis and prediction of aperiodic hydrodynamic oscillatory...

    Office of Scientific and Technical Information (OSTI)

    Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor Citation Details In-Document ...

  12. A Two-Dimensional Radiation Hydrodynamics Code

    Energy Science and Technology Software Center (OSTI)

    2003-03-10

    Calculation of compressible and high energetic hydrodynamic fields including photon transport and heat conduction in two—dimensional curvilinear geometry.

  13. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOE Patents [OSTI]

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  14. Effects on the Physical Environment (Hydrodynamics, and Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality ...

  15. Violation of the Wiedemann-Franz Law in Hydrodynamic Electron...

    Office of Scientific and Technical Information (OSTI)

    Law in Hydrodynamic Electron Liquids This content will become publicly available on July 30, 2016 Prev Next Title: Violation of the Wiedemann-Franz Law in Hydrodynamic ...

  16. Stabilizing geometry for hydrodynamic rotary seals

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

    2010-08-10

    A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.

  17. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrodynamic experiment provides Stockpile Stewardship key data Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. December 22, 2014 Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship "Leda," experimental vessel in the "Zero Room" at the underground U1a facility, at the Nevada National

  18. Newtonian Hydrodynamics with Arbitrary Volumetric Sources

    SciTech Connect (OSTI)

    Lowrie, Robert Byron

    2015-11-12

    In this note, we derive how to handle mass, momentum, and energy sources for Newtonian hydrodynamics. Much of this is classic, although we’re unaware of a reference that treats mass sources, necessary for certain physics and the method of manufactured solutions. In addition, we felt it important to emphasize that the integral form of the governing equations results in a straightforward treatment of the sources. With the integral form, we’ll demonstrate that there’s no ambiguity between the Lagrangian and Eulerian form of the equations, which is less clear with the differential forms.

  19. Consistent description of kinetics and hydrodynamics of dusty plasma

    SciTech Connect (OSTI)

    Markiv, B.; Tokarchuk, M.; National University Lviv Polytechnic, 12 Bandera St., 79013 Lviv

    2014-02-15

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  20. Los Alamos conducts important hydrodynamic experiment in Nevada

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL conducts hydrodynamic experiment in Nevada Los Alamos conducts important hydrodynamic experiment in Nevada Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. September 8, 2014 Technicians at the Nevada National Security Site make final adjustments to the "Leda" experimental vessel in the "Zero Room" at the underground U1a facility. Technicians at the Nevada National Security Site make

  1. Effects on the Physical Environment (Hydrodynamics, and Water Quality Food

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Web) | Department of Energy and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Office presentation icon 57_mhk_modeling.ppt More Documents & Publications Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator

  2. MHK Projects/Marine Hydrodynamics Laboratory at the University...

    Open Energy Info (EERE)

    Marine Hydrodynamics Laboratory at the University of Michigan < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"map...

  3. KIVA--Hydrodynamics Model for Chemically Reacting Flow with Spray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search KIVA--Hydrodynamics Model for Chemically Reacting Flow with Spray Los Alamos National Laboratory Contact LANL...

  4. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  5. Explicit 2-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (OSTI)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  6. Triangular flow in hydrodynamics and transport theory

    SciTech Connect (OSTI)

    Alver, Burak Han [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Gombeaud, Clement; Luzum, Matthew; Ollitrault, Jean-Yves [CNRS, URA2306, IPhT, Institut de physique theorique de Saclay, F-91191 Gif-sur-Yvette (France)

    2010-09-15

    In ultrarelativistic heavy-ion collisions, the Fourier decomposition of the relative azimuthal angle, {Delta}{phi}, distribution of particle pairs yields a large cos(3{Delta}{phi}) component, extending to large rapidity separations {Delta}{eta}>1. This component captures a significant portion of the ridge and shoulder structures in the {Delta}{phi} distribution, which have been observed after contributions from elliptic flow are subtracted. An average finite triangularity owing to event-by-event fluctuations in the initial matter distribution, followed by collective flow, naturally produces a cos(3{Delta}{phi}) correlation. Using ideal and viscous hydrodynamics and transport theory, we study the physics of triangular (v{sub 3}) flow in comparison to elliptic (v{sub 2}), quadrangular (v{sub 4}), and pentagonal (v{sub 5}) flow. We make quantitative predictions for v{sub 3} at RHIC and LHC as a function of centrality and transverse momentum. Our results for the centrality dependence of v{sub 3} show a quantitative agreement with data extracted from previous correlation measurements by the STAR collaboration. This study supports previous results on the importance of triangular flow in the understanding of ridge and shoulder structures. Triangular flow is found to be a sensitive probe of initial geometry fluctuations and viscosity.

  7. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    SciTech Connect (OSTI)

    Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study

    2005-06-06

    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.

  8. Violation of the Wiedemann-Franz Law in Hydrodynamic Electron...

    Office of Scientific and Technical Information (OSTI)

    Law in Hydrodynamic Electron Liquids Citation Details In-Document Search This content will become publicly available on July 30, 2016 Title: Violation of the Wiedemann-Franz Law in ...

  9. Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer

    Office of Scientific and Technical Information (OSTI)

    in Direct-Drive-Implosion Experiments (Journal Article) | SciTech Connect Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments Citation Details In-Document Search Title: Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments Authors: Froula, D. H. ; Igumenshchev, I. V. ; Michel, D. T. ; Edgell, D. H. ; Follett, R. ; Glebov, V. Yu. ; Goncharov, V. N. ; Kwiatkowski, J. ;

  10. Damaged Surface Hydrodynamics (DSH) Flash Report (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Damaged Surface Hydrodynamics (DSH) Flash Report Citation Details In-Document Search Title: Damaged Surface Hydrodynamics (DSH) Flash Report Abstract Not Provided. Authors: Rousculp, Christopher L. [1] ; Oro, David Michael [1] ; Morris, Christopher [1] ; Saunders, Alexander [1] ; Reass, William [1] ; Griego, Jeffrey Randall [1] ; Turchi, Peter John [1] ; Reinovsky, Robert Emil [1] + Show Author Affiliations Los Alamos National Lab. (LANL), Los Alamos, NM

  11. Hydrodynamics with chiral anomaly and charge separation in relativistic

    Office of Scientific and Technical Information (OSTI)

    heavy ion collisions (Journal Article) | DOE PAGES Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions Title: Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions Authors: Yin, Yi Search DOE PAGES for author "Yin, Yi" Search DOE PAGES for ORCID "000000033726909X" Search orcid.org for ORCID "000000033726909X" ; Liao, Jinfeng Publication Date: 2016-05-01 OSTI Identifier: 1240207

  12. Analysis and prediction of aperiodic hydrodynamic oscillatory time series

    Office of Scientific and Technical Information (OSTI)

    by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor (Journal Article) | SciTech Connect Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor Citation Details In-Document Search Title: Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor Forecasting of aperiodic time

  13. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN

    Office of Scientific and Technical Information (OSTI)

    SOLAR FLARES. I. THE NUMERICAL MODEL (Journal Article) | SciTech Connect COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Citation Details In-Document Search Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience

  14. Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Quality) | Department of Energy Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) File 56_tools_methods_to_measure_predict_envrionmental_impacts_snl_roberts.pptx More Documents & Publications FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations:

  15. Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases

    SciTech Connect (OSTI)

    Najjar, F M; Solberg, J; White, D

    2008-04-17

    A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

  16. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    SciTech Connect (OSTI)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-04-15

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  17. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  18. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  19. Event-by-event hydrodynamics: A better tool to study the Quark-Gluon plasma

    SciTech Connect (OSTI)

    Grassi, Frederique

    2013-03-25

    Hydrodynamics has been established as a good tool to describe many data from relativistic heavyion collisions performed at RHIC and LHC. More recently, it has become clear that it is necessary to use event-by-event hydrodynamics (i.e. describe each collision individually using hydrodynamics), an approach first developed in Brazil. In this paper, I review which data require the use of event-by-event hydrodynamics and what more we may learn on the Quark-Gluon Plasma with this.

  20. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect (OSTI)

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  1. Low torque hydrodynamic lip geometry for rotary seals

    DOE Patents [OSTI]

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  2. Validating hydrodynamic growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.

  3. Matching pre-equilibrium dynamics and viscous hydrodynamics

    SciTech Connect (OSTI)

    Martinez, Mauricio; Strickland, Michael

    2010-02-15

    We demonstrate how to match pre-equilibrium dynamics of a 0+1-dimensional quark-gluon plasma to second-order viscous hydrodynamical evolution. The matching allows us to specify the initial values of the energy density and shear tensor at the initial time of hydrodynamical evolution as a function of the lifetime of the pre-equilibrium period. We compare two models for pre-equilibrium quark-gluon plasma, longitudinal free streaming and collisionally broadened longitudinal expansion, and present analytic formulas that can be used to fix the necessary components of the energy-momentum tensor. The resulting dynamical models can be used to assess the effect of pre-equilibrium dynamics on quark-gluon plasma observables. Additionally, we investigate the dependence of entropy production on pre-equilibrium dynamics and discuss the limitations of the standard definitions of nonequilibrium entropy.

  4. IUTAM symposium on hydrodynamic diffusion of suspended particles

    SciTech Connect (OSTI)

    Davis, R.H.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS

    SciTech Connect (OSTI)

    Saitoh, Takayuki R.; Makino, Junichiro

    2013-05-01

    The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low-density (high-density) side is overestimated (underestimated). Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure) and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density-independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point-like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of the known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie and Thomas as a special case. Our formulation can be extended to handle a non-ideal gas easily.

  6. Skew and twist resistant hydrodynamic rotary shaft seal

    DOE Patents [OSTI]

    Dietle, L.; Kalsi, M.S.

    1999-02-23

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

  7. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    SciTech Connect (OSTI)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Clayton, Vic. 3800 (Australia); Do?an, Suzan [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 ?zmir (Turkey); King, Andrew [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-09-10

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes.

  8. Skew and twist resistant hydrodynamic rotary shaft seal

    DOE Patents [OSTI]

    Dietle, Lannie (Sugar Land, TX); Kalsi, Manmohan Singh (Houston, TX)

    1999-01-01

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

  9. Parallel Implementation of Smoothed-Particle Hydrodynamics Method Using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LAMMPS/Trilinos Implementation of Smoothed-Particle Hydrodynamics Method Using LAMMPS/Trilinos - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  10. Analytical Solutions of Landau (1+1)-Dimensional Hydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Jr, Kenneth F

    2014-01-01

    To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.

  11. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Chu, R.; Amakai, M.; Lung, H.C.; Ishigai, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  12. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Kennedy, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  13. Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry

    DOE Patents [OSTI]

    Dietle, Lannie; Gobeli, Jeffrey D.

    1993-07-27

    A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

  14. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    SciTech Connect (OSTI)

    Johnson, J N

    2009-07-02

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  15. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  16. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  17. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  18. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  19. DYNA3D; Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  20. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  1. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  2. On freeze-out problem in relativistic hydrodynamics

    SciTech Connect (OSTI)

    Ivanov, Yu. B., E-mail: Y.Ivanov@gsi.de; Russkikh, V. N. [Gesellschaft fuer Schwerionenforschung mbH (Germany)

    2009-07-15

    A finite unbound system which is equilibrium in one reference frame is in general nonequilibrium in another frame. This is a consequence of the relative character of the time synchronization in the relativistic physics. This puzzle was a prime motivation of the Cooper-Frye approach to the freeze-out in relativistic hydrodynamics. Solution of the puzzle reveals that the Cooper-Frye recipe is far not a unique phenomenological method that meets requirements of energy-momentum conservation. Alternative freeze-out recipes are considered and discussed.

  3. Lower bound on the electroweak wall velocity from hydrodynamic instability

    SciTech Connect (OSTI)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.

    2015-03-27

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  4. Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal

    DOE Patents [OSTI]

    Dietle, Lannie; Kalsi, Manmohan Singh

    2000-03-14

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.

  5. AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING HEAT

    Office of Scientific and Technical Information (OSTI)

    AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING HEAT TRANS FER (t h esi s) BY Novak Zuber June 1959 . - . Reaearch - Laboratory @is Angelei) 811~1 Ramo-Wooldridge Corporation University of California Los Angeles, California - 2 - .w- UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service L E G A L N O T I C E This report was prepared aa an account of Government sponsored work. Neither tbe United States, nor the Commission, nor MY person acting on behalf of the

  6. Hydrodynamic interactions in metal rod-like particle suspensions due to

    Office of Scientific and Technical Information (OSTI)

    induced charge electroosmosis (Journal Article) | SciTech Connect Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis Citation Details In-Document Search Title: Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis We present a theoretical and experimental study of the role of hydrodynamic interactions on the motion and dispersion of metal rod-like particles in the presence of an externally

  7. OC5 Project Phase I: Validation of Hydrodynamic Loading on a Fixed Cylinder: Preprint

    SciTech Connect (OSTI)

    Robertson, A. N.; Wendt, F. F.; Jonkman, J. M.; Popko, W.; Vorpahl, F.; Stansberg, C. T.; Bachynski, E. E.; Bayati, I.; Beyer, F.; de Vaal, J. B.; Harries, R.; Yamaguchi, A.; Shin, H.; Kim, B.; van der Zee, T.; Bozonnet, P.; Aguilo, B.; Bergua, R.; Qvist, J.; Qijun, W.; Chen, X.; Guerinel, M.; Tu, Y.; Yutong, H.; Li, R.; Bouy, L.

    2015-04-23

    This paper describes work performed during the first half of Phase I of the Offshore Code Comparison Collaboration Continuation, with Correlation project (OC5). OC5 is a project run under the IEA Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems. In this first phase, simulated responses from a variety of offshore wind modeling tools were modeling tools were validated against tank test data of a fixed, suspended cylinder (without a wind turbine) that was tested under regular and irregular wave conditions at MARINTEK. The results from this phase include an examination of different approaches one can use for defining and calibrating hydrodynamic coefficients for a model, and the importance of higher-order wave models in accurately modeling the hydrodynamic loads on offshore substructures.

  8. Numerical simulation of the hydrodynamical combustion to strange quark matter

    SciTech Connect (OSTI)

    Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth

    2010-12-15

    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below {approx_equal}2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.

  9. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect (OSTI)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 , the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  10. Adding kinetics and hydrodynamics to the CHEETAH thermochemical code

    SciTech Connect (OSTI)

    Fried, L.E., Howard, W.M., Souers, P.C.

    1997-01-15

    In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. We have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.

  11. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    SciTech Connect (OSTI)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshes do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage RungeKutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.

  12. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less

  13. Scaling of magneto-quantum-radiative hydrodynamic equations: from laser-produced plasmas to astrophysics

    SciTech Connect (OSTI)

    Cross, J. E.; Gregori, G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Reville, B., E-mail: j.e.cross@physics.ox.ac.uk [Centre for Plasma Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

    2014-11-01

    We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.

  14. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  15. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  16. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    SciTech Connect (OSTI)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved at the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage RungeKutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.

  17. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less

  18. Final Report for "Verification and Validation of Radiation Hydrodynamics for Astrophysical Applications"

    SciTech Connect (OSTI)

    Zingale, M; Howell, L H

    2010-03-17

    The motivation for this work is to gain experience in the methodology of verification and validation (V&V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V&V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V&V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.

  19. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  20. Elliptic and Triangular Flow in Event-by-Event D=3+1 Viscous Hydrodynamics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Elliptic and Triangular Flow in Event-by-Event D=3+1 Viscous Hydrodynamics Citation Details In-Document Search Title: Elliptic and Triangular Flow in Event-by-Event D=3+1 Viscous Hydrodynamics We present results for the elliptic and triangular flow coefficients v{sub 2} and v{sub 3} in Au+Au collisions at {radical}(s)=200 AGeV using event-by-event D=3+1 viscous hydrodynamic simulations. We study the effect of

  1. Hybrid magneto-hydrodynamic simulation of a driven FRC

    SciTech Connect (OSTI)

    Rahman, H. U. Wessel, F. J.; Binderbauer, M. W.; Qerushi, A.; Rostoker, N.; Conti, F.; Plasma Diagnostics and Technologies Ltd., Via Giuntini 63, 56023 Navacchio ; Ney, P.

    2014-03-15

    We simulate a field-reversed configuration (FRC), produced by an “inductively driven” FRC experiment; comprised of a central-flux coil and exterior-limiter coil. To account for the plasma kinetic behavior, a standard 2-dimensional magneto-hydrodynamic code is modified to preserve the azimuthal, two-fluid behavior. Simulations are run for the FRC's full-time history, sufficient to include: acceleration, formation, current neutralization, compression, and decay. At start-up, a net ion current develops that modifies the applied-magnetic field forming closed-field lines and a region of null-magnetic field (i.e., a FRC). After closed-field lines form, ion-electron drag increases the electron current, canceling a portion of the ion current. The equilibrium is lost as the total current eventually dissipates. The time evolution and magnitudes of the computed current, ion-rotation velocity, and plasma temperature agree with the experiments, as do the rigid-rotor-like, radial-profiles for the density and axial-magnetic field [cf. Conti et al. Phys. Plasmas 21, 022511 (2014)].

  2. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    SciTech Connect (OSTI)

    Sapir, Nir; Halbertal, Dorri [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.

  3. Density-shear instability in electron magneto-hydrodynamics

    SciTech Connect (OSTI)

    Wood, T. S. Hollerbach, R.; Lyutikov, M.

    2014-05-15

    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is at least as stable as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.

  4. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600%C2%B0C. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  5. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  6. A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependent Viscosity | Argonne Leadership Computing Facility A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially Dependent Viscosity Authors: Martys, N.S., George, W.L., Chun, B., Lootens, D. A smoothed particle hydrodynamics approach is utilized to model a non-Newtonian fluid with a spatially varying viscosity. In the limit of constant viscosity, this approach recovers an earlier model for Newtonian fluids of Espa Publication Date: September, 2010 Name of Publication Source:

  7. Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics « Prev Next » Title: Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2012-02-09 OSTI Identifier: 1099129 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal Volume: 85; Journal Issue: 2; Journal ID: ISSN 0556-2813 Publisher:

  8. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Hydrodynamic evolution and jet energy loss in Cu + Cu collisions « Prev Next » Title: Hydrodynamic evolution and jet energy loss in Cu + Cu collisions Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2011-04-18 OSTI Identifier: 1100252 Type: Publisher's Accepted Manuscript Journal Name: Physical review C. Nuclear physics Additional Journal Information: Journal Volume: 83; Journal Issue: 4; Journal ID: ISSN 0556-2813 Publisher: American

  9. Hydrodynamic interactions in metal rod-like particle suspensions due to

    Office of Scientific and Technical Information (OSTI)

    induced charge electroosmosis (Journal Article) | SciTech Connect Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis Citation Details In-Document Search Title: Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is

  10. Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics Citation Details In-Document Search Title: Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2012-02-09 OSTI Identifier: 1099129 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal Volume: 85; Journal Issue: 2; Journal ID:

  11. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Hydrodynamic evolution and jet energy loss in Cu + Cu collisions Citation Details In-Document Search Title: Hydrodynamic evolution and jet energy loss in Cu + Cu collisions Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2011-04-18 OSTI Identifier: 1100252 Type: Publisher's Accepted Manuscript Journal Name: Physical review C. Nuclear physics Additional Journal Information: Journal Volume: 83; Journal Issue: 4; Journal ID: ISSN 0556-2813

  12. Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic

    Office of Scientific and Technical Information (OSTI)

    Coupling Approach in Three-Dimensions (Journal Article) | SciTech Connect Journal Article: Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Citation Details In-Document Search Title: Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Authors: Xu, H ; Rodgers, A J ; Lomov, I N ; Petersson, N A ; Sjogreen, B ; Vorobiev, O Y Publication Date: 2012-05-06 OSTI Identifier: 1089529

  13. Performance evaluation of half-wetted hydrodynamic bearings with DLC coated surfaces.

    SciTech Connect (OSTI)

    Eryilmaz, O.; Erdemir, A.; Energy Systems

    2008-01-01

    In conventional liquid lubrication it is assumed that surfaces are fully wetted and no slip occurs between the fluid and the solid boundary. Under the 'no slip' condition the maximum shear gradient occurs at the fluid-surface interface. When one or both surfaces are non-wetted by the fluid, boundary slip can occur due to weak bonding between the fluid and the solid surface, which reduces shear stresses in the fluid adjacent to the non-wetted surface. A thrust bearing tribometer was used to compare the performance of 'no slip' hydrodynamic thrust bearings with bearings surfaces that were made to slip at the interface between the surface and fluid. Hydrophobic surfaces on both runner and bearing were achieved with the deposition of hydrogenated diamond like carbon (H-DLC) films, produced by plasma-enhanced CVD on titanium alloy surfaces. Hydrophilic surfaces were created through the surface modification of DLC. A mixtures of water and glycerol was used as the lubricant. The tests were conducted using different constant bearing gaps. The normal load and the torque or traction force between the rotating runner and hydrodynamic thrust bearing were measured with load cells. The experimental results confirmed that load support is still possible when surfaces are partially-wetted or nonwetted.

