Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dual Axis Radiographic Hydrodynamic Test Facility | National...  

National Nuclear Security Administration (NNSA)

Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

2

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

3

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

4

Dual Axis Radiographic Hydrodynamic Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DARHT Facility: A critical component of stockpile stewardship DARHT Facility: A critical component of stockpile stewardship A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Dominic Tafoya and Dave Honaberger prepare a refurbished DARHT (Dual Axis Radiographic Hydrotest Facility) 2nd axis accelerator cell for magnetic axis alignment measurements. Contact Group Leader Terry Priestley (505) 665-1330 Email Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility 4:17 How DARHT Works The weapons programs at Los Alamos have one principal mission: ensure the safety, security, and effectiveness of nuclear weapons in our nation's

5

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons.

6

Property:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facility Type Hydrodynamic Testing Facility Type Jump to: navigation, search Property Name Hydrodynamic Testing Facility Type Property Type Page Pages using the property "Hydrodynamic Testing Facility Type" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Flume + 10-ft Wave Flume Facility + Flume + 11-ft Wave Flume Facility + Flume + 2 2-ft Flume Facility + Flume + 3 3-ft Wave Flume Facility + Flume + 5 5-ft Wave Flume Facility + Flume + 6 6-ft Wave Flume Facility + Flume + A Alden Large Flume + Flume + Alden Small Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + Tunnel +

7

EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

8

Implementations and tests of Godunov-type particle hydrodynamics  

Science Journals Connector (OSTI)

......acceleration and the rate of change of the...prevents particle penetration. Furthermore...level of particle penetration. Additionally...hydrodynamic force and the rate of change of the...constant accretion rate during t collapse...show that particle penetration does not occur in......

S.-H. Cha; A. P. Whitworth

2003-03-21T23:59:59.000Z

9

Development and Implementation of Radiation-Hydrodynamics Verification Test Problems  

SciTech Connect (OSTI)

Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale numerical simulation software that solves the same set of equations. The one-dimensional, spherically symmetric Coggeshall No.9 and No.11 analytic solutions, cell-averaged over a uniform-grid have been developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE solutions with and without the heat conduction module. Solution convergence was analyzed based on radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-order convergence was expected for both cases. The global L1 errors were used to estimate the convergence rates with and without the heat conduction module implemented.

Marcath, Matthew J. [Los Alamos National Laboratory; Wang, Matthew Y. [Los Alamos National Laboratory; Ramsey, Scott D. [Los Alamos National Laboratory

2012-08-22T23:59:59.000Z

10

Radiation Hydrodynamics Test Problems with Linear Velocity Profiles  

SciTech Connect (OSTI)

As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

Hendon, Raymond C. [Los Alamos National Laboratory; Ramsey, Scott D. [Los Alamos National Laboratory

2012-08-22T23:59:59.000Z

11

4 - Hydrodynamic Lubrication  

Science Journals Connector (OSTI)

Publisher Summary In this chapter the basic principles of hydrodynamic lubrication are discussed. The mechanisms of hydrodynamic film generation and the effects of operating variables such as velocity, temperature, load, design parameters, etc., on the performance of such films are outlined. These are explained using bearings commonly found in many engineering applications as examples. Secondary effects in hydrodynamic lubrication such as viscous heating, compressible and non-Newtonian lubricants, bearing-vibration and deformation are described and their influence on bearing-performance assessed. The complete separation of sliding surfaces by a liquid film under full hydrodynamic lubrication can allow bearings to operate indefinitely without any wear. Any liquid or gas can be used for this form of lubrication, provided that no chemical attack on the bearing occurs. The disadvantage of hydrodynamic lubrication is that a non-zero sliding or “squeeze” velocity is required before load capacity is obtained. Some damage to bearings during starting or stopping is inevitable because of this condition. Vibration induced by hydrodynamic instability may occur during operation at high speeds and this should always be carefully controlled. Despite these deficiencies, hydrodynamic lubrication is the preferred form of lubrication in most bearing systems.

Gwidon W. Stachowiak; Andrew W. Batchelor

2006-01-01T23:59:59.000Z

12

4 Hydrodynamic Lubrication  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the theory of hydrodynamic lubrication. The chapter demonstrates how a basic property of all liquids, such as viscosity, can be used to produce cheap, reliable bearings that operate with low friction and wear. The mechanisms of hydrodynamic film generation and the effects of operating variables such as velocity, temperature, load, design parameters, etc., on the performance of such films are outlined. This is explained using bearings commonly found in many engineering applications as examples. Secondary effects in hydrodynamic lubrication such as viscous heating, compressible and non-Newtonian lubricants, bearing vibration and deformation is described and their influence on bearing performance is assessed. Like many important scientific principles, chance observation played an important role in the recognition of hydrodynamic action as a basic mechanism of bearing lubrication. The complete separation of sliding surfaces by a liquid film under full hydrodynamic lubrication can allow bearings to operate indefinitely without any wear. Any liquid or gas can be used for this form of lubrication provided that no chemical attack of the bearing occurs. The disadvantage of hydrodynamic lubrication is that a non-zero sliding or “squeeze” velocity is required before load capacity is obtained.

1993-01-01T23:59:59.000Z

13

Three Dimensional Numerical General Relativistic Hydrodynamics I: Formulations, Methods, and Code Tests  

E-Print Network [OSTI]

This is the first in a series of papers on the construction and validation of a three-dimensional code for general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the spacetime evolutions described by the full set of Einstein equations with a perfect fluid source. The numerical treatment of the general relativistic hydrodynamic equations is based on high resolution shock capturing schemes. These schemes rely on the characteristic information of the system. A spectral decomposition for general relativistic hydrodynamics suitable for a general spacetime metric is presented. Evolutions based on three different approximate Riemann solvers coupled to four different discretizations of the Einstein equations are studied and compared. The coupling between the hydrodynamics and the spacetime (the right and left hand side of the Einstein equations) is carried out in a treatment which is second order accurate in {\\it both} space and time. Convergence tests for all twelve combinations with a variety of test beds are studied, showing consistency with the differential equations and correct convergence properties. The test-beds examined include shocktubes, Friedmann-Robertson-Walker cosmology tests, evolutions of self-gravitating compact (TOV) stars, and evolutions of relativistically boosted TOV stars. Special attention is paid to the numerical evolution of strongly gravitating objects, e.g., neutron stars, in the full theory of general relativity, including a simple, yet effective treatment for the surface region of the star (where the rest mass density is abruptly dropping to zero).

J. A. Font; M. Miller; W. Suen; M. Tobias

1998-11-04T23:59:59.000Z

14

Hydrodynamics with Triangle Anomalies  

SciTech Connect (OSTI)

We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We show that a hitherto discarded term in the conserved current is not only allowed by symmetries, but is in fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential. The new kinetic coefficients can be expressed, in a unique fashion, through the anomaly coefficients and the equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations, including heavy-ion collisions.

Son, Dam T. [Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550 (United States); Surowka, Piotr [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

2009-11-06T23:59:59.000Z

15

Luminescence from hydrodynamic cavitation  

Science Journals Connector (OSTI)

...higher for monatomic gases than for more complicated...and polyatomic) gases, then the constituent...around 9000K for nitrogen and oxygen, and...ordinary diatomic gases. Only when the gas...hydrodynamic cavitation of water, containing dissolved...pressure. However, the solubility of xenon in water...

2011-01-01T23:59:59.000Z

16

A class of self-similar hydrodynamics test problems  

SciTech Connect (OSTI)

We consider self-similar solutions to the gas dynamics equations. One such solution - a spherical geometry Gaussian density profile - has been analyzed in the existing literature, and a connection between it, a linear velocity profile, and a uniform specific internal energy profile has been identified. In this work, we assume the linear velocity profile to construct an entire class of self-similar sol utions in both cylindrical and spherical geometry, of which the Gaussian form is one possible member. After completing the derivation, we present some results in the context of a test problem for compressible flow codes.

Ramsey, Scott D [Los Alamos National Laboratory; Brown, Lowell S [Los Alamos National Laboratory; Nelson, Eric M [Los Alamos National Laboratory; Alme, Marv L [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

17

Three Dimensional Numerical General Relativistic Hydrodynamics ; 1, Formulations, Methods, and Code Tests  

E-Print Network [OSTI]

This is the first in a series of papers on the construction and validation of a three-dimensional code for general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the spacetime evolutions described by the full set of Einstein equations with a perfect fluid source. The numerical treatment of the general relativistic hydrodynamic equations is based on high resolution shock capturing schemes. These schemes rely on the characteristic information of the system. A spectral decomposition for general relativistic hydrodynamics suitable for a general spacetime metric is presented. Evolutions based on three different approximate Riemann solvers coupled to four different discretizations of the Einstein equations are studied and compared. The coupling between the hydrodynamics and the spacetime (the right and left hand side of the Einstein equations) is carried ou...

Font, J A; Suen, W; Tobias, M

2000-01-01T23:59:59.000Z

18

Computational Ship Hydrodynamics MOERI Propeller  

E-Print Network [OSTI]

Computational Ship Hydrodynamics MOERI Propeller This area of research is coordinated by the ship 5415 #12;Fluid-Structure Interaction MOERI Propeller 22 Associate force fluid to structure Associate hydrodynamics problems, like slamming and whipping. The code has recently been applied to wind turbine flows

Kusiak, Andrew

19

Effects on the Physical Environment (Hydrodynamics, Sediment...  

Broader source: Energy.gov (indexed) [DOE]

Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water...

20

Group-invariant solutions of hydrodynamics and radiation hydrodynamics  

SciTech Connect (OSTI)

Using the property of invariance under Lie groups of transformations, the equations of hydrodynamics are transformed from partial differential equations to ordinary differential equations, for which special analytic solutions can be found. These particular solutions can be used for (1) numerical benchmarks, (2) the basis for analytic models, and (3) insight into more general solutions. Additionally, group transformations can be used to construct new solutions from existing ones. A space-time projective group is used to generate complicated solutions from simpler solutions. Discussion of these procedures is presented along with examples of analytic of 1,2 and 3-D hydrodynamics.

Coggeshall, S.V.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydrodynamic experiment provides key data for Stockpile Stewardship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

predictively model and assess weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for...

22

UCRL-CONF-212699 Hydrodynamic  

National Nuclear Security Administration (NNSA)

CONF-212699 CONF-212699 Hydrodynamic test problems B. Moran June 6, 2005 Five Lab Conference Vienna, Austria June 20, 2005 through June 24, 2005 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

23

Hydrodynamic Description of Protein Folding  

Science Journals Connector (OSTI)

A hydrodynamic description of protein folding is proposed and illustrated with a lattice protein model, which has a free energy surface (FES) typical of proteins with two-state folding kinetics. The flows from the unfolded to the native state are concentrated in a limited region of the FES. The rest is occupied by a flow “vortex”, which does not lead to the native state. In contrast with intermediates that are associated with local minima, the vortex is not visible on the FES. The hydrodynamic interpretation thus provides new insights into the mechanism of protein folding and can be a useful complement to standard analyses.

Sergei F. Chekmarev; Andrey Yu. Palyanov; Martin Karplus

2008-01-11T23:59:59.000Z

24

Colorado State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus Delivery Place Fort Collins, Colorado Zip 80523 Phone number (970) 491-8394 Website http://www.hydraulicslab.engr. Coordinates 40.575727216126°, -105.0833302192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.575727216126,"lon":-105.0833302192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

University of Maine Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website http://gradcatalog.umaine.edu/ Coordinates 44.9024546°, -68.6638413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9024546,"lon":-68.6638413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

University of Michigan Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Michigan Address 1085 South University Avenue Place Ann Arbor, Michigan Zip 48109 Sector Hydro Phone number (734) 764-9432 Website http://www.engin.umich.edu/dep Coordinates 42.2757556°, -83.7362041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2757556,"lon":-83.7362041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Pennsylvania State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

State University Hydrodynamics State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield Thomas Water Tunnel, PO Box 30 Place State College, Pennsylvania Zip 16804 Sector Hydro Phone number (814) 865-1741 Website http://www.arl.psu.edu/facilit Coordinates 40.7919761°, -77.8608811° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7919761,"lon":-77.8608811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Oregon State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Oregon State University Hydrodynamics Oregon State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331 Sector Hydro Phone number (541) 737-3631 Website http://wave.oregonstate.edu Coordinates 44.5642722°, -123.2785942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5642722,"lon":-123.2785942,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

University of Minnesota Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Minnesota Address St. Anthony Falls Laboratory, 2 Third Avenue SE Place Minneapolis, MN Zip 55414 Sector Hydro Phone number (612) 624-4363 Website http://www.safl.umn.edu/ Coordinates 44.9824832°, -93.2550859° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9824832,"lon":-93.2550859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Sandia National Laboratories Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Laboratories Hydrodynamics Laboratories Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Sandia National Laboratories Address P.O. Box 5800 Place Albuquerque, NM Zip 87185 Sector Hydro Website http://www.sandia.gov/vqsec/SO Coordinates 34.9799999°, -106.52° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9799999,"lon":-106.52,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Massachusetts Institute of Technology Hydrodynamics | Open Energy  

Open Energy Info (EERE)

Massachusetts Institute of Technology Hydrodynamics Massachusetts Institute of Technology Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Massachusetts Institute of Technology Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Sector Hydro Phone number (617) 254-4348 Website http://web.mit.edu/towtank/www Coordinates 42.3597807°, -71.0936091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3597807,"lon":-71.0936091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Foundation of Hydrodynamics of Strongly Interacting Systems  

E-Print Network [OSTI]

Hydrodynamics and quantum mechanics have many elements in common, as the density field and velocity fields are common variables that can be constructed in both descriptions. Starting with the Schroedinger equation and the Klein-Gordon for a single particle in hydrodynamical form, we examine the basic assumptions under which a quantum system of particles interacting through their mean fields can be described by hydrodynamics.

Cheuk-Yin Wong

2014-04-03T23:59:59.000Z

33

Disruptive Innovation in Numerical Hydrodynamics  

SciTech Connect (OSTI)

We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

Waltz, Jacob I. [Los Alamos National Laboratory

2012-09-06T23:59:59.000Z

34

Revisiting spherically symmetric relativistic hydrodynamics  

E-Print Network [OSTI]

In this paper we revise two classical examples of Relativistic Hydrodynamics in order to illustrate in detail the numerical methods commonly used in fluid dynamics, specifically those designed to deal with shocks, which are based on a finite volume approximation. The two cases we consider are the relativistic blast wave problem and the evolution of a Tolman-Oppenheimer-Volkoff star model, in spherical symmetry. In the first case we illustrate the implementation of relativistic Euler's equations on a fixed background space-time, whereas in the second case we also show how to couple the evolution of the fluid to the evolution of the space-time.

F. S. Guzman; F. D. Lora-Clavijo; M. D. Morales

2012-12-06T23:59:59.000Z

35

Hydrodynamic Modeling and the QGP Shear Viscosity  

E-Print Network [OSTI]

In this article, we will briefly review the recent progress on hydrodynamic modeling and the extraction of the quark-gluon plasma (QGP) specific shear viscosity with an emphasis on results obtained from the hybrid model VISHNU that couples viscous hydrodynamics for the macroscopic expansion of the QGP to the hadron cascade model for the microscopic evolution of the late hadronic stage.

Huichao Song

2012-07-10T23:59:59.000Z

36

Cornell University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

University Hydrodynamics University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Cornell University Address DeFrees Hydraulics Laboratory, School of Civil and Environmental Engineering, 2B20 Hollister Place Ithaca, New York Zip 14853 Sector Hydro Phone number (607) 255-5140 Website http://www.cee.cornell.edu/abo Coordinates 42.4467049°, -76.4830579° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4467049,"lon":-76.4830579,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Simulation of Wave Effect on Ship Hydrodynamics by RANSE  

Science Journals Connector (OSTI)

The application of advanced numerical methods based on the solution of RANSE and VOF equations on the prediction of ship hydrodynamics is presented. The test cases selected ... restrained and free oblique motions...

Qiuxin Gao; Dracos Vassalos

2011-01-01T23:59:59.000Z

38

Hydrodynamic analysis of mooring lines based on optical tracking experiments  

E-Print Network [OSTI]

of mooring lines on the global motions of a moored offshore platform. In the present study, an experimental investigation of the hydrodynamic characteristics of various mooring elements is implemented through free and forced oscillation tests. Since no direct...

Yang, Woo Seuk

2009-05-15T23:59:59.000Z

39

Follow-up on the Los Alamos National Laboratory Hydrodynamic...  

Office of Environmental Management (EM)

Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program DOEIG-0930 December 2014 U.S. Department of Energy Office of Inspector General Office of Audits and...

40

Effects on the Physical Environment (Hydrodynamics, and Water...  

Broader source: Energy.gov (indexed) [DOE]

Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the...

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Detonation waves in relativistic hydrodynamics  

Science Journals Connector (OSTI)

This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: p=(?-1)? where p, ?, and ? are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial ?(X) where X is the ratio ?/?0 of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

Mahdy Cissoko

1992-02-15T23:59:59.000Z

42

Hydrodynamics of vibrated granular monolayer.  

SciTech Connect (OSTI)

We investigate the long-standing puzzle of phase separation in a granular monolayer vibrated from below. Although this system is three dimensional, an interesting dynamics occurs mostly in the horizontal plane, perpendicular to the direction of vibration. Experiments [Olafsen and Urbach, Phys. Rev. Lett. 81 4369 (1998)] demonstrated that for a high amplitude of vibration the system is in the gaslike phase, but when the amplitude becomes smaller than a certain threshold, a phase separation occurs: A solidlike dense condensate of particles forms in the center of the system, surrounded by particles in the gaslike phase. We explain theoretically the experimentally observed coexistence of dilute and dense phases, employing Navier-Stokes granular hydrodynamics. We show that the phase separation is associated with a negative compressibility of granular gas.

Khain, E.; Aranson, I. S. (Materials Science Division); (Oakland Univ.)

2011-01-01T23:59:59.000Z

43

Non abelian hydrodynamics and heavy ion collisions  

SciTech Connect (OSTI)

The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

Calzetta, E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

2014-01-14T23:59:59.000Z

44

Vortex lines and transitions in superfluid hydrodynamics  

Science Journals Connector (OSTI)

...Preface to Vortices, dislocations, and line singularities in partial differential equations...Leslie and J. R. Ockendon. Vortex lines and transitions in superfluid hydrodynamics...nature and the motion of qunatized vortex lines. This paper illustrates the transitions...

1997-01-01T23:59:59.000Z

45

A test suite for quantitative comparison of hydrodynamics codes in astrophysics  

E-Print Network [OSTI]

We test four commonly used astrophysical simulation codes; Enzo, Flash, Gadget and Hydra, using a suite of numerical problems with analytic initial and final states. Situations similar to the conditions of these tests, a Sod shock, a Sedov blast and both a static and translating King sphere occur commonly in astrophysics, where the accurate treatment of shocks, sound waves, supernovae explosions and collapsed haloes is a key condition for obtaining reliable validated simulations. We demonstrate that comparable results can be obtained for Lagrangian and Eulerian codes by requiring that approximately one particle exists per grid cell in the region of interest. We conclude that adaptive Eulerian codes, with their ability to place refinements in regions of rapidly changing density, are well suited to problems where physical processes are related to such changes. Lagrangian methods, on the other hand, are well suited to problems where large density contrasts occur and the physics is related to the local density it...

Tasker, Elizabeth J; Mitchell, Nigel L; Michielsen, Dolf; Hopton, Stephen; Pearce, Frazer R; Bryan, Greg L; Theuns, Tom

2008-01-01T23:59:59.000Z

46

An Owner's Guide to Smoothed Particle Hydrodynamics  

E-Print Network [OSTI]

We present a practical guide to Smoothed Particle Hydrodynamics (\\SPH) and its application to astrophysical problems. Although remarkably robust, \\SPH\\ must be used with care if the results are to be meaningful since the accuracy of \\SPH\\ is sensitive to the arrangement of the particles and the form of the smoothing kernel. In particular, the initial conditions for any \\SPH\\ simulation must consist of particles in dynamic equilibrium. We describe some of the numerical difficulties that may be encountered when using \\SPH, and how these may be overcome. Through our experience in using \\SPH\\ code to model convective stars, galaxy clusters and large scale structure problems we have developed many diagnostic tests. We give these here as an aid to rapid identification of errors, together with a list of basic prerequisites for the most efficient implementation of \\SPH.

T. J. Martin; F. R. Pearce; P. A. Thomas

1993-10-13T23:59:59.000Z

47

A test suite for quantitative comparison of hydrodynamics codes in astrophysics  

E-Print Network [OSTI]

We test four commonly used astrophysical simulation codes; Enzo, Flash, Gadget and Hydra, using a suite of numerical problems with analytic initial and final states. Situations similar to the conditions of these tests, a Sod shock, a Sedov blast and both a static and translating King sphere occur commonly in astrophysics, where the accurate treatment of shocks, sound waves, supernovae explosions and collapsed haloes is a key condition for obtaining reliable validated simulations. We demonstrate that comparable results can be obtained for Lagrangian and Eulerian codes by requiring that approximately one particle exists per grid cell in the region of interest. We conclude that adaptive Eulerian codes, with their ability to place refinements in regions of rapidly changing density, are well suited to problems where physical processes are related to such changes. Lagrangian methods, on the other hand, are well suited to problems where large density contrasts occur and the physics is related to the local density itself rather than the local density gradient.

Elizabeth J. Tasker; Riccardo Brunino; Nigel L. Mitchell; Dolf Michielsen; Stephen Hopton; Frazer R. Pearce; Greg L. Bryan; Tom Theuns

2008-08-13T23:59:59.000Z

48

University of New Hampshire Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of New Hampshire Address Chase Ocean Engineering Laboratory, 24 Colovos Road Place Durham, NH Zip 03824 Sector Hydro Phone number (603) 862-0672 Website http://marine.unh.edu/faciliti Coordinates 43.1362084°, -70.9387742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1362084,"lon":-70.9387742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Ship capsizing analysis using advanced hydrodynamic modelling  

Science Journals Connector (OSTI)

...hydrodynamic forces due to radiation and di raction is based...nonlinear dependence of the radiation/di raction forces...switching between the radiation coe cients (see x 5...viding us with the software Simbel, and R. Pereira...International Convention for the Safety of Life at Sea, 1974...

2000-01-01T23:59:59.000Z

50

(Non)-Dissipative Hydrodynamics on Embedded Surfaces  

E-Print Network [OSTI]

We construct the theory of dissipative hydrodynamics of uncharged fluids living on embedded space-time surfaces to first order in a derivative expansion in the case of codimension-1 surfaces (including fluid membranes) and the theory of non-dissipative hydrodynamics to second order in a derivative expansion in the case of codimension higher than one under the assumption of no angular momenta in transverse directions to the surface. This construction includes the elastic degrees of freedom, and hence the corresponding transport coefficients, that take into account transverse fluctuations of the geometry where the fluid lives. Requiring the second law of thermodynamics to be satisfied leads us to conclude that in the case of codimension-1 surfaces the stress-energy tensor is characterized by 2 hydrodynamic and 1 elastic independent transport coefficient to first order in the expansion while for codimension higher than one, and for non-dissipative flows, the stress-energy tensor is characterized by 7 hydrodynamic and 3 elastic independent transport coefficients to second order in the expansion. Furthermore, the constraints imposed between the stress-energy tensor, the bending moment and the entropy current of the fluid by these extra non-dissipative contributions are fully captured by equilibrium partition functions. This analysis constrains the Young modulus which can be measured from gravity by elastically perturbing black branes.

Jay Armas

2014-09-17T23:59:59.000Z

51

HYDRODYNAMIC ISSUES IN PAMS MANDREL TARGET FABRICATION  

SciTech Connect (OSTI)

OAK-B135 Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

McQUILLAN,B.W; PAGUIO,R; SUBRAMANIAN,P; TAKAGI,M; ZEBIB,A

2003-09-01T23:59:59.000Z

52

A new shock-capturing numerical scheme for ideal hydrodynamics  

E-Print Network [OSTI]

We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.

Zuzana Feckova; Boris Tomasik

2015-01-07T23:59:59.000Z

53

A new shock-capturing numerical scheme for ideal hydrodynamics  

E-Print Network [OSTI]

We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.

Feckova, Zuzana

2015-01-01T23:59:59.000Z

54

LANL | Physics | Hydrodynamic Material Instabilities at extremes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding hydrodynamic material instabilities at extremes Understanding hydrodynamic material instabilities at extremes The National Nuclear Security Administration science-based stockpile stewardship program funds research that will improve critical physics-based dynamic materials models. Los Alamos National Laboratory and Lawrence Livermore National Laboratory, as nuclear weapon design laboratories, are mandated to predict the reliability and durability of the nuclear weapons stockpile. This is done using state-of-the-art supercomputers and computer codes. It is also important to have state-of-the-art physics models in these codes. Los Alamos has theory experts in dynamic materials, thus creating powerful working groups when combined with experimental experts in Physics Division and elsewhere. Key to the science-based stockpile stewardship program is making

55

Quantum Control of Molecular Gas Hydrodynamics  

E-Print Network [OSTI]

We demonstrate that strong impulsive gas heating or heating suppression at standard temperature and pressure can occur from coherent rotational excitation or de-excitation of molecular gases using a sequence of non-ionizing laser pulses. For the case of excitation, subsequent collisional decoherence of the ensemble leads to gas heating significantly exceeding that from plasma absorption under the same laser focusing conditions. In both cases, the macroscopic hydrodynamics of the gas can be finely controlled with ~40 fs temporal sensitivity.

Zahedpour, Sina; Milchberg, Howard

2014-01-01T23:59:59.000Z

56

An implicit Smooth Particle Hydrodynamic code  

SciTech Connect (OSTI)

An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

Charles E. Knapp

2000-04-01T23:59:59.000Z

57

13.024 Numerical Marine Hydrodynamics, Spring 2003  

E-Print Network [OSTI]

Introduction to numerical methods: interpolation, differentiation, integration, systems of linear equations. Solution of differential equations by numerical integration, partial differential equations of inviscid hydrodynamics: ...

Milgram, Jerome H.

58

Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics  

SciTech Connect (OSTI)

A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

Mendoza, M.; Herrmann, H. J. [ETH Zuerich, Computational Physics for Engineering Materials, Institute for Building Materials, Schafmattstrasse 6, HIF, CH-8093 Zuerich (Switzerland); Boghosian, B. M. [Department of Mathematics, Tufts University, Bromfield-Pearson, Medford, Massachusetts 02155 (United States); Succi, S. [Istituto per le Applicazioni del Calcolo C.N.R., Via dei Taurini, 19 00185, Rome (Italy) and Freiburg Institute for Advanced Studies, Albertstrasse, 19, D-79104, Freiburg (Germany)

2010-07-02T23:59:59.000Z

59

Hydrodynamic and Spectral Simulations of HMXB Winds  

E-Print Network [OSTI]

We describe preliminary results of a global model of the radiatively-driven photoionized wind and accretion flow of the high-mass X-ray binary Vela X-1. The full model combines FLASH hydrodynamic calculations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport. We present maps of the density, temperature, velocity, and ionization parameter from a FLASH two-dimensional time-dependent simulation of Vela X-1, as well as maps of the emissivity distributions of the X-ray emission lines.

Christopher W. Mauche; Duane A. Liedahl; Shizuka Akiyama; Tomasz Plewa

2007-04-02T23:59:59.000Z

60

Relativistic hydrodynamics with quantum hadrodynamics equation of state  

Science Journals Connector (OSTI)

We derive the equation of state of the quantum hydrodynamics Lagrangian in a classical approach. The obtained equation of state is then used as input in a relativistic hydrodynamical numerical routine. Rapidity and transverse momentum distributions are calculated and compared with experimental data on heavy ion collisions obtained at the Brookhaven National Laboratory Alternating Gradient Synchrotron and the CERN Super Proton Synchrotron.

D. P. Menezes; F. S. Navarra; M. Nielsen; U. Ornik

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Suspended sediment and hydrodynamics above mildly sloped long wave ripples  

E-Print Network [OSTI]

Suspended sediment and hydrodynamics above mildly sloped long wave ripples Yeon S. Chang of suspended sediment and the associated hydrodynamics over mildly sloped long wave ripples on the inner shelf m. The vertical and temporal structures of the suspended sediment concentration (SSC) are consistent

Kirby, James T.

62

Hydrodynamics of three-dimensional stacked hexatic liquid crystals  

Science Journals Connector (OSTI)

The hydrodynamic equations for three-dimensional stacked hexatic liquid crystals, i.e., for hexatic-B and its tilted analogs, smectic-F and smectic-I, are presented. Differences and similarities to the hydrodynamics of smectic-A and smectic-C are discussed and the role of the additional variable characterizing the bond orientational order is elucidated.

H. Pleiner and H. R. Brand

1984-02-01T23:59:59.000Z

63

Relativistic hydrodynamics in the presence of puncture black holes  

SciTech Connect (OSTI)

Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data.

Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Baumgarte, Thomas W. [Department of Physics and Astronomy, Bowdoin College, Brunswick, Maine 04011 (United States)

2007-11-15T23:59:59.000Z

64

Green's functions and hydrodynamics for isotopic binary diffusion  

E-Print Network [OSTI]

We study classical binary fluid mixtures in which densities vary on very short time (ps) and length (nm) scales, such that hydrodynamics does not apply. In a pure fluid with a localized heat pulse the breakdown of hydrodynamics was overcome using Green's functions which connect the initial densities to those at later times. Numerically it appeared that for long times the results from the Green's functions would approach hydrodynamics. In this paper we extend the Green's functions theory to binary mixtures. For the case of isothermal isobaric mutual diffusion in isotopic binary mixtures and ideal binary mixtures, which is easier to handle than heat conduction yet still non-trivial, we show analytically that in the Green's function approach one recovers hydrodynamic behaviour at long time scales provided the system reaches local equilibrium at long times. This is a first step toward giving the Green's function theory a firmer basis because it can for this case be considered as an extension of hydrodynamics.

R. van Zon; E. G. D. Cohen

2005-08-10T23:59:59.000Z

65

Hydrodynamical random walker with chemotactic memory  

E-Print Network [OSTI]

A three-dimensional hydrodynamical model for a micro random walker is combined with the idea of chemotactic signaling network of E. coli. Diffusion exponents, orientational correlation functions and their dependence on the geometrical and dynamical parameters of the system are analyzed numerically. Because of the chemotactic memory, the walker shows superdiffusing displacements in all directions with the largest diffusion exponent for a direction along the food gradient. Mean square displacements and orientational correlation functions show that the chemotactic memory washes out all the signatures due to the geometrical asymmetry of the walker and statistical properties are asymmetric only with respect to the direction of food gradient. For different values of the memory time, the Chemotactic index (CI) is also calculated.

H. Mohammady; B. Esckandariun; A. Najafi

2014-10-01T23:59:59.000Z

66

On some hydrodynamical aspects of quantum mechanics  

E-Print Network [OSTI]

In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the Borel-Weil contruction of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schr\\"odinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly compute the pressure gradient of this "Schr\\"odinger fluid" and determine its critical points. Its vorticity is also calculated and shown to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.

Mauro Spera

2009-02-04T23:59:59.000Z

67

Hydrodynamical random walker with chemotactic memory  

E-Print Network [OSTI]

A three-dimensional hydrodynamical model for a micro random walker is combined with the idea of chemotactic signaling network of E. coli. Diffusion exponents, orientational correlation functions and their dependence on the geometrical and dynamical parameters of the system are analyzed numerically. Because of the chemotactic memory, the walker shows superdiffusing displacements in all directions with the largest diffusion exponent for a direction along the food gradient. Mean square displacements and orientational correlation functions show that the chemotactic memory washes out all the signatures due to the geometrical asymmetry of the walker and statistical properties are asymmetric only with respect to the direction of food gradient. For different values of the memory time, the Chemotactic index (CI) is also calculated.

Mohammady, H; Najafi, A

2014-01-01T23:59:59.000Z

68

Three fluid hydrodynamics of spin-1 Bose-Einstein condensates  

E-Print Network [OSTI]

We study excitations of the spin-1 Bose gas at finite temperatures and in the presence of a not so strong magnetic field, or equivalently, when the gas sample is partially polarized. Motivated by the success of two-fluid hydrodynamics of scalar superfluids we develop a three-fluid hydrodynamic description to treat the low frequency and long wavelength excitations of the spin-1 Bose gas. We derive the coupled linear hydrodynamic equations of the three sounds and evaluate them numerically in a self-consistent mean field approximation valid for the dilute gas at the intermediate and critical temperature regions. In this latter region we identify the critical mode.

Gergely Szirmai; Peter Szepfalusy

2011-12-14T23:59:59.000Z

69

Three fluid hydrodynamics of spin-1 Bose-Einstein condensates  

E-Print Network [OSTI]

We study excitations of the spin-1 Bose gas at finite temperatures and in the presence of a not so strong magnetic field, or equivalently, when the gas sample is partially polarized. Motivated by the success of two-fluid hydrodynamics of scalar superfluids we develop a three-fluid hydrodynamic description to treat the low frequency and long wavelength excitations of the spin-1 Bose gas. We derive the coupled linear hydrodynamic equations of the three sounds and evaluate them numerically in a self-consistent mean field approximation valid for the dilute gas at the intermediate and critical temperature regions. In this latter region we identify the critical mode.

Szirmai, Gergely

2011-01-01T23:59:59.000Z

70

Bulk viscosity and cavitation in boost-invariant hydrodynamic expansion  

E-Print Network [OSTI]

We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon ...

Rajagopal, Krishna

71

Foundation of Hydrodynamics for Systems with Strong Interactions  

E-Print Network [OSTI]

For a dense and strongly interacting system, such as a nucleus or a strongly-coupled quark-gluon plasma, the foundation of hydrodynamics can be better found in the quantum description of constituents moving in the strong mean fields generated by all other particles. Using the result that the Schroedinger equation and the Klein-Gordon equation can be written in hydrodynamical forms, we find that the probability currents of the many-body system in the mean-field description obey a hydrodynamical equation with stress tensors arising from many contributions: quantum effects, mean-field interactions, and thermal fluctuations. The influence of various contributions to the hydrodynamical motion is expected to vary with the temperature, as the quantum and mean-field stress tensors playing more important roles at low and moderate temperatures.

Cheuk-Yin Wong

2010-11-30T23:59:59.000Z

72

13.012 Hydrodynamics for Ocean Engineering, Fall 2002  

E-Print Network [OSTI]

Development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics. Application of these principles to the solution of ocean engineering problems. Topics include ...

Techet, Alexandra Hughes

73

Second-Order Accurate Method for Solving Radiation-Hydrodynamics  

E-Print Network [OSTI]

Second-order discretization for radiation-hydrodynamics is currently an area of great interest. Second-order methods used to solve the respective single-physics problems often differ fundamentally, making it difficult to combine them in a second...

Edwards, Jarrod Douglas

2013-11-12T23:59:59.000Z

74

Commutators in Quantum Hydrodynamics for Interacting Bose Systems  

Science Journals Connector (OSTI)

It is shown that the curl of the velocity operator in the second quantized version of quantum hydrodynamics for interacting Bose systems is equal to zero, thus resolving the apparent discrepancies between various existing formulations.

Robert Fanelli and R. E. Struzynski

1969-06-05T23:59:59.000Z

75

Hydrodynamics of He3 in Anisotropic A Phase  

Science Journals Connector (OSTI)

The hydrodynamic theory of mass transport in A-He3 is derived from that phase's broken symmetries and thermodynamics. First, second, and fourth sound as well as orbit waves are obtained as the normal modes.

Robert Graham

1974-12-09T23:59:59.000Z

76

Lattice-Boltzmann modeling of phonon hydrodynamics  

Science Journals Connector (OSTI)

Based on the phonon Boltzmann equation, a lattice-Boltzmann model for phonon hydrodynamics is developed. Both transverse and longitudinal polarized phonons that interact through normal and umklapp processes are considered in the model. The collision term is approximated by the relaxation time model where normal and umklapp processes tend to relax distributions of phonons to their corresponding equilibrium distribution functions—the displaced Planck distribution and the Planck distribution, respectively. A macroscopic phonon thermal wave equation (PTWE), valid for the second-sound mode, is derived through the technique of Chapman-Enskog expansion. Compared to the dual-phase-lag (DPL) -based thermal wave equation, the PTWE has an additional fourth-ordered spatial derivative term. The fundamental difference between the two models is discussed through examining a propagating thermal pulse in a single-phased medium and the transient and steady-state transport phenomena on a two-layered structure subjected to different temperatures at boundaries. Results show that transport phenomena are significantly different between the two models. The behavior exhibited by the DPL model, as thermal wave behavior goes over to diffusive behavior, ?T??q is incompatible with any microscopic phonon propagating mode. Unlike the DPL model, in which ?T only has an effect on the transient phenomena, in the PTWE model ?T shows effects on phenomena at both transient and steady state. With the intrinsic compatibility to the microscopic state, discontinuous quantities, such as a jump of temperature at a boundary or at an interface, can be calculated naturally and straightforwardly with the present lattice-Boltzmann method.

Wen-Shu Jiaung and Jeng-Rong Ho

2008-06-23T23:59:59.000Z

77

Hydrodynamic construction of the electromagnetic field  

E-Print Network [OSTI]

We present an alternative Eulerian hydrodynamic model for the electromagnetic field in which the discrete vector indices in Maxwell\\s equations are replaced by continuous angular freedoms, and develop the corresponding Lagrangian picture in which the fluid particles have rotational and translational freedoms. This enables us to extend to the electromagnetic field the exact method of state construction proposed previously for spin 0 systems, in which the time-dependent wavefunction is computed from a single-valued continuum of deterministic trajectories where two spacetime points are linked by at most a single orbit. The deduction of Maxwell\\s equations from continuum mechanics is achieved by generalizing the spin 0 theory to a general Riemannian manifold from which the electromagnetic construction is extracted as a special case. In particular, the flat-space Maxwell equations are represented as a curved-space Schr\\"odinger equation for a massive system. The Lorentz covariance of the Eulerian field theory is obtained from the non-covariant Lagrangian-coordinate model as a kind of collective effect. The method makes manifest the electromagnetic analogue of the quantum potential that is tacit in Maxwell\\s equations. This implies a novel definition of the \\classical limit\\ of Maxwell\\s equations that differs from geometrical optics. It is shown that Maxwell\\s equations may be obtained by canonical quantization of the classical model. Using the classical trajectories a novel expression is derived for the propagator of the electromagnetic field in the Eulerian picture. The trajectory and propagator methods of solution are illustrated for the case of a light wave.

Peter Holland

2014-10-03T23:59:59.000Z

78

Hydrodynamics of rapidly rotating superfluid neutron stars with mutual friction  

E-Print Network [OSTI]

We study time evolutions of superfluid neutron stars, focussing on the nature of the oscillation spectrum, the effect of mutual friction force on the oscillations and the hydrodynamical spin-up phase of pulsar glitches. We linearise the dynamical equations of a Newtonian two-fluid model for rapidly rotating backgrounds. In the axisymmetric equilibrium configurations, the two fluid components corotate and are in beta-equilibrium. We use analytical equations of state that generate stratified and non-stratified stellar models, which enable us to study the coupling between the dynamical degrees of freedom of the system. By means of time evolutions of the linearised dynamical equations, we determine the spectrum of axisymmetric and non-axisymmetric oscillation modes, accounting for the contribution of the gravitational potential perturbations, i.e. without adopting the Cowling approximation. We study the mutual friction damping of the superfluid oscillations and consider the effects of the non-dissipative part of the mutual friction force on the mode frequencies. We also provide technical details and relevant tests for the hydrodynamical model of pulsar glitches discussed by Sidery, Passamonti and Andersson (2010). In particular, we describe the method used to generate the initial data that mimic the pre-glitch state, and derive the equations that are used to extract the gravitational-wave signal.

A. Passamonti; N. Andersson

2010-04-26T23:59:59.000Z

79

EXPLICIT-IMPLICIT SCHEME FOR RELATIVISTIC RADIATION HYDRODYNAMICS  

SciTech Connect (OSTI)

We propose an explicit-implicit scheme for numerically solving special relativistic radiation hydrodynamic equations, which ensures a conservation of total energy and momentum (matter and radiation). In our scheme, zeroth and first moment equations of the radiation transfer equation are numerically solved without employing a flux-limited diffusion approximation. For an hyperbolic term, of which the timescale is the light crossing time when the flow velocity is comparable to the speed of light, is explicitly solved using an approximate Riemann solver. Source terms describing an exchange of energy and momentum between the matter and the radiation via the gas-radiation interaction are implicitly integrated using an iteration method. The implicit scheme allows us to relax the Courant-Friedrichs-Lewy condition in optically thick media, where heating/cooling and scattering timescales could be much shorter than the dynamical timescale. We show that our numerical code can pass test problems of one- and two-dimensional radiation energy transport, and one-dimensional radiation hydrodynamics. Our newly developed scheme could be useful for a number of relativistic astrophysical problems. We also discuss how to extend our explicit-implicit scheme to the relativistic radiation magnetohydrodynamics.

Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)] [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken; Tomida, Kengo [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)] [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Sekiguchi, Yuichiro [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)] [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Inoue, Tsuyoshi, E-mail: takahashi@cfca.jp [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Sagamihara 229-8558 (Japan)] [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Sagamihara 229-8558 (Japan)

2013-02-20T23:59:59.000Z

80

Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam  

SciTech Connect (OSTI)

This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka 940-2188 (Japan); Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi [Extreme Energy-Density Research Institute, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka 940-2188 (Japan)

2006-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nonlinear reversible hydrodynamics of the superfluid phases of He3  

Science Journals Connector (OSTI)

The nonlinear reversible hydrodynamic equations for the superfluid phases of He3, i.e., He3-A, He3-A1, He3-B, He3-A in high magnetic fields, and He3-B in high magnetic fields, are derived. The Mermin-Ho—type relations for He3-A in high magnetic fields and He3-B in high magnetic fields are given for the first time. The influence of higher-order gradient terms in all phases is discussed, and a new class of nonlinear terms containing the various kinds of velocities is given which have not been considered so far for any of the five superfluid phases. In addition we show that the hydrodynamic equations for He3-A in high magnetic fields contain as a special case the hydrodynamics of superfluid He3-A1 and the orbit part of the hydrodynamic equations for He3 without external field. Furthermore, we point out some structural similarities in the equations for He3-A in high magnetic fields and He3-B in high magnetic fields. As an additional effect we find that the higher-order gradient terms imply a preferred direction in the hydrodynamic equations for superfluid He3-B.

H. Pleiner and H. Brand

1981-12-01T23:59:59.000Z

82

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Abstract A 2D reactive transport model of the Dixie Valley,Nevada, geothermal area was developed to assessfluid flow pathways and fluid rock interactionprocesses. Setting up the model includedspecification of the mineralogy of the different rockunits, the formulation of the corresponding mineraldissolution and precipitation reactions, the explicitdefinition of two major normal faults and thespecification of a dual continuum domain

83

Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics  

E-Print Network [OSTI]

Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties of the liquid/solid interface. Here we consider, using Molecular Dynamics simulations, the electric contribution to friction for charged surfaces, and the induced modification of the hydrodynamic boundary condition at the confining boundary. The consequences of liquid slippage for electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within the electric double layer, are explored. Strong amplification of electro-osmotic effects is revealed, and the non-trivial effect of surface charge is discussed. This work allows to reconsider existing experimental data, concerning Zeta potentials of hydrophobic surfaces and suggest the possibility to generate ``giant'' electro-osmotic and electrophoretic effects, with direct applications in microfluidics.

Laurent Joly; Christophe Ybert; Emmanuel Trizac; Lyderic Bocquet

2006-07-19T23:59:59.000Z

84

Discharge convective instability as modifier of nonlinear hydrodynamic spectrum  

E-Print Network [OSTI]

Discharge source is considered as modifier of flow hydrodynamic spectrum. Characteristic frequency of nonlinear spectrum and spectrum power were determined under conditions of arc sliding discharge in supersonic flow. Two stages of discharge were defined: sliding stage and still stage. It was found that stage transition occurs due to convective instability of discharge. Fraction of sliding stage in overall discharge duration is determined by averaged current that is general stable discharge parameter. This phenomenon gives opportunity to control power of pressure fluctuations spectrum. Theoretical insight of field and hydrodynamic factors influencing on pulsations frequency was achieved. Hydrodynamic resistance of discharge region and holding cathode electric field turned out to be basic factors of frequency modification. Corresponding experimental verification was taken. Basic frequency law was determined for several discharge regimes.

Sergey Kamenshchikov

2012-04-26T23:59:59.000Z

85

Time-domain simulation of the full hydrodynamic model  

E-Print Network [OSTI]

A simple upwind discretization of the highly coupled non-linear differential equations which define the hydrodynamic model for semiconductors is given in full detail. The hydrodynamic model is able to describe inertia effects which play an increasing role in different fields of opto- and microelectronics. A silicon $n^+ - n - n^+$ - structure is simulated, using the energy-balance model and the full hydrodynamic model. Results for stationary cases are then compared, and it is pointed out where the energy-balance model, which is implemented in most of today's commercial semiconductor device simulators, fails to describe accurately the electron dynamics. Additionally, a GaAs $n^+ - n - n^+$-structure is simulated in time-domain in order to illustrate the importance of inertia effects at high frequencies in modern submicron devices.

Aste, A

2003-01-01T23:59:59.000Z

86

Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint  

SciTech Connect (OSTI)

The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

2014-07-01T23:59:59.000Z

87

The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine  

Science Journals Connector (OSTI)

The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

I Bayati; J Jonkman; A Robertson; A Platt

2014-01-01T23:59:59.000Z

88

3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK  

SciTech Connect (OSTI)

3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

2006-08-24T23:59:59.000Z

89

Application of a panel method to hydrodynamics of underwater vehicles  

SciTech Connect (OSTI)

A low-order singularity panel method based on Green`s formulation is used to predict the hydrodynamics characteristics of underwater vehicles. The low-order modeling employs constant strength sources and doublets, and the body surface is modeled by quadrilaterals. The method is first applied to predicting the force and moment coefficients of underwater vehicles for the body-alone and finned configurations. Hydrodynamic coefficients of added mass and added moment of inertia are also calculated by modifying the code. Results for several two and three-dimensional bodies show the usefulness of the method for predicting the added mass and added moment of inertia.

Sahin, I. [Western Michigan Univ., Kalamazoo, MI (United States); Crane, J.W.; Watson, K.P. [Naval Surface Warfare Center, Panama City, FL (United States)

1994-12-31T23:59:59.000Z

90

Blockage effects on the hydrodynamic performance of a marine cross-flow turbine  

Science Journals Connector (OSTI)

...the hydrodynamic efficiency of the turbine for blockage ratios...0820.131. Turbine performance, kinetic and hydrodynamic efficiencies were only marginally...Crawford 2010 Overall efficiency of ducted tidal current turbines. In Proc. OCEANS...

2013-01-01T23:59:59.000Z

91

Lattice Boltzmann algorithm for three–dimensional liquid–crystal hydrodynamics  

Science Journals Connector (OSTI)

...P. Boon and P. V. Coveney Lattice Boltzmann algorithm for three-dimensional...hydrodynamics We describe a lattice Boltzmann algorithm to simulate liquid-crystal...nematics with an imposed twist. lattice Boltzmann|liquid crystal|hydrodynamics...