  14. On the explanation and calculation of anomalous reflood hydrodynamics in large PWR cores

    SciTech Connect (OSTI)

    Rodriguez, S.E.

    1985-01-01

    Reflood hydrodynamics from large-scale (1:20) test facilities in Japan have yielded apparently anomalous behavior relative to FLECHT tests. Namely, even at reflooding rates below one inch per second, very large liquid volume fractions (10-15%) exist above the quench fronts shortly after flood begins; thus cladding temperature excursions are terminated early in the reflood phase. This paper discusses an explanation for this behavior: liquid films on the core's unheated rods. The experimental findings are shown to be correctly simulated with a new four-field (vapor, films, droplets) version of the best-estimate TRAC-PF1 computer code, TRAC-FF. These experimental and analytical findings have important implications for PWR large-break LOCA licensing.

  15. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  16. Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics

    SciTech Connect (OSTI)

    Burton, D.E.

    1992-06-01

    We consider a variation of the free-Lagrange (FL) method which is appropriate to staggered-grid differencing of the hydrodynamics equations (SGH) and will be termed the staggered free-Lagrange method or SFL. The SFL method discretizes space into general polygonal or polyhedral cells. The numerical differencing techniques and connectivity templates used for SFL differ markedly from those used by other unstructured grid methods, such as finite element (FE) and triangular/tetrahedral based free-Lagrange (TFL). The paper discusses the spatial discretization for both 2D and 3D geometry, differencing templates, object-oriented data management, and mesh optimization and refinement strategies. The suite of mesh optimization primitives is extended, giving rise to a powerful hybrid method called adaptive free-Lagrange (AFL) which is applied to a test problem.

  17. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  18. Recent Hydrodynamics Improvements to the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard.R. Schultz

    2009-07-01

    The hydrodynamics section of the RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) improved turbine model, (2) spray model for the pressurizer model, (3) feedwater heater model, (4) radiological transport model, (5) improved pump model, and (6) compressor model.

  19. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

    2011-11-15

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  20. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  1. Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint

    SciTech Connect (OSTI)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2015-03-01

    Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.

  2. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    SciTech Connect (OSTI)

    Tung, Ryan C. Killgore, Jason P.; Hurley, Donna C.

    2014-06-14

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  3. Hydrodynamic simulations of a combined hydrogen, helium thermonuclear runaway on a 10-km neutron star

    SciTech Connect (OSTI)

    Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.

    1983-01-01

    We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10/sup 5/ L. A shock wave caused a precursor in the light curve which lasted 10/sup -5/ sec.

  4. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect (OSTI)

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  5. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  6. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 ?m/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  7. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; et al

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  8. HEAVY DUST OBSCURATION OF z = 7 GALAXIES IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION

    SciTech Connect (OSTI)

    Kimm, Taysun; Cen, Renyue

    2013-10-10

    Hubble Space Telescope observations with the Wide Field Camera 3/Infrared reveal that galaxies at z ? 7 have very blue ultraviolet (UV) colors, consistent with these systems being dominated by young stellar populations with moderate or little attenuation by dust. We investigate UV and optical properties of the high-z galaxies in the standard cold dark matter model using a high-resolution adaptive mesh refinement cosmological hydrodynamic simulation. For this purpose, we perform panchromatic three-dimensional dust radiative transfer calculations on 198 galaxies of stellar mass 5 10{sup 8}-3 10{sup 10} M{sub ?} with three parameters: the dust-to-metal ratio, the extinction curve, and the fraction of directly escaped light from stars (f{sub esc}). Our stellar mass function is found to be in broad agreement with Gonzalez et al., independent of these parameters. We find that our heavily dust-attenuated galaxies (A{sub V} ? 1.8) can also reasonably match modest UV-optical colors, blue UV slopes, as well as UV luminosity functions, provided that a significant fraction (?10%) of light directly escapes from them. The observed UV slope and scatter are better explained with a Small-Magellanic-Cloud-type extinction curve, whereas a Milky-Way-type curve also predicts blue UV colors due to the 2175 bump. We expect that upcoming observations by the Atacama Large Millimeter/submillimeter Array will be able to test this heavily obscured model.

  9. THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION

    SciTech Connect (OSTI)

    Dong, X. C.; Lin, W. P.; Wang, Yang Ocean; Kang, X.; Dutton, Aaron A.; Macci, Andrea V. E-mail: kangxi@pmo.ac.cn

    2014-08-20

    Observations have shown that the spatial distribution of satellite galaxies is not random, but rather is aligned with the major axes of central galaxies (CGs). The strength of the alignment is dependent on the properties of both the satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of CGs. Using hydrodynamical simulations including gas cooling, star formation, and feedback, we carry out a study of galaxy alignment and its dependence on the galaxy properties predicted directly from the simulations. We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo where the shape of the CG better traces the dark matter distribution. The dependence of alignment on the color of CGs arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.

  10. RELAP5/MOD3 assessment for calculation of safety and relief valve discharge piping hydrodynamic loads. International agreement report

    SciTech Connect (OSTI)

    Stubbe, E.J.; VanHoenacker, L.; Otero, R.

    1994-02-01

    This report presents an assessment study for the use of the code RELAP 5/MOD3/5M5 in the calculation of transient hydrodynamic loads on safety and relief discharge pipes. Its predecessor, RELAP 5/MOD1, was found adequate for this kind of calculations by EPRI. The hydrodynamic loads are very important for the discharge piping design because of the fast opening of the valves and the presence of liquid in the upstream loop seals. The code results are compared to experimental load measurements performed at the Combustion Engineering Laboratory in Windsor (US). Those measurements were part of the PWR Valve Test Program undertaken by EPRI after the TMI-2 accident. This particular kind of transients challenges the applicability of the following code models: two-phase choked discharge; interphase drag in conditions with large density gradients; heat transfer to metallic structures in fast changing conditions; two-phase flow at abrupt expansions. The code applicability to this kind of transients is investigated. Some sensitivity analyses to different code and model options are performed. Finally, the suitability of the code and some modeling guidelines are discussed.

  11. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (OSTI)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  12. Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)

    SciTech Connect (OSTI)

    Woodward, Paul R; Dimonte, Guy; Rockefeller, Gabriel M; Fryer, Christopher L; Dimonte, Guy; Dai, W; Kares, R. J.

    2011-01-05

    The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.

  13. Galactic scale gas flows in colliding galaxies: 3-Dimensional, N-body/hydrodynamics experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Galactic Scale Gas Flows in Colliding Galaxies: a-Dimensional, N-bodyjHydrodynamics Experiments Susan A. Lamb* NORDITA and Neils Bohr Institute, Blegdamsvej 17, DK-2100, Kpbenhaven 0, Danmark. Richard A. Gerber University of Illinois at Urbana-Champaign, Departments of Physics and Astronomy, 1110 W. Green Street, Urbana, IL 61801, U.S.A. and Dinshaw S. Balsara t Johns Hopkins University, Department of Physics and Astronomy, Homewood Campu.s, Baltimore, MD 21218, U.S.A. Abstract. We present some

  14. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

    SciTech Connect (OSTI)

    Casner, A. Masse, L.; Huser, G.; Galmiche, D.; Liberatore, S.; Riazuelo, G.; Delorme, B.; Martinez, D.; Remington, B.; Smalyuk, V. A.; Igumenshchev, I.; Michel, D. T.; Froula, D.; Seka, W.; Goncharov, V. N.; Olazabal-Loumé, M.; Nicolaï, Ph.; Breil, J.; Tikhonchuk, V. T.; Fujioka, S.; and others

    2014-12-15

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experiments performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.

  15. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L.; Clark, D. S.; Suter, L. J.; Masse, L. P.

    2014-09-15

    Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

  16. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  17. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  18. Hydrodynamic instability growth and mix experiments at the National Ignition Facility

    SciTech Connect (OSTI)

    Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L.; and others

    2014-05-15

    Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ?2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

  19. Hydrodynamic modeling for corrosion control in the oil and gas industry

    SciTech Connect (OSTI)

    Palacios, C.A.; Morales, J.L.

    1995-10-01

    This article describes a methodology used to select and establish corrosion control programs. These include corrosion rate predictions using well known correlations for flowing systems, materials selection, optimization of inhibitors and corrosion monitoring techniques. The methodology characterizes internal corrosion phenomenon integrating the hydrodynamic conditions of the flow (flow velocities, flow pattern, liquid holdups, and where the condensation is taking place within a pipeline) with those that predict corrosion rates. It can be applied in the whole oil/gas production system, including subsurface and surface equipment. The methodology uses single and two phase flow modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate, taking into consideration the corrosive/erosive nature of the produced fluids and (2) characterize the corrosion nature of oil and gas transmission lines. As an example of its use, a characterization of corrosion nature of a gas transmission line is described. The hydrodynamic simulation was performed using commercially available simulators, and the corrosion rates were determined using published correlations. Results using this methodology allowed for corrosion control strategies, protection and monitoring criteria, and inhibition optimization.

  20. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    SciTech Connect (OSTI)

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  1. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    SciTech Connect (OSTI)

    Shao, Yan-Lin Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  2. Early anisotropic hydrodynamics and thermalization and Hanbury-Brown-Twiss puzzles in the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Ryblewski, Radoslaw; Florkowski, Wojciech

    2010-08-15

    We address the problem of whether the early thermalization and Hanbury-Brown-Twiss (HBT) puzzles in relativistic heavy-ion collisions may be solved by the assumption that the early dynamics of the produced matter is locally anisotropic. The hybrid model describing the purely transverse hydrodynamic evolution followed by the perfect-fluid hydrodynamic stage is constructed. The transition from the transverse to perfect-fluid hydrodynamics is described by the Landau matching conditions applied at a fixed proper time {tau}{sub tr}. The global fit to the RHIC data reproduces the soft hadronic observables (the pion, kaon, and the proton spectra, the pion and kaon elliptic flow, and the pion HBT radii) with the accuracy of about 20%. These results indicate that the assumption of the very fast thermalization may be relaxed. In addition, the presented model suggests that a large part of the inconsistencies between the theoretical and experimental HBT results may be removed.

  3. Wave propagation in laminates using the nonhomogenized dynamic method of cells: An alternative to standard finite-difference hydrodynamic approaches

    SciTech Connect (OSTI)

    Clements, B.E.; Johnson, J.N.

    1997-09-01

    The nonhomogenized dynamic method of cells (NHDMOC) uses a truncated expansion for the particle displacement field; the expansion parameter is the local cell position vector. In the NHDMOC, specifying the cell structure is similar to specifying the spatial grid used in a finite-difference hydrodynamic calculation. The expansion coefficients for the particle displacement field are determined by the equation of motion, any relevant constitutive relations, plus continuity of traction and displacement at all cell boundaries. The authors derive and numerically solve the NHDMOC equations for the first, second, and third-order expansions, appropriate for modeling a plate-impact experiment. The performance of the NHDMOC is tested, at each order, for its ability to resolve a shock-wave front as it propagates through homogeneous and laminated targets. They find for both cases that the displacement field expansion converges rapidly: given the same cell widths, the first-order theory gives only a qualitative description of the propagating stress wave; the second-order theory performs much better; and the third-order theory gives small refinements over the second-order theory. The performance of the third-order NHDMOC is then compared to that of a standard finite-difference hydrodynamic calculation. The two methods differ in that the former uses a finite-difference solution to update the time dependence of the equations, whereas the hydrodynamic calculation uses finite-difference solutions for both the temporal and spatial variables. Both theories are used to model shock-wave propagation in stainless steel arising from high-velocity planar impact. To achieve the same high-quality resolution of the stress and particle velocity profiles, the NHDMOC consistently requires less fine spatial and temporal grids, and substantially less artificial viscosity to control unphysical high-frequency oscillations in the numerical solutions. Finally, the third-order NHDMOC theory is used to calculate the particle velocity for a shock-wave experiment involving an epoxy-graphite laminate. Constitutive relations suitable for the various materials are used. This includes linear and nonlinear elasticity, and when appropriate, viscoelasticity. The results agree well with the corresponding plate-impact experiment, and are compared to the second-order theory of Clements, Johnson, and Hixson.

  4. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect (OSTI)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including comb-tooth structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

  5. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratorys high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model General NOAA Operational Modeling Environment (GNOME). Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.

  6. Computational and experimental studies of hydrodynamic instabilities and turbulent mixing (Review of NVIIEF efforts)

    SciTech Connect (OSTI)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.; Nevmerzhitskii, N.V.; Nikiforov, V.V.; Razin, A.N.; Rogatchev, V.G.; Tolshmyakov, A.I.; Yanilkin, Yu.V.

    1995-02-01

    This report describes an extensive program of investigations conducted at Arzamas-16 in Russia over the past several decades. The focus of the work is on material interface instability and the mixing of two materials. Part 1 of the report discusses analytical and computational studies of hydrodynamic instabilities and turbulent mixing. The EGAK codes are described and results are illustrated for several types of unstable flow. Semiempirical turbulence transport equations are derived for the mixing of two materials, and their capabilities are illustrated for several examples. Part 2 discusses the experimental studies that have been performed to investigate instabilities and turbulent mixing. Shock-tube and jelly techniques are described in considerable detail. Results are presented for many circumstances and configurations.

  7. Smoothed Particle Hydrodynamics pore-scale simulations of unstable immiscible flow in porous media

    SciTech Connect (OSTI)

    Bandara, Dunusinghe Mudiyanselage Uditha C.; Tartakovsky, Alexandre M.; Oostrom, Martinus; Palmer, Bruce J.; Grate, Jay W.; Zhang, Changyong

    2013-12-01

    We have conducted a series of high-resolution numerical experiments using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expressions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we used the model to study viscous fingering, capillary fingering, and stable displacement of immiscible fluids in porous media for a wide range of capillary numbers and viscosity ratios. We demonstrated that the steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable displacement regions compare favorably with micromodel laboratory experimental results. For displacing fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to stable displacement with increasing injection rate. When a high viscosity fluid is injected, transition behavior from capillary fingering to stable displacement occurred as the flow rate was increased. These observation also agree with the results of the micromodel laboratory experiments.

  8. HYDRODYNAMIC THERMAL MODELING OF 9-CELL ILC CAVITY ELECTROPOLISHING AND IMPLICATIONS FOR IMPROVING THE EP PROCESS

    SciTech Connect (OSTI)

    Charles Reece; John Mammosser; Jun Ortega

    2008-02-12

    Multi-cell niobium cavities often obtain the highest performance levels after having been subjected to an electropolishing (EP) process. The horizontal EP process first developed at KEK/Nomura Plating for TRISTAN[1] cavities is being applied to TESLA-style cavities and other structures for the XFEL and ILC R&D. Jefferson Lab is presently carrying this activity in the US. Because the local electropolishing current density is highly temperature dependent, we have created using CFDesign a full-scale hydrodynamic model which simulates the various thermal conditions present during 9-cell cavity electropolishing. The results of these simulations are compared with exterior surface temperature data gathered during ILC cavity EP at JLab. Having benchmarked the simulation, we explore the affect of altered boundary conditions in order to evaluate potentially beneficial modifications to the current standard process.

  9. Novel techniques for slurry bubble column hydrodynamics. Annual technical progress report No. 1, July 1, 1995--June 30, 1996

    SciTech Connect (OSTI)

    Dudukovic, M.P.; Fan, L.S.; Chang, Min

    1997-05-01

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research and Engineering Company is to improve the basis for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. The first year of this three year program was spent on developing and tuning the experimental tools that can provide accurate measurement of pertinent hydrodynamic quantities, such as velocity field and holdup distribution, for validation of hydrodynamic models. Advances made in preparing the unique Computer Automated Radioactive Particle Tracing (CARPT) technique for use in high pressure systems are described in this report The work done on developing a reliable beat transfer coefficient measurement probe at operating conditions of interest is also described. Finally, the work done in preparing the Exxon pilot plant facilities for high pressure runs and pertinent hydrodynamic measurements is outlined together with preliminary studies of matching the fluid dynamics program predictions and data in a two dimensional column.

  10. Direct nucleonemission from hot and dense regions described in the hydrodynamical model of relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Barz, H.W.; Csernai, L.P.; Greiner, W.

    1982-08-01

    The collision process is described by hydrodynamical equations. The escape of nucleons which do not take part in the thermal equilibrium are considered by including drain terms in these equations. The energy spectra of the escaped nucleons and of nucleons evaporated after the break up of the fluid are compared.

  11. The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers

    SciTech Connect (OSTI)

    Miller, W.A.

    2001-06-28

    A thin falling film is well suited to simultaneous heat and mass transfer because of the small thermal resistance through the film and because of the large contact surface achievable at low flow rates. The film enters as a smooth laminar flow and quickly transitions into small-amplitude wavy flow. The waves grown in length and amplitude and are identified as roll waves. This flow regime is termed wavy-laminar flow, and modern heat and mass transfer equipment operate in this complicated transition regime. Research published in open literature has shown the mass flow rate in the rollwaves to be about 10 to 20 times greater than that in the laminar substrate. As the film fully develops, the waves grow in mass and the film substrate thins because fluid is swept from the substrate by the secondary flows of the roll wave. Many studies have been conducted to measure and correlate the film thickness of wavy-laminar flows. Literature data show that Nusselt's theory for smooth laminar flow can over predict the film thickness by as much as 20% for certain wavy-laminar flow conditions. The hydrodynamics of falling films were therefore studied to measure the film thickness of a free-surface falling film and to better understand the parameters that affect the variations of the film thickness. A flow loop was set up for measuring the thickness, wave amplitude,and frequency of a film during hydrodynamic flow. Decreasing the pipe diameter caused the amplitude of the wavy flow to diminish. Measurements monitored from stations along the falling film showed a thinning of film thickness. Fully developed flow required large starting lengths of about 0.5 m. The film thickness increases as the Reynolds number (Re) increases. Increasing the Kapitza number (Ka) causes a decrease in the film thickness. Regression analysis showed that the Re and Ka numbers described the data trends in wavy-laminar flow. Rather than correlating the Re number in discrete ranges of the Ka number as earlier researchers have done, this research made the Ka number an independent regression variable along with the Re number. The correlation explains 96% of the total variation in the data and predicts the experimental data within an absolute average deviation of {+-} 4.0%. The correlation supports the calculation of a fully developed film thickness for wavy-laminar falling films.

  12. Hydrodynamic Simulation of the Columbia River, Hanford Reach, 1940--2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Perkins, William A.; Richmond, Marshall C.