2004-01-01T23:59:59.000Z

92

An impulse framework for hydrodynamic force analysis : fish propulsion, water entry of spheres, and marine propellers  

E-Print Network [OSTI]

This thesis presents an impulse framework for analyzing the hydrodynamic forces on bodies in flow. This general theoretical framework is widely applicable, and it is used to address the hydrodynamics of fish propulsion, ...

Epps, Brenden P

2010-01-01T23:59:59.000Z

93

An overview of relativistic hydrodynamics as applied to heavy ion reactions  

SciTech Connect (OSTI)

The application of relativistic hydrodynamics as applied to heavy ions is reviewed. Constraints on the nuclear equation of state, as well as the form of the hydrodynamic equations imposed by causality are discussed. Successes (flow, side-splash, scaling) and shortcomings of one-fluid hydrodynamics are reviewed. Models for pion production within hydrodynamics and reasons for disagreement with experiment are assessed. Finally, the motivations for and the implementations of multi-fluid models are presented. 74 refs., 11 figs.

Strottman, D.D.

1989-01-01T23:59:59.000Z

94

Event-by-event hydrodynamics: A better tool to study the Quark-Gluon plasma  

SciTech Connect (OSTI)

Hydrodynamics has been established as a good tool to describe many data from relativistic heavyion collisions performed at RHIC and LHC. More recently, it has become clear that it is necessary to use event-by-event hydrodynamics (i.e. describe each collision individually using hydrodynamics), an approach first developed in Brazil. In this paper, I review which data require the use of event-by-event hydrodynamics and what more we may learn on the Quark-Gluon Plasma with this.

Grassi, Frederique [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

2013-03-25T23:59:59.000Z

95

Smoothed Particle Hydrodynamics in Flood Simulations Michal Chladek  

E-Print Network [OSTI]

Smoothed Particle Hydrodynamics in Flood Simulations Michal Chl´adek Comenius University we present a method for flood simulations of cities and complex models. SPH method is used- lenthaler and Pajarola 2009]. In this paper, we aim at proposing a solution for flood simulation of cities

Durikovic, Roman

96

IUTAM symposium on hydrodynamic diffusion of suspended particles  

SciTech Connect (OSTI)

Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

Davis, R.H. [ed.

1995-12-31T23:59:59.000Z

97

Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies  

E-Print Network [OSTI]

Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

2015-01-01T23:59:59.000Z

98

Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases  

E-Print Network [OSTI]

The hydrodynamic Burnett equations and the associated transport coefficients are exactly evaluated for generalized inelastic Maxwell models. In those models, the one-particle distribution function obeys the inelastic Boltzmann equation, with a velocity-independent collision rate proportional to the $\\gamma$ power of the temperature. The pressure tensor and the heat flux are obtained to second order in the spatial gradients of the hydrodynamic fields with explicit expressions for all the Burnett transport coefficients as functions of $\\gamma$, the coefficient of normal restitution, and the dimensionality of the system. Some transport coefficients that are related in a simple way in the elastic limit become decoupled in the inelastic case. As a byproduct, existing results in the literature for three-dimensional elastic systems are recovered, and a generalization to any dimension of the system is given. The structure of the present results is used to estimate the Burnett coefficients for inelastic hard spheres.

Nagi Khalil; Vicente Garzó; Andrés Santos

2014-05-06T23:59:59.000Z

99

Hydrodynamic instabilities in beryllium targets for the National Ignition Facility  

SciTech Connect (OSTI)

Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-09-15T23:59:59.000Z

100

Hydrodynamical Simulations of Jet- and Wind-driven Protostellar Outflows  

E-Print Network [OSTI]

We present two-dimensional hydrodynamical simulations of both jet- and wind-driven models for protostellar outflows in order to make detailed comparisons to the kinematics of observed molecular outflows. Comparing the different simulations with observations, we find that some outflows, e.g., HH 212, show features consistent with the jet-driven model, while others, e.g., VLA 05487, are consistent with the wind-driven model.

Chin-Fei Lee; James M. Stone; Eve C. Ostriker; Lee G. Mundy

2001-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hyperbolic Conservation Laws and Hydrodynamic Limit for Particle Systems  

E-Print Network [OSTI]

We study the following class of scalar hyperbolic conservation laws with discontinuous fluxes: \\partial_t\\rho+\\partial_xF(x,\\rho)=0. The main feature of such a conservation law is the discontinuity of the flux function in the space variable x. Kruzkov's approach for the L1-contraction does not apply since it requires the Lipschitz continuity of the flux function; and entropy solutions even for the Riemann problem are not unique under the classical entropy conditions. On the other hand, it is known that, in statistical mechanics, some microscopic interacting particle systems with discontinuous speed parameter lambda(x), in the hydrodynamic limit, formally lead to scalar hyperbolic conservation laws with discontinuous fluxes of the form: \\partial_t\\rho+\\partial_x(\\lambda(x)h(\\rho))=0. The natural question arises which entropy solutions the hydrodynamic limit selects, thereby leading to a suitable, physical relevant notion of entropy solutions of this class of conservation laws. This paper is a first step and provides an answer to this question for a family of discontinuous flux functions. In particular, we identify the entropy condition for our PDE and proceed to show the well-posedness by combining our existence result with a uniqueness result of Audusse-Perthame (2005) for the family of flux functions; we establish a compactness framework for the hydrodynamic limit of large particle systems and the convergence of other approximate solutions to our PDE, which is based on the notion and reduction of measure-valued entropy solutions; and we finally establish the hydrodynamic limit for a ZRP with discontinuous speed-parameter governed by an entropy solution to our PDE.

Gui-Qiang Chen; Nadine Even; Christian Klingenberg

2007-10-01T23:59:59.000Z

102

Hydrodynamic detonation instability in electroweak and QCD phase transitions  

Science Journals Connector (OSTI)

The hydrodynamic stability of deflagration and detonation bubbles for a first order electroweak and QCD phase transition has been discussed recently with the suggestion that detonations are stable. We examine here the case of a detonation more carefully. We find that in front of the bubble wall perturbations do not grow with time, but behind the wall modes exist which grow exponentially. We briefly discuss the possible meaning of this instability.

Mark Abney

1994-02-15T23:59:59.000Z

103

CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION  

SciTech Connect (OSTI)

We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1) an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.

Van der Holst, B.; Toth, G.; Sokolov, I. V.; Myra, E. S.; Fryxell, B.; Drake, R. P. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Powell, K. G. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Holloway, J. P. [Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Stout, Q. [Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Adams, M. L.; Morel, J. E. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Karni, S. [Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 (United States)

2011-06-01T23:59:59.000Z

104

Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics  

E-Print Network [OSTI]

We have developed a three-dimensional radiative transfer method designed specifically for use with parallel adaptive mesh refinement hydrodynamics codes. This new algorithm, which we call hybrid characteristics, introduces a novel form of ray tracing that can neither be classified as long, nor as short characteristics, but which applies the underlying principles, i.e. efficient execution through interpolation and parallelizability, of both. Primary applications of the hybrid characteristics method are radiation hydrodynamics problems that take into account the effects of photoionization and heating due to point sources of radiation. The method is implemented in the hydrodynamics package FLASH. The ionization, heating, and cooling processes are modelled using the DORIC ionization package. Upon comparison with the long characteristics method, we find that our method calculates the column density with a similarly high accuracy and produces sharp and well defined shadows. We show the quality of the new algorithm in an application to the photoevaporation of multiple over-dense clumps. We present several test problems demonstrating the feasibility of our method for performing high resolution three-dimensional radiation hydrodynamics calculations that span a large range of scales. Initial performance tests show that the ray tracing part of our method takes less time to execute than other parts of the calculation (e.g. hydrodynamics and adaptive mesh refinement), and that a high degree of efficiency is obtained in parallel execution. Although the hybrid characteristics method is developed for problems involving photoionization due to point sources, the algorithm can be easily adapted to the case of more general radiation fields.

Erik-Jan Rijkhorst; Tomasz Plewa; Anshu Dubey; Garrelt Mellema

2005-05-10T23:59:59.000Z

105

Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps  

E-Print Network [OSTI]

A density functional theory for colloidal dynamics is presented which includes hydrodynamic interactions between the colloidal particles. The theory is applied to the dynamics of colloidal particles in an optical trap which switches periodically in time from a stable to unstable confining potential. In the absence of hydrodynamic interactions, the resulting density breathing mode, exhibits huge oscillations in the trap center which are almost completely damped by hydrodynamic interactions. The predicted dynamical density fields are in good agreement with Brownian dynamics computer simulations.

M. Rex; H. Loewen

2008-03-13T23:59:59.000Z

106

Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures  

SciTech Connect (OSTI)

Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed.

Zhao, Y. [Battelle, Columbus, OH (United States). Engineering Mechanics Group

1996-12-01T23:59:59.000Z

107

Aspects of sensory cues and propulsion in marine zooplankton hydrodynamic disturbances.  

E-Print Network [OSTI]

??The hydrodynamic disturbances generated by two types of free-swimming, marine zooplankton were quantified experimentally in the laboratory with a novel, infrared Particle Image Velocimetry (PIV)… (more)

Catton, Kimberly Bernadine

2009-01-01T23:59:59.000Z

108

Numerical and experimental study of hydrodynamics in a compartmented fluidized bed oil palm shell biomass gasifier.  

E-Print Network [OSTI]

??Numerical and experimental studies of hydrodynamic parameters of fluidized beds formed by either a single component system or a binary mixture in a pilot plant… (more)

Wee, Siaw Khur

2011-01-01T23:59:59.000Z

109

Understanding the Hydrodynamics of Swimming: From Fish Fins to Flexible Propulsors for Autonomous  

E-Print Network [OSTI]

Understanding the Hydrodynamics of Swimming: From Fish Fins to Flexible Propulsors for Autonomous. The research effort described here is concerned with developing a maneuvering propulsor for an autonomous

Lauder, George V.

110

E-Print Network 3.0 - astrophysics hydrodynamical flows Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on astrophysical jets P. M. Bellan Summary: shock driven by an out- flow from a young, low mass star. Purely hydrodynamic models in which... Miniconference on astrophysical...

111

Smoothed Particle Hydrodynamics: Things I wish my mother taught me  

E-Print Network [OSTI]

I discuss the key features of Smoothed Particle Hydrodynamics (SPH) as a numerical method - in particular the key differences between SPH and more standard grid based approaches - that are important to the practitioner. These include the exact treatment of advection, the absence of intrinsic dissipation, exact conservation and more subtle properties that arise from its Hamiltonian formulation such as the existence of a minimum energy state for the particles. The implications of each of these are discussed, showing how they can be both advantages and disadvantages.

Price, Daniel J

2011-01-01T23:59:59.000Z

112

Hydrodynamic model for electron-hole plasma in graphene  

E-Print Network [OSTI]

We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii

2012-01-03T23:59:59.000Z

113

A CLASS OF PHYSICALLY MOTIVATED CLOSURES FOR RADIATION HYDRODYNAMICS  

SciTech Connect (OSTI)

Radiative transfer and radiation hydrodynamics use the relativistic Boltzmann equation to describe the kinetics of photons. It is difficult to solve the six-dimensional time-dependent transfer equation unless the problem is highly symmetric or in equilibrium. When the radiation field is smooth, it is natural to take angular moments of the transfer equation to reduce the degrees of freedom. However, low order moment equations contain terms that depend on higher order moments. To close the system of moment equations, approximations are made to truncate this hierarchy. Popular closures used in astrophysics include flux-limited diffusion and the M{sub 1} closure, which are rather ad hoc and do not necessarily capture the correct physics. In this paper, we propose a new class of closures for radiative transfer and radiation hydrodynamics. We start from a different perspective and highlight the consistency of a fully relativistic formalism. We present a generic framework to approximate radiative transfer based on relativistic Grad's moment method. We then derive a 14-field method that minimizes unphysical photon self-interaction.

Chan, Chi-kwan, E-mail: ckchan@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-02-01T23:59:59.000Z

114

Hydrodynamic analysis of direct steam generation solar collectors  

SciTech Connect (OSTI)

Direct steam generation collectors are considered with the aim to improve the performance of a parabolic trough collector leading to a reduction of operating costs of solar electric generation systems. In this study a hydrodynamic steady state model is developed and linked with a thermal model to optimize the performance of once-through direct steam generation solar collectors. The hydrodynamic model includes flow pattern classification and a pressure drop model. Flow pattern maps for typical DSG collectors with horizontal and inclined absorber tubes are generated to investigate the variation of flow conditions with radiation level, tube diameter, tube length and flow rate. Two-phase flow frictional pressure drop correlations for the range of operating conditions in a DSG collector are selected from the wide range of published correlations by comparison with experimental data for typical steam-water flow conditions in a DSG collector. Pressure drop is calculated for different operating conditions for both horizontal and inclined solar absorber tubes. Alternative operational strategies are evaluated to achieve optimum performance of a direct steam generation collector at different radiation levels.

Odeh, S.D.; Behnia, M.; Morrison, G.L.

2000-02-01T23:59:59.000Z

115

Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems  

E-Print Network [OSTI]

Finite element simulations of hydrodynamic trapping in microfluidic particle- trap array systems;Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems Xiaoxiao) simulation is a powerful tool in the design and implementation of microfluidic systems, especially

Nehorai, Arye

116

Video Article A Microfluidic-based Hydrodynamic Trap for Single Particles  

E-Print Network [OSTI]

Video Article A Microfluidic-based Hydrodynamic Trap for Single Particles Eric M. Johnson). A Microfluidic-based Hydrodynamic Trap for Single Particles. JoVE. 47. http://www.jove.com/details.php?id=2517 and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic

Schroeder, Charles

117

COURSE INFORMATION AND OUTLINE ORE 609 -HYDRODYNAMICS OF FLUID-BODY INTERACTION  

E-Print Network [OSTI]

IN THE ORE LIBRARY · Sarpkaya and Isaacson: Mechanics of Wave Forces on Offshore Structures · Newman: Marine Hydrodynamics · Currie: Fundamental Mechanics of Fluids · Ippen: Estuary and Coastline Hydrodynamics · Mei: The Applied Dynamics of Ocean Surface Waves · Abramowitz and Stegun: Handbook of Mathematical Functions

Frandsen, Jannette B.

118

The Hydrodynamics of Flow Stimuli Matthew J. McHenry and James C. Liao  

E-Print Network [OSTI]

motion. Although this motion can be highly complex, it emerges from just two fundamental fluid forces, Springer Handbook of Auditory Research 48, DOI 10.1007/2506_2013_13, © Springer Science+Business Media, LLC 2013 #12;2 Hydrodynamic Principles Hydrodynamic theory is concerned with the forces generated by water

McHenry, Matt

119

Hydrodynamic starvation in first-feeding larval fishes Victor Chinaa,b  

E-Print Network [OSTI]

Hydrodynamic starvation in first-feeding larval fishes Victor Chinaa,b and Roi Holzmana,b,1 York, NY, and approved April 24, 2014 (received for review December 16, 2013) Larval fishes suffer under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes

Einat, Aharonov

120

Exploration for stratigraphic traps in a mature hydrodynamic setting, Williston Basin, North Dakota  

SciTech Connect (OSTI)

Hydrodynamic effects on oil accumulations generally can be recognized at an early stage of exploration, but become of critical importance with increased drilling and discoveries. At the mature stage, hydrodynamic concepts readily can be applied in exploration and development to reduce risk and to increase success ratios. The south flank of the Williston basin is an example of a mature area with significant hydrodynamic effects on accumulation. Early exploration was aimed at stratigraphic traps in the Mission Canyon Formation but the development of major fields showed that all are strongly influenced by hydrodynamic flow and some may be largely independent of porosity pinchouts. Examples of hydrodynamic effects are illustrated by the Billings Nose fields, and the Elkhorn Ranch and Knutson fields. These accumulations have hydrodynamic gradients on the order of 20 ft/mi (4 m/km) or more; tilted oil-water contacts with gradient of 30 to 50 ft/mi (6 to 10 m/km); displacement of oil downdip to the northeast; and variable formation water salinities that range from nearly fresh to highly saline. Some producing zones have been described as purely hydrodynamic traps, lacking both structural and stratigraphic closure. Future success will depend on applying hydrodynamic concepts in exploration and development, and prediction methods are illustrated by possible extensions to existing one-well fields. Simple graphic techniques can estimate the limits of production before drilling, but a knowledge of local structure is most important to the interpretation.

Berg, R.R. (Texas A and M Univ., College Station (USA))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Initialization of hydrodynamics in relativistic heavy ion collisions with an energy-momentum transport model  

E-Print Network [OSTI]

A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the pre-thermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.

V. Yu. Naboka; S. V. Akkelin; Iu. A. Karpenko; Yu. M. Sinyukov

2015-01-14T23:59:59.000Z

122

Hydrodynamic forces due to waves and a current induced on a pipeline placed in an open trench  

E-Print Network [OSTI]

repairs and avoid environmental impacts resulting from pipeline failures. 8. Objectives of the Research Trenched pipelines are exposed to less hydrodynamic forces than pipelines placed on the sea floor. The hydrodynamic force variation for the pipes... repairs and avoid environmental impacts resulting from pipeline failures. 8. Objectives of the Research Trenched pipelines are exposed to less hydrodynamic forces than pipelines placed on the sea floor. The hydrodynamic force variation for the pipes...

Lee, Jaeyoung

2012-06-07T23:59:59.000Z

123

Energy dependent growth of the nucleon and hydrodynamic initial conditions  

E-Print Network [OSTI]

Due to gluon saturation, the growth of the inelastic nucleon-nucleon cross section with increasing collision energy sqrt(s) results in a broadening of the nucleon's density distribution in position space. This leads to a natural smoothing of the initial energy density distribution in the transverse plane of the matter created near midrapidity in heavy-ion collisions. We study this effect for fluctuating initial conditions generated with the Monte Carlo Kharzeev-Levin-Nardi (MC-KLN) model for Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). We argue that at the LHC viscous hydrodynamics is applicable at earlier times than at RHIC, not only because of the higher temperature but also since the length scale over which the initial pressure fluctuates increases with collision energy.

Ulrich W. Heinz; J. Scott Moreland

2011-10-19T23:59:59.000Z

124

A method for desalination and water remediation by hydrodynamic cavitation  

Science Journals Connector (OSTI)

Water is becoming an increasingly valuable commodity with population growth demanding more and more amounts of this limited resource. Increased efforts are directed toward recycling and remediation as well as desalination of the large quantities of seawater available. Dr. Bertwin Langenecker was a pioneer in utilizing hydrodynamic cavitation in a variety of applications that would remove dissolved solids from water and other liquids. His combination of intense cavitation using a rotor-stator combination as well as simultaneously adding an adsorbent demonstrated impressive results in desalination and waste water remediation. In this presentation a description will be given of Dr. Langenecker’s technology as well as a sampling of some of his most impressive results. Speculations as to why this approach works as well as it does will be presented.

2013-01-01T23:59:59.000Z

125

A method for desalination and water remediation by hydrodynamic cavitation  

Science Journals Connector (OSTI)

Water is becoming an increasingly valuable commodity with population growth demanding more and more amounts of this limited resource. Increased efforts are directed toward recycling and remediation as well as desalination of the large quantities of seawater available. Dr. Bertwin Langenecker was a pioneer in utilizing hydrodynamic cavitation in a variety of applications that would remove dissolved solids from water and other liquids. His combination of intense cavitation using a rotor-stator combination as well as simultaneously adding an adsorbent demonstrated impressive results in desalination and waste water remediation. In this presentation a description will be given of Dr. Langenecker's technology as well as a sampling of some of his most impressive results. Speculations as to why this approach works as well as it does will be presented.

Lawrence A. Crum; Michael Skinner; Scott Zeilinger

2013-01-01T23:59:59.000Z

126

Hydrodynamic Scaling Analysis of Nuclear Fusion in Hot Plasma  

E-Print Network [OSTI]

Proton beams generated by ultraintense laser pulse irradiations have potential applications in industry and in medicine. However, the laser pulse parameters are currently not optimized for practical applications. We discuss scaling laws of fusion yields generated by laser-plasma interactions. The yields are found to scale as a function of the laser power. The origin of the scaling law in the laser driven fusion yield is derived in terms of hydrodynamical scaling and it is attributed to the laser power dependence of three terms: the reaction rate, the density of the plasma and the pro- jected range of the plasma particle in the medium. The resulting scaling relations have a powerful predictive power that enables estimating the fusion yield for a nuclear reaction which has not been investigated by means of the laser accelerated ion beams.

Kimura, Sachie

2011-01-01T23:59:59.000Z

127

Heavy-ion-beam–induced hydrodynamic effects in solid targets  

Science Journals Connector (OSTI)

It is expected that after the completion of a new high current injector, the heavy-ion synchrotron (SIS) at the Gesellschaft für Schwerionforschung (GSI) Darmstadt will accelerate U+28 ions to energies of the order of 200 MeV/u. The use of a powerful rf buncher will reduce the pulse length to about 50 ns, and employment of a multiturn injection scheme will provide 2×1011 particles in the beam that correspond to a total energy of the order of 1 kJ. This upgrade of the SIS, hopefully, will be completed by the end of the year 2001. These beam parameters lead to a specific power deposition of the order of 1–2 TW/g in solid matter that will provide temperatures of about 10 eV. Such low specific power deposition will induce hydrodynamic effects in solid materials, and one may design appropriate beam-target interaction experiments that could be used to investigate the equation of state of matter under extreme conditions. The purpose of this paper is to propose suitable target designs with optimized parameters for the future GSI experiments with the help of one and two-dimensional hydrodynamic simulations. Cylindrical geometry is the natural geometry for highly focused ion beams, and therefore cylindrical targets are the most appropriate for this type of interaction experiments. The numerical simulations presented in this paper show that one can experimentally measure the characteristic sound speed in beam heated targets which is an important physical parameter. Moreover, one can study the propagation of ion-beam-induced shock waves in the solid materials. Different values for the specific power deposition, namely, 10, 25, 50, and 100 kJ/g, have been used. In some cases the pulse length is assumed to be 40 ns while in others it is considered to be 50 ns. Various materials including lead, aluminum, and solid neon have been used.

N. A. Tahir, D. H. H. Hoffmann, J. A. Maruhn, P. Spiller, and R. Bock

1999-10-01T23:59:59.000Z

128

Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine  

SciTech Connect (OSTI)

The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

Roald, L.; Jonkman, J.; Robertson, A.

2014-05-01T23:59:59.000Z

129

A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially Dependent Viscosity Authors: Martys, N.S., George, W.L., Chun, B., Lootens, D. A smoothed particle...

130

Hydrodynamic Model with Binary Particle Diameters to Predict Axial Voidage Profile in a CFB Combustor  

Science Journals Connector (OSTI)

A hydrodynamic model with binary particle diameters was developed to better predict axial voidage profile in a CFB combustor. In the model, the CFB is regarded as a superposition of two ... field data of voidage ...

J. J. Li; H. Zhang; H. R. Yang; Y. X. Wu…

2010-01-01T23:59:59.000Z

131

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel  

E-Print Network [OSTI]

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow

Aussillous, Pascale

132

Effect of More Accurate Hydrodynamic Modeling on Calculating Critical Nonlinear Ship Rolling Response  

Science Journals Connector (OSTI)

It is well known in the marine hydrodynamics field that the radiated wave force is frequency dependent. However, much work in the nonlinear marine dynamical systems field has assumed frequency independence or a c...

Srinivas Vishnubhotla; Jeffrey Falzarano

2009-01-01T23:59:59.000Z

133

Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion  

E-Print Network [OSTI]

This thesis investigates the hydrodynamic effects of biologically-inspired leading-edge tubercles. Two complementary studies examine the performance of three-dimensional hydrofoils based on the pectoral flippers of the ...

Stanway, Michael Jordan

2008-01-01T23:59:59.000Z

134

Experimental hydrodynamics of spherical projectiles impacting on a free surface using high speed imaging techniques  

E-Print Network [OSTI]

This thesis looks at the hydrodynamics of spherical projectiles impacting the free surface using a unique experimental WebLab facility. Experiments were performed to determine the force impact coefficients of spheres and ...

Laverty, Stephen Michael

2005-01-01T23:59:59.000Z

135

Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing  

Science Journals Connector (OSTI)

Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing ... Components of this work were conducted at the Penn State node of the NSF-funded National Nanotechnology Infrastructure Network. ...

Mengqian Lu; Shikuan Yang; Yi-Ping Ho; Christopher L. Grigsby; Kam W. Leong; Tony Jun Huang

2014-09-30T23:59:59.000Z

136

CFD study of hydrodynamic signal perception by fish using the lateral line system  

E-Print Network [OSTI]

The lateral line system on fish has been found to aid in schooling behavior, courtship communication, active and passive hydrodynamic imaging, and prey detection. The most widely used artificial prey stimulus has been the ...

Rapo, Mark Andrew

2009-01-01T23:59:59.000Z

137

Statistical Estimation of Two-Body Hydrodynamic Properties Using System Identification  

E-Print Network [OSTI]

information concerning the response characteristics of such systems. The current study demonstrates that the analysis of these data using a combination of statistical tools and system identification techniques can efficiently recover the main hydrodynamic...

Xie, Chen

2010-01-14T23:59:59.000Z

138

A concept of power generator using wind turbine, hydrodynamic retarder, and organic Rankine cycle drive  

Science Journals Connector (OSTI)

This paper describes a concept of electric power generating system that uses a wind turbine to generate kinetic energy which converts heat through a hydrodynamic retarder. The heat so generated is utilized to drive an organic Rankine cycle that converts thermal energy into electricity power for continuous and undisrupted supply during the year. A hydrodynamic retarder converts kinetic energy into heat through hot fluid by directing the flow of the fluid into the hydrodynamic retarder in a manner that resists rotation of blades of the wind turbine. The hot fluid circulating in the hydrodynamic retarder is a thermal heat source for vapor regeneration of organic heat exchange fluid mixture(s) used in the Rankine cycle. The expansion of the organic heat exchange fluid gets converted into rotation of the generator rotor.

Samuel Sami

2013-01-01T23:59:59.000Z

139

Volumetric analysis of fish swimming hydrodynamics using synthetic aperture particle image velocimetry  

E-Print Network [OSTI]

Abstract This thesis details the implementation of a three-dimensional PIV system to study the hydrodynamics of freely swimming Giant Danio (Danio aequipinnatus). Volumetric particle fields are reconstructed using synthetic ...

Mendelson, Leah Rose

2013-01-01T23:59:59.000Z

140

Impact of Channelization on Oyster Production: A Hydrodynamic-Oyster Population Model for Galveston Bay, Texas  

Science Journals Connector (OSTI)

A hydrodynamic-oyster population dynamics model was developed to assess the effect of a change in ship channel configuration under different freshwater inflow regimes and different future hydrologies on oyster (C...

John M. Klinck; Eileen E. Hofmann; Eric N. Powell…

2002-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simulation and Optimization of DPP Hydrodynamics and Radiation Transport for EUV Lithography Devices  

E-Print Network [OSTI]

be used to study the hydrodynamics and radiation in two-gas mixtures of dense plasma focus (DPF) and z the HEIGHTS- EUV package are schematically shown in Figure 1: a) A dense plasma focus device, b) A hollow

Harilal, S. S.

142

The role of hydrodynamic interactions in the dynamics and viscoelasticity of actin networks  

E-Print Network [OSTI]

Actin, the primary component of the cytoskeleton, is the most studied semi-flexible filament, yet its dynamics remains elusive. We show that hydrodynamic interactions (HIs) significantly alter the time scale of actin ...

Karimi, Reza, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

143

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows  

E-Print Network [OSTI]

Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

Parkin, E R

2010-01-01T23:59:59.000Z

144

Computer-aided design (CAD) of full hydrodynamic journal bearings  

Science Journals Connector (OSTI)

Since the equations involved in solving bearing problems are tedious to work with, calculations are most easily made by the use of bearing performance charts. However, the design of journal bearings is still a relatively cumbersome iterative process that involves the use of various data charts and tables, thus leading to time consuming and less accurate results. Therefore, a complete computer-aided design (CAD) procedure covering the basic methods for designing a full hydrodynamic journal bearing of finite length is developed and presented. The theoretical data and relevant empirical charts are collected and presented in appropriate formats. Also, the design variables of load per unit of projected bearing area, and bearing clearance in industrial applications, needed in the bearing design, are derived and incorporated in the design process. However, when designing a bearing for a given application, an infinite number of solutions is possible. Thus, certain limitations are imposed on the values of the bearing performance variables including stability, based on empirical guidelines. Consequently, one may select the solution for optimum conditions, say of maximum load capacity, or the minimum power loss (i.e. minimum friction). Finally, the CAD programme developed and constructed is general, fully automated, flexible, extendable, interactive and friendly to use.

M.H. Es-Saheb; Y.A. Al-Kalifa

2003-01-01T23:59:59.000Z

145

Simulation study of the effect of hydrodynamic forces on oil recovery  

E-Print Network [OSTI]

SIMULATION STUDY OF THE EFFECT OF HYDRODYNAMIC FORCES ON OIL RECOVERY A Thesis by EDUARDO ALE JANDRO IDROBO HURTADO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Petroleum Engineering SIMULATION STUDY OF THE EFFECT OF HYDRODYNAMIC FORCES ON OIL RECOVERY A Thesis by EDUARDO ALE JANDRO IDROBO HURTADO Approved as to style and content by: S, W. Poston (Chair...

Idrobo Hurtado, Eduardo Alejandro

2012-06-07T23:59:59.000Z

146

DIMENSIONAL DEPENDENCE OF THE HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE  

SciTech Connect (OSTI)

A major goal over the last decade has been understanding which multidimensional effects are crucial in facilitating core-collapse supernova (CCSN) explosions. Unfortunately, much of this work has necessarily assumed axisymmetry. In this work, we present analyses of simplified two-dimensional (2D) and three-dimensional (3D) CCSN models with the goal of comparing the hydrodynamics in setups that differ only in dimension. Not surprisingly, we find many differences between 2D and 3D models. While some differences are subtle and perhaps not crucial, others are dramatic and make interpreting 2D models problematic. In particular, axisymmetric models produce excess power at the largest spatial scales, power that has been deemed critical in previous explosion models. Nevertheless, our 3D models, which have an order of magnitude less power than 2D models on large scales, explode earlier. Since explosions occur earlier in 3D than in 2D, the vigorous large-scale sloshing is either not critical in any dimension or the explosion mechanism operates differently in 2D and 3D. On the other hand, we find that the average parcel of matter in the gain region has been exposed to net heating for up to 30% longer in 3D than in 2D, an effect we attribute to the differing characters of turbulence in 2D and 3D. We suggest that this effect plays a prominent role in producing earlier explosions in 3D. Finally, we discuss a simple model for the runaway growth of buoyant bubbles that is able to quantitatively account for the growth of the shock radius and predicts a critical luminosity relation.

Dolence, Joshua C.; Burrows, Adam; Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Nordhaus, Jason, E-mail: jdolence@astro.princeton.edu, E-mail: burrows@astro.princeton.edu, E-mail: jmurphy@astro.princeton.edu, E-mail: nordhaus@astro.rit.edu [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

2013-03-10T23:59:59.000Z

147

Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP  

E-Print Network [OSTI]

We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...

Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F

2013-01-01T23:59:59.000Z

148

Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP  

E-Print Network [OSTI]

We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by the combination of the conservative (shock-capturing) approach and the high-order methods employed. ECHO-QGP can be extended to include evolution of the electromagnetic fields coupled to the plasma.

L. Del Zanna; V. Chandra; G. Inghirami; V. Rolando; A. Beraudo; A. De Pace; G. Pagliara; A. Drago; F. Becattini

2013-05-30T23:59:59.000Z

149

Optimization of Computational Performance and Accuracy in 3?D Transient CFD Model for CFB Hydrodynamics Predictions  

Science Journals Connector (OSTI)

This work aims to present a pure 3?D CFD model accurate and efficient for the simulation of a pilot scale CFB hydrodynamics. The accuracy of the model was investigated as a function of the numerical parameters in order to derive an optimum model setup with respect to computational cost. The necessity of the in depth examination of hydrodynamics emerges by the trend to scale up CFBCs. This scale up brings forward numerous design problems and uncertainties which can be successfully elucidated by CFD techniques. Deriving guidelines for setting a computational efficient model is important as the scale of the CFBs grows fast while computational power is limited. However the optimum efficiency matter has not been investigated thoroughly in the literature as authors were more concerned for their models accuracy and validity. The objective of this work is to investigate the parameters that influence the efficiency and accuracy of CFB computational fluid dynamics models find the optimum set of these parameters and thus establish this technique as a competitive method for the simulation and design of industrial large scale beds where the computational cost is otherwise prohibitive. During the tests that were performed in this work the influence of turbulence modeling approach time and space density and discretization schemes were investigated on a 1.2 MWth CFB test rig. Using Fourier analysis dominant frequencies were extracted in order to estimate the adequate time period for the averaging of all instantaneous values. The compliance with the experimental measurements was very good. The basic differences between the predictions that arose from the various model setups were pointed out and analyzed. The results showed that a model with high order space discretization schemes when applied on a coarse grid and averaging of the instantaneous scalar values for a 20 sec period adequately described the transient hydrodynamic behaviour of a pilot CFB while the computational cost was kept low. Flow patterns inside the bed such as the core?annulus flow and the transportation of clusters were at least qualitatively captured.

I. Rampidis; A. Nikolopoulos; N. Koukouzas; P. Grammelis; E. Kakaras

2007-01-01T23:59:59.000Z

150

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

151

Hydrodynamic effects on Mission Canyon (Mississippian) oil accumulations, Billings Nose area, North Dakota  

SciTech Connect (OSTI)

Mission Canyon oil production on the south flank of the Williston basin provides an example of an area in the mature stage of exploration that shows significant hydrodynamic effects on oil accumulations related to stratigraphic traps. The effects are illustrated by the Billings Nose fields and the Elkhorn Ranch field. The reservoirs have low hydraulic gradients of about 2 m/km (10 ft/mi), tilted oil-water contacts with gradients of 5 m/km (25 ft/mi), and variable formation-water salinities that range from brackish to highly saline. Oil accumulations in some zones are displayed off structure and downdip to the northeast, parallel to porosity pinch-outs. Other zones are pure hydrodynamic closure. Future success in exploration and development in the play will depend on recognizing the hydrodynamic effects and predicting oil displacement. 34 refs., 15 figs., 1 tab.

Berg, R.R. (Texas A M Univ., College Station, TX (United States)); DeMis, W.D. (Marathon Oil Co., Houston, TX (United States)); Mitsdarffer, A.R. (Dupont Environmental Remediation Services, Houston, TX (United States))

1994-04-01T23:59:59.000Z

152

Hydrodynamics-based floating wind turbine support platform optimization: A basis function approach  

Science Journals Connector (OSTI)

Abstract The floating wind turbine support structure design problem is complicated by conflicting technical objectives and innumerable platform geometry options. Previous support structure optimization studies have been limited in their ability to evaluate the full design space due to their adherence to certain assumptions about the physical platform configuration. The present work is an effort toward developing an alternative form of the support platform optimization problem – one that abstracts details of the platform geometry and deals instead with hydrodynamic performance coefficients – in order to provide a more complete and intuitive exploration of the design space. A basis function approach, which represents the design space by linearly combining the hydrodynamic performance coefficients of a diverse set of basis platform geometries, was taken as the most straightforward way of physically constraining the platform hydrodynamic performance. Candidate designs are evaluated in the frequency domain using linearized coefficients for the wind turbine, platform, and mooring system dynamics. The platform hydrodynamic coefficients are calculated according to linear hydrodynamic theory. The optimization objective is to minimize the nacelle acceleration under several operating conditions. Optimization results for a slack catenary mooring system indicate the benefits of combining submerged volume with a widely dispersed water plane area. Results for a tension leg mooring system are consistent with conventional TLP designs. The intent is to use these results as starting points for more traditional platform parameter optimization. Examination of the possible physical interpretations of linearly combining basis platform coefficients reveals that certain aspects of this approach may have poor physicality. This points to the need to expand this first attempt with more sophisticated ways of representing the constrained hydrodynamic performance variables.

Matthew Hall; Brad Buckham; Curran Crawford

2014-01-01T23:59:59.000Z

153

Redesign of turbine-pump impeller and diffuser using hydrodynamic design techniques. Final report  

SciTech Connect (OSTI)

It is indicated that in 1976 the average operating efficiency of well irrigation pumps in the US, including losses in the column pipe and line shaft, was 55.5%, but information is presented to show that losses in a pumping system can be reduced and that it is possible to reach a goal of 82% system efficiency. Hydrodynamic design methods which are used to analyze and modify a commercially available pump are presented. The results of tests with the pump are presented for which delivery losses were reduced by means of a packer at the pump and for which line shaft losses were reduced by means of a high strength line shaft. Methods of designing pumps that have a broader high efficiency range are explored, and a design approach for doing so is presented. The method was not evaluated experimentally. (MCW)

Hamrick, J.T.

1980-04-01T23:59:59.000Z

154

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

SciTech Connect (OSTI)

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

155

Hydrodynamic Stability Analysis of Burning Bubbles in Electroweak Theory and in QCD  

E-Print Network [OSTI]

Assuming that the electroweak and QCD phase transitions are first order, upon supercooling, bubbles of the new phase appear. These bubbles grow to macroscopic sizes compared to the natural scales associated with the Compton wavelengths of particle excitations. They propagate by burning the old phase into the new phase at the surface of the bubble. We study the hydrodynamic stability of the burning and find that for the velocities of interest for cosmology in the electroweak phase transition, the shape of the bubble wall is stable under hydrodynamic perturbations. Bubbles formed in the cosmological QCD phase transition are found to be a borderline case between stability and instability.

P. Huet; K. Kajantie; R. G. Leigh; B. -H. Liu; L. McLerran

1992-12-05T23:59:59.000Z

156

VOLUME 35, NUMBER 14 PHYSICAL REVIEW LETTERS 6 OCTOBER 1975 Relativistic Hydrodynamic Theory of Heavy-Ion Collisions*  

E-Print Network [OSTI]

waves and other aspects of a high-energy nuclear hydrodynamic model. ' ' Some experimental data that a conventional nuclear hydrodynamic model should be valid only when the bombarding energy per nucleon is less, Los Alamos Scientific Laboratory, University of California, Los Atamos, New Mexico 87544 (Received 11

Bertsch George F.

157

Laboratory measurement of hydrodynamic saline dispersion within a micro-fracture network induced in granite  

E-Print Network [OSTI]

Laboratory measurement of hydrodynamic saline dispersion within a micro-fracture network induced plug of Ailsa Craig micro-granite by thermal stressing, to produce an isotropic network of fractures number­dispersion relationship for the micro-fracture network is very similar to that predicted for other

158

Hydrodynamic simulations of the colliding winds in Iota Orionis Julian M. Pittard*  

E-Print Network [OSTI]

Hydrodynamic simulations of the colliding winds in Iota Orionis Julian M. Pittard* School simulations of the colliding winds in the eccentric binary Iota Orionis (HR 1889; HD 37043) have been conducted. With the inclusion of radiative driving, the realistic simulation of such a system becomes

Pittard, Julian

159

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{  

E-Print Network [OSTI]

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{ Ryan D-at-a-time). Microfluidic processors that enable multi-stage fluidic reactions with suspended microparticles (e-on-a-chip technologies. Here we present a single-layer microfluidic reactor that utilizes a microfluidic railing

Lin, Liwei

160

Hydrodynamics studies of direct-drive cone-in-shell, fast-ignitor targets on OMEGA  

E-Print Network [OSTI]

with high efficiency up to 50% has been reported7 that heat the compressed fuel, significantly easing and the compressed core and found an energy-transfer efficiency of 20­30% Refs. 5 and 6 . Hydrodynamics experiments.1,2,5 A few experiments have been performed to assess the potential of the reentrant cone concept

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Early thermalization, hydrodynamics and energy loss in AdS/CFT  

E-Print Network [OSTI]

Gauge/gravity duality has provided unprecedented opportunities to study dynamics in certain strongly coupled gauge theories. This review aims to highlight several applications to heavy ion collisions including far-from-equilibrium dynamics, hydrodynamics and jet energy loss at strong coupling.

Chesler, Paul M

2015-01-01T23:59:59.000Z

162

Viscosity of Bacterial Suspensions: Hydrodynamic Interactions and Self-Induced Noise Shawn D. Ryan,1, 2  

E-Print Network [OSTI]

Viscosity of Bacterial Suspensions: Hydrodynamic Interactions and Self-Induced Noise Shawn D. Ryan, 2011) The viscosity of a suspension of swimming bacteria is investigated analytically and numerically fluid, result in a dramatic reduction of the effective viscosity. In agreement with experiments

Berlyand, Leonid

163

NEUTRON IZATI ON, LEPTON ESCAPE,AND STELLAR HYDRODYNAMICS* W. David Arnett  

E-Print Network [OSTI]

NEUTRON IZATI ON, LEPTON ESCAPE,AND STELLAR HYDRODYNAMICS* W. David Arnett Enrico Fermi Institute University of Chicago 1. The Process of Neutronization.-Aftersili- con burning stellar matter has roughly equal numbers of neutrons and protons. Because neutron-star matter has a large excess of neutrons

Boyer, Edmond

164

Generalized dynamical density functional theory for classical fluids and the significance of inertia and hydrodynamic interactions  

E-Print Network [OSTI]

We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the non-equilibrium properties of the system. We derive a general dynamical density functional theory (DDFT) which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing DDFTs and a Navier-Stokes-like equation with additional non-local terms.

Benjamin D. Goddard; Andreas Nold; Nikos Savva; Grigorios A. Pavliotis; Serafim Kalliadasis

2012-08-08T23:59:59.000Z

165

Efficient simulation of non-crossing fibers and chains in a hydrodynamic solvent  

E-Print Network [OSTI]

An efficient simulation method is presented for Brownian fiber suspensions, which includes both uncrossability of the fibers and hydrodynamic interactions between the fibers mediated by a mesoscopic solvent. To conserve hydrodynamics, collisions between the fibers are treated such that momentum and energy are conserved locally. The choice of simulation parameters is rationalised on the basis of dimensionless numbers expressing the relative strength of different physical processes. The method is applied to suspensions of semiflexible fibers with a contour length equal to the persistence length, and a mesh size to contour length ratio ranging from 0.055 to 0.32. For such fibers the effects of hydrodynamic interactions are observable, but relatively small. The non-crossing constraint, on the other hand, is very important and leads to hindered displacements of the fibers, with an effective tube diameter in agreement with recent theoretical predictions. The simulation technique opens the way to study the effect of viscous effects and hydrodynamic interactions in microrheology experiments where the response of an actively driven probe bead in a fiber suspension is measured.

J. T. Padding

2009-02-24T23:59:59.000Z

166

Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington  

SciTech Connect (OSTI)

A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

Yang, Zhaoqing; Wang, Taiping

2010-12-20T23:59:59.000Z

167

ASPECTS OF SENSORY CUES AND PROPULSION IN MARINE ZOOPLANKTON HYDRODYNAMIC DISTURBANCES  

E-Print Network [OSTI]

ASPECTS OF SENSORY CUES AND PROPULSION IN MARINE ZOOPLANKTON HYDRODYNAMIC DISTURBANCES A Thesis Institute of Technology December 2009 #12;ASPECTS OF SENSORY CUES AND PROPULSION IN MARINE ZOOPLANKTON Peterson and his colleagues at the Hatfield Marine Station for collection and care of the Euphausia

168

Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents  

Science Journals Connector (OSTI)

Abstract This paper investigates the hydrodynamics issues that are associated with \\{AUVs\\} (autonomous underwater vehicles) as they approach a cone-shaped dock, which is proposed by most AUV docking systems for the AUV?s protection and simplification. However, this docking system is more sensitive to the hydrodynamic interactions between the dock and the ocean currents. The purpose is to exploit the hydrodynamic susceptibility in AUV docking with the dock and to identify a probable design for AUV control during docking. To achieve this purpose, numerical simulations of an AUV docking with a dock are conducted based on the dynamic mesh method. This paper illustrates the numerical methodology for AUV docking simulation. To increase the accuracy of the numerical simulation, turbulence models and grid-dependence problems are first studied. Then, 3D (three-dimensional) numerical simulations show the dependence of the AUV fluid forces near the dock on various velocities, accelerations, dock shapes, gliding modes, cross currents from several directions and rudder angles. The hydrodynamic behaviors of an AUV docking with a dock are obtained, which provide helpful suggestions for successful docking.

Lihong Wu; Yiping Li; Shaojuan Su; Peng Yan; Yu Qin

2014-01-01T23:59:59.000Z

169

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE  

E-Print Network [OSTI]

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE TRANSPORT . The radiative transport equations, satisfied by the Wigner function for random acoustic waves, present#usive approximation of the radiative transport equation. 1. Introduction We consider a class of kinetic models

Tzavaras, Athanasios E.

170

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE  

E-Print Network [OSTI]

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE TRANSPORT of the radiative transport equation. 1. Introduction We consider a class of kinetic models equipped with a single. A general compactness frame- work is obtained for the diffusive scaling in L1 . The radiative transport

Tzavaras, Athanasios E.

171

Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance  

E-Print Network [OSTI]

Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance Yu and concentration polarization) on the energy conversion efficiency of pressure-driven electrolyte flow through battery system is its low energy conversion efficiency. Up to now, the energy conversion efficiencies have

Chang, Hsueh-Chia

172

Stability of Solutions of Hydrodynamic Equations Describing the Scaling Limit of a Massive Piston in an  

E-Print Network [OSTI]

Stability of Solutions of Hydrodynamic Equations Describing the Scaling Limit of a Massive Piston of a system con- sisting of a massive piston immersed in an ideal gas of point particles in a box. We find of a system consisting of a piston of mass M moving parallel to the x-axis in a cube containing non

Chernov, Nikolai

173

Symposium on Naval Hydrodynamics Gothenburg, Sweden, 26-31 August 2012  

E-Print Network [OSTI]

29th Symposium on Naval Hydrodynamics Gothenburg, Sweden, 26-31 August 2012 High will be dramatically different from current mainstream supercomputers in terms of computing power and parallel are demonstrated for plunging breaking waves behind a bump using 2.2 billion grid points running on thousands

Yang, Jianming

174

Quenching massive galaxies with on-the-fly feedback in cosmological hydrodynamic simulations  

Science Journals Connector (OSTI)

......tracking the dynamics of gas inflows and outflows directly...at large computational cost. Although hydrodynamic...mergers and yield hot gas in massive haloes, they...low masses in the hot-gas-quenching case may partly...shows the energy density production rate of quenching as a......

J. M. Gabor; R. Davé; B. D. Oppenheimer; K. Finlator

2011-11-11T23:59:59.000Z

175

Implosion hydrodynamics of fast ignition targetsa... R. B. Stephens,1,b  

E-Print Network [OSTI]

. In the initial concept2 the ignition pulse is provided by an ultrahigh-intensity laser that bores into the lowerImplosion hydrodynamics of fast ignition targetsa... R. B. Stephens,1,b S. P. Hatchett,2 M. Tabak,2 National Laboratory, Livermore, California 94550 3 Laboratory for Laser Energetics, University of Rochester

176

Hydrodynamic and water quality river basin modeling using CE-QUAL-W2 version 3  

E-Print Network [OSTI]

-dimensional (longitudinal-vertical) water quality and hydrodynamic computer simulation model that was originally developed of the Lower Snake River in the Northwestern USA; the Bull Run River basin composed of 3 water supply and computes water levels, horizontal and vertical velocities, temperature, and 21 other water quality

Wells, Scott A.