    2005-06-15

    Many hydrological and biological problems in the Columbia River corridor through the Hanford Site require estimates of river stage (water surface elevation) or river flow and velocity. Systematic collection of river stage data at locations in the Hanford Reach began in 1991, but many environmental projects need river stage information at unmeasured locations or over longer time periods. The Modular Aquatic Simulation System 1D (MASS1), a one-dimensional, unsteady hydrodynamic and water quality model, was used to simulate the Columbia River from Priest Rapids Dam to McNary Dam from 1940 to 2004, providing estimates of water surface elevation, volumetric flow rate, and flow velocity at 161 locations on the Hanford Reach. The primary input data were bathymetric/topographic cross sections of the Columbia River channel, flow rates at Priest Rapids Dam, and stage at McNary Dam. Other inputs included Yakima River and Snake River inflows. Available flow data at a gaging station just below Priest Rapids Dam was mean daily flow from 1940 to 1986 and hourly thereafter. McNary dam was completed in 1957, and hourly stage data are available beginning in 1975. MASS1 was run at an hourly timestep and calibrated and tested using 1991--2004 river stage data from six Hanford Reach locations (areas 100B, 100N, 100D, 100H, 100F, and 300). Manning's roughness coefficient in the Reach above each river recorder location was adjusted using an automated genetic algorithm and gradient search technique in three separate calibrations, corresponding to different data subsets, with minimization of mean absolute error as the objective. The primary calibration was based on 1999, a representative year, and included all locations. The first alternative calibration also used all locations but was limited in time to a high-flow period during spring and early summer of 1997. The second alternative calibration was based on 1999 and included only 300 Area stage data. Model goodness-of-fit for all years with data was high in the primary calibration and indicated little bias caused by selecting 1999. The alternative calibrations led to improved goodness-of-fit for their limited time and locations, but degraded goodness-of-fit overall. Overall, the simulations were very accurate and even highlighted some probable data problems, as evidenced by systematic shifts in the data. Further improvements in simulating the historic period would depend on correcting these inferred data problems. For all years and locations, the mean absolute error in the primary calibration was 14.8 cm, the mean error was 1 mm, and model efficiency was 0.988. The MASS1 output for 1940--2004 can be used to reconstruct historical river elevations at Hanford or to build scenarios of future river elevations for solving environmental problems such as groundwater-river interaction or fish habitat inventories. Model output and additional processing services are available from the authors. Longer-term scenarios extending more than a few decades from now should also consider the impacts of climate change and reservoir operation change. Once defined, these impacts could be used to drive new simulations with MASS1.

  13. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    SciTech Connect (OSTI)

    Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  14. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect (OSTI)

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  15. THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT

    SciTech Connect (OSTI)

    Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2014-12-20

    We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.

  16. Hydrodynamic Modeling Analysis for Leque Island and zis a ba Restoration Feasibility Study

    SciTech Connect (OSTI)

    Whiting, Jonathan M.; Khangaonkar, Tarang

    2015-01-31

    Ducks Unlimited, Inc. in collaboration with Washington State Department of Fish and Wildlife (WDFW), and Stillaguamish Tribe of Indians have proposed the restoration of Leque Island and zis a ba (formerly Matterand) sites near the mouth of Old Stillaguamish River Channel in Port Susan Bay, Washington. The Leque Island site, which is owned by WDFW, consists of nearly 253 acres of land south of Highway 532 that is currently behind a perimeter dike. The 90-acres zis a ba site, also shielded by dikes along the shoreline, is located just upstream of Leque Island and is owned by Stillaguamish Tribes. The proposed actions consider the removal or modification of perimeter dikes at both locations to allow estuarine functions to be restored. The overall objective of the proposed projects is to remove the dike barriers to 1) provide connectivity and access between the tidal river channel and the restoration site for use by juvenile migrating salmon and 2) create a self-sustaining tidal marsh habitat. Ducks Unlimited engaged Pacific Northwest National Laboratory (PNNL) to develop a three-dimensional hydrodynamic model of the Port Susan Bay, Skagit Bay, and the interconnecting Leque Island region for use in support of the feasibility assessment for the Leque Island and zis a ba restoration projects. The objective of this modeling-based feasibility assessment is to evaluate the performance of proposed restoration actions in terms of achieving habitat goals while assessing the potential hydraulic and sediment transport impacts to the site and surrounding parcels of land.

  17. Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae

    SciTech Connect (OSTI)

    Nakamura, Ko; Kuroda, Takami; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Takiwaki, Tomoya [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-09-20

    We perform a series of simplified numerical experiments to explore how rotation impacts the three-dimensional (3D) hydrodynamics of core-collapse supernovae. For our systematic study, we employ a light-bulb scheme to trigger explosions and a three-flavor neutrino leakage scheme to treat deleptonization effects and neutrino losses from the proto-neutron-star interior. Using a 15 M {sub ?} progenitor, we compute 30 models in 3D with a wide variety of initial angular momentum and light-bulb neutrino luminosity. We find that the rotation can help the onset of neutrino-driven explosions for the models in which the initial angular momentum is matched to that obtained in recent stellar evolutionary calculations (?0.3-3 rad s{sup 1} at the center). For the models with larger initial angular momentum, the shock surface deforms to be more oblate due to larger centrifugal force. This not only makes the gain region more concentrated around the equatorial plane, but also makes the mass larger in the gain region. As a result, buoyant bubbles tend to be coherently formed and rise in the equatorial region, which pushes the revived shock toward ever larger radii until a global explosion is triggered. We find that these are the main reasons that the preferred direction of the explosion in 3D rotating models is often perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that were obtained in previous two-dimensional simulations.

  18. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (? 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ? 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (? 7.0 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.

  19. HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE AT THE TRANSITION TO EXPLOSION. I. SPHERICAL SYMMETRY

    SciTech Connect (OSTI)

    Fernandez, Rodrigo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2012-04-20

    We study the transition to runaway expansion of an initially stalled core-collapse supernova shock. The neutrino luminosity, mass accretion rate, and neutrinospheric radius are all treated as free parameters. In spherical symmetry, this transition is mediated by a global non-adiabatic instability that develops on the advection time and reaches nonlinear amplitude. Here, we perform high-resolution, time-dependent hydrodynamic simulations of stalled supernova shocks with realistic microphysics to analyze this transition. We find that radial instability is a sufficient condition for runaway expansion if the neutrinospheric parameters do not vary with time and if heating by the accretion luminosity is neglected. For a given unstable mode, transition to runaway occurs when fluid in the gain region reaches positive specific energy. We find approximate instability criteria that accurately describe the behavior of the system over a wide region of parameter space. The threshold neutrino luminosities are in general different than the limiting value for a steady-state solution. We hypothesize that multidimensional explosions arise from the excitation of unstable large-scale modes of the turbulent background flow, at threshold luminosities that are lower than in the laminar case.

  20. Hydrodynamic models for slurry bubble column reactors. Sixth technical progress report

    SciTech Connect (OSTI)

    Gidaspow, D.

    1996-01-01

    The objective of this investigation is to convert the gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. This report presents measurements of granular temperature of Air Products catalyst. The report is in the form of a preliminary paper, entitled ``Dynamics of Liquid-Solid Fluidized Beds with Small Catalyst Particles.`` The principal results are as follows: (1) For the liquid-solid system the granular temperature is much smaller than for a corresponding gas-solid system. This may be due to the larger viscosity of the liquid in comparison to air. (2) The collisional viscosity of the catalyst is correspondingly much smaller than that of catalyst particles in the air. (3) The dominant frequency of density oscillations is near two Hertz, as expected for a gas-solid fluidized bed. There exists a link between this low frequency and the high frequency of catalyst particle oscillations. The Air Products fluidized bed reactor is designed to produce methanol and synthetic fuels from synthesis gas.

  1. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    SciTech Connect (OSTI)

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  2. Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory: Preprint

    SciTech Connect (OSTI)

    Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.; Hayman, G.

    2015-04-02

    A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.

  3. Verification of coronal loop diagnostics using realistic three-dimensional hydrodynamic models

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Lionello, Roberto; Linker, Jon A.; Miki?, Zoran; Mok, Yung E-mail: lionel@predsci.com E-mail: mikicz@predsci.com

    2014-11-10

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure distributions. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a three-dimensional hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the background. We then determine the density, temperature, and emission measure distribution as a function of time from the observations and compare these with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to a limitation of the analysis methods, but also to inadequate background subtraction.

  4. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2014-10-15

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified.

  5. Computational Study of the Hydrodynamic Behavior during Air Discharge through a Sparger Submerged in the Condensation Pool

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Bang, Young-Seok; Kim, In-Goo; Kim, Hho-Jung; Lee, Byeong-Eun; Kwon, Soon-Bum

    2002-07-01

    The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge and a better design of the IRWST, including sparger. (authors)

  6. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model

    SciTech Connect (OSTI)

    Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Mikovi?, Z. L.

    2014-10-15

    We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

  7. COER Hydrodynamic Modeling Competition: Modeling the Dynamic Response of a Floating Body Using the WEC-Sim and FAST Simulation Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COER HYDRODYNAMIC MODELING COMPETITION: MODELING THE DYNAMIC RESPONSE OF A FLOATING BODY USING THE WEC-SIM AND FAST SIMULATION TOOLS Michael Lawson Braulio Barahona Garzon Fabian Wendt Yi-Hsiang Yu National Renewable Energy Laboratory Golden, Colorado, USA Carlos Michelen Sandia National Laboratories Albuquerque, New Mexico, USA ABSTRACT The Center for Ocean Energy Research (COER) at the University of Maynooth in Ireland organized a hydrodynamic modeling competition in conjunction with OMAE2015.

  8. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD-BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect (OSTI)

    Donna Post Guillen; Daniel S. Wendt; Steven P. Antal; Michael Z. Podowski

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  9. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect (OSTI)

    Donna Post Guillen; Daniel S. Wendt

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  10. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    SciTech Connect (OSTI)

    Harrison, Alan K; Shashkov, Mikhail J; Fung, Jimmy; Canfield, Thomas R; Kamm, James R

    2010-10-14

    We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  11. Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations

    SciTech Connect (OSTI)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.

    2014-12-14

    We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  12. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    SciTech Connect (OSTI)

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ?220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ?20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ?10 L {sub Edd}. This yields a radiative efficiency ?4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  13. A HYDRODYNAMICAL SOLUTION FOR THE ''TWIN-TAILED'' COLLIDING GALAXY CLUSTER ''EL GORDO''

    SciTech Connect (OSTI)

    Molnar, Sandor M.; Broadhurst, Tom

    2015-02-10

    The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster ''El Gordo'' (ACT-CT J01024915; z= 0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray ''bullet'' leads a ''twin-tailed'' wake, with the Sunyaev-Zel'dovich (SZ) centroid at the end of the northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, SZ, and Hubble lensing and dynamical data. The X-ray morphology and the location of the two dark matter components and the SZ peak are accurately described by a simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ?300kpc, and a relative initial infall velocity of ?2250km s{sup 1} when separated by the sum of the two virial radii assuming an initial total mass of 2.15 10{sup 15} M {sub ?} and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the northern X-ray tail along the collision axis between the mass peaks, and that the southern tail lies off axis, comprising compressed and shock heated gas generated as the less massive component plunges through the main cluster. The challenge for ?CDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high-infall-velocity case of the Bullet cluster and other such cases being uncovered in new SZ based surveys.

  14. STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS

    SciTech Connect (OSTI)

    Christensen, Charlotte R.; Quinn, Thomas; Bellovary, Jillian [Department of Astronomy, University of Washington, Box 351580, Seattle WA 98195 (United States); Stinson, Gregory [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Wadsley, James, E-mail: christensen@astro.washington.ed [Department of Physics and Astronomy, ABB-241, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4M1 (Canada)

    2010-07-01

    We examine the effect of mass and force resolution on a specific star formation (SF) recipe using a set of N-body/smooth particle hydrodynamic simulations of isolated galaxies. Our simulations span halo masses from 10{sup 9} to 10{sup 13} M{sub sun}, more than 4 orders of magnitude in mass resolution, and 2 orders of magnitude in the gravitational softening length, {epsilon}, representing the force resolution. We examine the total global SF rate, the SF history, and the quantity of stellar feedback and compare the disk structure of the galaxies. Based on our analysis, we recommend using at least 10{sup 4} particles each for the dark matter (DM) and gas component and a force resolution of {epsilon} {approx} 10{sup -3} R{sub vir} when studying global SF and feedback. When the spatial distribution of stars is important, the number of gas and DM particles must be increased to at least 10{sup 5} of each. Low-mass resolution simulations with fixed softening lengths show particularly weak stellar disks due to two-body heating. While decreasing spatial resolution in low-mass resolution simulations limits two-body effects, density and potential gradients cannot be sustained. Regardless of the softening, low-mass resolution simulations contain fewer high density regions where SF may occur. Galaxies of approximately 10{sup 10} M{sub sun} display unique sensitivity to both mass and force resolution. This mass of galaxy has a shallow potential and is on the verge of forming a disk. The combination of these factors gives this galaxy the potential for strong gas outflows driven by supernova feedback and makes it particularly sensitive to any changes to the simulation parameters.

  15. Computational and experimental studies of hydrodynamic instabilities and turbulent mixing: Review of VNIIEF efforts. Summary report

    SciTech Connect (OSTI)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.; Nevmerzhitskii, N.V.; Nikiforov, V.V.; Razin, A.N.; Rogatchev, V.G.; Tolshmyakov, A.I.; Yanilkin, Y.V.

    1994-12-31

    The report presents the basic results of some calculations, theoretical and experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov instabilities and the turbulent mixing which is caused by their evolution. Since the late forties the VNIIEF has been conducting these investigations. This report is based on the data which were published in different times in Russian and foreign journals. The first part of the report deals with calculations an theoretical techniques for the description of hydrodynamic instabilities applied currently, as well as with the results of several individual problems and their comparison with the experiment. These methods can be divided into two types: direct numerical simulation methods and phenomenological methods. The first type includes the regular 2D and 3D gasdynamical techniques as well as the techniques based on small perturbation approximation and on incompressible liquid approximation. The second type comprises the techniques based on various phenomenological turbulence models. The second part of the report describes the experimental methods and cites the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies as well as of turbulent mixing. The applied methods were based on thin-film gaseous models, on jelly models and liquid layer models. The research was done for plane and cylindrical geometries. As drivers, the shock tubes of different designs were used as well as gaseous explosive mixtures, compressed air and electric wire explosions. The experimental results were applied in calculational-theoretical technique calibrations. The authors did not aim at covering all VNIIEF research done in this field of science. To a great extent the choice of the material depended on the personal contribution of the author in these studies.

  16. Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report

    SciTech Connect (OSTI)

    Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.

    1987-06-01

    This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.

  17. High-pressure three-phase fluidization: Hydrodynamics and heat transfer

    SciTech Connect (OSTI)

    Luo, X.; Jiang, P.; Fan, L.S.

    1997-10-01

    High-pressure operations are common in industrial applications of gas-liquid-solid fluidized-bed reactors for resid hydrotreating, Fischer-Tropsch synthesis, coal methanation, methanol synthesis, polymerization, and other reactions. The phase holdups and the heat-transfer behavior were studied experimentally in three-phase fluidized beds over a pressure range of 0.1--15.6 MPa. Bubble characteristics in the bed are examined by direct flow visualization. Pressure effects on the bubble coalescence and breakup are analyzed mechanistically. The study indicates that the pressure affects the hydrodynamics and heat-transfer properties of a three-phase fluidized bed significantly. The average bubble size decreases and the bubble-size distribution becomes narrower with an increase in pressure. The bubble-size reduction leads to an increase in the transition gas velocity from the dispersed bubble regime to the coalesced bubble regime, an increase in the gas holdup, and a decrease in the liquid and solids holdups. The pressure effect is insignificant above 6 MPa. The heat-transfer coefficient between an immersed surface and the bed increases to a maximum at pressure 6--8 MPa and then decreases with an increase in pressure at a given gas and liquid flow rate. This variation is attributed to the pressure effects on phase holdups and physical properties of the gas and liquid phases. A mechanistic analysis revealed that the major heat-transfer resistance in high-pressure three-phase fluidized beds resides in a liquid film surrounding the heat-0transfer surface. An empirical correlation is proposed to predict the heat-transfer coefficient under high-pressure conditions.

  18. Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows

    SciTech Connect (OSTI)

    Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F

    2011-03-02

    We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

  19. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  20. Smoothed particle hydrodynamics Non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface ?ows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is veri?ed by simulating Poiseuille ?ow, plane shear ?ow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian ?uid. In the present work, however, the ice is modeled as both viscous Newtonian ?uid and non-Newtonian ?uid, such that the e?ect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glens law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  1. Category:Hydrodynamic Testing Facility Type | Open Energy Information

    Open Energy Info (EERE)

    out of 9 total. C Channel F Flow Table Flume O Offshore Berth R Reverberant Tank T Tow Tank T cont. Tow Vessel Tunnel W Wave Basin Retrieved from "http:en.openei.orgw...

  2. Property:Hydrodynamic Testing Facility Type | Open Energy Information

    Open Energy Info (EERE)

    Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft...

  3. Molecular hydrogen regulated star formation in cosmological smoothed particle hydrodynamics simulations

    SciTech Connect (OSTI)

    Thompson, Robert; Nagamine, Kentaro; Jaacks, Jason; Choi, Jun-Hwan

    2014-01-10

    Some observations have shown that star formation (SF) correlates tightly with the presence of molecular hydrogen (H{sub 2}); therefore, it is important to investigate its implication on galaxy formation in a cosmological context. In the present work, we implement a sub-grid model (hereafter H{sub 2}-SF model) that tracks the H{sub 2} mass fraction within our cosmological smoothed particle hydrodynamics code GADGET-3 by using an equilibrium analytic model of Krumholz et al. This model allows us to regulate the SF in our simulation by the local abundance of H{sub 2} rather than the total cold gas density, which naturally introduces the dependence of SF on metallicity. We investigate the implications of the H{sub 2}-SF model on galaxy population properties, such as the stellar-to-halo mass ratio (SHMR), baryon fraction, cosmic star formation rate density (SFRD), galaxy specific SFR, galaxy stellar mass functions (GSMF), and Kennicutt-Schmidt (KS) relationship. The advantage of our work over the previous ones is having a large sample of simulated galaxies in a cosmological volume from high redshift to z = 0. We find that low-mass halos with M {sub DM} < 10{sup 10.5} M {sub ?} are less efficient in producing stars in the H{sub 2}-SF model at z ? 6, which brings the simulations into better agreement with the observational estimates of the SHMR and GSMF at the low-mass end. This is particularly evident by a reduction in the number of low-mass galaxies at M {sub *} ? 10{sup 8} M {sub ?} in the GSMF. The overall SFRD is also reduced at high z in the H{sub 2} run, which results in slightly higher SFRD at low redshift due to more abundant gas available for SF at later times. This new H{sub 2} model is able to reproduce the empirical KS relationship at z = 0 naturally, without the need for setting its normalization by hand, and overall it seems to have more advantages than the previous pressure-based SF model.

  4. Estimating Adult Chinook Salmon Exposure to Dissolved Gas Supersaturation Downstream of Hydroelectric Dams Using Telemetry and Hydrodynamic Models

    SciTech Connect (OSTI)

    Johnson, Eric L.; Clabough, Tami S.; Peery, Christopher A.; Bennett, David H.; bjornn, Theodore C.; Caudill, Christopher C.; Richmond, Marshall C.

    2007-11-01

    Gas bubble disease (GBD) has been recognized for years as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill typically creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for 228 adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioral avoidance of the high TDGS plume in unrestrained fish migrating under field conditions. Consistent with our previous estimates using single-location estimates of TDGS, we observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of time spent in the Bonneville tailrace and 88.1% of the time in the Ice Harbor tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult spring and summer Chinook salmon tended to migrate near the shoreline. Adults moved into the high dissolved gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviors of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the plume mid-channel, particularly during periods of high discharge and spill. More generally, our approach illustrates the potential for combined field and modeling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers.

  5. Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Rinderknecht, H. G.; Hoffman, N. M.; Amendt, P. A.; Atzeni, S.; Zylstra, A. B.; Li, C. K.; Seguin, F. H.; Sio, H.; Johnson, M. Gatu; et al

    2014-05-05

    Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of meritmore » of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.« less

  6. Ideal hydrodynamic scaling relations for a stagnated imploding spherical plasma liner formed by an array of merging plasma jets

    SciTech Connect (OSTI)

    Cassibry, J. T.; Stanic, M.; Hsu, S. C.

    2013-03-15

    This work presents scaling relations for the peak thermal pressure and stagnation time (over which peak pressure is sustained) for an imploding spherical plasma liner formed by an array of merging plasma jets. Results were derived from three-dimensional (3D) ideal hydrodynamic simulation results obtained using the smoothed particle hydrodynamics code SPHC. The 3D results were compared to equivalent one-dimensional (1D) simulation results. It is found that peak thermal pressure scales linearly with the number of jets and initial jet density and Mach number, quadratically with initial jet radius and velocity, and inversely with the initial jet length and the square of the chamber wall radius. The stagnation time scales approximately as the initial jet length divided by the initial jet velocity. Differences between the 3D and 1D results are attributed to the inclusion of thermal transport, ionization, and perfect symmetry in the 1D simulations. A subset of the results reported here formed the initial design basis for the Plasma Liner Experiment [S. C. Hsu et al., Phys. Plasmas 19, 123514 (2012)].

  7. Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics

    SciTech Connect (OSTI)

    Margraf, J

    2012-06-12

    This report primarily concerns the use of two massively parallel finite element codes originally written and maintained at Lawrence Livermore National Laboratory. ALE3D is an explicit hydrodynamics code commonly employed to simulate wave propagation from high energy scenarios and the resulting interaction with nearby structures. This coupled response ensures that a structure is accurately applied with a blast loading varying both in space and time. Figure 1 illustrates the radial outward propagation of a pressure wave due to a center detonated spherical explosive originating from the lower left. The radial symmetry seen in this scenario is lost when instead a cylindrocal charge is detonated. Figure 2 indicates that a stronger, faster traveling pressure wave occurs in the direction of the normal axis to the cylinder. The ALE3D name is derived because of the use of arbitrary-Lagrange-Eulerian elements in which the mesh is allowed to advect; a process through which the mesh is modified to alleviate tanlging and general mesh distortion often cuased by high energy scenarios. The counterpart to an advecting element is a Lagrange element, whose mesh moves with the material. Ideally all structural components are kept Lagrange as long as possible to preserve accuracy of material variables and minimize advection related errors. Advection leads to mixed zoning, so using structural Lagrange elements also improves the visualization when post processing the results. A simplified representation of the advection process is shown in Figure 3. First the mesh is distorted due to material motion during the Lagrange step. The mesh is then shifted to an idealized and less distorted state to prevent irregular zones caused by the Lagrange motion. Lastly, the state variables are remapped to the elements of the newly constructed mesh. Note that Figure 3 represents a purely Eulerian mesh relaxation because the mesh is relocated back to the pre-Lagrange position. This is the case when the material flows through a still mesh. This is not typically done in an ALE3D analysis, especially if Lagrange elements exist. Deforming Lagrange elements would certainly tangle with a Eulerian mesh eventually. The best method in this case is to have an advecting mesh positioned as some relaxed version of the pre and post Lagrange step; this gives the best opportunity of modeling a high energy event with a combination of Lagrange and ALE elements. Dyne3D is another explicit dynamic analysis code, ParaDyn being the parallel version. ParaDyn is used for predicting the transient response of three dimensional structures using Lagrangian solid mechanics. Large deformation and mesh tangling is often resolved through the use of an element deletion scheme. This is useful to accommodate component failure, but if it is done purely as a means to preserve a useful mesh it can lead to problems because it does not maintain continuity of the material bulk response. Whatever medium exists between structural components is typically not modeled in ParaDyn. Instead, a structure either has a known loading profile applied or given initial conditions. The many included contact algorithms can calculate the loading response of materials if and when they collide. A recent implementation of an SPH module in which failed or deleted material nodes are converted to independent particles is currently being utilized for a variety of spall related problems and high velocity impact scenarios. Figure 4 shows an example of a projectile, given an initial velocity, and how it fails the first plate which generates SPH particles which then interact with and damage the second plate.

  8. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    SciTech Connect (OSTI)

    Kikkinides, E. S.; Monson, P. A.

    2015-03-07

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  9. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    SciTech Connect (OSTI)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2014-09-01

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.

  10. A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: A Riemann solver for quarkgluon plasma

    SciTech Connect (OSTI)

    Akamatsu, Yukinao; Inutsuka, Shu-ichiro; Nonaka, Chiho; Department of Physics, Nagoya University, Nagoya 464-8602 ; Takamoto, Makoto; Max-Planck-Institut fr Kernphysik, Postfach 103980, 69029 Heidelberg

    2014-01-01

    In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quarkgluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

  11. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    SciTech Connect (OSTI)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June; Koepke, M. E.

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ?}?{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

  12. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and thenmore » applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.« less

  13. Observation of early shell-dopant mix in OMEGA direct-drive implosions and comparisons with radiation-hydrodynamic simulations

    SciTech Connect (OSTI)

    Baumgaertel, J. A.; Bradley, P. A.; Hsu, S. C.; Cobble, J. A.; Hakel, P.; Tregillis, I. L.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Obrey, K. D.; Batha, S.; Johns, H.; Joshi, T.; Mayes, D.; Mancini, R. C.; Nagayama, T.

    2014-05-15

    Temporally, spatially, and spectrally resolved x-ray image data from direct-drive implosions on OMEGA were interpreted with the aid of radiation-hydrodynamic simulations. Neither clean calculations nor those using a turbulent mix model can explain fully the observed migration of shell-dopant material (titanium) into the core. Shell-dopant migration was observed via time-dependent, spatially integrated spectra, and spatially and spectrally resolved x-ray images of capsule implosions and resultant dopant emissions. The titanium emission was centrally peaked in narrowband x-ray images. In post-processed clean simulations, the peak titanium emission forms in a ring in self-emission images as the capsule implodes. Post-processed simulations with mix reproduce trends in time-dependent, spatially integrated spectra, as well having centrally peaked Ti emission in synthetic multiple monochromatic imager. However, mix simulations still do not transport Ti to the core as is observed in the experiment. This suggests that phenomena in addition to the turbulent mix must be responsible for the transport of Ti. Simple diffusion estimates are unable to explain the early Ti mix into the core. Mechanisms suggested for further study are capsule surface roughness, illumination non-uniformity, and shock entrainment.

  14. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with imperfect reaction rates. Results: The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  15. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  16. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    SciTech Connect (OSTI)

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in the mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.

  17. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smooth particle hydrodynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.

    2015-12-01

    We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  18. A comparison of two- and three-dimensional neutrino-hydrodynamics simulations of core-collapse supernovae

    SciTech Connect (OSTI)

    Takiwaki, Tomoya; Kotake, Kei [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2014-05-10

    We present numerical results on two- (2D) and three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2 M {sub ?} star. By changing numerical resolutions and seed perturbations systematically, we study how the postbounce dynamics are different in 2D and 3D. The calculations were performed with an energy-dependent treatment of the neutrino transport based on the isotropic diffusion source approximation scheme, which we have updated to achieve a very high computational efficiency. All of the computed models in this work, including nine 3D models and fifteen 2D models, exhibit the revival of the stalled bounce shock, leading to the possibility of explosion. All of them are driven by the neutrino-heating mechanism, which is fostered by neutrino-driven convection and the standing-accretion-shock instability. Reflecting the stochastic nature of multi-dimensional (multi-D) neutrino-driven explosions, the blast morphology changes from model to model. However, we find that the final fate of the multi-D models, whether an explosion is obtained or not, is little affected by the explosion stochasticity. In agreement with some previous studies, higher numerical resolutions lead to slower onset of the shock revival in both 2D and 3D. Based on the self-consistent supernova models leading to the possibility of explosions, our results systematically show that the revived shock expands more energetically in 2D than in 3D.

  19. The type IIP supernova 2012aw in M95: Hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring

    SciTech Connect (OSTI)

    Dall'Ora, M.; Botticella, M. T.; Della Valle, M. [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); Pumo, M. L.; Zampieri, L.; Tomasella, L.; Cappellaro, E.; Benetti, S. [INAF, Osservatorio Astronomico di Padova, I-35122 Padova (Italy); Pignata, G.; Bufano, F. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Bayless, A. J. [Southwest Research Institute, Department of Space Science, 6220 Culebra Road, San Antonio, TX 78238 (United States); Pritchard, T. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Taubenberger, S.; Benitez, S. [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Kotak, R.; Inserra, C.; Fraser, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN (United Kingdom); Elias-Rosa, N. [Institut de Cincies de l'Espai (CSIC-IEEC) Campus UAB, Torre C5, Za plata, E-08193 Bellaterra, Barcelona (Spain); Haislip, J. B. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Ave., Chapel Hill, NC 27599 (United States); Harutyunyan, A. [Fundacin Galileo Galilei - Telescopio Nazionale Galileo, Rambla Jos Ana Fernndez Prez 7, E-38712 Brea Baja, TF - Spain (Spain); and others

    2014-06-01

    We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the {sup 56}Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M {sub env} ? 20 M {sub ?}, progenitor radius R ? 3 10{sup 13} cm (?430 R {sub ?}), explosion energy E ? 1.5 foe, and initial {sup 56}Ni mass ?0.06 M {sub ?}. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 1.5 M {sub ?} of the Type IIP events.

  20. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    SciTech Connect (OSTI)

    Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  1. v{sub 4} from ideal and viscous hydrodynamic simulations of nuclear collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC)

    SciTech Connect (OSTI)

    Luzum, Matthew; Gombeaud, Clement; Ollitrault, Jean-Yves

    2010-05-15

    We compute v{sub 4}/(v{sub 2}){sup 2} in ideal and viscous hydrodynamics. We investigate its sensitivity to details of the hydrodynamic model and compare the results to experimental data from the BNL Relativistic Heavy Ion Collider (RHIC). Whereas v{sub 2} has a significant sensitivity only to initial eccentricity and viscosity while being insensitive to freeze-out temperature, we find that v{sub 4}/(v{sub 2}){sup 2} is quite insensitive to initial eccentricity. On the other hand, it can still be sensitive to shear viscosity in addition to freeze-out temperature, although viscous effects do not universally increase v{sub 4}/(v{sub 2}){sup 2} as originally predicted. Consistent with data, we find no dependence on particle species. We also make a prediction for v{sub 4}/(v{sub 2}){sup 2} in heavy ion collisions at the CERN Large Hadron Collider (LHC).

  2. COER Hydrodynamic Modeling Competition: Modeling the Dynamic Response of a Floating Body Using the WEC-Sim and FAST Simulation Tools: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COER Hydrodynamic Modeling Competition: Modeling the Dynamic Response of a Floating Body Using the WEC-Sim and FAST Simulation Tools Preprint M. Lawson, B. Barahona Garzon, F. Wendt, and Y-H. Yu National Renewable Energy Laboratory C. Michelen Sandia National Laboratories To be presented at the 34 th International Conference on Ocean, Offshore, and Arctic Engineering (OMAE 2015) St. John's, Newfoundland, Canada May 31-June 5, 2015 Conference Paper NREL/CP-5000-63594 March 2015 NOTICE The

  3. A comparative study of staggered and cell-centered Lagrangian formulation for multimaterial hydrodynamics

    SciTech Connect (OSTI)

    Francois, Marianne M; Shashkov, Misha J; Lowrie, Robert B; Dendy, Edward D

    2010-10-13

    We compare a staggered Lagrangian formulation with a cell-centered Lagrangian formulation for a two-material compressible flow. In both formulation, we assume a single velocity field and rely on pressure relaxation techniques to close the system of equations. We employ Tipton's mixture model for both formulation. However, for the cell-centered formulation, employing Tipton's model for the mixture cell results in loss of conservation of total energy. We propose a numerical algorithm to correct this energy discrepancy. We test both algorithms on the two-materials Sod shock tube test problem and compare the results with the analytical solution.

  4. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    SciTech Connect (OSTI)

    Pease, Leonard F.; Bamberger, Judith A.; Minette, Michael J.

    2015-08-01

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central upwell satisfies these criteria when vigorous breakthrough is achieved, not all available data follow the free jet profile for the central upwell, particularly at lower nozzle velocities. Alternative flow regimes are considered and new models for cloud height, “cavern height,” and the rate of jet penetration (jet celerity) are benchmarked against data to anchor scaling analyses. This analytical modeling effort to provide a technical basis for scaling PJM mixed vessels has significant implications for vessel mixing, because jet physics underlies “cavern” height, cloud height, and the volume of mixing considerations. A new four-parameter cloud height model compares favorably to experimental results. This model is predictive of breakthrough in 8 ft vessel tests with the two-part simulant. Analysis of the upwell in the presence of yield stresses finds evidence of expanding turbulent jets, confined turbulent jets, and confined laminar flows. For each, the critical elevation at which jet momentum depletes is predicted, which compare favorably to experimental cavern height data. Partially coupled momentum and energy balances suggest that these are limiting cases of a gradual transition from a turbulent expanding flow to a confined laminar flow. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing (i.e., breakthrough with slow peripheral mixing). Consideration of jet celerity shows that the rate of jet penetration is a governing consideration in breakthrough to the surface. Estimates of the volume of mixing are presented. This analysis shows that flow along the vessel wall is sluggish such that the central upwell governs the volume of mixing. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing and estimates of hydrogen release rates from first principles.

  5. Hydrodynamic Elastic Magneto Plastic

    Energy Science and Technology Software Center (OSTI)

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  6. Hydrodynamic ultrasonic probe

    DOE Patents [OSTI]

    Day, Robert A. (Livermore, CA); Conti, Armond E. (San Jose, CA)

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  7. Tidal Energy Test Platform | Open Energy Information

    Open Energy Info (EERE)

    Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics...

  8. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect (OSTI)

    Bevelhimer, Mark S; Coutant, Charles C

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

  9. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    SciTech Connect (OSTI)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a backstop to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

  10. HYDRODYNAMIC AND RADIATIVE MODELING OF TEMPORAL H{alpha} EMISSION V/R VARIATIONS CAUSED BY DISCONTINUOUS MASS TRANSFER IN BINARIES

    SciTech Connect (OSTI)

    Chadima, Pavel; Harmanec, Petr; Wolf, Marek; Firt, Roman; Ruzdjak, Domagoj; Bozic, Hrvoje; Koubsky, Pavel

    2011-07-15

    H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.

  11. Azimuthally sensitive femtoscopy in hydrodynamics with statistical hadronization from the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Kisiel, Adam; Broniowski, Wojciech; Florkowski, Wojciech; Chojnacki, Mikolaj

    2009-01-15

    Azimuthally sensitive femtoscopy for heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) is explored within the approach consisting of the hydrodynamics of perfect fluid followed by statistical hadronization. It is found that for the RHIC initial conditions, employing the Gaussian shape of the initial energy density, the very same framework that reproduces the standard soft observables [including the transverse-momentum spectra, the elliptic flow, and the azimuthally averaged Hanbury-Brown-Twiss (HBT) radii] leads to a proper description of the azimuthally sensitive femtoscopic observables; we find that the azimuthal variation of the side and out HBT radii as well as out-side cross term are very well reproduced for all centralities. Concerning the dependence of the femtoscopic parameters on k{sub T} we find that it is very well reproduced. The model is then extrapolated to the LHC energy. We predict the overall moderate growth of the HBT radii and the decrease of their azimuthal oscillations. Such effects are naturally caused by longer evolution times. In addition, we discuss in detail the space-time patterns of particle emission. We show that they are quite complex and argue that the overall shape seen by the femtoscopic methods cannot be easily disentangled on the basis of simple-minded arguments.

  12. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy

    SciTech Connect (OSTI)

    Pan, Wenxiao; Li, Dongsheng; Tartakovsky, Alexandre M.; Ahzi, Said; Khraisheh, Marwan; Khaleel, Mohammad A.

    2013-09-06

    We present a new smoothed particle hydrodynamics (SPH) model for friction stir welding (FSW). FSW has found broad commercial application in the marine, aerospace, rail and automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few established numerical modeling techniques have been developed that can explain and predict important features of the process physics involved in FSW. This is particularly true in the areas of material ?ow, mixing mechanisms, and void formation. In this paper we present a novel modeling approach to simulate FSW that may have signi?cant advantages over current ?nite element or ?nite di?erence based methods. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, and the materials strain and temperature history without employing complex tracking schemes. Three-dimensional simulations of FSW on AZ31 Mg alloy are presented. Numerical results are in a close quantitative agreement with experimental observations.

  13. HYDRODYNAMIC MODELS FOR SLURRY BUBBLE COLUMN REACTORS. FINAL TECHNICAL REPORT ALSO INCLUDES THE QUARTERLY TECHNICAL REPORT FOR THE PERIOD 01/01/1997 - 03/31/1997.

    SciTech Connect (OSTI)

    DIMITRI GIDASPOW

    1997-08-15

    The objective of this study is to develop a predictive experimentally verified computational fluid dynamic (CFD) three phase model. It predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important bubble-coalesced (churn-turbulent) regime. The input into the model can be either particulate viscosities as measured with a Brookfield viscometer or effective restitution coefficient for particles. A combination of x-ray and {gamma}-ray densitometers was used to measure solid and liquid volume fractions. There is a fair agreement between the theory and the experiment. A CCD camera was used to measure instantaneous particle velocities. There is a good agreement between the computed time average velocities and the measurements. There is an excellent agreement between the viscosity of 800 {micro}m glass beads obtained from measurement of granular temperature (random kinetic energy of particles) and the measurement using a Brookfield viscometer. A relation between particle Reynolds stresses and granular temperature was found for developed flow. Such measurement and computations gave a restitution coefficient for a methanol catalyst to be about 0.9. A transient, two-dimensional hydrodynamic model for production of methanol from syn-gas in an Air Products/DOE LaPorte slurry bubble column reactor was developed. The model predicts downflow of catalyst at the walls and oscillatory particle and gas flow at the center, with a frequency of about 0.7 Hertz. The computed temperature variation in the rector with heat exchangers was only about 5 K, indicating good thermal management. The computed slurry height, the gas holdup and the rate of methanol production agree with LaPorte's reported data. Unlike the previous models in the literature, this model computes the gas and the particle holdups and the particle rheology. The only adjustable parameter in the model is the effective particle restitution coefficient.

  14. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    SciTech Connect (OSTI)

    Shi, Xing; Lin, Guang; Zou, Jianfeng; Fedosov, Dmitry A.

    2013-07-20

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse and fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.

  15. Petascale algorithms for reactor hydrodynamics.

    SciTech Connect (OSTI)

    Fischer, P.; Lottes, J.; Pointer, W. D.; Siegel, A.

    2008-01-01

    We describe recent algorithmic developments that have enabled large eddy simulations of reactor flows on up to P = 65, 000 processors on the IBM BG/P at the Argonne Leadership Computing Facility. Petascale computing is expected to play a pivotal role in the design and analysis of next-generation nuclear reactors. Argonne's SHARP project is focused on advanced reactor simulation, with a current emphasis on modeling coupled neutronics and thermal-hydraulics (TH). The TH modeling comprises a hierarchy of computational fluid dynamics approaches ranging from detailed turbulence computations, using DNS (direct numerical simulation) and LES (large eddy simulation), to full core analysis based on RANS (Reynolds-averaged Navier-Stokes) and subchannel models. Our initial study is focused on LES of sodium-cooled fast reactor cores. The aim is to leverage petascale platforms at DOE's Leadership Computing Facilities (LCFs) to provide detailed information about heat transfer within the core and to provide baseline data for less expensive RANS and subchannel models.