177

Comparing galactic satellite properties in hydrodynamical and N-body simulations  

Science Journals Connector (OSTI)

......These high-resolution runs are 83 times more resolved...207/202 102/110 To run the DM only counterparts...intimately related with gasoline which is its hydrodynamical...algorithms), allowing a straight, direct comparison of...those used for the hydro runs; we simply transform......

Jascha A. Schewtschenko; Andrea V. Macciò

2011-05-11T23:59:59.000Z

178

Hydrodynamic Coefficients and Wave Loads for a WEC Device in Heaving Mode  

E-Print Network [OSTI]

. This model is intended to be used for WEC control purposes. A semi-analytical approach is therefore proposed for the computation of the hydrodynamic coefficients and the excitation forces. The boundary value problem is solved--Wave Energy Converter, potential theory, eigen- function expansion, wave-loads, heaving mode, scattering

Paris-Sud XI, Université de

179

A pulsed power hydrodynamics approach to exploring properties of warm dense matter  

SciTech Connect (OSTI)

Pulsed Power Hydrodynamics, as an application of low-impedance, pulsed power, and high magnetic field technology developed over the last decade to study advanced hydrodynamic problems, instabilities, turbulence, and material properties, can potentially be applied to the study of the behavior and properties of warm dense matter (WDM) as well. Exploration of the properties, such as equation of state and conductivity, of warm dense matter is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to a few times solid density) and modest temperatures ({approx}1-10 eV). Warm dense matter conditions can be achieved by laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers is applying these techniques using petawatt scale laser systems, but the microscopic size scale of the WDM produced in this way limits access to some physics phenomena. Pulsed power hydrodynamics techniques, either through high convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques both offer the prospect for producing warm dense matter in macroscopic quantities. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. Similarly, liner compression of normal density material, perhaps using multiple reflected shocks can provide access to the challenging region above normal density -- again with the requirement of very large amounts of driving energy. In this paper we will provide an introduction to techniques that might be applied to explore this interesting new application of the energy-rich technology of pulse power and high magnetic fields.

Reinovsky, Robert Emil [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

180

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect (OSTI)

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MHK Projects/Marine Hydrodynamics Laboratory at the University of Michigan  

Open Energy Info (EERE)

Marine Hydrodynamics Laboratory at the University of Michigan Marine Hydrodynamics Laboratory at the University of Michigan < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2808,"lon":-83.743,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

182

Viscosity of bacterial suspensions : hydrodynamic interactions and self-induced noise.  

SciTech Connect (OSTI)

The viscosity of a suspension of swimming bacteria is investigated analytically and numerically. We propose a simple model that allows for efficient computation for a large number of bacteria. Our calculations show that long-range hydrodynamic interactions, intrinsic to self-locomoting objects in a viscous fluid, result in a dramatic reduction of the effective viscosity. In agreement with experiments on suspensions of Bacillus subtilis, we show that the viscosity reduction is related to the onset of large-scale collective motion due to interactions between the swimmers. The simulations reveal that the viscosity reduction occurs only for relatively low concentrations of swimmers: Further increases of the concentration yield an increase of the viscosity. We derive an explicit asymptotic formula for the effective viscosity in terms of known physical parameters and show that hydrodynamic interactions are manifested as self-induced noise in the absence of any explicit stochasticity in the system.

Ryan, S. D.; Haines, B. M.; Berlyand, L. V.; Ziebert, F.; Aranson, I. S. (Materials Science Division); (Pennsylvania State Univ.); (UMR CNRS)

2011-05-01T23:59:59.000Z

183

Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity  

SciTech Connect (OSTI)

We introduce a model of cavitation based on the multiphase Lattice Boltzmann method (LBM) that allows for coupling between the hydrodynamics of a collapsing cavity and supported solute chemical species. We demonstrate that this model can also be coupled to deterministic or stochastic chemical reactions. In a two-species model of chemical reactions (with a major and a minor specie), the major difference observed between the deterministic and stochastic reactions takes the form of random fluctuations in concentration of the minor species. We demonstrate that advection associated with the hydrodynamics of a collapsing cavity leads to highly inhomogeneous concentration of solutes. In turn these inhomogeneities in concentration may lead to significant increase in concentration-dependent reaction rates and can result in a local enhancement in the production of minor species.

Mishra, Sudib [University of Arizona; Deymier, Pierre [University of Arizona; Muralidharan, Krishna [University of Arizona; Frantziskonis, G. [University of Arizona; Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL

2010-01-01T23:59:59.000Z

184

Second-order discretization in space and time for radiation hydrodynamics  

SciTech Connect (OSTI)

We present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. This method combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time for solving the equations of radiative transfer. We use an LDFEM to discretize the radiative transfer equations in space, which, though uncommon for radiation diffusion calculations, is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation and demonstrate how these may be overcome. We define our method for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit. (authors)

Edwards, J. D.; Morel, J. E. [Department of Nuclear Engineering, TAMU 3133, Texas A and M University, College Station, TX 77843 (United States); Lowrie, R. B. [Computational Physics Group CCS-2, M.S. D413, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-07-01T23:59:59.000Z

185

Dilepton production from the quark-gluon plasma using (3+1)-dimensional anisotropic dissipative hydrodynamics  

E-Print Network [OSTI]

We compute dilepton production from the deconfined phase of the quark-gluon plasma using leading-order (3+1)-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equa- tions employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The momentum-space anisotropy is also taken into account in the computation of the dilepton production rate, allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse momentum, and pair rapidity. We demonstrate that high- energy dilepton production is extremely sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon...

Ryblewski, Radoslaw

2015-01-01T23:59:59.000Z

186

Energy flow between two hydrodynamically coupled particles kept at different effective temperatures  

E-Print Network [OSTI]

We measure the energy exchanged between two hydrodynamically coupled micron-sized Brownian particles trapped in water by two optical tweezers. The system is driven out of equilibrium by random forcing the position of one of the two particles. The forced particle behaves as it has an "effective temperature" higher than that of the other bead. This driving modifies the equilibrium variances and cross-correlation functions of the bead positions: we measure an energy flow between the particles and an instantaneous cross-correlation, proportional to the effective temperature difference between the two particles. A model of the interaction which is based on classical hydrodynamic coupling tensors is proposed. The theoretical and experimental results are in excellent agreement.

Antoine Bérut; Artyom Petrosyan; Sergio Ciliberto

2015-02-06T23:59:59.000Z

187

Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage  

E-Print Network [OSTI]

Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current--voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow...

Mao, Mao; Hu, Guohui

2013-01-01T23:59:59.000Z

188

Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves  

E-Print Network [OSTI]

Oceanic dispersal and connectivity have been identified as crucial factors for structuring marine populations and designing Marine Protected Areas (MPAs). Focusing on larval dispersal by ocean currents, we propose an approach coupling Lagrangian transport and new tools from Network Theory to characterize marine connectivity in the Mediterranean basin. Larvae of different pelagic durations and seasons are modeled as passive tracers advected in a simulated oceanic surface flow from which a network of connected areas is constructed. Hydrodynamical provinces extracted from this network are delimited by frontiers which match multi-scale oceanographic features. By examining the repeated occurrence of such boundaries, we identify the spatial scales and geographic structures that would control larval dispersal across the entire seascape. Based on these hydrodynamical units, we study novel connectivity metrics for existing reserves. Our results are discussed in the context of ocean biogeography and MPAs design, having...

Rossi, Vincent; López, Cristóbal; Hernández-García, Emilio

2014-01-01T23:59:59.000Z

189

Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function  

SciTech Connect (OSTI)

We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

Tung, Ryan C., E-mail: ryan.tung@nist.gov; Killgore, Jason P.; Hurley, Donna C. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

2014-06-14T23:59:59.000Z

190

Energy flow between two hydrodynamically coupled particles kept at different effective temperatures  

E-Print Network [OSTI]

We measure the energy exchanged between two hydrodynamically coupled micron-sized Brownian particles trapped in water by two optical tweezers. The system is driven out of equilibrium by random forcing the position of one of the two particles. The forced particle behaves as it has an "effective temperature" higher than that of the other bead. This driving modifies the equilibrium variances and cross-correlation functions of the bead positions: we measure an energy flow between the particles and an instantaneous cross-correlation, proportional to the effective temperature difference between the two particles. A model of the interaction which is based on classical hydrodynamic coupling tensors is proposed. The theoretical and experimental results are in excellent agreement.

Antoine Bérut; Artyom Petrosyan; Sergio Ciliberto

2014-08-22T23:59:59.000Z

191

Laboratory Experiments and Hydrodynamic Modeling of a Bed Leveler Used to Level the Bottom of Ship Channels after Dredging  

E-Print Network [OSTI]

This study was conducted to ascertain the impacts of bed leveling, following ship channel dredging operations, and to also investigate the hydrodynamic flow field around box bed levelers. Laboratory experiments were conducted with bed levelers...

Paul, Ephraim Udo

2011-02-22T23:59:59.000Z

192

Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams  

SciTech Connect (OSTI)

Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD.

Roberts, Brian J [ORNL; Mulholland, Patrick J [ORNL; Houser, Jeffrey N [ORNL

2007-01-01T23:59:59.000Z

193

Effects of Hydrodynamic Modelling in Fully Coupled Simulations of a Semi-submersible Wind Turbine  

Science Journals Connector (OSTI)

This work examines the dynamic response of a single semi-submersible wind turbine (SSWT) based on different hydrodynamic theories. Comparisons of platform motions and structural responses in the wind turbine are shown for simulations for a model with linear potential ?ow solution and quadratic drag and simulations with only Morison-type forces. The SSWT modelled in this study is based on WindFloat and carries the NREL 5MW wind turbine and should be considered a large volume structure. This implies that diffraction effects should be considered by using potential ?ow theory and viscous effects by Morison's equation.A new coupled simulation code was developed by linking the SIMO and RIFLEX hydrodynamic, structural, and control system computational tools, from MARINTEK, with the aerodynamic forces and wind ?eld generation capabili–ties of AeroDyn and TurbSim, from NREL. In contrast to other available simulation codes, this combination enabled the implementation of these two different hydrodynamic theories and offered the possibility of ?nite element mooring line models. Wave-only simulations were considered ?rst, in order to tune and compare potential theory versus the inertia term in Morison's equation. Some limited coupled wave-wind simulations give an indication of the extent to which hydrodynamic modelling affects the global response.The SSWT case study showed that the Morison model with forces integrated up to wave elevation gave a good representation of the motions compared to the potential ?ow model with quadratic drag forces. It also showed that mo–tions are sensitive to choice of added mass coefficients, stretching and dynamic pressure under the columns. Combined wind and wave simulations, using a non-optimized control approach, showed that pitch motions in?uence the power production and blade bending moments.

Marit I. Kvittem; Erin E. Bachynski; Torgeir Moan

2012-01-01T23:59:59.000Z

194

3D Relativistic Hydrodynamic Computations Using Lattice-QCD-Inspired Equations of State  

E-Print Network [OSTI]

In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter v2. We discuss also the effcts of the initial-condition fluctuations and the continuous emission.

Yogiro Hama; Rone P. G. Andrade; Frederique Grassi; Otavio Socolowski Jr; Takeshi Kodama; Bernardo Tavares; S. S. Padula

2005-10-07T23:59:59.000Z

195

Depositional environment and hydrodynamic flow in Lower Cretaceous J Sandstone, Lonetree field, Denver basin, Colorado  

E-Print Network [OSTI]

aquifer, as modified from Hoeger (1968) and Pruit (1978). 19 Diagram illustrating the trapping of oil by both capillary and hydrodynamic elements. 25 Extrapolation of the initial shutin period of the Amoco 56 C-1 UPRR, T4S-R59W, illustrating the rela... buildup curve for the initial shutin (ISI) period of the Miami Oil 1 Lea sure well showing the extrapolated original pressure (Po). . . . . . . . . . . . . . . . Pressure buildup curve for the initial shutin (ISI) period of the Huckabay 1 Amoco Maddern...

Bicknell, James Scott

1985-01-01T23:59:59.000Z

196

Effects of equation of state on hydrodynamic expansion, spectra and flow harmonics  

E-Print Network [OSTI]

We perform a systematic study of the role played by the equation of state in the hydrodynamic evolution of the matter produced in relativistic heavy ion collisions. By using the same initial conditions and freeze-out scenario, the effects of different equations of state are compared by calculating their respective hydrodynamical evolution, particle spectra and elliptic flow parameter $v_2$. Three different types of equation of state are studied, each focusing on different features, such as the nature of the phase transition, as well as strangeness and baryon densities. Different equations of state imply different hydrodynamic responses, the impact thereof on final state anisotropies are investigated. The results of our calculations are compared to the data of two RHIC energies, 130 GeV and 200 GeV. It is found that the three equations of state used in the calculations describe the data reasonably well; differences can be observed, but they are quite small. The insensitivity to the equation of state weakens th...

Dudek, Danuce M; Wu, Chen; Socolowski, Otavio; Padula, Sandra S; Krein, Gastao; Hama, Yogiro; Kodama, Takeshi

2014-01-01T23:59:59.000Z

197

Three-dimensional CFD simulation of hydrodynamics in an interconnected fluidized bed for chemical looping combustion  

Science Journals Connector (OSTI)

Abstract A hydrodynamic model of an interconnected fluidized bed for chemical looping combustion was established based on the Eulerian–Eulerian two-fluid model with the kinetic theory of granular flow. The effect of the drag model on the computational results was investigated and detailed hydrodynamics were predicted in the three-dimensional circulating fluidized bed (composed of a riser, bubbling bed, pot-seal and cyclone). Both qualitative and quantitative results indicated that the drag model had a significant effect on the flow behavior. The Gidaspow and the Syamlal & O'Brien drag models both produced accurate predictions in this study. The pressure balance of an interconnected fluidized bed revealed that the pressure in the bubbling bed was lower than that in the pot-seal and the riser, whilst still being higher than the pressure in the cyclone. The riser and bubbling bed were individually operated in fast and bubbling fluidization regions. The three distinct regions identified from the bottom to the top of the riser were: entrance region, bulk region and exit region. The solids volume fraction was higher in the near-wall region but lower in the center region for both the riser and bubbling bed. The coupled characteristics of the fluidized bed were predominantly identified by the strong effect of operational gas velocity in the riser on the hydrodynamics in the bubbling bed.

Yanjun Guan; Jian Chang; Kai Zhang; Baodong Wang; Qi Sun

2014-01-01T23:59:59.000Z

198

Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction  

E-Print Network [OSTI]

The Gaussian Approximation, proposed originally by Ottinger [J. Chem. Phys., 90 (1) : 463-473, 1989] to account for the influence of fluctuations in hydrodynamic interactions in Rouse chains, is adapted here to derive a new mean-field approximation for the FENE spring force. This "FENE-PG" force law approximately accounts for spring-force fluctuations, which are neglected in the widely used FENE-P approximation. The Gaussian Approximation for hydrodynamic interactions is combined with the FENE-P and FENE-PG spring force approximations to obtain approximate models for finitely-extensible bead-spring chains with hydrodynamic interactions. The closed set of ODE's governing the evolution of the second-moments of the configurational probability distribution in the approximate models are used to generate predictions of rheological properties in steady and unsteady shear and uniaxial extensional flows, which are found to be in good agreement with the exact results obtained with Brownian dynamics simulations. In particular, predictions of coil-stretch hysteresis are in quantitative agreement with simulations' results. Additional simplifying diagonalization-of-normal-modes assumptions are found to lead to considerable savings in computation time, without significant loss in accuracy.

R. Prabhakar; J. Ravi Prakash

2006-02-07T23:59:59.000Z

199

Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model  

SciTech Connect (OSTI)

The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

2010-11-30T23:59:59.000Z

200

Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage  

Science Journals Connector (OSTI)

Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. The results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current–voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations.

Mao Mao; Sandip Ghosal; Guohui Hu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage  

E-Print Network [OSTI]

Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current--voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations.

Mao Mao; Sandip Ghosal; Guohui Hu

2013-05-16T23:59:59.000Z

202

High-energy Particle Transport in Three-dimensional Hydrodynamic Models of Colliding-wind Binaries  

Science Journals Connector (OSTI)

Massive stars in binary systems (such as WR 140, WR 147, or ? Carinae) have long been regarded as potential sources of high-energy ?-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit ?-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.

K. Reitberger; R. Kissmann; A. Reimer; O. Reimer; G. Dubus

2014-01-01T23:59:59.000Z

203

Hydrodynamic motion of a large prestressed concrete bucket foundation for offshore wind turbines  

Science Journals Connector (OSTI)

A large prestressed concrete bucket foundation (LPCBF) was used for the first offshore wind turbine in the Qidong sea area of Jiangsu Province in China. The most critical technique of the foundation is the self-floating towing technique based on a reasonable subdivision inside the bucket. To predict the dynamic behaviors of the LPCBF in waves supported by the air cushion the hydrodynamic software MOSES is used to simulate the three-dimensional motion of the foundation in the towing construction site. The prototype foundation models are established using MOSES with a water draft of 4?m 5?m and 6?m in given environmental conditions. The results show that the hydrodynamic responses of the large floater with air cushions depend not only on the wave conditions but also on the mass of the water column air cushion height and air pressure distribution. In addition the hydrodynamic characteristics can be tuned resulting in small dynamic responses in a particular sea state by changing the draft and water plug height. The floating technique of the LPCBF with supported air cushions in waves is highly competitive for saving cost while using few expensive types of equipment during the towing transportation.

Puyang Zhang; Hongyan Ding; Conghuan Le

2013-01-01T23:59:59.000Z

204

Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)  

SciTech Connect (OSTI)

The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

2008-04-21T23:59:59.000Z

205

Effects of open boundary location on the far-field hydrodynamics of a Severn Barrage  

Science Journals Connector (OSTI)

Abstract The Severn Estuary has the second largest tide range in the world and a barrage across the estuary from Cardiff in South Wales to Weston in South West England has been proposed for over half a century, to extract large amounts of tidal energy from the estuary. To assess the environmental impacts of the proposed tidal barrage requires accurate model predictions of both the near-field and far-field hydrodynamics, which can strongly depend on the model area and the appropriate boundary forcing. In this paper two models, based on the Environmental Fluid Dynamics Code (EFDC) numerical model with a recently-developed Barrage module (EFDC_B), were set up with different computational domains. The Continental Shelf model, which was centred on the Bristol Channel, has its open boundary extended to beyond the Continental Shelf. The Irish Sea model, which was also centred around the Bristol Channel, only has its open boundary extended to the Celtic Sea in the south and the Irish Sea in the north. In order to investigate the effects of the open boundary conditions imposed in the models on the near and far-field hydrodynamics for the case of the Severn Barrage, the Continental Shelf model was first run with and without the operation of the Severn Barrage. The Irish Sea model was then run, also with and without the operation of the Severn Barrage, and with the open boundary conditions provided by the Continental Shelf model. The results from both models were then analysed to study the impact of the tidal barrage on the near-field and far-field hydrodynamics in the Bristol Channel and Irish Sea. Detailed comparisons of the model results indicate that the hydrodynamic conditions along the open boundaries of the Irish Sea model are affected by the tidal barrage and that the open boundary conditions also have noticeable impacts on the far-field hydrodynamics, especially in the Irish Sea, with approximately an average 4–7 cm difference in the maximum water levels predicted in Cardigan Bay and with a maximum difference of 9 cm in the northern part of Cardigan Bay.

Juntao Zhou; Shunqi Pan; Roger A. Falconer

2014-01-01T23:59:59.000Z

206

Hydrodynamic outcomes of planet scattering in transitional discs  

Science Journals Connector (OSTI)

......alpha-viscosity with alpha= 102. The grid is set up withn theta= 512...tested the adequacy of the grid resolution by setting up a...these integrations we used the hybrid integrator of mercury, with...using Strategic Research Infrastructure Funding from the Higher Education......

Nickolas Moeckel; Philip J. Armitage

2012-01-01T23:59:59.000Z

207

Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars  

E-Print Network [OSTI]

This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The tests involve single non-rotating stars in stable equilibrium, non-rotating stars undergoing radial and quadrupolar oscillations, non-rotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, non-rotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasi-radial oscillations. The numerical evolutions have been carried out in full general relativity using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing (HRSC) treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date.

J. Font; T. Goodale; S. Iyer; M. Miller; L. Rezzolla; E. Seidel; N. Stergioulas; W. Suen; M. Tobias

2001-10-09T23:59:59.000Z

208

Impact of different tidal renewable energy projects on the hydrodynamic processes in the Severn Estuary, UK  

Science Journals Connector (OSTI)

The Severn Estuary, located in the UK between south east Wales and south west England, is an ideal site for tidal renewable energy projects, since this estuary has the third highest tidal range in the world, with a spring tidal range approaching 14 m. The UK Government recently invited proposals for tidal renewable energy projects from the estuary and many proposals were submitted for consideration. Among the proposals submitted and subsequently shortlisted were: the Cardiff–Weston Barrage, the Fleming Lagoon and the Shoots Barrage, all three of which are nationally public interest. Therefore a two-dimensional finite volume numerical model, based on an unstructured triangular mesh, has been refined to study the hydrodynamic impact and flood inundation extent, post construction, of all three of these proposed tidal power projects. The model-predicted hydrodynamic processes have been analysed in detail, both without and with the structures, including the discharge processes at key sections, the contours of maximum and minimum water levels, the envelope curves of high and low water levels, the maximum tidal currents, the local velocity fields around the structures and the mean power output curves. Simulated results indicate that: (i) although the construction of the Cardiff–Weston Barrage would have an adverse impact on a range of environmental aspects, due to there being approximately a 50% decrease in the peak discharge entering the upstream region, it would reduce the maximum water levels upstream of the barrage by typically 0.3–1.2 m, which could be positive in respect of coastal flooding; (ii) the construction of the Fleming Lagoon would have little influence on the hydrodynamic processes in the Severn Estuary; and (iii) the construction of the Shoots Barrage would decrease the maximum water levels upstream of the M4 bridge by between 0.3 and 1.0 m, but it could lead to an increase in the maximum water levels downstream of the barrage by typically 20–30 cm.

Junqiang Xia; Roger A. Falconer; Binliang Lin

2010-01-01T23:59:59.000Z

209

Hydrodynamic flow in lower Cretaceous Muddy sandstone, Gas Draw Field, Powder River Basin, Wyoming  

E-Print Network [OSTI]

/dx =[pj(p?- p )j (dh/dx), (4) where 8 is the angle of inclination, dz/dx is the slope of the oil- water interface, dh/dx is the horizontal component of head change, and pj(p - p ) is an amplification factor (Willis, 1961). Thus the w 0 hydrodynamic oil... reflected by Muddy thickness greater than 100 ft appears to cross the north end of Gas Draw, but 37 CHEVRON 1 FEDERAL PERMEABILITY (md) FEET 1000 100 10 I 0. 1 20 POROSITY &Im 20 10 0 WATER SATURATION 100 80 80 40 20 0 I I I I I I OIL SATURATION...

Lin, Joseph Tien-Chin

2012-06-07T23:59:59.000Z

210

Variables Affecting Smooth Particle Hydrodynamics Simulation of High-Velocity Flyer Plate Impact Experiments  

SciTech Connect (OSTI)

This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.