  16. Hydrodynamic schooling of flapping swimmers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif

    2015-10-06

    Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing–wake interactions. Simulations show that swimming in amore » group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. Lastly, these results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups.« less

  17. HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE

    SciTech Connect (OSTI)

    Guillochon, James; Ramirez-Ruiz, Enrico

    2013-04-10

    The disruption of stars by supermassive black holes has been linked to more than a dozen flares in the cores of galaxies out to redshift z {approx} 0.4. Modeling these flares properly requires a prediction of the rate of mass return to the black hole after a disruption. Through hydrodynamical simulation, we show that aside from the full disruption of a solar mass star at the exact limit where the star is destroyed, the common assumptions used to estimate M-dot (t), the rate of mass return to the black hole, are largely invalid. While the analytical approximation to tidal disruption predicts that the least-centrally concentrated stars and the deepest encounters should have more quickly-peaked flares, we find that the most-centrally concentrated stars have the quickest-peaking flares, and the trend between the time of peak and the impact parameter for deeply penetrating encounters reverses beyond the critical distance at which the star is completely destroyed. We also show that the most-centrally concentrated stars produced a characteristic drop in M-dot (t) shortly after peak when a star is only partially disrupted, with the power law index n being as extreme as -4 in the months immediately following the peak of a flare. Additionally, we find that n asymptotes to {approx_equal} - 2.2 for both low- and high-mass stars for approximately half of all stellar disruptions. Both of these results are significantly steeper than the typically assumed n = -5/3. As these precipitous decay rates are only seen for events in which a stellar core survives the disruption, they can be used to determine if an observed tidal disruption flare produced a surviving remnant. We provide fitting formulae for four fundamental quantities of tidal disruption as functions of the star's distance to the black hole at pericenter and its stellar structure: the total mass lost, the time of peak, the accretion rate at peak, and the power-law index shortly after peak. These results should be taken into consideration when flares arising from tidal disruptions are modeled.

  18. THREE-DIMENSIONAL HYDRODYNAMIC CORE-COLLAPSE SUPERNOVA SIMULATIONS FOR AN 11.2 M{sub Sun} STAR WITH SPECTRAL NEUTRINO TRANSPORT

    SciTech Connect (OSTI)

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2012-04-20

    We present numerical results on three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2 M{sub Sun} star. By comparing one-dimensional (1D) and two-dimensional (2D) results with those of 3D, we study how the increasing spacial multi-dimensionality affects the postbounce supernova dynamics. The calculations were performed with an energy-dependent treatment of the neutrino transport that is solved by the isotropic diffusion source approximation scheme. In agreement with previous study, our 1D model does not produce explosions for the 11.2 M{sub Sun} star, while the neutrino-driven revival of the stalled bounce shock is obtained in both the 2D and 3D models. The standing accretion-shock instability (SASI) is observed in the 3D models, in which the dominant mode of the SASI is bipolar (l = 2) with its saturation amplitudes being slightly smaller than 2D. By performing a tracer-particle analysis, we show that the maximum residency time of material in the gain region becomes longer in 3D than in 2D due to non-axisymmetric flow motions, which is one of advantageous aspects of 3D models to obtain neutrino-driven explosions. Our results show that convective matter motions below the gain radius become much more violent in 3D than in 2D, making the neutrino luminosity larger for 3D. Nevertheless, the emitted neutrino energies are made smaller due to the enhanced cooling. Our results indicate whether these advantages for driving 3D explosions could or could not overwhelm the disadvantages is sensitive to the employed numerical resolutions. An encouraging finding is that the shock expansion tends to become more energetic for models with finer resolutions. To draw a robust conclusion, 3D simulations with much higher numerical resolutions and with more advanced treatment of neutrino transport and of gravity are needed, which could be practicable by utilizing forthcoming Petaflops-class supercomputers.

  19. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions

    SciTech Connect (OSTI)

    Markutsya, Sergiy; Lamm, Monica H.

    2014-11-07

    We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.

  20. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    SciTech Connect (OSTI)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.; Hoover, D. E.; Nikroo, A.; Peterson, K. J.

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure RayleighTaylor and RichtmyerMeshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a low-foot drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  1. Massachusetts Institute of Technology Hydrodynamics | Open Energy...

    Open Energy Info (EERE)

    Name Massachusetts Institute of Technology Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Sector Hydro Phone number (617) 254-4348 Website http:...

  2. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  3. Effects on the Physical Environment (Hydrodynamics, Sediment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic ...

  4. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...

    Office of Scientific and Technical Information (OSTI)

    Acceleration and transport of high-energy particles and fluid dynamics of ... The interplay of electron heating, conduction, and radiative loss leads to strongermore ...

  5. Canonical equations of ideal magnetic hydrodynamics

    SciTech Connect (OSTI)

    Gorskii, V.B.

    1987-07-01

    Ideal magnetohydrodynamics is used to consider a general class of adiabatic flow in magnetic liquids. Two invariants of the canonical equations of motion--Hamiltonian and Lagrangian--are determined in terms of the canonical variables by using the approximate variational formulations. The resulting model describes adiabatic three-dimensional flow of a nonviscous compressible liquid with ideal electric conductivity and zero heat conductivity. A Clebsch transformation is used to arrive at a form of the Lagrange-Cauchy integral for a vortex flow.

  6. Cornell University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Engineering, 2B20 Hollister Place Ithaca, New York Zip 14853 Sector Hydro Phone number (607) 255-5140 Website http:www.cee.cornell.eduabo Coordinates 42.4467049,...

  7. Explicit 3-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (OSTI)

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less

  8. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    SciTech Connect (OSTI)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

  9. The New Test Site 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site 1 Energetic staff supports Northrop Grumman tour 2 Educational outreach 2 DAF and seismic activity 3 Pollution prevention 4 Emergency training 6 collaborative effort among both federal and contractor staff is designed to transform the way business is conducted at the Nevada Test Site (NTS). Dubbed the New Test Site, this ongoing initiative will transform operations in numerous ways. One key element of the New Test Site is the proposed transition of large scale hydrodynamic (hydro)

  10. Hydrodynamic effects on coalescence. (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A...

  11. Hydrodynamic interactions in metal rod-like particle suspensions...

    Office of Scientific and Technical Information (OSTI)

    The simulations include the effect of the gravitational body force, buoyancy, far-field ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 42 ...

  12. Damaged Surface Hydrodynamics (DSH) Flash Report (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    VA at www.ntis.gov. Abstract Not Provided. Authors: Rousculp, Christopher L. 1 ; Oro, David Michael 1 ; Morris, Christopher 1 ; Saunders, Alexander 1 ; Reass, William...

  13. Reduction of diffusional defocusing in hydrodynamically focused flows

    DOE Patents [OSTI]

    Affleck, R.L.; Demas, J.N.; Goodwin, P.M.; Keller, R.; Wu, M.

    1998-09-01

    An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream. 6 figs.

  14. DYNA3D96. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Lin, J.

    1993-11-01

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  15. Hydrodynamics with chiral anomaly and charge separation in relativisti...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 756; Journal Issue: C; Journal ID: ISSN 0370-2693 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Netherlands ...

  16. Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2012-03-21 OSTI Identifier: 1104254 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: ...

  17. Simulation of Explosion Ground Motions Using a Hydrodynamic-to...

    Office of Scientific and Technical Information (OSTI)

    Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Bulletin of the Seismological Society of America, vol. 103, no. 3, June 1, 2013, pp. 1629-1639...

  18. Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD

    SciTech Connect (OSTI)

    Morrison, P.J.; Greene, J.M.

    1980-04-01

    A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables.

  19. Hydrodynamic aspects of a circulating fluidized bed with internals

    SciTech Connect (OSTI)

    Balasubramanian, N.; Srinivasakannan, C.

    1998-06-01

    An attempt is made to examine the influence of internals (baffles) in the riser of the circulating fluidized bed. Experiments are conducted in a circulating fluidized bed, having perforated plates with different free areas. It is noticed from the present work that a circulating fluidized bed having 45% free area gives uniform solids concentration and pressure drop along the length of the riser. In addition to the uniformity, the circulating fluidized bed with internals gives higher pressure drop (solids concentration) compared to a conventional circulating fluidized bed. For internals having 67.6% free area the pressure drop is higher at the lower portion of the riser compared to the upper portion, similar to a conventional circulating fluidized bed. For 30% free area plates the solids concentration varies axially within the stage and remains uniform from stage to stage.

  20. Simulation of Explosion Ground Motions Using a Hydrodynamic-to...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Xu, H ; Rodgers, A J ; Lomov, I N ; Petersson, N A ; Sjogreen, B ; Vorobiev, O Y Publication Date:...

  1. Hydrodynamic and numerical modeling of a spherical homogeneous.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  2. Hydrodynamic Focusing Micropump Module with PDMS/Nickel Particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Iossifidis, P.-A. Auroux and A. Manz; "Micro total analysis systems. 1. introduction, theory, and technology"; Analytical Chemistry, 74 (12), p2623 (2002). 9 J. Kim;...

  3. Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...

    Open Energy Info (EERE)

    oftenare out of chemical equilibrium. Simulation resultsreveal that a minimum permeability of 10-12 m2 forthe spring-feeding fracture is needed to preserve thegeochemical...

  4. Hydrodynamics of circulating fluidized beds: Kinetic theory approach...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: 7th international conference on fluidization, Gold Coast (Australia), 3-8 May 1992 Research Org: Illinois Inst. of Tech., ...

  5. A hydrodynamical approach to CMB ?-distortion from primordial perturbations

    SciTech Connect (OSTI)

    Pajer, Enrico; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2013-02-01

    Spectral distortion of the cosmic microwave background provides a unique opportunity to probe primordial perturbations on very small scales by performing large-scale measurements. We discuss in a systematic and pedagogic way all the relevant physical phenomena involved in the production and evolution of the ?-type spectral distortion. Our main results agree with previous estimates (in particular we show that a recently found factor of 3/4 arises from relativistic corrections to the wave energy). We also discuss several subleading corrections such as adiabatic cooling and the effects of bulk viscosity, baryon loading and photon heat conduction. Finally we provide formulae for the spatial dependence of ?-distortions and its transfer function between the end of the ?-era and now.

  6. RELAXATION OF WARPED DISKS: THE CASE OF PURE HYDRODYNAMICS

    SciTech Connect (OSTI)

    Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.

    2013-05-10

    Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.

  7. Reduction of diffusional defocusing in hydrodynamically focused flows

    DOE Patents [OSTI]

    Affleck, Rhett L. (Lawrenceville, NJ); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Keller, Richard (Los Alamos, NM); Wu, Ming (Middle Island, NY)

    1998-01-01

    An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream.

  8. Simulation and Analysis of Converging Shock Wave Test Problems

    SciTech Connect (OSTI)

    Ramsey, Scott D.; Shashkov, Mikhail J.

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  9. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750800 C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 C/1.02.7 MPa for the cold side and 208790 C/1.02.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

  10. Microsoft Word - Defense Science Quarterly 08-08.doc

    National Nuclear Security Administration (NNSA)

    6 Dual Axis Radiographic Hydrodynamics Test (DARHT) 2 nd Axis Completed and Put into ... Another big facility at LANL is the Dual Axis Radiographic Hydrodynamics Test (DARHT), and ...

  11. Localness of energy cascade in a hydrodynamic turbulence, I. Smooth coarse-graining

    SciTech Connect (OSTI)

    Aluie, Hussein; Eyink, Gregory L

    2009-01-01

    We introduce a novel approach to scale-decomposition of the fluid kinetic energy (or other quadratic integrals) into band-pass contributions from a series of length-scales. Our decomposition is based on a multiscale generalization of the 'Germano identity' for smooth, graded filter kernels. We employ this method to derive a budget equation that describes the transfers of turbulent kinetic energy both in space and in scale. It is shown that the inter-scale energy transfer is dominated by local triadic interactions, assuming only the scaling properties expected in a turbulent inertial-range. We derive rigorous upper bounds on the contributions of non-local triads, extending the work of Eyink (2005) for low-pass filtering. We also propose a physical explanation of the differing exponents for our rigorous upper bounds and for the scaling predictions of Kraichnan (1966,1971). The faster decay predicted by Kraichnan is argued to be the consequence of additional cancellations in the signed contributions to transfer from non-local triads, after averaging over space. This picture is supported by data from a 512 pseudospectral simulation of Navier-Stokes turbulence with phase-shift dealiasing.

  12. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.; Lee, Cheng S.; Tang, Keqi

    2014-07-01

    A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.

  13. HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION

    SciTech Connect (OSTI)

    Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk E-mail: fherwig@uvic.ca

    2015-01-01

    We present the first three-dimensional, fully compressible gas-dynamics simulations in 4? geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 1.48 10{sup 13} M {sub ?} s{sup 1}.

  14. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

    SciTech Connect (OSTI)

    Weber, C. R. Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-03-15

    The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400800?eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement.

  15. New Way of Analysis of the Magneto Hydrodynamic Flow Using Computation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Together with Magneto Hydro Dynamics (MHD) capability general purpose CFD code will be a ... components of the magnetic field, with additional Poisson equation for electric potential. ...

  16. A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: September, 2010 Name of Publication Source: Rheologica Acta Publisher: SpringerLink Volume: 49 Issue: 10 Page Numbers: 1059-1069 http:www.springerlink.comcontent...

  17. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    SciTech Connect (OSTI)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-07-15

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  18. Spatio-temporal evolution and breaking of double layers: A description using Lagrangian hydrodynamics

    SciTech Connect (OSTI)

    Kaw, Predhiman; Sengupta, Sudip; Singh Verma, Prabal [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2012-10-15

    The nonlinear development and collapse (breaking) of double layers in the long scale length limit is well described by equations for the cold ion fluid with quasineutrality. It is shown that electron dynamics is responsible for giving an 'equation of state' with negative ratio of specific heats to this fluid. Introducing a transformation for the density variable, the governing equation for the transformed quantity in terms of Lagrange variables turns out exactly to be a linear partial differential equation. This equation has been analyzed in various limits of interest. Nonlinear development of double layers with a sinusoidal initial disturbance and collapse of double layers with an initial perturbation in the form of a density void are analytically investigated.

  19. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; Cook, N.; Maharjan, C.; Najmudin, Z.; Shkolnikov, P.; Pogorelsky, I.

    2015-08-28

    We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲1014 W cm–2) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>1016 W cm–2) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He+ and H+ were routinely produced, whilst for shorter gradients (≲20 μm),more » quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.« less

  20. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  1. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2010-07-15

    We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p{sub T}-spectra and pseudorapidity distributions for Au+Au collisions at sq root(s)=200 GeV and present results for the anisotropic flow coefficients v{sub 2} and v{sub 4} as a function of both p{sub T} and pseudorapidity eta. We were able to determine v{sub 4} with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.

  2. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    SciTech Connect (OSTI)

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-15

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  3. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    SciTech Connect (OSTI)

    Barletti, Luigi

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  4. Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA

    SciTech Connect (OSTI)

    Hassanein, Ahmed

    2013-05-24

    Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of the lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.

  5. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  6. RE 1-11 rotary expander engine testing and analysis

    SciTech Connect (OSTI)

    Wade, J.D.; Brown, G.A.; Silvestri, G.J.; Tompkins, R.M.

    1983-08-01

    This paper describes the testing and computer simulation of the RE 1-11 Wankel type expander. During 1982-1983 the RE 1-11 was evaluated using high pressure steam as a working fluid (2.76-6.5MPa, 231-410C). Test objectives were to map engine performance, identify hardware weaknesses and to provide a data base for simulation validation. The conical rotary inlet valve proved to be the principal problem area, cracking of the carbon seat and steam leakage being dominant factors in expander performance. A steady state computer simulation was developed that was used to predict RE 1-11 performance and to investigate alternative expander configurations. A detailed study was made of RE 1-11 friction losses. All significant hydrodynamic, coulomb and momentum losses were considered and indicated mechanical efficiencies in the range 60 to 80%.

  7. SAFL Channel | Open Energy Information

    Open Energy Info (EERE)

    University of Minnesota Hydrodynamics Hydrodynamic Testing Facility Type Channel Length(m) 84.0 Beam(m) 2.8 Depth(m) 1.8 Cost(per day) Contact POC Towing Capabilities Towing...

  8. MIT Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) 750 Towing...

  9. Enhanced Verification Test Suite for Physics Simulation Codes

    SciTech Connect (OSTI)

    Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater sophistication or other physics regimes (e.g., energetic material response, magneto-hydrodynamics), would represent a scientifically desirable complement to the fundamental test cases discussed in this report. The authors believe that this document can be used to enhance the verification analyses undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility, and usefulness of the simulation codes that are analyzed with these problems.

  10. A Coupled THMC model of FEBEX mock-up test

    SciTech Connect (OSTI)

    Zheng, Liange; Samper, Javier

    2008-09-15

    FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project for the engineered barrier system (EBS) of a radioactive waste repository in granite. It includes two full-scale heating and hydration tests: the in situ test performed at Grimsel (Switzerland) and a mock-up test operating at CIEMAT facilities in Madrid (Spain). The mock-up test provides valuable insight on thermal, hydrodynamic, mechanical and chemical (THMC) behavior of EBS because its hydration is controlled better than that of in situ test in which the buffer is saturated with water from the surrounding granitic rock. Here we present a coupled THMC model of the mock-up test which accounts for thermal and chemical osmosis and bentonite swelling with a state-surface approach. The THMC model reproduces measured temperature and cumulative water inflow data. It fits also relative humidity data at the outer part of the buffer, but underestimates relative humidities near the heater. Dilution due to hydration and evaporation near the heater are the main processes controlling the concentration of conservative species while surface complexation, mineral dissolution/precipitation and cation exchanges affect significantly reactive species as well. Results of sensitivity analyses to chemical processes show that pH is mostly controlled by surface complexation while dissolved cations concentrations are controlled by cation exchange reactions.

  11. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    SciTech Connect (OSTI)

    Mller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ?}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ?-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ? 10 M {sub ?} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of ?E{sub ?-bar{sub e}}? with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ?10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  12. Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; Polzin, Kurt L.; Maas, Leo R. M.

    2015-03-27

    In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years,more » with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.« less

  13. Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?

    SciTech Connect (OSTI)

    Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; Polzin, Kurt L.; Maas, Leo R. M.

    2015-03-27

    In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years, with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.

  14. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect (OSTI)

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  15. Analysis of a double-ended cold-leg break simulation: THTF Test 3. 05. 5B. [PWR

    SciTech Connect (OSTI)

    Craddick, W.G.; Pevey, R.E.

    1982-09-01

    On July 3, 1980, an experiment was performed in the Oak Ridge National Laboratory Thermal-Hydraulic Test Facility that simulated a double-ended cold-leg break pressurized-water reactor (PWR) accident. Analysis of the experiment revealed that nuclear fuel rods exposed to the same hydrodynamic environment as that which existed in the experiment would have departed from nucleate boiling both earlier and later than the fuel rod simulator (FRS), depending on the size of the gap between the nuclear fuel pellets and cladding and on the initial power of the nuclear fuel rod. Comparison of the results of the current experiment, which used an FRS bundle with geometry similar to 17 x 17 PWR fuel assemblies, to the results of earlier experiments, which used an FRS bundle with geometry similar to 15 x 15 PWR fuel assemblies, revealed no differences that can be attributed to the difference in geometries.

  16. Proton Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    is the Dual-Axis Radiographic Hydrodynamic Test facility, or DARHT. Recently completed at ... of proton radiography's ability to measure small density differences inside a test object. ...