Somasundaram, Deepak S [UNLV; Trabia, Mohamed [UNLV; O'Toole, Brendan [UNLV; Hixson, Robert S [NSTec

2014-01-23T23:59:59.000Z

211

Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK  

Science Journals Connector (OSTI)

The Severn Estuary has a spring tidal range approaching 14 m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0 GW with up to 25 GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5 m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.

Junqiang Xia; Roger A. Falconer; Binliang Lin

2010-01-01T23:59:59.000Z

212

Knudsen-to-Hydrodynamic Crossover in Liquid He3 in a High-Porosity Aerogel  

Science Journals Connector (OSTI)

We present a combined experimental and theoretical study of the drag force acting on a high porosity aerogel immersed in liquid He3 and its effect on sound propagation. The drag force is characterized by the Knudsen number, which is defined as the ratio of the quasiparticle mean free path to the radius of an aerogel strand. Evidence of the Knudsen-hydrodynamic crossover is clearly demonstrated by a drastic change in the temperature dependence of ultrasound attenuation in 98% porosity aerogel. Our theoretical analysis shows that the frictional sound damping caused by the drag force is governed by distinct laws in the two regimes, providing excellent agreement with the experimental observation.

H. Takeuchi; S. Higashitani; K. Nagai; H. C. Choi; B. H. Moon; N. Masuhara; M. W. Meisel; Y. Lee; N. Mulders

2012-06-01T23:59:59.000Z

213

A TWO-MOMENT RADIATION HYDRODYNAMICS MODULE IN ATHENA USING A TIME-EXPLICIT GODUNOV METHOD  

SciTech Connect (OSTI)

We describe a module for the Athena code that solves the gray equations of radiation hydrodynamics (RHD), based on the first two moments of the radiative transfer equation. We use a combination of explicit Godunov methods to advance the gas and radiation variables including the non-stiff source terms, and a local implicit method to integrate the stiff source terms. We adopt the M{sub 1} closure relation and include all leading source terms to O({beta}{tau}). We employ the reduced speed of light approximation (RSLA) with subcycling of the radiation variables in order to reduce computational costs. Our code is dimensionally unsplit in one, two, and three space dimensions and is parallelized using MPI. The streaming and diffusion limits are well described by the M{sub 1} closure model, and our implementation shows excellent behavior for a problem with a concentrated radiation source containing both regimes simultaneously. Our operator-split method is ideally suited for problems with a slowly varying radiation field and dynamical gas flows, in which the effect of the RSLA is minimal. We present an analysis of the dispersion relation of RHD linear waves highlighting the conditions of applicability for the RSLA. To demonstrate the accuracy of our method, we utilize a suite of radiation and RHD tests covering a broad range of regimes, including RHD waves, shocks, and equilibria, which show second-order convergence in most cases. As an application, we investigate radiation-driven ejection of a dusty, optically thick shell in the ISM. Finally, we compare the timing of our method with other well-known iterative schemes for the RHD equations. Our code implementation, Hyperion, is suitable for a wide variety of astrophysical applications and will be made freely available on the Web.

Skinner, M. Aaron; Ostriker, Eve C., E-mail: askinner@astro.umd.edu, E-mail: eco@astro.princeton.edu [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States)

2013-06-01T23:59:59.000Z

214

Macrostatistical hydrodynamics  

SciTech Connect (OSTI)

During the course of these efforts we have been studying suspension of particles in Newtonian and non-Newtonian liquids, embodying a combination of analysis, experiments, and numerical simulations. Experiments primarily involved tracking small balls as they fall slowly through otherwise quiescent suspensions of neutrally buoyant particles. Detailed trajectories of the balls, obtained either with new experimental techniques or by numerical simulation, were statistically interpreted in terms of the mean settling velocity and the dispersion about the mean. We showed that falling-ball rheometry, using small balls relative to the suspended particles, could be a means of measuring the macroscopic zero-shear-rate viscosity without significantly disturbing the original microstructure; therefore, falling-ball rheometry can be a powerful tool for use in studying the effects of microstructures on the macroscopic properties of suspensions. We plan to extend this work to the study of more complex, structured fluids, and to use other tools (e.g., rolling-ball rheometry) to study boundary effects. We also propose to study flowing suspensions to obtain non-zero-shear-rate viscosities. The intent is to develop an understanding of the basic principles needed to treat generic multiphase flow problems, through a detailed study of model systems. 8 refs.

Brenner, H.

1992-01-01T23:59:59.000Z

215

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA  

SciTech Connect (OSTI)

Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of ? ? 4, an implosion velocity of 3.8?×?10{sup 7}?cm/s, and a laser intensity of ?10{sup 15}?W/cm{sup 2}. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

2014-05-15T23:59:59.000Z

216

Development of a Hydrodynamic Model of Puget Sound and Northwest Straits  

SciTech Connect (OSTI)

The hydrodynamic model used in this study is the Finite Volume Coastal Ocean Model (FVCOM) developed by the University of Massachusetts at Dartmouth. The unstructured grid and finite volume framework, as well as the capability of wetting/drying simulation and baroclinic simulation, makes FVCOM a good fit to the modeling needs for nearshore restoration in Puget Sound. The model domain covers the entire Puget Sound, Strait of Juan de Fuca, San Juan Passages, and Georgia Strait at the United States-Canada Border. The model is driven by tide, freshwater discharge, and surface wind. Preliminary model validation was conducted for tides at various locations in the straits and Puget Sound using National Oceanic and Atmospheric Administration (NOAA) tide data. The hydrodynamic model was successfully linked to the NOAA oil spill model General NOAA Operational Modeling Environment model (GNOME) to predict particle trajectories at various locations in Puget Sound. Model results demonstrated that the Puget Sound GNOME model is a useful tool to obtain first-hand information for emergency response such as oil spill and fish migration pathways.

Yang, Zhaoqing; Khangaonkar, Tarang P.

2007-12-10T23:59:59.000Z

217

Hydrodynamic instability growth and mix experiments at the National Ignition Facility  

SciTech Connect (OSTI)

Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ?2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L. [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States); and others

2014-05-15T23:59:59.000Z

218

The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions  

SciTech Connect (OSTI)

Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)

2014-09-15T23:59:59.000Z

219

General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption  

E-Print Network [OSTI]

We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...

Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C

2015-01-01T23:59:59.000Z

220

$v_4$, $v_5$, $v_6$, $v_7$: nonlinear hydrodynamic response versus LHC data  

E-Print Network [OSTI]

Higher harmonics of anisotropic flow ($v_n$ with $n\\ge 4$) in heavy-ion collisions can be measured either with respect to their own plane, or with respect to a plane constructed using lower-order harmonics. We explain how such measurements are related to event-plane correlations. We show that CMS data on $v_4$ and $v_6$ are compatible with ATLAS data on event-plane correlations. If one assumes that higher harmonics are the superposition of non-linear and linear responses, then the linear and non-linear parts can be isolated under fairly general assumptions. By combining analyses of higher harmonics with analyses of $v_2$ and $v_3$, one can eliminate the uncertainty from initial conditions and define quantities that only involve nonlinear hydrodynamic response coefficients. Experimental data on $v_4$, $v_5$ and $v_6$ are in good agreement with hydrodynamic calculations. We argue that $v_7$ can be measured with respect to elliptic and triangular flow. We present predictions for $v_7$ versus centrality in Pb-Pb ...

Yan, Li

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow  

SciTech Connect (OSTI)

Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

2013-08-01T23:59:59.000Z

222

Use of remote sensing data to enhance the performance of a hydrodynamic simulation of a partially frozen power plant  

E-Print Network [OSTI]

on the overall efficiency of a power plant. The ability to monitor a cooling pond using thermal remote sensing of a power plant cooling pond in the presence of ice and snow. Keywords: thermal infrared, hydrodynamic with the objective of improving our ability to understand and simulate the thermodynamics and dynamics of power plant

Salvaggio, Carl

223

Lattice Boltzmann open boundaries for hydrodynamic models A.F. Bennett a,*, J.R. Taylor b  

E-Print Network [OSTI]

Lattice Boltzmann open boundaries for hydrodynamic models A.F. Bennett a,*, J.R. Taylor b , B posed in every respect. Inserting lattice Boltzmann kinetics between hydrostatic boundary data-posedness; Lattice Boltzmann 1. Introduction It is ironic that the introduction of digital computing into fluid

Cambridge, University of

224

3D Lattice Boltzmann Magneto-hydrodynamics Sam Williams1,2, Jonathan Carter2, Leonid Oliker2,  

E-Print Network [OSTI]

1 3D Lattice Boltzmann Magneto-hydrodynamics (LBMHD3D) Sam Williams1,2, Jonathan Carter2, Leonid;5 Quick Introduction to Lattice Methods and LBMHD #12;6 Lattice Methods · Lattice Boltzmann models Lab samw@cs.berkeley.edu October 26, 2006 #12;2 · Previous Cell Work · Lattice Methods & LBMHD

225

Investigation of the hydrodynamics of flash floods in ephemeral channels: Scaling analysis and simulation using a shock-capturing  

E-Print Network [OSTI]

U N C O R R EC TED PR O O F Investigation of the hydrodynamics of flash floods in ephemeral channels: Scaling analysis and simulation using a shock-capturing flow model incorporating the effects; revised 29 August 2005; accepted 11 September 2005 Abstract Flow and infiltration during flash floods

226

THE JOURNAL OF EXPERIMENTAL ZOOLOGY 258164-173 (1991) Hydrodynamics of the Feet of Fish-Catching Bats  

E-Print Network [OSTI]

THE JOURNAL OF EXPERIMENTAL ZOOLOGY 258164-173 (1991) Hydrodynamics of the Feet of Fish-Catching Bats: Influence of the Water Surface on Drag and Morphological Design FRANK E. FISH, BRAD R. BLOOD and Pizonyx uiuesi, display similar hind foot mor- phologies specialized for their fish-catching habits

Fish, Frank

227

Hydrodynamics of Hemostasis in Sickle-Cell Disease S. I. A. Cohen1,* and L. Mahadevan1,2,  

E-Print Network [OSTI]

Hydrodynamics of Hemostasis in Sickle-Cell Disease S. I. A. Cohen1,* and L. Mahadevan1,2, 1 School flow in sickle-cell disease, is a complex dynamical process spanning multiple time and length scales. Motivated by recent ex vivo microfluidic measurements of hemostasis using blood from sickle-cell patients

Mahadevan, L.

228

MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation  

Science Journals Connector (OSTI)

......the smoothed particle hydrodynamics code gasoline (Wadsley, Stadel Quinn 2004). It includes...those properties for the WDM1 case, in runs performed with different stellar feedback...orbits. While the satellite of g1536 falls straight into the centre of the host galaxy the......

Jakob Herpich; Gregory S. Stinson; Andrea V. Macciò; Chris Brook; James Wadsley; Hugh M. P. Couchman; Tom Quinn

2014-01-01T23:59:59.000Z

229

Galactic scale gas flows in colliding galaxies: 3-Dimensional, N-body/hydrodynamics experiments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Galactic Scale Gas Flows in Colliding Galaxies: Galactic Scale Gas Flows in Colliding Galaxies: a-Dimensional, N-bodyjHydrodynamics Experiments Susan A. Lamb* NORDITA and Neils Bohr Institute, Blegdamsvej 17, DK-2100, Kpbenhaven 0, Danmark. Richard A. Gerber University of Illinois at Urbana-Champaign, Departments of Physics and Astronomy, 1110 W. Green Street, Urbana, IL 61801, U.S.A. and Dinshaw S. Balsara t Johns Hopkins University, Department of Physics and Astronomy, Homewood Campu.s, Baltimore, MD 21218, U.S.A. Abstract. We present some result.s from three dimensional computer simulations of collisions between models of equal mass gaJaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical contaiuing stars only. We use fully self consistent models in which the

230

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

231

Hydrodynamic Scaling Analysis of Nuclear Fusion driven by ultra-intense laser-plasma interactions  

E-Print Network [OSTI]

We discuss scaling laws of fusion yields generated by laser-plasma interactions. The yields are found to scale as a function of the laser power. The origin of the scaling law in the laser driven fusion yield is derived in terms of hydrodynamic scaling. We point out that the scaling properties can be attributed to the laser power dependence of three terms: the reaction rate, the density of the plasma and the projected range of the plasma particle in the target medium. The resulting scaling relations have a predictive power that enables estimating the fusion yield for a nuclear reaction which has not been investigated by means of the laser accelerated ion beams.

Sachie Kimura; Aldo Bonasera

2011-09-23T23:59:59.000Z

232

N=2 supersymmetric extension of a hydrodynamic system in Riemann invariants  

SciTech Connect (OSTI)

In this paper, we formulate an N=2 supersymmetric extension of a hydrodynamic-type system involving Riemann invariants. The supersymmetric version is constructed by means of a superspace and superfield formalism, using bosonic superfields, and consists of a system of partial differential equations involving both bosonic and fermionic variables. We make use of group-theoretical methods in order to analyze the extended model algebraically. Specifically, we calculate a Lie superalgebra of symmetries of our supersymmetric model and make use of a general classification method to classify the one-dimensional subalgebras into conjugacy classes. As a result we obtain a set of 401 one-dimensional nonequivalent subalgebras. For selected subalgebras, we use the symmetry reduction method applied to Grassmann-valued equations in order to determine analytic exact solutions of our supersymmetric model. These solutions include traveling waves, bumps, kinks, double-periodic solutions, and solutions involving exponentials and radicals.

Grundland, A. M. [Centre de Recherches Mathematiques, Universite de Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Universite du Quebec, Trois-Rivieres, C.P. 500, Quebec G9A 5H7 (Canada); Hariton, A. J. [Centre de Recherches Mathematiques, Universite de Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7 (Canada)

2009-07-15T23:59:59.000Z

233

Hydrodynamic transport coefficients for the non-conformal quark-gluon plasma from holography  

E-Print Network [OSTI]

In this paper we obtain holographic formulas for the transport coefficients $\\kappa$ and $\\tau_\\pi$ present in the second-order derivative expansion of relativistic hydrodynamics in curved spacetime associated with a non-conformal strongly coupled plasma described holographically by an Einstein+Scalar action in the bulk. We compute these coefficients as functions of the temperature in a bottom-up non-conformal model that is tuned to reproduce lattice QCD thermodynamics at zero baryon chemical potential. We directly compute, besides the speed of sound, 6 other transport coefficients that appear at second-order in the derivative expansion. We also give an estimate for the temperature dependence of 11 other transport coefficients taking into account the simplest contribution from non-conformal effects that appear near the QCD crossover phase transition. Using these results, we construct an Israel-Stewart-like theory in flat spacetime containing 13 of these 17 transport coefficients that should be suitable for ph...

Finazzo, Stefano I; Marrochio, Hugo; Noronha, Jorge

2014-01-01T23:59:59.000Z

234

Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration  

SciTech Connect (OSTI)

In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model “General NOAA Operational Modeling Environment (GNOME).” Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.

Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

2010-04-22T23:59:59.000Z

235

Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics  

Science Journals Connector (OSTI)

Using microscopic particle image velocimetry, we examine the flow field around an oil droplet as it is formed by hydrodynamic focusing in an aqueous solution using a pressure-driven cross-channel microfluidic device. By detecting the temporal dependence of the instantaneous flow fields of the continuous phase in the dripping regime, we show that shear is not the primary mechanism that initiates droplet formation in our low flow rate and moderate capillary number experimental conditions. Instead, the advancing finger of oil partially and temporarily plugs the outlet channel, creating a pressure difference that builds up and is released when water from the side channels pushes the tip of the finger into the outlet channel, thereby facilitating the birth of the droplet by interfacial pinch-off that is primarily initiated by an extensional flow.

D. Funfschilling; H. Debas; H.-Z. Li; T. G. Mason

2009-07-06T23:59:59.000Z

236

Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics  

E-Print Network [OSTI]

Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We describe in this paper the construction of the exact solution and a detailed procedure of its implementation.

F. D. Lora-Clavijo; J. P. Cruz-Perez; F. S. Guzman; J. A. Gonzalez

2013-03-16T23:59:59.000Z

237

Single molecule study of DNA collision with elliptical nanoposts conveyed by hydrodynamics  

E-Print Network [OSTI]

Periodic arrays of micro- or nano-pillars constitute solid state matrices with excellent properties for DNA size separation. Nanofabrication technologies offer many solutions to tailor the geometry of obstacle arrays, yet most studies have been conducted with cylinders arranged in hexagonal lattices. In this report, we investigate the dynamics of single DNA collision with elliptical nanoposts using hydrodynamic actuation. Our data shows that the asymmetry of the obstacles has minor effect on unhooking dynamics, and thus confirms recent predictions obtained by Brownian dynamics simulations. In addition, we show that the disengagement dynamics are correctly predicted by models of electrophoresis, and propose that this consistency is associated to the confinement in slit-like channels. We finally conclude that elliptical posts are expected to marginally improve the performances of separation devices.

Viero, Yannick; Fouet, Marc; Bancaud, Aurélien

2014-01-01T23:59:59.000Z

238

Soot blower optimization; Part 1: Fundamental hydrodynamics of a soot blower nozzle and jet  

SciTech Connect (OSTI)

The fundamental hydrodynamics of soot blower nozzles and jets are examined. For currently available nozzles, a substantial fraction of the energy available in the steam jet is dissipated as the steam passes through a shock wave only a few jet diameters beyond the nozzle outlet. Only a small fraction of the initial energy is delivered to the heat-transfer surface for cleaning. Efforts to increase the delivered energy by raising the upstream steam pressure above the design condition produces a larger shock wave and only a small increase in delivered energy. Nozzle design should be changed to permit full expansion of the steam before it leaves the nozzle. This would eliminate the shock wave and substantially improve soot blower performance.

Jameel, M.I.; Cormack, D.E.; Tran, H. (Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry); Moskal, T.E. (Diamond Power Specialty Corp., Lancaster, OH (United States))

1994-05-01T23:59:59.000Z

239

Radiative Hydrodynamic Models of the Optical and Ultraviolet Emission from Solar Flares  

E-Print Network [OSTI]

We report on radiative hydrodynamic simulations of moderate and strong solar flares. The flares were simulated by calculating the atmospheric response to a beam of non-thermal electrons injected at the apex of a one-dimensional closed coronal loop, and include heating from thermal soft X-ray, extreme ultraviolet and ultraviolet (XEUV) emission. The equations of radiative transfer and statistical equilibrium were treated in non-LTE and solved for numerous transitions of hydrogen, helium, and Ca II allowing the calculation of detailed line profiles and continuum emission. This work improves upon previous simulations by incorporating more realistic non-thermal electron beam models and includes a more rigorous model of thermal XEUV heating. We find XEUV backwarming contributes less than 10% of the heating, even in strong flares. The simulations show elevated coronal and transition region densities resulting in dramatic increases in line and continuum emission in both the UV and optical regions. The optical continuum reaches a peak increase of several percent which is consistent with enhancements observed in solar white light flares. For a moderate flare (~M-class), the dynamics are characterized by a long gentle phase of near balance between flare heating and radiative cooling, followed by an explosive phase with beam heating dominating over cooling and characterized by strong hydrodynamic waves. For a strong flare (~X-class), the gentle phase is much shorter, and we speculate that for even stronger flares the gentle phase may be essentially non-existent. During the explosive phase, synthetic profiles for lines formed in the upper chromosphere and transition region show blue shifts corresponding to a plasma velocity of ~120 km/s, and lines formed in the lower chromosphere show red shifts of ~40 km/s.

J. C. Allred; S. L. Hawley; W. P. Abbett; M. Carlsson

2005-07-13T23:59:59.000Z

240

NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows  

SciTech Connect (OSTI)

The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

Bouillard, J.X. [Argonne National Lab., IL (United States); Sinton, S.W. [Lockheed Missiles and Space Co., Palo Alto, CA (United States). Research Lab.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Numerical Simulation of Hydrodynamics of a Heavy Liquid Drop Covered by Vapor Film in a Water Pool  

SciTech Connect (OSTI)

A numerical study on the hydrodynamics of a droplet covered by vapor film in water pool is carried out. Two level set functions are used as to implicitly capture the interfaces among three immiscible fluids (melt-drop, vapor and coolant). This approach leaves only one set of conservation equations for the three phases. A high-order Navier-Stokes solver, called Cubic-Interpolated Pseudo-Particle (CIP) algorithm, is employed in combination with level set approach, which allows large density ratios (up to 1000), surface tension and jump in viscosity. By this calculation, the hydrodynamic behavior of a melt droplet falling into a volatile coolant is simulated, which is of great significance to reveal the mechanism of steam explosion during a hypothetical severe reactor accident. (authors)

Ma, W.M.; Yang, Z.L.; Giri, A.; Sehgal, B.R. [Royal Institute of Technology (KTH), Drottning Kristinas vaeg 33 A, 100 44, Stockholm (Sweden)

2002-07-01T23:59:59.000Z

242

Design of a free-running, 1/30th Froude scaled model destroyer for in-situ hydrodynamic flow visualization  

E-Print Network [OSTI]

Hydrodynamic flow visualization techniques of scaled hull forms and propellers are typically limited to isolating certain operating conditions in a tow tank, circulation tunnel, or large maneuvering basin. Although cost ...

Cope, David M. (David Michael)

2012-01-01T23:59:59.000Z

243

Influence of Water Allocation and Freshwater Inflow on Oyster Production: A Hydrodynamic–Oyster Population Model for Galveston Bay, Texas, USA  

Science Journals Connector (OSTI)

A hydrodynamic–oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the...Perkinsus marinus,

ERIC N. POWELL; JOHN M. KLINCK; EILEEN E. HOFMANN…

2003-01-01T23:59:59.000Z

244

Two-and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding  

E-Print Network [OSTI]

focusing microfluidic mixer for protein folding Benjamin Ivorra, Juana L. Redondo, Juan G. Santiago, Pilar of a fast hydrodynamic focusing microfluidic mixer for protein folding Benjamin Ivorra,1,a) Juana L. Redondo

Santiago, Juan G.

245

Depositional environment and hydrodynamic flow in Guadalupian Cherry Canyon sandstone, West Ford and West Geraldine fields, Delaware Basin, Texas  

E-Print Network [OSTI]

and entrapment of hydrocarbons. Delaware Mountain Group sediments are currently generating oil. Decementation enhances the reservoir by the formation of secondary porosity. The reservoir sandstones have an aver age porosity of 26$ and an aver age permeability... of 24 md. Oil accumulates in stratigraphic traps located along the updip meander loops of tur bidite channels. A tilted oil/water contact in West Ford and West Ger aldine fields indicates that hydrodynamic flow is pr esent. Heads calculated...

Linn, Anne Marie

2012-06-07T23:59:59.000Z

246

The hydrodynamics of relict cosmological H?i i regions: impact of the IGM  

Science Journals Connector (OSTI)

Discrete sources of photoionizing radiation present at the time the intergalactic medium is largely neutral will create expanding H?i i regions. A source which turns off or dims quickly enough will not be able to maintain the advance of its ionization front indefinitely. The high pressure of the relict H?i i region will then drive a shock into the cold neutral ambient medium. We discuss the hydrodynamical evolution of relict cosmological H?i i regions generated at redshifts z?5–15. A thin shell of shocked material develops around the H?i i region. The peculiar velocity of the shell is typically 10–20 km s? 1. The dense shell may cool and fragment into objects with baryonic masses as high as 106–108 M ? and column densities of order 101 9 cm? 2. These values are independent of the nature of the photoionizing source. They are set only by the density of the IGM the sound speed of 104 K gas and the age of the shell. The shock propagation ceases once the filling factor of the H?i i regions reaches unity and the IGM is photoionized. The clouds formed may account for the Ly? forest seen in the spectra of high redshift QSOs. Gravitationally bound fragments may be candidates for blue?excess galaxies at high redshift.