  17. Microsoft Word - newletter August 2007 v5.doc

    National Nuclear Security Administration (NNSA)

    3 Dual Axis Radiographic Hydrodynamics Test (DARHT) 2 nd Axis Achieves Full ... between the laboratories, the Nevada Test Site, and other DOENNSA organizations. ...

  18. Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear testing," said Webster. These experiments with surrogate materials provide a principle linkage with scaledfull-scale hydrodynamic tests, the suite of prior underground...

  19. AHERC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Tanana River Test Site Address K Street Place Nenana, Alaska Zip 99760 Sector Marine and Hydrokinetic...

  20. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 5. Measurement of density, temperature, and material velocity in an air shock produced by a nuclear explosion

    SciTech Connect (OSTI)

    Porzel, F.B.; Whitener, J.E.

    1985-09-01

    The results from laboratory tests and test firing were quite encouraging. It was concluded that: (1) the beta densitometer is a feasible device for the measurement of density as a function of time in the shock wave from a nuclear explosion. It is limited to pressure levels of 6 or 8 psi for bombs in the range of 50 kt, but is capable of higher-pressure levels on larger bombs where the interference from gamma rays is less serious; (2) dust-loading behind the shock wave is a major perturbation to the ideal hydrodynamics and can change the density by as large a factor as the shock itself; (3) the rise time at distances of 7,500 feet on Easy Shot was sharp within a resolution of approximately 0.2 msec; and (4) the field calibration used on Operation Greenhouse appeared reasonably accurate and was worthy of subsequent development.

  1. Audit Report: IG-0599 | Department of Energy

    Office of Environmental Management (EM)

    9 Audit Report: IG-0599 May 22, 2003 Dual Axis Radiographic Hydrodynamic Test Facility The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility is an experimental facility of the Stockpile Stewardship Program. The facility will provide high-speed, high-resolution flash radiographs to diagnose the results of hydrodynamic tests and dynamic experiments. Construction of DARHT began in 1988. Since that time, the project has undergone several baseline changes impacting different technical aspects

  2. University of California, San Diego (Scripps) | Open Energy Informatio...

    Open Energy Info (EERE)

    (Scripps) Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of California, San Diego (Scripps) Address Scripps Institution of Oceanography, 8825...

  3. Alden Research Laboratory, Inc | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory, Inc Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Alden Research Laboratory, Inc. Address 30 Shrewsbury Street Place Holden,...

  4. Teaching Flume | Open Energy Information

    Open Energy Info (EERE)

    Teaching Flume Jump to: navigation, search Basic Specifications Facility Name Teaching Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Flume...

  5. Northwest Hydraulic Consultants | Open Energy Information

    Open Energy Info (EERE)

    Hydraulic Consultants Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Northwest Hydraulic Consultants Address 835 S 192nd, Building C, Suite 1300 Place...

  6. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  7. Carderock Tow Tank 3 | Open Energy Information

    Open Energy Info (EERE)

    3 Jump to: navigation, search Basic Specifications Facility Name Carderock Tow Tank 3 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing...

  8. NHC Large Flume | Open Energy Information

    Open Energy Info (EERE)

    V to 480 V, 3 phase On-Site fabrication capabilityequipment Full on-site carpentry, machine, and instrumentation shop Special Characteristics Hydro | Hydrodynamic Testing...

  9. Texas A&M (Haynes) | Open Energy Information

    Open Energy Info (EERE)

    A&M (Haynes) Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Texas A&M (Haynes) Address Haynes Coastal Engineering Laboratory, Civil Engineering, TAMU MS...

  10. Texas A&M (OTRC) | Open Energy Information

    Open Energy Info (EERE)

    Texas A&M (OTRC) Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Texas A&M (OTRC) Address Offshore Technology Research Center, 1200 Mariner Drive Place...

  11. University of California, Berkeley | Open Energy Information

    Open Energy Info (EERE)

    Berkeley Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of California, Berkeley Address 1301 S 46th Street Place Richmond, California Zip 94804...

  12. Sediment Basin Flume | Open Energy Information

    Open Energy Info (EERE)

    Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility...

  13. Precision Flow Table | Open Energy Information

    Open Energy Info (EERE)

    Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility...

  14. Davidson Laboratory Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Elsewhere PIV system for flow field measurement; in-house divers for installation and retrieval as needed Hydro | Hydrodynamic Testing Facilities Retrieved from "http:...

  15. United States Naval Surface Warfare Center | Open Energy Information

    Open Energy Info (EERE)

    Warfare Center Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Naval Surface Warfare Center Address Carderock, 9500 MacArthur Boulevard...

  16. United States Army Corp of Engineers (ERDC) | Open Energy Information

    Open Energy Info (EERE)

    Engineers (ERDC) Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Army Corp of Engineers (ERDC) Address Coastal & Hydraulics Laboratory, 3909...

  17. United States Geological Survey, HIF | Open Energy Information

    Open Energy Info (EERE)

    HIF Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, HIF Address Building 2101 Stennis Space Center Place Mississippi Zip...

  18. Ohmsett | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Ohmsett Address PO Box 473 Atlantic Place Highlands, New Jersey Zip 07716 Sector Hydro Phone number (732)...

  19. High energy-density physics: From nuclear testing to the superlasers

    SciTech Connect (OSTI)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  20. NNSA, LANL Complete DARHT Improvements With Successful Multi-frame

    National Nuclear Security Administration (NNSA)

    Hydrodynamic Test | National Nuclear Security Administration LANL Complete DARHT Improvements With Successful Multi-frame Hydrodynamic Test | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  1. MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. II. HYDRODYNAMIC SCALING LAWS AND THERMAL ENERGIES

    SciTech Connect (OSTI)

    Aschwanden, Markus J. [Lockheed Martin Advanced Technology Center, Org. ADBS, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304 (United States); Shimizu, Toshifumi, E-mail: aschwanden@lmsal.com, E-mail: shimizu.toshifumi@isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2013-10-20

    In this study we measure physical parameters of the same set of 155 M- and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure analysis to determine the flare peak emission measure EM{sub p} , peak temperature T{sub p} , electron density n{sub p} , and thermal energy E{sub th}, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M- and X-class flares are log (EM{sub p}) = 47.0-50.5, T{sub p} = 5.0-17.8 MK, n{sub p} = 4 10{sup 9}-9 10{sup 11} cm{sup 3}, and thermal energies of E{sub th} = 1.6 10{sup 28}-1.1 10{sup 32} erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) scaling law T{sub p}{sup 2}?n{sub p} L and H?T {sup 7/2} L {sup 2} during the peak time t{sub p} of the flare density n{sub p} , when energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts power-law distributions for all physical parameters, which we demonstrate with numerical Monte Carlo simulations as well as with analytical calculations. A consequence of the RTV law is also that we can retrieve the size distribution of heating rates, for which we find N(H)?H {sup 1.8}, which is consistent with the magnetic flux distribution N(?)??{sup 1.85} observed by Parnell et al. and the heating flux scaling law F{sub H} ?HL?B/L of Schrijver et al.. The fractal-diffusive self-organized criticality model in conjunction with the RTV scaling law reproduces the observed power-law distributions and their slopes for all geometrical and physical parameters and can be used to predict the size distributions for other flare data sets, instruments, and detection algorithms.

  2. Pi-CO₂ aqueous post-combustion CO₂ capture: Proof of concept through thermodynamic, hydrodynamic, and gas-lift pump modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blount, G.; Gorensek, M.; Hamm, L.; O’Neil, K.; Kervévan, C.; Beddelem, M. -H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO₂) capture system (Pi-CO₂) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO₂ has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO₂ from local industrial sources.

  3. A hybrid method for hydrodynamic-kinetic flow Part I: A particle-grid method for reducing stochastic noise in kinetic regimes

    SciTech Connect (OSTI)

    Alaia, Alessandro; Puppo, Gabriella

    2011-06-20

    In this work we present a hybrid particle-grid Monte Carlo method for the Boltzmann equation, which is characterized by a significant reduction of the stochastic noise in the kinetic regime. The hybrid method is based on a first order splitting in time to separate the transport from the relaxation step. The transport step is solved by a deterministic scheme, while a hybrid DSMC-based method is used to solve the collision step. Such a hybrid scheme is based on splitting the solution in a collisional and a non-collisional part at the beginning of the collision step, and the DSMC method is used to solve the relaxation step for the collisional part of the solution only. This is accomplished by sampling only the fraction of particles candidate for collisions from the collisional part of the solution, performing collisions as in a standard DSMC method, and then projecting the particles back onto a velocity grid to compute a piecewise constant reconstruction for the collisional part of the solution. The latter is added to a piecewise constant reconstruction of the non-collisional part of the solution, which in fact remains unchanged during the relaxation step. Numerical results show that the stochastic noise is significantly reduced at large Knudsen numbers with respect to the standard DSMC method. Indeed in this algorithm, the particle scheme is applied only on the collisional part of the solution, so only this fraction of the solution is affected by stochastic fluctuations. But since the collisional part of the solution reduces as the Knudsen number increases, stochastic noise reduces as well at large Knudsen numbers.

  4. Pi-CO? aqueous post-combustion CO? capture: Proof of concept through thermodynamic, hydrodynamic, and gas-lift pump modeling

    SciTech Connect (OSTI)

    Blount, G.; Gorensek, M.; Hamm, L.; ONeil, K.; Kervvan, C.; Beddelem, M. -H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO?) capture system (Pi-CO?) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO? has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO? from local industrial sources.

  5. IG-0699 Report Cover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos National Laboratory Hydrodynamic Test Program DOE/IG-0699 September 2005 THE LOS ALAMOS HYDRODYNAMIC TEST PROGRAM Page 1 Details of Findings Testing Delays Los Alamos did not complete all hydrotests as scheduled. Fifteen hydrotests were scheduled in Fiscal Years (FY) 2002 through 2004. Of these, six were completed as scheduled, six were delayed up to two years, and three had not been completed as of April 2005. Future hydrotests may also be at risk. Hydrotest Objectives In FY 2002,

  6. EIS-0228: Record of Decision | Department of Energy

    Office of Environmental Management (EM)

    8: Record of Decision EIS-0228: Record of Decision Dual Axis Radiographic Hydrodynamic Test Facility The Department of Energy (DOE) is issuing this Record of Decision (ROD) regarding the DOE's proposed Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL) in northern New Mexico. DOE has decided to complete and operate the DARHT facility at LANL while implementing a program to conduct most tests inside steel containment vessels, with containment to be

  7. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    (condensed matter physics and materials science, hydrodynamics and fluid dynamics). ... Hydrodynamic experiments in low energy density physics, high-temperature-pressure and rate ...

  8. Property:Length(m) | Open Energy Information

    Open Energy Info (EERE)

    Length(m) Jump to: navigation, search This is a property of type String, and provides a complied list of the lengths of various hydrodynamic testing facilities. Pages using the...

  9. Ohmsett Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing...

  10. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    SciTech Connect (OSTI)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2009-07-20

    The U.S. Department of Energy (DOE) Office of River Protections Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanfords 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called black cell regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel contents for PJM operation, and maximum and minimum rheological properties). Test data collected from the PJM overblow tests were provided to Bechtel National, Inc. (BNI) for assessing hydrostatic, dynamic, and acoustic pressure loadings on in-tank structures during 1) single overblows; 2) multiple overlapping overblows of two to four PJMs; 3) simultaneous overblows of pairs of PJMs.

  11. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    SciTech Connect (OSTI)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2008-03-03

    The U.S. Department of Energy (DOE) Office of River Protections Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanfords 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called black cell regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel contents for PJM operation, and maximum and minimum rheological properties). Test data collected from the PJM overblow tests were provided to Bechtel National, Inc. (BNI) for assessing hydrostatic, dynamic, and acoustic pressure loadings on in-tank structures during 1) single overblows; 2) multiple overlapping overblows of two to four PJMs; 3) simultaneous overblows of pairs of PJMs.

  12. old.new.factsheets.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT Dual-Axis Radiographic Hydrodynamic Test Facility At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our na- tion's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. The DARHT Facility DARHT consists of two linear induction

  13. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the

  14. Los Alamos National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to begin DARHT 2 operations January 29, 2008 Hydrodynamic testing at the frontier of science LOS ALAMOS, New Mexico, January 29, 2008- The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility has officially become "dual" with authorization to begin full power operations of Axis 2, adding both new capability and higher energy to the unique accelerator facility. Los Alamos National Laboratory has received authorization from the National Nuclear Security Administration to begin

  15. Audit Report: DOE/IG-0930 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE/IG-0930 Audit Report: DOE/IG-0930 December 16, 2014 Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program A primary mission of the National Nuclear Security Administration (NNSA) is to ensure the safety, reliability, and performance of the Nation's nuclear weapons stockpile. NNSA relies on computer models and simulations to achieve this mission. Data from nonnuclear hydrodynamic tests (hydrotests) is used to validate and refine these computer models for the annual

  16. PJM Controller Testing with Prototypic PJM Nozzle Configuration

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Nigl, Franz; Weier, Dennis R.; Leigh, Richard J.; Johnson, Eric D.; Wilcox, Wayne A.; Pfund, David M.; Baumann, Aaron W.; Wang, Yeefoo

    2009-08-21

    The U.S. Department of Energy (DOE) Office of River Protections Waste Treatment Plant (WTP) is being designed and built to pre-treat and then vitrify a large portion of the wastes in Hanfords 177 underground waste storage tanks. The WTP consists of three primary facilitiespretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste piped from the Hanford tank farms and separate it into a high-volume, low-activity liquid stream stripped of most solids and radionuclides and a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJM) that will provide some or all of the mixing in the vessels. Pulse jet mixer technology was selected for use in black cell regions of the WTP, where maintenance cannot be performed once hot testing and operations commence. The PJMs have no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. Pulse jet mixers are susceptible to overblows that can generate large hydrodynamic forces, forces that can damage mixing vessels or their internal parts. The probability of an overblow increases if a PJM does not fill completely. The purpose of the testing performed for this report was to determine how reliable and repeatable the primary and safety (or backup) PJM control systems are at detecting drive overblows (DOB) and charge vessel full (CVF) conditions. Testing was performed on the ABB 800xA and Triconex control systems. The controllers operated an array of four PJMs installed in an approximately 13 ft diameter 15 ft tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. The PJMs were fitted with 4 inch diameter discharge nozzles representative of the nozzles to be used in the WTP. This work supplemented earlier controller tests done on PJMs with 2 inch nozzles (Bontha et al. 2007). Those earlier tests enabled the selection of appropriate pressure transmitters with associated piping and resulted in an alternate overblow detection algorithm that uses data from pressure transmitters mounted in a water flush line on the PJM airlines. Much of that earlier work was only qualitative, however, due to a data logger equipment failure that occurred during the 2007 testing. The objectives of the current work focused on providing quantitative determinations of the ability of the BNI controllers to detect DOB and CVF conditions. On both control systems, a DOB or CVF is indicated when the values of particular internal functions, called confidence values, cross predetermined thresholds. There are two types of confidence values; one based on a transformation of jet pump pair (JPP) drive and suction pressures, the other based on the pressure in the flush line. In the present testing, we collected confidence levels output from the ABB and Triconex controllers. These data were analyzed in terms of the true and noise confidence peaks generated during multiple cycles of DOB and CVF events. The distributions of peak and noise amplitudes were compared to see if thresholds could be set that would enable the detection of DOB and CVF events at high probabilities, while keeping false detections to low probabilities. Supporting data were also collected on PJM operation, including data on PJM pressures and levels, to provide direct experimental evidence of when PJMs were filling, full, driving, or overblowing.

  17. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    SciTech Connect (OSTI)

    Kopf, Steven

    2013-10-15

    The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics;  Open-Sea Testing of a New 1:2 Scale Experimental Model;  Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status;  Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

  18. Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous...

    Office of Scientific and Technical Information (OSTI)

    Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics Prev Next Title: Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics ...

  19. Forklift Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. When carrying a load, always: a. tilt the load forward. b. center the load c. carry the load as high as possible d. none of the above 2.

  20. Crane Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. The first thing you should do when using the crane is to: a. verify the battery power on the remote control. b. drag the load to the desired

  1. Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  2. Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  3. Battery Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  4. LULESH V.1.0

    Energy Science and Technology Software Center (OSTI)

    002592WKSTN00 Livermore Unstructured Lagrange Explicit Shock Hydrodynamics https://computation.llnl.gov/casc/software.html

  5. Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; 42 ENGINEERING; ACCURACY; APERTURES; COATINGS; FABRICATION; HYDRODYNAMICS; INSTABILITY; MASS DEFECT; MICROSCOPY; PLASMA; POLYMERS

  6. New evidence for efficient collisionless heating of electrons...

    Office of Scientific and Technical Information (OSTI)

    ... ASTRONOMY; ASTROPHYSICS; DISTRIBUTION; ELECTRONS; FLUORESCENCE; HYDRODYNAMICS; IRON IONS; LIMITING VALUES; MAGNETIC FIELDS; PLASMA; SATELLITES; SHOCK WAVES; SIMULATION; SUPERNOVA ...

  7. Elliptic and Triangular Flow in Event-by-Event D=3+1 Viscous...

    Office of Scientific and Technical Information (OSTI)

    PHYSICS; COLLISIONS; ELLIPTICAL CONFIGURATION; FLUCTUATIONS; GEV RANGE 100-1000; GOLD; HYDRODYNAMICS; PARTICLE RAPIDITY; SIMULATION; TRANSVERSE MOMENTUM; VISCOSITY ...

  8. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    High Energy Density Laboratory Plasmas / Research Areas Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic

  9. Fluid Dynamics and Solid Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Solid Mechanics Basic and applied research in theoretical continuum dynamics, modern hydrodynamic theory, materials modeling, global climate modeling, numerical...

  10. Microsecond Microfluidic Mixing for Investigation of Protein...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; COMPATIBILITY; DIFFUSION; FOCUSING; HYDRODYNAMICS; KINETICS; MIXERS; PROTEINS; REACTION KINETICS...

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on fundamental sciences: controls, hydrodynamics, aerodynamics, experimentation, etc. Technology Assessment: Reference Model Project Goal: obtain baseline Cost Of Energy...

  12. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  13. Quark-gluon plasma (Selected Topics)

    SciTech Connect (OSTI)

    Zakharov, V. I.

    2012-09-15

    Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

  14. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  15. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  16. The effect of RDX particle size on the shock sensitivity of cast PBX formulations: 2, Bimodal compositions

    SciTech Connect (OSTI)

    Moulard, H.; Delclos, A.; Kury, J.

    1987-04-01

    The effect of RDX particle size on the shock sensitivity and detonation velocity of two cast polyurethane-based bimodal RDX formulations has been determined. The shock sensitivity results (wedge test data) have been interpreted using a hydrodynamic code containing a three term ignition and growth model for build-up of detonation. 2 refs., 6 figs., 2 tabs.

  17. Final Report

    SciTech Connect (OSTI)

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  18. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop ...

  19. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  20. CNP_TEST_SUITE

    Energy Science and Technology Software Center (OSTI)

    002854MLTPL00 Automated Nuclear Data Test Suite file:///usr/gapps/CNP_src/us/RR/test_suite_cz/cnp_test_suite

  1. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-03-01

    WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number of interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases.

  2. Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the

    Office of Scientific and Technical Information (OSTI)

    BIE) (Conference) | SciTech Connect Conference: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Citation Details In-Document Search Title: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Since the end of nuclear testing, the reliability of our nation's nuclear weapon stockpile has been performed using sub-critical hydrodynamic testing. These tests involve some pretty 'extreme' radiography. We will be discussing the challenges and

  3. ZiaTest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZiaTest ZiaTest Description This test executes a new proposed standard benchmark method ... Specifically, the test consists of the following steps: Record a time stamp for when the ...