Avery Meiksin; Piero Madau

1991-01-01T23:59:59.000Z

247

Three-dimensional hydrodynamic simulations of asymmetric pulsar wind bow shocks  

E-Print Network [OSTI]

We present three-dimensional, nonrelativistic, hydrodynamic simulations of bow shocks in pulsar wind nebulae. The simulations are performed for a range of initial and boundary conditions to quantify the degree of asymmetry produced by latitudinal variations in the momentum flux of the pulsar wind, radiative cooling in the postshock flow, and density gradients in the interstellar medium (ISM). We find that the bow shock is stable even when travelling through a strong ISM gradient. We demonstrate how the shape of the bow shock changes when the pulsar encounters density variations in the ISM. We show that a density wall can account for the peculiar bow shock shapes of the nebulae around PSR J2124-3358 and PSR B0740-28. A wall produces kinks in the shock, whereas a smooth ISM density gradient tilts the shock. We conclude that the anisotropy of the wind momentum flux alone cannot explain the observed bow shock morphologies but it is instead necessary to take into account external effects. We show that the analytic (single layer, thin shell) solution is a good approximation when the momentum flux is anisotropic, fails for a steep ISM density gradient, and ap- proaches the numerical solution for efficient cooling. We provide analytic expressions for the latitudinal dependence of a vacuum-dipole wind and the associated shock shape, and compare the results to a split-monopole wind. We find that we are unable to distinguish between these two wind models purely from the bow shock morphology.

M. Vigelius; A. Melatos; S. Chatterjee; B. M. Gaensler; P. Ghavamian

2006-10-16T23:59:59.000Z

248

On the relevance of subcritical hydrodynamic turbulence to accretion disk transport  

E-Print Network [OSTI]

Hydrodynamic unstratified keplerian flows are known to be linearly stable at all Reynolds numbers, but may nevertheless become turbulent through nonlinear mechanisms. However, in the last ten years, conflicting points of view have appeared on this issue. We have revisited the problem through numerical simulations in the shearing sheet limit. It turns out that the effect of the Coriolis force in stabilizing the flow depends on whether the flow is cyclonic (cooperating shear and rotation vorticities) or anticyclonic (competing shear and rotation vorticities); keplerian flows are anticyclonic. We have obtained the following results: i/ The Coriolis force does not quench turbulence in subcritical flows; ii/ The resolution demand, when moving away from the marginal stability boundary, is much more severe for anticyclonic flows than for cyclonic ones. Presently available computer resources do not allow numerical codes to reach the keplerian regime. iii/ The efficiency of turbulent transport is directly correlated to the Reynolds number of transition to turbulence $Rg$, in such a way that the Shakura-Sunyaev parameter $\\alpha\\sim 1/Rg$. iv/ Even the most optimistic extrapolations of our numerical data show that subcritical turbulent transport would be too inefficient in keplerian flows by several orders of magnitude for astrophysical purposes. v/ Our results suggest that the data obtained for keplerian-like flows in a Taylor-Couette settings are largely affected by secondary flows, such as Ekman circulation.

G. Lesur; P-Y. Longaretti

2005-09-19T23:59:59.000Z

249

Hydrodynamic flow in heavy-ion collisions with large hadronic viscosity  

SciTech Connect (OSTI)

Using the (2+1)-dimensional viscous hydrodynamic code vish2+1 with a temperature-dependent specific shear viscosity ({eta}/s)(T), we present a detailed study of the influence of a large hadronic shear viscosity and its corresponding relaxation time {tau}{sub {pi}} on the transverse momentum spectra and elliptic flow of hadrons produced in 200A GeV Au+Au collisions. Although theory, in principle, predicts a well-defined relation {tau}{sub {pi}T}={kappa}(T)x({eta}/s)(T), the precise form of {kappa}(T) for the matter created in relativistic heavy-ion collisions is not known. For the popular choice {kappa}=3 the hadron spectra are found to be insensitive to a significant rise of {eta}/s in the hadronic stage, whereas their differential elliptic flow v{sub 2}(p{sub T}) is strongly suppressed by large hadronic viscosity. The large viscous effects on v{sub 2} are strongly reduced if (as theoretically expected) {kappa}(T) is allowed to grow with decreasing temperature in the hadronic stage. This implies that, until reliable calculations of {kappa}(T) become available, an extraction of the hadronic shear viscosity from a comparison between vish2+1 and a microscopic hadron cascade or experimental data requires a simultaneous fit of ({eta}/s)(T) and {kappa}(T).

Shen Chun; Heinz, Ulrich [Department of Physics, Ohio State University, Columbus, Ohio 43210-1117 (United States)

2011-04-15T23:59:59.000Z

250

Hydrodynamic modeling of deconfinement phase transition in heavy-ion collisions at NICA-FAIR energies  

E-Print Network [OSTI]

We use (3+1) dimensional ideal hydrodynamics to describe the space-time evolution of strongly interacting matter created in Au+Au and Pb+Pb collisions. The model is applied for the domain of bombarding energies 1-160 AGeV which includes future NICA and FAIR experiments. Two equations of state are used: the first one corresponding to resonance hadron gas and the second one including the deconfinement phase transition. The initial state is represented by two Lorentz-boosted nuclei. Dynamical trajectories of matter in the central box of the system are analyzed. They can be well represented by a fast shock-wave compression followed by a relatively slow isentropic expansion. The parameters of collective flows and hadronic spectra are calculated under assumption of the isochronous freeze-out. It is shown that the deconfinement phase transition leads to broadening of proton rapidity distributions, increase of elliptic flows and formation of the directed antiflow in the central rapidity region. These effects are most pronounced at bombarding energies around 10 AGeV, when the system spends the longest time in the mixed phase. From the comparison with three-fluid calculations we conclude that the transparency effects are not so important in central collisions at NICA-FAIR energies (below 30 AGeV).

A. V. Merdeev; L. M. Satarov; I. N. Mishustin

2011-03-21T23:59:59.000Z

251

Lattice Boltzmann method for relativistic hydrodynamics: Issues on conservation law of particle number and discontinuities  

E-Print Network [OSTI]

In this paper, we aim to address several important issues about the recently developed lattice Boltzmann (LB) model for relativistic hydrodynamics [M. Mendoza et al., Phys. Rev. Lett. 105, 014502 (2010); Phys. Rev. D 82, 105008 (2010)]. First, we study the conservation law of particle number in the relativistic LB model. Through the Chapman-Enskog analysis, it is shown that in the relativistic LB model the conservation equation of particle number is a convection-diffusion equation rather than a continuity equation, which makes the evolution of particle number dependent on the relaxation time. Furthermore, we investigate the origin of the discontinuities appeared in the relativistic problems with high viscosities, which were reported in a recent study [D. Hupp et al., Phys. Rev. D 84, 125015 (2011)]. A multiple-relaxation-time (MRT) relativistic LB model is presented to examine the influences of different relaxation times on the discontinuities. Numerical experiments show the discontinuities can be eliminated by setting the relaxation time $\\tau_e$ (related to the bulk viscosity) to be sufficiently smaller than the relaxation time $\\tau_v$ (related to the shear viscosity). Meanwhile, it is found that the relaxation time $\\tau_\\varepsilon$, which has no effect on the conservation equations at the Navier-Stokes level, will affect the numerical accuracy of the relativistic LB model. Moreover, the accuracy of the relativistic LB model for simulating moderately relativistic problems is also investigated.

Q. Li; K. H. Luo; X. J. Li

2012-11-14T23:59:59.000Z

252

Nonlinear effects on hydrodynamic pressure field caused by ship moving at supercritical speed in shallow water  

Science Journals Connector (OSTI)

Abstract Based on the shallow-water wave potential flow theory and the assumption of a slender ship, a mathematical model has been established for the pressure field caused by ship moving at supercritical speed in shallow water, with nonlinear and dispersive effects taken into account. The finite difference method is used for the numerical calculation of the ship hydrodynamic pressure field (SHPF), with the central and upwind difference schemes as a combination for the second derivative of the nonlinear term. And the artificial viscous terms are added in the hull and upstream boundary conditions to ensure the stability of solving the nonlinear equation. The comparison between the calculated results and the experimental results shows that both the mathematical model and the calculation method are effective and feasible. The analysis of the nonlinear effects of different-depth water, different depth Froude number and different-width channel on SHPF indicates that the closer to the critical speed the ship in sailing, the narrower the channel becomes, the greater the nonlinear effects on SHPF are.

Hui Deng; Zhi-hong Zhang; Ju-bin Liu; Jian-nong Gu

2014-01-01T23:59:59.000Z

253

Solar Flare Chromospheric Line Emission: Comparison Between IBIS High-resolution Observations and Radiative Hydrodynamic Simulations  

E-Print Network [OSTI]

Solar flares involve impulsive energy release, which results in enhanced radiation in a broad spectral and at a wide height range. In particular, line emission from the chromosphere (lower atmosphere) can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results can be extremely valuable, but has not been attempted so far. We present in this paper such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope's (DST) Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 that we have modeled with the radiative hydrodynamic code RADYN (Carlsson & Stein 1992, 1997; Abbett & Hawley 1999; Allred et al. 2005). We obtained images and spectra of the flaring region with IBIS in H$\\alpha$ 6563 \\AA\\ and Ca II 8542 \\AA, and with the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) in X-rays. The latter was used to infer the non-thermal elect...

da Costa, Fatima Rubio; Petrosian, Vahé; Dalda, Alberto Sainz; Liu, Wei

2014-01-01T23:59:59.000Z

254

Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study  

Science Journals Connector (OSTI)

Abstract The impoverishment of our planet in non-renewable energies has incited researchers to design salinity gradient solar ponds to collect and store solar energy at a lower cost. It is in this context that the present research work lies to focus on the numerical study of the transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond. The problem is tackled using the dimensionless governing equations of Navier–Stokes, thermal energy and mass transfer, which are solved numerically by finite-volume method to provide the temperature, concentration and velocity fields in transient regime. The pond is filled with salty water of various salinities to form three zones of salty water: Upper Convective Zone (UCZ), Non-Convective Zone (NCZ) and Lower Convective Zone (LCZ). To prevent convective movements induced by the internal heating of salty water due to solar radiation absorption, a salinity gradient is used in the solar pond. Representative results illustrating the influence of internal Rayleigh number on the thermal performance of the pond and the effect of the aspect ratio on the distribution of temperature and velocity fields in the salinity gradient solar pond (SGSP) are discussed. In addition, results for the transient average temperature of UCZ and LCZ are presented and discussed for various parametric conditions.

Ridha Boudhiaf; Mounir Baccar

2014-01-01T23:59:59.000Z

255

Investigations of Protostellar Outflow Launching and Gas Entrainment: Hydrodynamic Simulations and Molecular Emission  

E-Print Network [OSTI]

We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from $\\theta$=0.01-0.1 and find that even well collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in the surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to a simulation of a cluster of protostars, which is not gravitationally ...

Offner, S S R

2013-01-01T23:59:59.000Z

256

Thin film hydrodynamic lubrication of flying heads in magnetic disk storages  

Science Journals Connector (OSTI)

Typical hydrodynamic lubrication problems commonly encountered in the ultrathin spacing between a computer flying head and a magnetic disk are reviewed. In magnetic disk storages, minimizing the spacing between the head and disk is essential to promote the largest possible increase in magnetic bit density. In the small (nearly 1.0 ?m) spacing that has recently been attained, the rarefaction effects owing to the molecular mean free path become dominant. Specifically, in this paper the three governing equations resulting from the first- and second-order slip-flow models and from the linearized Boltzmann equation are compared. Next, some numerical approaches to eliminating the instability in pressure distribution in the high bearing number region are described. Surface roughness effects are also a principal concern in thin spacing. A mixed lubrication model which enables the analysis of the start/stop operation and the average film thickness theory for one- and two-dimensional roughnesses is summarized. Finally, from the viewpoint of practical head design, the slider dynamic characteristics and related slider design factors are discussed.

Yasunaga Mitsuya

1987-01-01T23:59:59.000Z

257

Efficient Calculation of Dewatered and Entrapped Areas Using Hydrodynamic Modeling and GIS  

SciTech Connect (OSTI)

River waters downstream of a hydroelectric project are often subject to rapidly changing discharge. Abrupt decreases in discharge can quickly dewater and expose some areas and isolate other areas from the main river channel, potentially stranding or entrapping fish, which often results in mortality. A methodology is described to estimate the areas dewatered or entrapped by a specific reduction in upstream discharge. A one-dimensional hydrodynamic model was used to simulate steady flows. Using flow simulation results from the model and a geographic information system (GIS), estimates of dewatered and entrapped areas were made for a wide discharge range. The methodology was applied to the Hanford Reach of the Columbia River in central Washington State. Results showed that a 280 m$^3$/s discharge reduction affected the most area at discharges less than 3400 m$^3$/s. At flows above 3400 m$^3$/s, the affected area by a 280 m$^3$/s discharge reduction (about 25 ha) was relatively constant. A 280 m$^3$/s discharge reduction at lower flows affected about twice as much area. The methodology and resulting area estimates were, at the time of writing, being used to identify discharge regimes, and associated water surface elevations, that might be expected to minimize adverse impacts on juvenile fall chinook salmon (\\emph{Oncorhynchus tshawytscha}) that rear in the shallow near-shore areas in the Hanford Reach.

Richmond, Marshall C.; Perkins, William A.

2009-12-01T23:59:59.000Z

258

The solar photospheric abundance of europium. Results from CO5BOLD 3-D hydrodynamical model atmospheres  

E-Print Network [OSTI]

Context. Europium is an almost pure r-process element, which may be useful as a reference in nucleocosmochronology. Aims. To determine the photospheric solar abundance using CO5BOLD 3-D hydrodynamical model atmospheres. Methods. Disc-centre and integrated-flux observed solar spectra are used. The europium abundance is derived from the equivalent width measurements. As a reference 1D model atmospheres have been used, in addition. Results. The europium photospheric solar abundance is 0.52 +- 0.02 in agreement with previous determinations. We also determine the photospheric isotopic fraction of Eu(151) to be 49 % +- 2.3 % from the intensity spectra and 50% +-2.3 from the flux spectra. This compares well to the the meteoritic isotopic fraction 47.8%. We explore the 3D corrections also for dwarfs and sub-giants in the temperature range ~5000 K to ~6500 K and solar and 1/10--solar metallicities and find them to be negligible for all the models investigated. Conclusions. Our photospheric Eu abundance is in good agreement with previous determinations based on 1D models. This is in line with our conclusion that 3D effects for this element are negligible in the case of the Sun.

A. Mucciarelli; E. Caffau; B. Freytag; H. -G. Ludwig; P. Bonifacio

2008-03-06T23:59:59.000Z

259

Hydrodynamics of Embedded Planets' First Atmospheres. II. A Rapid Recycling of Atmospheric Gas  

E-Print Network [OSTI]

Following Paper I we investigate the properties of atmospheres that form around small protoplanets embedded in a protoplanetary disc by conducting hydrodynamical simulations. These are now extended to three dimensions, employing a spherical grid centred on the planet. Compression of gas is shown to reduce rotational motions. Contrasting the 2D case, no clear boundary demarcates bound atmospheric gas from disc material; instead, we find an open system where gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or, vice versa, when the disc gas rotates sub-Keplerian. The simulations do not converge to a time-independent solution; instead, the atmosphere is characterized by a time-varying velocity field. Of particular interest is the timescale to replenish the atmosphere by nebular gas, $t_\\mathrm{replenish}$. It is shown that the replenishment rate, $M_\\mathrm{atm}/t_\\mathrm{replenish}$, can be understood in terms of a modified Bondi accretion rate, $\\sim$$R_\\mathrm{Bondi}^2\\rho...

Ormel, Chris W; Kuiper, Rolf

2014-01-01T23:59:59.000Z

260

Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN  

SciTech Connect (OSTI)

Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

Chipman, V D

2011-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics  

E-Print Network [OSTI]

We present the new code ALCAR developed to model multidimensional, multi energy-group neutrino transport in the context of supernovae and neutron-star mergers. The algorithm solves the evolution equations of the 0th- and 1st-order angular moments of the specific intensity, supplemented by an algebraic relation for the 2nd-moment tensor to close the system. The scheme takes into account frame-dependent effects of order O(v/c) as well as the most important types of neutrino interactions. The transport scheme is significantly more efficient than a multidimensional solver of the Boltzmann equation, while it is more accurate and consistent than the flux-limited diffusion method. The finite-volume discretization of the essentially hyperbolic system of moment equations employs methods well-known from hydrodynamics. For the time integration of the potentially stiff moment equations we employ a scheme in which only the local source terms are treated implicitly, while the advection terms are kept explicit, thereby allo...

Just, Oliver; Janka, H -Thomas

2015-01-01T23:59:59.000Z

262

Simulation and experimental verification of a hydrodynamic model for a dual fluidized Bed gasifier  

Science Journals Connector (OSTI)

Abstract We propose a revised 2-D energy-minimization multi-scale (EMMS) model based on a two-fluid model to perform the hydrodynamic character analysis of a pilot-scale full-loop dual fluidized bed gasifier (DFBG), which consists of a riser, a cyclone with a down-comer, a bubbling fluidized bed (BFB), and a loop-seal. The EMMS model is used to analyze the interaction force between the gas and solid phases in the DFBG. For comparison, O'Brien & Syamlal's drag heterogeneous force coefficient correction is also analyzed. The instantaneous particle profiles are described by the calculated results. The local and overall flow characteristics are determined by the solids concentration under different fluidization conditions. The effects of the gas velocities in the riser and the recycle gas velocities in the U loop seal on the axial solids concentration and solids circulation profiles, as well as the flow heterogeneity in sub-zones of the riser are investigated. The numerical results are in good agreement with the experimental data, indicating that the EMMS model is appropriate to simulate the heterogeneous gas–solids two-phase flow in DFBG.

Xueyao Wang; Jing Lei; Xiang Xu; Zhengzhong Ma; Yunhan Xiao

2014-01-01T23:59:59.000Z

263

Influence of geometric parameters on the hydrodynamics control of solar chimney  

Science Journals Connector (OSTI)

Abstract Hydrogen generating station (HGS) by water electrolysis is based on three principal compartments: hydraulic pumping system, water electrolysis process and energy supply whose can be free source like solar chimney power plans (SCPP). The HGS can be controlled if governed one of these three compartments especially the energy supply SCPP. The aim of this study is to investigate numerically the airflow behavior through a Solar Chimney. The transport equations that describe the flow, for different geometric tower parameters were modeled and solved numerically using the finite volume method. This methodology allows us a detailed visualization of the effects of some geometrical parameters such as the tower height and tower radius. It has been shown in this work that the dimensions of the tower play an important role in designing of such systems by increasing or decreasing the mass flow rate. Consequently, the hydrodynamic field is directly controlled by varying the tower dimensions. However the thermal field is indirectly controlled by decreasing the system mean temperature.

M. Lebbi; T. Chergui; H. Boualit; I. Boutina

2014-01-01T23:59:59.000Z

264

3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries  

E-Print Network [OSTI]

Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

2014-01-01T23:59:59.000Z

265

3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamics  

E-Print Network [OSTI]

Dam is built for water supply, water flow or flooding control and electricity energy storage, but in other hand, dam is one of the most dangerous natural disaster in many countries including in Indonesia. The impact of dam break in neighbour area and is huge and many flooding in remote area, as happen in Dam Situ Gintung in Tangerang (close to Jakarta) in 2009. Smoothed Particle Hydrodynamics (SPH), is one of numerical method based on Lagrangian grid which is ap- plied in astrophysical simulation may be used to solve the simulation on dam break effect. The development of SPH methods become alternative methods to solving Navier Stokes equation, which is main key in fluid dynamic simulation. In this paper, SPH is developed for supporting solid par- ticles in use for 3D dam break effect (3D-DBE) simulation. Solid particle have been treated same as fluid particles with additional calculation for converting gained position became translation and rotation of solid object in a whole body. With this capability, the r...

Suprijadi,; Naa, Christian; Putra, Anggy Trisnawan

2013-01-01T23:59:59.000Z

266

The effect of particle inlet conditions on FCC riser hydrodynamics and product yields.  

SciTech Connect (OSTI)

Essential to today's modern refineries and the gasoline production process are fluidized catalytic cracking units. By using a computational fluid dynamics (CFD) code developed at Argonne National Laboratory to simulate the riser, parametric and sensitivity studies were performed to determine the effect of catalyst inlet conditions on the riser hydrodynamics and on the product yields. Simulations were created on the basis of a general riser configuration and operating conditions. The results of this work are indications of riser operating conditions that will maximize specific product yields. The CFD code is a three-dimensional, multiphase, turbulent, reacting flow code with phenomenological models for particle-solid interactions, droplet evaporation, and chemical kinetics. The code has been validated against pressure, particle loading, and product yield measurements. After validation of the code, parametric studies were performed on various parameters such as the injection velocity of the catalyst, the angle of injection, and the particle size distribution. The results indicate that good mixing of the catalyst particles with the oil droplets produces a high degree of cracking in the riser.

Chang, S. L.; Golchert, B.; Lottes, S. A.; Zhou, C. Q.; Huntsinger, A.; Petrick, M.

1999-10-11T23:59:59.000Z

267

Hydrodynamics of cell-cell mechanical signaling in the initial stages of aggregation  

Science Journals Connector (OSTI)

Mechanotactic cell motility has recently been shown to be a key player in the initial aggregation of crawling cells such as leukocytes and amoebae. The effects of mechanotactic signaling in the early aggregation of amoeboid cells are here investigated using a general mathematical model based on known biological evidence. We elucidate the hydrodynamic fundamentals of the direct guiding of a cell through mechanotaxis in the case where one cell transmits a mechanotactic signal through the fluid flow by changing its shape. It is found that any mechanosensing cells placed in the stimulus field of mechanical stress are able to determine the signal transmission direction with a certain angular dispersion which does not preclude the aggregation from happening. The ubiquitous presence of noise is accounted for by the model. Finally, the mesoscopic pattern of aggregation is obtained which constitutes the bridge between, on one hand, the microscopic world where the changes in the cell shape occur and, on the other hand, the cooperative behavior of the cells at the mesoscopic scale.

Roland Bouffanais and Dick K. P. Yue

2010-04-28T23:59:59.000Z

268

Hydrodynamical description of 200A GeV/c S+Au collisions: Hadron and electromagnetic spectra  

Science Journals Connector (OSTI)

We study relativistic S+Au collisions at 200A GeV/c using a hydrodynamical approach. We test various equations of state (EOS’s), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electromagnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. Only EOS’s with a few degrees of freedom up to very high temperatures can be ruled out presently. We deduce an upper bound of about 250 MeV for the initial temperature from the single photon spectra of WA80. With regard to the CERES dilepton data, none of the EOS’s considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the ? peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS.

Josef Sollfrank; Pasi Huovinen; Markku Kataja; P. V. Ruuskanen; Madappa Prakash; Raju Venugopalan

1997-01-01T23:59:59.000Z

269

An experimental study of the hydrodynamics and cluster formation in a circulating fluidized-bed riser. Semi-annual report, July 1, 1992--December 31, 1992  

SciTech Connect (OSTI)

A novel gas-solid flow measuring technique is being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The second objective, that of making detailed measurements of gas and solid phases in the rises of a cold CFB model to investigate the phenomena of clusters and streamers for different bed operating parameters is being accomplished in the current year. The differential pressure fluctuations were in order to study the solids cluster formation. Of the several factors which lead to differential pressure fluctuations, the solids cluster formation in CFB riser is by far the most important of all. Simultaneously, theoretical formulation of the two-phase flow in the CFB riser was initiated. The concept of entropy maximization is being applied to explain the hydrodynamics inside the riser. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

Gautam, M.; Jurewicz, J.T.; Johnson, E.K.; Heping, Y.

1993-01-01T23:59:59.000Z

270

Category:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

9 pages are in this category, out of 9 total. C Channel F Flow Table Flume O Offshore Berth R Reverberant Tank T Tow Tank T cont. Tow Vessel Tunnel W Wave Basin Retrieved...

271

Record of Decision Dual Axis Radiographic Hydrodynamic Test Facility  

Broader source: Energy.gov (indexed) [DOE]

88 88 Federal Register / Vol. 60, No. 199 / Monday, October 16, 1995 / Notices Education, National Assessment Governing Board, Suite 825, 800 North Capitol Street NW., Washington, DC, from 8:30 a.m. to 5 p.m. Roy Truby, Executive Director, National Assessment Governing Board. [FR Doc. 95-25557 Filed 10-13-95; 8:45 am] BILLING CODE 4000-01-M DEPARTMENT OF ENERGY Notice of Certification of the Radiological Condition of the Baker and Williams Warehouses Site, New York, NY, 1991-1993 AGENCY: Office of Environmental Management, Department of Energy (DOE). ACTION: Notice of certification. SUMMARY: The Department has completed remedial action to decontaminate warehouses (Buildings 513-519, 521-527, and 529-535 West 20th Street) in New York, New York, and the certification docket is available.

272

Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows  

SciTech Connect (OSTI)

We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F

2011-03-02T23:59:59.000Z

273

Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. I. The Numerical Model  

Science Journals Connector (OSTI)

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a ~10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

Wei Liu; Vahé Petrosian; John T. Mariska

2009-01-01T23:59:59.000Z

274

COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL  

SciTech Connect (OSTI)

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a {approx}10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

Liu Wei [Stanford-Lockheed Institute for Space Research, 466 Via Ortega, Cypress Hall, Stanford, CA 94305-4085 (United States); Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Mariska, John T. [Naval Research Laboratory, Code 7673, Washington, DC 20375-5000 (United States)

2009-09-10T23:59:59.000Z

275

Coalescing Neutron Stars -- a Step Towards Physical Models. I. Hydrodynamic Evolution and Gravitational-Wave Emission  

E-Print Network [OSTI]

We investigate the dynamics and evolution of coalescing neutron stars. Although the code (Piecewise Parabolic Method) is purely Newtonian, we do include the emission of gravitational waves and their backreaction on the hydrodynamic flow. The properties of neutron star matter are described by the physical equation of state of Lattimer \\& Swesty (1991). Energy loss by all types of neutrinos and changes of the electron fraction due to the emission of electron neutrinos and antineutrinos are taken into account by an elaborate ``neutrino leakage scheme''. We simulate the coalescence of two identical, cool neutron stars with a baryonic mass of $\\approx\\!1.6\\,M_\\odot$ and a radius of $\\approx\\!15$~km and with an initial center-to-center distance of 42~km. The initial distributions of density and electron concentration are given from a model of a cold neutron star in hydrostatic equilibrium (central temperature about $8\\,{\\rm MeV}$). We investigate three cases which differ by the initial velocity distribution in the neutron stars, representing different cases of the neutron star spins relative to the direction of the orbital angular momentum vector. Within about 1~ms the neutron stars merge into a rapidly spinning ($P_{\\rm spin}\\approx 1$~ms), high-density body ($\\rho\\approx 10^{14}$~g/cm$^3$) with a surrounding thick disk of material with densities $\\rho\\approx 10^{10}-10^{12}$~g/cm$^3$ and orbital velocities of~0.3--0.5~c. In this work we evaluate the models in detail with respect to the gravitational wave emission using the quadrupole approximation. In a forthcoming paper we will concentrate on the neutrino emission and implications for gamma-ray bursters. A maximum luminosity in excess of $10^{55}$~erg/s is reached for about 1~ms.

M. Ruffert; H. -Th. Janka; G. Schaefer

1995-09-01T23:59:59.000Z

276

Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric hydrodynamic simulations  

E-Print Network [OSTI]

We investigate the behavior and consequences of the reverse shock that terminates the supersonic expansion of the baryonic wind which is driven by neutrino heating off the surface of (non-magnetized) new-born neutron stars in supernova cores. To this end we perform long-time hydrodynamic simulations in spherical symmetry. In agreement with previous relativistic wind studies, we find that the neutrino-driven outflow accelerates to supersonic velocities and in case of a compact, about 1.4 solar mass (gravitational mass) neutron star with a radius of about 10 km, the wind reaches entropies of about 100 k_B per nucleon. The wind, however, is strongly influenced by the environment of the supernova core. It is decelerated and shock-heated abruptly by a termination shock that forms when the supersonic outflow collides with the slower preceding supernova ejecta. The radial position of this reverse shock varies with time and depends on the strength of the neutrino wind and the different conditions in progenitor stars with different masses and structure. Its basic properties and behavior can be understood by simple analytic considerations. We demonstrate that the entropy of matter going through the reverse shock can increase to a multiple of the asymptotic wind value. Seconds after the onset of the explosion it therefore can exceed 400 k_B per nucleon. The temperature of the shocked wind has typically dropped to about or less than 10^9 K, and density and temperature in the shock-decelerated matter continue to decrease only very slowly. Such conditions might strongly affect the important phases of supernova nucleosynthesis in a time and progenitor dependent way. (abridged)

A. Arcones; H. -Th. Janka; L. Scheck

2006-12-20T23:59:59.000Z

277

THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES  

SciTech Connect (OSTI)

The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM), including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has argued that this leads to a quasi-equilibrium self-regulated state, and for outer atomic-dominated disks results in the surface density of star formation ?{sub SFR} varying approximately linearly with the weight of the ISM (or midplane turbulent + thermal pressure). We use three-dimensional numerical hydrodynamic simulations to test the theoretical predictions for thermal, turbulent, and vertical dynamical equilibrium, and the implied functional dependence of ?{sub SFR} on local disk properties. Our models demonstrate that all equilibria are established rapidly, and that the expected proportionalities between mean thermal and turbulent pressures and ?{sub SFR} apply. For outer disk regions, this results in ?{sub SFR}???(?{sub sd}), where ? is the total gas surface density and ?{sub sd} is the midplane density of the stellar disk (plus dark matter). This scaling law arises because ?{sub sd} sets the vertical dynamical time in our models (and outer disk regions generally). The coefficient in the star formation law varies inversely with the specific energy and momentum yield from massive stars. We find proportions of warm and cold atomic gas, turbulent-to-thermal pressure, and mean velocity dispersions that are consistent with solar-neighborhood and other outer disk observations. This study confirms the conclusions of a previous set of simulations, which incorporated the same physics treatment but was restricted to radial-vertical slices through the ISM.

Kim, Chang-Goo [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Ostriker, Eve C. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kim, Woong-Tae, E-mail: ckim256@uwo.ca, E-mail: eco@astro.princeton.edu, E-mail: wkim@astro.snu.ac.kr [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

2013-10-10T23:59:59.000Z

278

Numerical Analyses of CERN 200GeV/A Heavy-Ion Collisions Based on a Hydrodynamical Model with Phase Transition  

E-Print Network [OSTI]

We numerically analyze recent high energy heavy-ion collision experiments based on a hydrodynamical model with phase transition and discuss a systematic change of initial state of QGP-fluid depending on colliding-nuclei's mass. In a previous paper, we formulated a (3+1)-dimensional hydrodynamical model for quark-gluon plasma with phase transition and discussed numerically the space-time evolution in detail. We here compare the numerical solution with the hadronic distributions given by CERN WA80 and NA35. Systematic analyses of the experiments with various colliding nuclei enable us to discuss the dependences of the initial parameters of the hydrodynamical model on colliding nuclei's mass. Furthermore, extrapolating the present experiments, we derive the possible hadronic distributions for lead-lead 150GeV/A collision.

Shin Muroya; Hiroki Nakamura; Mikio Namiki

1995-02-02T23:59:59.000Z

279

Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint  

SciTech Connect (OSTI)

Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.

Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

2014-09-01T23:59:59.000Z

280

Effect of particle size distribution on hydrodynamics and solids back-mixing in CFB risers using CPFD simulation  

Science Journals Connector (OSTI)

Abstract Industrial CFB risers usually handle polydisperse mixtures with broad size distribution, which significantly influenced the performance of the reactors. However, traditional Computational Fluid Dynamics (CFD) models usually assumed that the particle followed the mono-disperse distribution. In the present work, the method of computational particle fluid dynamic (CPFD) was applied for simulating the complex hydrodynamics in the CFB riser with various particle size distributions (PSDs). Two kinds of PSDs, namely Gaussian and Lognormal distribution with various PSD widths, were implemented into the CPFD scheme. With the CPFD method, the present work extensively studied the effects of PSD on the hydrodynamics and on the solids back-mixing. The CPFD results showed that the PSD significantly affected particle's flow behaviors at the lower zone of the riser, while the PSD effects were negligible in the upper part of the riser. This is meaningful for the industrial riser reactors since most of the reaction and transport process occur in this lower zone of the riser. Besides, the simulation results showed that wider PSD dramatically weaken the particle's back-mixing behaviors in the riser. The significant effects of PSD predicted by the CPFD method imply that large errors will be introduced if the mono-disperse assumption is adopted to simulate the experimental CFB riser handling particles with broad size distribution.

Xiaogang Shi; Xingying Lan; Feng Liu; Yinghui Zhang; Jinsen Gao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin  

SciTech Connect (OSTI)

Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

Putnam, P.E.; Moore, S. (Petrel Robertson Ltd., Calgary, Alberta (Canada)); Ward, G. (Ward Hydrodynamics, Calgary, Alberta (Canada))

1990-05-01T23:59:59.000Z

282

The impact of accretion disk winds on the X-ray spectrum of AGN: Part 2 - XSCORT + Hydrodynamic Simulations  

E-Print Network [OSTI]

abridged: We use XSCORT, together with the hydrodynamic accretion disc wind simulation from Proga & Kallman (2004), to calculate the impact that the accretion disk wind has on the X-ray spectrum from a 1E8 solar mass black hole Active Galactic Nuclei (AGN) accreting at 0.5 L/L_Edd. The properties of the resulting spectra depend on viewing angle and clearly reflect the distinct regions apparent in the original hydrodynamic simulation. Very equatorial lines-of-sight (l.o.s) are dominated by Compton scattering and nearly-neutral absorption. Polar l.o.s result in largely featureless spectra. Finally, l.o.s that intersect the transition region between these extremes have a wide range of absorption features imprinted on the spectrum. Both polar and transition region l.o.s produce spectra that show highly-ionized, blue-shifted, Fe absorption features that are qualitatively similar to features observed in the X-ray spectra of a growing number of AGN. The spectra presented here clearly demonstrate that current simulations of line driven AGN accretion disk winds cannot reproduce the smooth soft X-ray excess. Furthermore, they predict that high accretion rate (L/L_Edd) AGN are likely to be strongly affected by obscuration, in sharp contrast to the clean picture that is generally assumed, based on the observed relation between the opening angle of the molecular torus and AGN luminosity.

N. J. Schurch; C. Done; D. Proga

2008-10-06T23:59:59.000Z

283

A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: A Riemann solver for quark–gluon plasma  

SciTech Connect (OSTI)

In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quark–gluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

Akamatsu, Yukinao, E-mail: akamatsu@kmi.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan)] [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan); Inutsuka, Shu-ichiro [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)] [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Nonaka, Chiho [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan) [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Takamoto, Makoto [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan) [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg (Germany)

2014-01-01T23:59:59.000Z

284

Phys. Med. Biol. 45 (2000) N157N165. Printed in the UK PII: S0031-9155(00)14256-3 Hydrodynamic effects on the solute transport across  

E-Print Network [OSTI]

Hydrodynamic effects on the solute transport across endothelial pores and hepatocyte membranes Dumitru Popescu, Liviu Movileanu§¶, Stelian Ion and Maria-Luiza Flonta Membrane Biophysics Laboratory, Institute membranes (Abidor et al 1979, Popescu et al 1991, Popescu and Victor 1991, Weaver and Chizmadzhev 1996

Movileanu, Liviu

285

Zarillo, G. A., and Brehin, F. G. A. 2007. Hydrodynamic and Morphologic Modeling at Sebastian Inlet, FL. Proceedings Coastal Sediments '07 Conference, ASCE Press, Reston,  

E-Print Network [OSTI]

Inlet, FL. Proceedings Coastal Sediments '07 Conference, ASCE Press, Reston, VA, 1297-1310. HYDRODYNAMIC Modeling System (CMS) to investigate the morphological response to time varying forcing, sediment texture evolution of tidal inlet shoals is an important management tool, since they control sediment budgets. Inlet

US Army Corps of Engineers

286

Hydrodynamics of air entrainment by moving contact lines T. S. Chan, S. Srivastava, A. Marchand, B. Andreotti, L. Biferale et al.  

E-Print Network [OSTI]

Hydrodynamics of air entrainment by moving contact lines T. S. Chan, S. Srivastava, A. Marchand, B. Chan,1 S. Srivastava,2,3 A. Marchand,4 B. Andreotti,4 L. Biferale,5 F. Toschi,2,3,6 and J. H. Snoeijer1

Snoeijer, Jacco

287

Third-generation cylindrical dendrimers based on L-aspargic acid in solutions: hydrodynamic and electrooptical properties  

E-Print Network [OSTI]

Samples of third-generation cylindrical dendrimers with molar masses ranging in the interval 20000...60000 have been studied by the methods of equilibrium and non-equilibrium electrical birefringence, molecular hydrodynamics and optics. It was found that the absolute values of Kerr and flow birefringence constants exceed the values obtained for analogous dendrimers of lower generations. The mechanism of reorientation has proven to be strongly dependent on the physical and chemical properties of the solvent. In chloroform solutions, the studied dendrimers align to the microwave-frequency electric fields according to large-scale mechanism. In dichloroacetic acid solutions, the observed reorientation mechanism is low-scale, which is explained by degradation of intermolecular hydrogen bonds. Terminal dendritic substituents of the macromolecules have experimentally proven to be oriented mainly along the primary polymer chain.

Ilya Martchenko; Nikolai Tsvetkov

2008-09-23T23:59:59.000Z

288

Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow  

SciTech Connect (OSTI)

The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ?}?{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr [Plasma Research Center, Pusan National University, Busan 609-735 (Korea, Republic of); Mikhailenko, V. S. [School of Physics and Technology, V.N. Karazin Kharkiv National University, 61108 Kharkiv (Ukraine); Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv (Ukraine); Lee, Hae June, E-mail: haejune@pusan.ac.kr [Department of Electrical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

2014-07-15T23:59:59.000Z

289

3D Hydrodynamical Simulations of Surface Convection in Red Giant Stars. Impact on spectral line formation and abundance analysis  

E-Print Network [OSTI]

We investigate the impact of 3D hydrodynamical model atmospheres of red giant stars at different metallicities on the formation of spectral lines of a number of ions and molecules. We carry out realistic 3D simulations of surface convection in red giant stars with varying stellar parameters. We use the simulations as time-dependent hydrodynamical model stellar atmospheres to compute atomic (Li, O, Na, Mg, Ca, Fe) and molecular (CH, NH, OH) spectral lines under the assumption of local thermodynamic equilibrium (LTE). We compare the line strengths computed in 3D with the results of analogous line formation calculations for 1D, hydrostatic, plane-parallel MARCS model atmospheres in order to estimate the impact of 3D models on the derivation of elemental abundances. The temperature and density inhomogeneities and correlated velocities in 3D models, as well as the differences between the 1D and mean 3D structures significantly affect the predicted line strengths. Under the assumption of LTE, the low atmospheric temperatures of very metal-poor 3D model atmospheres cause the lines from neutral species and molecules to appear stronger than in 1D. Therefore, elemental abundances derived from these lines using 3D models are significantly lower than according to 1D analyses. Differences between 3D and 1D abundances of C, N, and O derived from CH, NH, and OH weak low-excitation lines are found to be in the range -0.5 dex to -1.0 dex for the the red giant stars at [Fe/H]=-3 considered here. At this metallicity, large negative corrections (about -0.8 dex) are also found for weak low-excitation Fe I lines. We caution, however, that departures from LTE might be significant for these and other elements and comparable to the effects due to stellar granulation.

Remo Collet; Martin Asplund; Regner Trampedach

2007-03-26T23:59:59.000Z

290

Influence of solids hydrodynamics on local heat transfer from tube banks immersed in a gas fluidized bed  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC) has generated considerable interest as an efficient low-cost and non-polluting means of burning a variety of fuels. Despite the research and developmental efforts focused on FBC for more than three decades, the current state-of-the-art remains at a distance from the point where the combustor/boiler performance can be predicted with confidence. The high heat transfer rates and small internal temperature gradients as perceived from efficient mixing have yet to be fully realized. This is due largely to the multiplicity of variables involved in a fluidized bed combustor and the complexity of its hydrodynamics. Many empirical correlations for predicting heat transfer between a gas fluidized bed and the immersed internals have been proposed. They are based mainly on gross experimental observations with minimal attention to the mechanism of heat transfer due, at least in part, to the lack of systematic data on solids motion. Much useful insight can be obtained from a simultaneous determination of the local heat transfer rates from immersed internal structures and the associated hydrodynamics of the solid particles. Accordingly, in this study, the local mean heat transfer coefficients of horizontal internals simulating tube banks were measured for several locations in the bed along with measurements of the mean solids velocity and density distributions for a range of superficial gas velocities. The experiments were conducted in a 184 mm (7.25 in.) ID air fluidized bed with a horizontal in-line internal rod bundle of 16 mm (0.625 in.) OD with pitch-to-diameter ratio of 4 over a wide range of gas velocities. The results showed that the local heat transfer rates depend strongly on the flow pattern of solids induced by the bubble motion. The data confirmed the expectation that particle convection plays a major role in the mechanisms of heat transfer from immersed internals. 15 refs., 12 figs., 2 tabs.

Moslemian, D.; Chen, M.M.; Chao, B.T.

1986-01-01T23:59:59.000Z

291

Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part III: Hydrodynamics and coupled modelling approaches  

Science Journals Connector (OSTI)

Abstract The need to further exploit offshore wind resources has pushed offshore wind farms into deeper waters, requiring the use of floating support structures to be economically sustainable. The use of conventional wind turbines may not continue to be the optimal design for floating applications. Therefore it is important to assess other alternative configurations in this context. Vertical axis wind turbines (VAWTs) are one promising configuration, and it is important to first understand the coupled and relatively complex dynamics of floating \\{VAWTs\\} to assess the technical feasibility. As part of this task, a series of articles have been developed to present a comprehensive literature review covering the various areas of engineering expertise required to understand the coupled dynamics involved in floating VAWTs. This third article focuses on approaches to develop an efficient coupled model of dynamics (considering aerodynamics, hydrodynamics, structural and mooring line dynamics, and control dynamics) for floating VAWTs, as well as suitable ‘semi-analytical’ hydrodynamic models for this type of coupled dynamics models. Emphasis is also placed on utilising computationally efficient models and programming strategies. A comparison of the various forces acting on a floating VAWT with the three main floating support structure (spar, semi-submersible and tension-leg-platform) is also presented to highlight the relative dominant forces and hence importance of model accuracy representing these forces. Lastly a concise summary covering this series of articles is presented to give the reader an overview of this interdisciplinary research area. This article has been written both for researchers new to this research area, outlining underlying theory whilst providing a comprehensive review of the latest work, and for experts in this area, providing a comprehensive list of the relevant references where the details of modelling approaches may be found.

Michael Borg; Maurizio Collu

2014-01-01T23:59:59.000Z

292

Application of a high-power KrF laser for the study of supersonic gas flows and the development of hydrodynamic instabilities in layered media  

SciTech Connect (OSTI)

The design of a miniature laser shock tube for the study of a wide range of hydrodynamic phenomena in liquids at pressures greater than 10 kbar and in supersonic flows with large Mach numbers (greater than 10) is discussed. A substance filling a chamber of quadratic cross section, with a characteristic size of several centimetres, is compressed and accelerated due to local absorption of 100 ns, 100 J KrF laser pulses near the entrance window. It is proposed to focus a laser beam by a prism raster, which provides a uniform intensity distribution over the tube cross section. The system can be used to study the hypersonic flow past objects of complex shape and the development of hydrodynamic instabilities in the case of a passage of a shock wave or a compression wave through the interfaces between different media. (laser applications and other topics in quantum electronics)

Zvorykin, V D; Lebo, I G [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2000-06-30T23:59:59.000Z

293

A New Multi-Energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to Gravitational Collapse of Massive Stars  

E-Print Network [OSTI]

We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into account the so-called standard set in state-of-the-art simulations, in which inelastic neutrino-electron scattering, thermal neutrino production via pair annihilation and nucleon-nucleon bremsstrahlung are included. In addition to gravitational redshift and Doppler effects, these energy-coupling reactions are incorporated in the moment equations in a covariant form. While the Einstein field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the source terms due to neutrino-matter interactions and energy shift in the radiation moment equations are integrated implicitly by an iteration method. To verify our code, we conduct several ...

Kuroda, Takami; Kotake, Kei

2015-01-01T23:59:59.000Z

294

A flow integrated DSD hydrodynamics strategy for computing the motion of detonation of insensitive high explosives on an Eulerian grid  

SciTech Connect (OSTI)

The detonation structure in many insensitive high explosives consists of two temporally disparate zones of heat release. In PBX 9502, there is a fast reaction zone ({approx} 25 ns) during which reactants are converted to gaseous products and small carbon clusters, followed by a slower regime ({approx} 250 ns) of carbon coagulation. A hybrid approach for determining the propagation of two-stage heat release detonations has been developed that utilizes a detonation shock dynamics (DSD) based strategy for the fast reaction zone with a direct hydrodynamic simulation of the flow in the slow zone. Unlike a standard DSD/programmed bum formulation, the evolution of the fast zone DSD-like surface is coupled to the flow in the slow reaction zone. We have termed this formulation flow integrated detonation shock dynamics (FIDSD). The purpose of the present paper is to show how the FIDSD formulation can be applied to detonation propagation on an Eulerian grid using an algorithm based on level set interface tracking and a ghost fluid approach.

Short, Mark [Los Alamos National Laboratory; Aslam, Tariq D [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

295

Hydrodynamic modeling of the deconfinement phase transition in heavy-ion collisions in the NICA–FAIR energy domain  

Science Journals Connector (OSTI)

We use (3 + 1) dimensional ideal hydrodynamics to describe the space-time evolution of strongly interacting matter created in Au + Au and Pb + Pb collisions. The model is applied for the domain of bombarding energies 1–160 GeV/nucleon which includes future NICA (Dubna) and FAIR (Darmstadt) experiments. Two equations of state are used, the first one corresponding to resonance hadron gas and the second one including the deconfinement phase transition. The initial state is represented by two Lorentz-boosted nuclei. Dynamic trajectories of matter in the central box of the system are analyzed. They can be well represented by a fast shock-wave compression followed by a relatively slow isentropic expansion. The parameters of collective flows and hadronic spectra are calculated under assumption of the isochronous freeze-out. It is shown that the deconfinement phase transition leads to broadening of proton rapidity distributions, increase of elliptic flows, and formation of the directed antiflow in the central rapidity region. These effects are most pronounced at bombarding energies around 10 GeV/nucleon, when the system spends the longest time in the mixed phase. From the comparison with three-fluid calculations we conclude that the transparency effects are not so important in central collisions at NICA–FAIR energies (below 30 GeV/nucleon).

A. V. Merdeev; L. M. Satarov; I. N. Mishustin

2011-07-29T23:59:59.000Z

296

CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system  

Science Journals Connector (OSTI)

Abstract This study investigates the temporal development of bubble hydrodynamics in the fuel reactor of a hydrogen-fueled chemical looping combustion (CLC) system by using a computational model. The model also investigates the molar fraction of products in gas