  4. test | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    test PDF icon test More Documents & Publications 2009 ECR FINAL REPORT 2010 Final ECR 2008 Report Environmental Conflict Resolution

  5. Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests

    SciTech Connect (OSTI)

    G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

    2005-09-30

    In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

  6. Vendor System Vulnerability Testing Test Plan

    SciTech Connect (OSTI)

    James R. Davidson

    2005-01-01

    The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INLs Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendors system.b a. The term System Provider replaces the name of the company/organization providing the system being evaluated. This can be the system manufacturer, a system user, or a third party organization such as a government agency. b. The term Vendor (or Vendors) System replaces the name of the specific SCADA/EMS being tested.

  7. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  8. Major Partner Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding ...

  9. Test | Open Energy Information

    Open Energy Info (EERE)

    Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Test Published Publisher Not Provided, Date Not Provided Report Number Test DOI Not Provided Check...

  10. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  11. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A...

  12. Limited Test Ban Treaty

    National Nuclear Security Administration (NNSA)

    Detection System (USNDS), which monitors compliance with the international Limited Test Ban Treaty (LTBT). The LTBT, signed by 108 countries, prohibits nuclear testing in the...

  13. OMB MPI Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OMB MPI Tests OMB MPI Tests Description The Ohio MicroBenchmark suite is a collection of independent MPI message passing performance microbenchmarks developed and written at The...

  14. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Simmons, M.; McKinstry, C.; Cook, C.

    2004-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

  15. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  16. HICEV America Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HICEV America TEST SEQUENCE Revision 0 November 1, 2004 Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: __________ Garrett Beauregard Approved by: _______________________________________________ Date: _______________ Donald B. Karner HICEV America Test Sequence Page 1 2004 Electric Transportation Applications All Rights Reserved HICEV PERFORMANCE TEST PROCEDURE SEQUENCE The following test sequence shall be used for conduct of HICEV America

  17. NEV America Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEVAmerica TEST SEQUENCE Revision 2 Effective February 1, 2008 Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: __________ Nick Fengler Approved by: _________ ________________________________ Date: _______________ ______ Donald B. Karner ©2008 Electric Transportation Applications All Rights Reserved NEVAmerica Test Sequence Rev 2 Page 1 NEV PERFORMANCE TEST PROCEDURE SEQUENCE The following test sequence shall be used for conduct of NEVAmerica

  18. Dynamometer Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes the dynamometer and its testing capabilities at the National Wind Technology Center.

  19. Solderability test system

    DOE Patents [OSTI]

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

    1998-10-27

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  20. Solderability test system

    DOE Patents [OSTI]

    Yost, Fred; Hosking, Floyd M.; Jellison, James L.; Short, Bruce; Giversen, Terri; Reed, Jimmy R.

    1998-01-01

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  1. Major Partner Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding provided for any one project. It then becomes critical to test the technology at a pre-existing facility willing to test experimental technologies. Not surprisingly, most commercial facilities are hesitant to interfere with their operations to experiment, but others, with a view towards the future, welcome promising

  2. Entry/Exit Port testing, test report

    SciTech Connect (OSTI)

    Winkelman, R.H.

    1993-05-01

    The Waste Receiving and Processing Module I (WRAP-1) facility must have the ability to allow 55-gallon drums to enter and exit glovebox enclosures. An Entry/Exit Port (Appendix 1, Figure 1), designed by United Engineers and Constructors (UE&C), is one method chosen for drum transfer. The Entry/Exit Port is to be used for entry of 55-gallon drums into both process entry gloveboxes, exit of 55-gallon drum waste pucks from the low-level waste (LLW) glovebox, and loadout of waste from the restricted waste management glovebox. The Entry/Exit Port relies on capture velocity air flow and a neoprene seal to provide alpha confinement when the Port is in the open and closed positions, respectively. Since the glovebox is in a slight vacuum, air flow is directed into the glovebox through the space between the overpack drum and glovebox floor. The air flow is to direct any airborne contamination into the glovebox. A neoprene seal is used to seal the Port door to the glovebox floor, thus maintaining confinement in the closed position. Entry/Exit Port testing took place February 17, 1993, through April 14, 1993, in the 305 building of Westinghouse Hanford Company. Testing was performed in accordance with the Entry/Exit Port Testing Test Plan, document number WHC-SD-WO26-TP-005. A prototype Entry/Exit Port built at the Hanford Site was tested using fluorescent paint pigment and smoke candles as simulant contaminants. This test report is an interim test report. Further developmental testing is required to test modifications made to the Port as the original design of the Port did not provide complete confinement during all stages of operation.

  3. A consistent second order projection scheme for simulating transient

    Office of Scientific and Technical Information (OSTI)

    viscous flow with Smoothed Particle Hydrodynamics. (Journal Article) | SciTech Connect A consistent second order projection scheme for simulating transient viscous flow with Smoothed Particle Hydrodynamics. Citation Details In-Document Search Title: A consistent second order projection scheme for simulating transient viscous flow with Smoothed Particle Hydrodynamics. Abstract not provided. Authors: Trask, Nathaniel ; Maxey, Martin ; Kim, Kyungjoo ; Perego, Mauro ; Parks, Michael L. ; Yang,

  4. Sensitivity Test Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    SENSIT,MUSIG,COMSEN is a set of three related programs for sensitivity test analysis. SENSIT conducts sensitivity tests. These tests are also known as threshold tests, LD50 tests, gap tests, drop weight tests, etc. SENSIT interactively instructs the experimenter on the proper level at which to stress the next specimen, based on the results of previous responses. MUSIG analyzes the results of a sensitivity test to determine the mean and standard deviation of the underlying population bymore » computing maximum likelihood estimates of these parameters. MUSIG also computes likelihood ratio joint confidence regions and individual confidence intervals. COMSEN compares the results of two sensitivity tests to see if the underlying populations are significantly different. COMSEN provides an unbiased method of distinguishing between statistical variation of the estimates of the parameters of the population and true population difference.« less

  5. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  6. Spatiotemporal temperature and density characterization of high...

    Office of Scientific and Technical Information (OSTI)

    The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for ...

  7. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Azimuthal anisotropy distributions in high-energy collisions Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the...

  8. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    the National Technical Information Service, Springfield, VA at www.ntis.gov. Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the...

  9. From the archives: Analyzing atmospheric behavior

    SciTech Connect (OSTI)

    Panofsky, Hans

    2014-06-01

    Most meteorologists are really physicists in disguise. They use thermodynamics and hydrodynamics to understand snow squalls in Buffalo and typhoons in Japan.

  10. Final Report: SciDAC Computational Astrophysics Consortium (at...

    Office of Scientific and Technical Information (OSTI)

    supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related...

  11. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    supernovae are unrivaled astrophysical laboratories We will develop new state of the art multi dimensional radiation hydrodynamic codes to address this and other related...

  12. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related...

  13. Property:Relevant Project Publications | Open Energy Information

    Open Energy Info (EERE)

    Final License Application P 12611 Detailed Inflow Measurements for Kinetic Hydropower Systems in a Tidal Strait Hydrodynamic Analysis of Kinetic Hydropower Arrays NYSERDA RITE...

  14. 24th Annual Anomalous Absorption Conference. Book of abstracts

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report contains abstracts on topics in the following areas: parametric instabilities; hohlraum physics; laser plasma physics with short pulses; and rayleigh-taylor instability and hydrodynamics.

  15. Characterization of Heat-Wave Propagation through Laser-Driven...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; 70 PLASMA PHYSICS AND FUSION; ABSORPTION; ELECTRON TEMPERATURE; HYDRODYNAMICS; K SHELL; LASER-PRODUCED PLASMA; LASERS; PLASMA; PLASMA ...

  16. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 2-METHYLBUTANE; FOCUSING; GHZ RANGE; GRATINGS; HYDRODYNAMICS; LASER TARGETS; ...

  17. Tim Scheibe Pacific Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport Algorithms: Smoothed Particle Hydrodynamics - lagrangian mesh-free particle method No global linear matrix solve Local force calculation requires tree search for...

  18. Core-Collapse Supernovae

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nordhaus.png Key Challenges: Couple hydrodynamics, nuclear reactions, and - eventually - general relativity and magnetism, to the non-thermal transport of six kinds of neutrinos...

  19. Polysulfone and polyacrylate-based zwitterionic coatings for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retention and microal- gal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus gener- ated hydrodynamic shearing...

  20. Effects on Aquatic Organisms (EMF, Acoustics and Physical Interaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Effects on Aquatic Organisms (Acoustics and Toxicity) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web)...

  1. Categorizing and Evaluating the Effects of Stressors (all Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Effects on Aquatic Organisms (Acoustics and Toxicity) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web)...

  2. Production of High-Quality Syngas via Biomass Gasification for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Work -Research activities (b) Process experimentation: To investigate the effect of temperature and pressure on the bed hydrodynamics using a laboratory scaled fluid-bed column. ...

  3. Final Report: SciDAC Computational Astrophysics Consortium (at...

    Office of Scientific and Technical Information (OSTI)

    Hence, supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related ...

  4. Two-dimensional simulations of pulsational pair-instability supernovae...

    Office of Scientific and Technical Information (OSTI)

    The light curve of this more realistic model has a peak luminosity and duration that are ... DENSITY; HELIUM; HYDRODYNAMICS; LUMINOSITY; MASS; METALLICITY; ONE-DIMENSIONAL ...

  5. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The cube rotation problem: currently, the number of zones is 3500, compared to 125 zones initially. Modified for the Web The accurate simulation of hydrodynamic and heat conducting ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids Principi, Alessandro ; Vignale, Giovanni ...

  7. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids Principi, Alessandro ; Vignale, Giovanni ...

  8. Microsoft Word - Argonne_WindPowerForecasting_Report_Final_Nov...

    Office of Scientific and Technical Information (OSTI)

    R.A. Anthes and T.T. Warner, "Development of hydrodynamic models suitable for air pollution and other mesometeorological studies," Monthly Weather Review, vol. 106, pp....

  9. Fragmentation in rotating isothermal protostellar clouds

    SciTech Connect (OSTI)

    Bodenheimer, P.; Tohline, J.E.; Black, D.C.

    1980-01-01

    Results of an extensive set of 3-D hydrodynamic calculations that have been performed to investigate the susceptibility of rotating clouds to gravitational fragmentation are presented. (GHT)

  10. A consistent second order projection scheme for simulating transient...

    Office of Scientific and Technical Information (OSTI)

    A consistent second order projection scheme for simulating transient viscous flow with Smoothed Particle Hydrodynamics. Citation Details In-Document Search Title: A consistent...

  11. Miklos Gyulassy, 1987 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Text Size: A A A FeedbackShare Page Physics: For leadership in developing theory of direct experimental relevance, especially the use of hydrodynamics to describe matter flowing...

  12. Customized atomic force microscopy probe by focused-ion-beam...

    Office of Scientific and Technical Information (OSTI)

    We show experimentally that tall (18 m) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in ...

  13. Neutron Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    driven hydrodynamic experiments include high explosives; high-velocity gas guns; and high-current, high-voltage pulsed power. Sophisticated diagnostics like...

  14. Microsoft Word - NETL-TRS-4-2012_Integration of Spatial Data...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... drilling sites, and the hydrodynamic properties of water in the open ocean and estuaries. Currents and tides change continuously, especially in the Gulf of Mexico's Loop ...

  15. International Effort Advances Offshore Wind Turbine Design Codes...

    Office of Environmental Management (EM)

    that can simulate incident waves, sea current, hydrodynamics, foundation dynamics of ... In June, NREL hosted a meeting in conjunction with the Ocean, Offshore, and Arctic ...

  16. Sandia Energy - Investigations on Anti-biofouling Zwitterionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but...

  17. 2014 WIND POWER PROGRAM PEER REVIEW-RESOURCE CHARACTERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 6-DOF Module * Fidelity open-source multiphase CFDHPC * Efficient and stable algorithms for coupled wave motion, hydrodynamic platform loads, mooring-line loads, and 6-DOF ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter by Author Fung, Jimmy (10) Harrison, Alan K (4) Canfield, Thomas R (2) Fung, Jimmy ... cells in Lagrangian hydrodynamics Harrison, Alan K ; Shashkov, Mikhail J ; Fung, ...

  19. Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions

    SciTech Connect (OSTI)

    Yu, Y.; Li, Y.

    2011-10-01

    This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

  20. Microsoft Word - Talks 20120822

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Transport Model for Ultra-relativistic Heavy Ion Reactions Dr. Yun Cheng Central China Normal University, China yuncheng@phy.ccnu.edu.cn Abstract: Combining the hydrodynamic...

  1. SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS...

    Office of Scientific and Technical Information (OSTI)

    was to address a number of linked issues: the treatment of hydrodynamics and neutrino diffusion in two and three dimensions; the treatment of the underlying nuclear microphysics...

  2. Journal articles published by Ames Laboratory interns | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in linear nanopores: Hydrodynamic versus stochastic behavior," The Journal of Chemical Physics, Volune 134, Issue 11, 17 March 2011, Articles, Theoretical Methods and...

  3. Microsoft Word - Bull--Optimal_Resistive_Control_Strategy_for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Wells Turbine in 3-dimensions. An array of field points defining the interior free surface allows hydrodynamic parameters relating to the fluctuating air-pressure within...

  4. MHL Free Surface Channel | Open Energy Information

    Open Energy Info (EERE)

    Free Surface Channel Jump to: navigation, search Basic Specifications Facility Name MHL Free Surface Channel Overseeing Organization University of Michigan Hydrodynamics...

  5. Kinetic Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    tidal generators. Has notably patented the KESC Tidal Generator which is based on free flow hydrodynamics. Coordinates: 29.187525, -82.140394 Show Map Loading map......

  6. NREL: Wind Research - FAST Revs Up with a v8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siemens The introduction of a new interface to controls implementation through MATLABSimulink An expansion of floating functionality (nonlinear fluid-impulse hydrodynamic theory...

  7. Preliminary Verification and Validation of WEC-Sim, an Open-Source...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Such software is both a financial burden on and a large time commitment for WEC ... they are based on linear hydrodynamic theory, they are able to account for ...

  8. Proceedings of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Such software is both a financial burden on and a large time commitment for WEC ... they are based on linear hydrodynamic theory, they are able to account for ...

  9. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Office of Environmental Management (EM)

    Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed ...

  10. High Explosives Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 1, 2013 The design and testing for "Little Boy" took place at Gun Site The design and testing for "Little Boy" took place at Gun Site. RELATED IMAGES http:...

  11. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  12. Coaxial test fixture

    DOE Patents [OSTI]

    Praeg, W.F.

    1984-03-30

    This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

  13. OMB MPI Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OMB MPI Tests OMB MPI Tests Description The Ohio MicroBenchmark suite is a collection of independent MPI message passing performance microbenchmarks developed and written at The Ohio State University. It includes traditional benchmarks and performance measures such as latency, bandwidth and host overhead and can be used for both traditional and GPU-enhanced nodes. For the purposes of the Trinity / NERSC-8 acquisition this includes only the following tests: (name of OSU test: performance

  14. Nanoparticle toxicity testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticle toxicity testing 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Nanoparticle toxicity testing Assessing the potential health hazards of nanotechnology March 25, 2013 Robot In the search for more accurate and efficient techniques to evaluate the health hazards of nanoparticles, Los Alamos researchers are developing artificial human tissues and organs to replace animal test subjects. A new approach to toxicity testing under

  15. NCCS Regression Test Harness

    Energy Science and Technology Software Center (OSTI)

    2015-09-09

    The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.

  16. ZiaTest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZiaTest ZiaTest Description This test executes a new proposed standard benchmark method for MPI startup that is intended to provide a realistic assessment of both launch and wireup requirements. Accordingly, it exercises both the launch system of the environment and the interconnect subsystem in a specified pattern. Specifically, the test consists of the following steps: Record a time stamp for when the test started - this is passed to rank=0 upon launch. Launch a 100MB executable on a specified

  17. High Explosives Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Explosives Testing High Explosives Testing In the 1940s, high explosives were tested at Los Alamos. August 1, 2013 The design and testing for "Little Boy" took place at Gun Site The design and testing for "Little Boy" took place at Gun Site. RELATED IMAGES http://farm8.staticflickr.com/7390/9778165821_9976c43bda_t.jpg Enlarge http://farm4.staticflickr.com/3817/9631800990_1c130beec7

  18. Drum drop test report

    SciTech Connect (OSTI)

    McBeath, R.S.

    1995-02-28

    Testing was performed to determine actual damage to drums when dropped from higher than currently stacked elevations. The drum configurations were the same as they are placed in storage; single drums and four drums banded to a pallet. Maximum drop weights were selected based on successful preliminary tests. Material was lost from each of the single drum tests while only a small amount of material was lost from one of the pelletized drums. The test results are presented in this report. This report also provides recommendations for further testing to determine the appropriate drum weight which can be stored on a fourth tier.

  19. Sample Proficiency Test exercise

    SciTech Connect (OSTI)

    Alcaraz, A; Gregg, H; Koester, C

    2006-02-05

    The current format of the OPCW proficiency tests has multiple sets of 2 samples sent to an analysis laboratory. In each sample set, one is identified as a sample, the other as a blank. This method of conducting proficiency tests differs from how an OPCW designated laboratory would receive authentic samples (a set of three containers, each not identified, consisting of the authentic sample, a control sample, and a blank sample). This exercise was designed to test the reporting if the proficiency tests were to be conducted. As such, this is not an official OPCW proficiency test, and the attached report is one method by which LLNL might report their analyses under a more realistic testing scheme. Therefore, the title on the report ''Report of the Umpteenth Official OPCW Proficiency Test'' is meaningless, and provides a bit of whimsy for the analyses and readers of the report.

  20. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  1. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  2. Experimental determination of lateral vibration of the 708 MVA Westinghouse vertical hydro generators at Grand Coulee Dam, Washington

    SciTech Connect (OSTI)

    Turner, R.L.

    1981-09-01

    The damped rotor bearing system of large vertical shaft systems presents special problems for high speed storage installations. The results of the first test of its kind have given experimental data contributing to this technology. Synchronous and non-synchronous vibrations were found to contribute to runout loading. Measurements on the pivot pad hydrodynamic bearings gave stiffness characteristics. Measurements showed that balancing the rotor reduced vibration levels. 1 ref.

  3. How DARHT Works - the World's Most Powerful X-ray Machine

    ScienceCinema (OSTI)

    None

    2014-06-25

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  4. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PULSED POWER TECHNOLOGY AT SANDIA NATIONAL LABORATORIES Pulsed Power Technology (PPT) is used to generate and apply energetic beams and high-power energy pulses. It is distinguished by the development of repetitive pulsed power technologies, x-ray and energetic beam sources, and electromagnetic and radiation hydrodynamic codes for a wide variety of applications. Some examples of these applications are: Nuclear survivability and hardness testing Measurement of material properties Z-pinch-driven

  5. DOE - NNSA/NFO -- Photo Library BEEF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEEF NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Big Explosives Experimental Facility (BEEF) The Big Explosives Experimental Facility (BEEF) is a hydrodynamic testing facility, located at the Nevada National Security Site. BEEF provides data, through explosive experiments, to support the Stockpile Stewardship Program, along with a variety of new experimental programs that expand the nation's non-nuclear experiment capabilities. Instructions: Click the photograph

  6. Horizontal and Vertical Erosion Flume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A One-of-a-Kind Testing Capability In WIPP Performance Assessment scenarios, an exploration borehole is hypothesized to penetrate the repository sometime in the future. Drilling fluid flowing up the borehole would apply a hydrodynamic shear stress to the material comprising the borehole wall. If the wall material is made up of TRU waste degraded to the point it could be eroded off the wall and carried uphole with the drilling fluid, radionuclides could possibly escape the repository. To address

  7. Los Alamos National Laboratory to begin DARHT 2 operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT 2 operations begin Los Alamos National Laboratory to begin DARHT 2 operations The Dual Axis Radiographic Hydrodynamic Test facility has officially become "dual" with authorization to begin full power operations of Axis 2. January 29, 2008 DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream

  8. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Explosives Experimental Facility (BEEF) is a hydrodynamic testing facility, located at the Nevada National Security Site (NNSS), about 65 miles northwest of Las Vegas. BEEF provides data, through explosive experiments, to support the Stockpile Stewardship Program, along with a variety of new experimental programs that expand the nation's non-nuclear experiment capabilities. History When the U.S. Department of Energy's Lawrence Livermore National Laboratory (LLNL) facility in Livermore,

  9. DOE - NNSA/NFO -- National Security Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Explosives Experimental Facility NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Big Explosives Experimental Facility (BEEF) Photograph of BEEF Facility The Big Explosives Experimental Facility (BEEF) is a hydrodynamic testing facility, located at the Nevada National Security Site. BEEF provides data, through explosive experiments, to support the Stockpile Stewardship Program, along with a variety of new experimental programs that expand the nation's non-nuclear experiment

  10. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  11. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship now available | National Nuclear Security Administration The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National

  12. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship now available | National Nuclear Security Administration The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National

  13. Microsoft Word - Defense Science Quarterly 02-08.doc

    National Nuclear Security Administration (NNSA)

    February 2008 Defense Science Quarterly Inside This Issue 1 Message from the Director 2 The Modernization of Nuclear Test Specific Techniques with a Focus on the Alpha-can Demonstrations 3 JASPER Update 4 Tenth Shot on Refurbished Z Measures Pressure Drive for Future experiments 5 High Energy Density Research at Los Alamos Examines the Hydrodynamics of Radiatively Heated and Shocked Embedded Layers 6 EXAFS Measurements of Material Properties at High Pressures and Strain Rates 7 Exploiting

  14. Microsoft Word - Defense Science Quarterly 08-08.doc

    National Nuclear Security Administration (NNSA)

    August 2008 Defense Science Quarterly Inside This Issue 1 Message from the Director 2 Derivative Applications of Pulsed Power Science and Technology 4 LANSCE-R Means More Beam for National Security Research 6 Dual Axis Radiographic Hydrodynamics Test (DARHT) 2 nd Axis Completed and Put into Operation 7 Annual Symposium of the Stewardship Science Graduate Fellowship Program 8 Publication Highlights 9 ICOPS 2008 9 Highlights and Awards Message from the Director Chris Deeney, Defense Science

  15. Microsoft Word - newletter August 2007 v5.doc

    National Nuclear Security Administration (NNSA)

    Defense Science Quarterly Newsletter August 2007 Inside This Issue 1 Message from the Director 2 THERMOS - A Small-Scale Experimental and Computational Study of Plutonium Deformation/ Damage/Failure Physics 3 Dual Axis Radiographic Hydrodynamics Test (DARHT) 2 nd Axis Achieves Full Accelerator Configuration 5 Science Campaigns Support High-Impact Basic Research 7 New Appointment and Awards Chris Deeney, Director, Office of Defense Science Welcome to the inaugural issue of the Office of Defense

  16. Introduction

    National Nuclear Security Administration (NNSA)

    Big Explosives Experimental Facility (BEEF) is a hydrodynamic testing facility, located at the Nevada National Security Site (NNSS), about 65 miles northwest of Las Vegas. BEEF provides data, through explosive experiments, to support the Stockpile Stewardship Program, along with a variety of new experimental programs that expand the nation's non-nuclear experiment capabilities. History When the U.S. Department of Energy's Lawrence Livermore National Laboratory (LLNL) facility in Livermore,

  17. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  18. Testing of the structural evaluation test unit

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.

    1995-12-31

    In the evaluation of the safety of radioactive material transportation it is important to consider the response of Type B packages to environments more severe than that prescribed by the hypothetical accident sequence in Title 10 Part 71 of the Code of Federal Regulations (NRC 1995). The impact event in this sequence is a 9-meter drop onto an essentially unyielding target, resulting in an impact velocity of 13.4 m/s. The behavior of 9 packages when subjected to impacts more severe than this is not well known. It is the purpose of this program to evaluate the structural response of a test package to these environments. Several types of structural response are considered. Of primary importance is the behavior of the package containment boundary, including the bolted closure and 0-rings. Other areas of concern are loss of shielding capability due to lead slump and the deceleration loading of package contents, that may cause damage to them. This type of information is essential for conducting accurate risk assessments on the transportation of radioactive materials. Currently very conservative estimates of the loss of package protection are used in these assessments. This paper will summarize the results of a regulatory impact test and three extra-regulatory impact tests on a sample package.

  19. Leak test fitting

    DOE Patents [OSTI]

    Pickett, Patrick T.

    1981-01-01

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  20. Leak test fitting

    DOE Patents [OSTI]

    Pickett, P.T.

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  1. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  2. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting-Test-Facilities Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology &...

  3. test and evaluation

    National Nuclear Security Administration (NNSA)

    5%2A en Office of Test and Evaluation http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshiptestcapabilitiesand-eval

  4. Sensitivity testing and analysis

    SciTech Connect (OSTI)

    Neyer, B.T.

    1991-01-01

    New methods of sensitivity testing and analysis are proposed. The new test method utilizes Maximum Likelihood Estimates to pick the next test level in order to maximize knowledge of both the mean, {mu}, and the standard deviation, {sigma} of the population. Simulation results demonstrate that this new test provides better estimators (less bias and smaller variance) of both {mu} and {sigma} than the other commonly used tests (Probit, Bruceton, Robbins-Monro, Langlie). A new method of analyzing sensitivity tests is also proposed. It uses the Likelihood Ratio Test to compute regions of arbitrary confidence. It can calculate confidence regions, for {mu}, {sigma}, and arbitrary percentiles. Unlike presently used methods, such as the program ASENT which is based on the Cramer-Rao theorem, it can analyze the results of all sensitivity tests, and it does not significantly underestimate the size of the confidence regions. The new test and analysis methods will be explained and compared to the presently used methods. 19 refs., 12 figs.

  5. Coaxial test fixture

    DOE Patents [OSTI]

    Praeg, Walter F.

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  6. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  7. Nanomechanical testing system

    DOE Patents [OSTI]

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2014-07-08

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  8. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  9. Nanomechanical testing system

    DOE Patents [OSTI]

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-01-27

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  10. Nanomechanical testing system

    DOE Patents [OSTI]

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-02-24

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  11. Rapid prototype and test

    SciTech Connect (OSTI)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  12. Robust Systems Test Framework

    Energy Science and Technology Software Center (OSTI)

    2003-01-01

    The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF alsomore » provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.« less

  13. Westinghouse Test Stand Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Non-Proprietary Class 3 © 2014 Westinghouse Electric Company LLC. All Rights Reserved MT-14-12 Westinghouse VERA Test Stand Zero Power Physics Test Simulations for the AP1000® PWR Fausto Franceschini, Westinghouse Electric Company LLC Andrew Godfrey, Oak Ridge National Laboratory Joel Kulesza, Westinghouse Electric Company LLC Robert Oelrich, Westinghouse Electric Company LLC L3.AMA.VDT.P8.01 Milestone Report CASL-U-2014-0012-000 March 6, 2014 MT-14-12 Westinghouse VERA Test Stand

  14. STAR Test Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STAR Test Environment STAR Test Environment These instructions describe how to set up the STAR environment independent of the production environment in order to test different installations in $OPTSTAR and $GROUP_DIR. If you want to modify those installations you will need access to the starofl account. Bypass STAR envionment login Edit your ~/.pdsf_setup file changing the STAR_LINUX_SETUP to "use_none" and start a new session. You should not see all the STAR environmental variables

  15. Radiation Safety Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Procedure: All Training and Testing Material is for LSU CAMD Users ONLY! Please complete at least two weeks prior to your arrival at CAMD. Please enter your personal information in the spaces below. After that, complete the Radiation Safety Test. This form can also be picked up and filled out in the CAMD front office, rm. 107 A minimum passing score is 80% (24 out of 30) After completing the test, you will be notified by e-mail or telephone for further instructions. You can prepare for

  16. Galveston Test | Open Energy Information

    Open Energy Info (EERE)

    Galveston Test Jump to: navigation, search Name Galveston Test Facility Galveston Test Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point...

  17. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Energy Savers [EERE]

    Technology Testing Center Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an ...

  18. Request for Information: Operation of Regional Test Center Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information: Operation of Regional Test Center Test Bed Located at SolarTAC Request for Information: Operation of Regional Test Center Test Bed Located at SolarTAC Solicitation...

  19. PAM stack test utility

    Energy Science and Technology Software Center (OSTI)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  20. Test NIMROD Pictures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index of Pictures Taken 26-Aug-1999 Index of Pictures Taken 19-Aug-1999 Index of Pictures Taken 26-April-1999 Data Taken From Various Test Runs Pictures of Original Prototypes...

  1. Irrigation Pump Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the pump's operating performance including lift, discharge pressure, power input, and water flow. The results of the pump test provide a value for the overall efficiency of the...

  2. United States Nuclear Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  3. Project W-320, combined pump winch assembly test - Test report

    SciTech Connect (OSTI)

    Bellomy, J.R., Westinghouse Hanford

    1996-05-15

    Test report documenting results of the Project W-320 combined pump/winch test performed at Lawrence Pumps.

  4. Testing of GFL Geosiphon

    SciTech Connect (OSTI)

    Steimke, J.L.

    2001-07-10

    A full-scale, transparent replica of a GeoSiphon was constructed in the TFL to test a new concept, using a solar powered vacuum pump to remove accumulated gases from the air chamber. It did not have a treatment cell containing iron filings as do the actual TNX GeoSiphons in the field, but it was accurate in all other respects. The gas generation that is observed in an actual GeoSiphon was simulated by air injection at the inlet of the TFL GeoSiphon. After facility shakedown, three stages of testing were conducted: verification testing, parametric testing and long term testing. In verification testing, the TFL GeoSiphon was used to reproduce a particular test at TNX in which the water flowrate decreased gradually as the result of air accumulation at the crest of a siphon without an air chamber. For this test the vacuum pump was not used and the air chamber was initially filled with air rather than water. Agreement between data from the TNX GeoSiphon and the TFL GeoSiphon was good, which gave confidence that the TFL GeoSiphon was a good hydraulic representation of the TNX GeoSiphon. For the remaining tests, the solar powered vacuum pump and air chamber were used. In parametric testing, steady state runs were made for water flowrates ranging from 1 gpm to 19 gpm, air injection rates ranging from 0 to 77 standard cc/min and outfall line angles ranging from vertical to 60 degrees from vertical. In all cases, the air chamber and vacuum pump removed nearly all of the air and the GeoSiphon operated without problems. In long term testing, the GeoSiphon was allowed to run continuously for 21 days at one set of conditions. During this time the solar cell kept the storage battery fully charged at all times and the control circuit for the vacuum pump operated reliably. The solar panel was observed to have a large excess capacity when used with the vacuum pump. With two changes, the concept of using a solar powered vacuum pump attached to an air chamber should be ready for long term use in the field. Those changes are to insulate the air chamber of the GeoSiphon so it will not freeze in the winter and to make the tank from steel rather than transparent plastic.

  5. Test Circuit Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Circuit Service Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network

  6. Flexibility in Testing Configurations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Testing Configurations PSEL's infrastructure allows researchers to address critical issues of PV reliability and power availability. The lab offers four different load configuration capabilities, combining various levels of system amps, volts, and watts, and both indoor and outdoor testing and calibration facilities where laboratory-controlled experiments can be conducted with a wide variety of realistic PV systems scenarios. Expertise, Knowledge, & Partnerships PSEL's systems-level

  7. Abuse Testing Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abuse Testing Capabilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  8. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  9. Corrosion testing using isotopes

    DOE Patents [OSTI]

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  10. Corrosion testing using isotopes

    DOE Patents [OSTI]

    Hohorst, Frederick A. (Idaho Falls, ID)

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  11. EIA Radio test

    Gasoline and Diesel Fuel Update (EIA)

    September 10, 2012 Test of Energy News Radio Service This is a test audio file of the U.S. Energy Information Administration's energy news radio service to be launched on Tuesday, September 11 th with the release of EIA's monthly Short-Term Energy Outlook. EIA's radio service will provide free short broadcast stories on EIA energy data reports and analysis to radio stations nationwide. The stories will be recorded in MP3 format and can be downloaded from EIA's radio service webpage at

  12. Furball Explosive Breakout Test

    SciTech Connect (OSTI)

    Carroll, Joshua David

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  13. Micromachine friction test apparatus

    DOE Patents [OSTI]

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  14. Duct Leakage Repeatability Testing

    SciTech Connect (OSTI)

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  15. Review of Test Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Revision 1 Effective June 2008 Review of Test Results Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: _________________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GAC004 Revision 1 2 ©2006 Electric Transportation Applications All Rights Reserved Table Of Contents 1 Objective

  16. Control of Test Conduct

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Revision 1 Effective June 2008 Control of Test Conduct Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: _________________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GAC002 Revision 1 2 Table of Contents 1 Objective ..................................................................................................................... 3 2

  17. Audiometry (hearing test)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The audiogram is an evaluation of how well an individual can hear. Sounds are presented to the individual through earphones during the test. These sounds are presented at different levels of frequency and intensity. The human ear responds to the frequency or pitch of a sound and the intensity or loudness of the sound.

  18. MST Filterability Tests

    SciTech Connect (OSTI)

    Poirier, M. R.; Burket, P. R.; Duignan, M. R.

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  19. Test Proposal Document for Phased Field Thermal Testing in Salt |

    Energy Savers [EERE]

    Department of Energy Test Proposal Document for Phased Field Thermal Testing in Salt Test Proposal Document for Phased Field Thermal Testing in Salt The document summarizes how a new round of staged thermal field testing will help to augment the safety case for disposal of heat generating nuclear waste in salt. The objectives of the proposed test plan are to: (1) address features, events, and processes (FEPs), (2) build scientific and public confidence, (3) foster international

  20. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  1. Long Duration Directional Drives for Star Formation and Photoionization

    SciTech Connect (OSTI)

    Kane, J. O.; Martinez, D. A.; Pound, M. W.; Heeter, R. F.; Villette, B.; Casner, A.; Mancini, R. C.

    2015-06-18

    This research will; confirm the possibility of studying the structure and evolution of star-forming regions of molecular clouds in the laboratory; test the cometary model for the formation of the pillar structures in molecular clouds; assess the effect of magnetic fields on the evolution of structures in molecular clouds; and develop and demonstrate a new, long-duration (60-100 ns), directional source of x-ray radiation that can be used for the study of deeply nonlinear hydrodynamics, hydrodynamic instabilities that occur in the presence of directional radiation, shock-driven and radiatively-driven collapse of dense cores, and photoionization. Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF and other experimental facilities. The result will be to both to bring new perspectives to the studies of hydrodynamics in inertial confinement fusion and HED scenarios in general, and to promote interest in the STEM disciplines.

  2. CASL Test Stand Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Test Stand Experience Stephen Hess, EPRI Heather Feldman, EPRI Brenden Mervin, EPRI Martin Pytel, EPRI Rose Montgomery, TVA Bill Bird, TVA Fausto Franceschini, Westinghouse Electric Company LLC Advanced Modeling Applications 28 March 2014 CASL-U-2014-0036-000 Consortium for Advanced Simulation of LWRs ii CASL-U-2014-0036-000 REVISION LOG Revision Date Affected Pages Revision Description 0 3/28/2014 All Original Report Document pages that are: Export Controlled

  3. Membrane Permeation Testing System

    Energy Innovation Portal (Marketing Summaries) [EERE]

    A simple and rapid method for the screening of the permeability and selectivity of membranes for gas separation has been developed. A high throughput membrane testing system permits simultaneous evaluation of multiple membranes under conditions of moderate pressure and temperature for both pure gases and gas mixtures. The modular design, on-line sample analysis, and automation-competence of the technology provides a cost-effective approach to identify the optimal membrane for a given gas...

  4. Novel rocket design flight tested

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel rocket design flight tested Novel rocket design flight tested Scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that...

  5. NREL: Wind Research - Accredited Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accredited Testing NREL has testing capabilities that are accredited by the American Association of Laboratory Accreditation (A2LA). Currently, NREL is one of only two facilities in the United States that are A2LA accredited. Small and large wind turbines are given a suite of tests that test acoustic noise emissions, duration, load, power performance, power quality, and safety and function. Each of the tests is briefly described below. Tests are performed to International Electrotechnical

  6. Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site Operations & Maintenance Safety - Sandia Energy Energy Search Icon Sandia Home ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  7. SPECTR System Operational Test Report

    SciTech Connect (OSTI)

    W.H. Landman Jr.

    2011-08-01

    This report overviews installation of the Small Pressure Cycling Test Rig (SPECTR) and documents the system operational testing performed to demonstrate that it meets the requirements for operations. The system operational testing involved operation of the furnace system to the design conditions and demonstration of the test article gas supply system using a simulated test article. The furnace and test article systems were demonstrated to meet the design requirements for the Next Generation Nuclear Plant. Therefore, the system is deemed acceptable and is ready for actual test article testing.

  8. Stress Test | Open Energy Information

    Open Energy Info (EERE)

    Stress Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stress Test Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration...

  9. Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area (1979) Raft River Geothermal Area 1979 1979 Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Injectivity Test...

  10. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect (OSTI)

    1992-03-01

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  11. Antifoam degradation testing

    SciTech Connect (OSTI)

    Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.; Williams, M. S.

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  12. Resonance test system

    DOE Patents [OSTI]

    Musial, Walter; White, Darris

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  13. Nuclear testing continues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing continues The actual transfer of the responsibility for atomic energy research and weapons production from the Army to the Atomic Energy Commission did not take place until January, 1947. However, the later part of 1945 and the entire year of 1946 was a time of transition and turmoil amid the continuing demand to produce more nuclear weapons. While in Oak Ridge Y-12 continued to produce uranium 235 in ever increasing purity and quantity assisted by the increased production of K-25, Los

  14. HBLED Hot Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HBLED Hot Testing 2014 Building Technologies Office Peer Review Dr. Richard Solarz, richard.solarz@kla-tencor.com KLA-Tencor Project Summary Timeline: Start date: 9/20/12 Planned end date: Early 2015 (3 or 4 month ext. request planned) Key Milestones: 1. Initial maps of CIE variation vs phosphor and film temperature variations 7/18/2013 actual 9/19/2013 2. LED partner crosscheck 2/24/2014 actual 1/13/2013 3. Conceptual Design for high throughput tool 7/28/2014 Budget: $3,994,729 DOE, $4,626,422

  15. Reversal bending fatigue testing

    DOE Patents [OSTI]

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  16. Sculpt test problem analysis.

    SciTech Connect (OSTI)

    Sweetser, John David

    2013-10-01

    This report details Sculpt's implementation from a user's perspective. Sculpt is an automatic hexahedral mesh generation tool developed at Sandia National Labs by Steve Owen. 54 predetermined test cases are studied while varying the input parameters (Laplace iterations, optimization iterations, optimization threshold, number of processors) and measuring the quality of the resultant mesh. This information is used to determine the optimal input parameters to use for an unknown input geometry. The overall characteristics are covered in Chapter 1. The speci c details of every case are then given in Appendix A. Finally, example Sculpt inputs are given in B.1 and B.2.

  17. Hydroshear Simulation Lab Test 2

    SciTech Connect (OSTI)

    Bauer, Steve

    2014-08-01

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets

  18. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  19. HEV America Baseline Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BASELINE TEST SEQUENCE Revision 1 September 1, 2006 Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: __________ Roberta Brayer Approved by: _________ _________________________________ Date: _______________ _____ Donald B. Karner ©2005 Electric Transportation Applications All Rights Reserved HEV America Baseline Test Sequence Page 1 HEV PERFORMANCE TEST PROCEDURE SEQUENCE The following test sequence shall be used for conduct of HEV America

  20. Hydroshear Simulation Lab Test 2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets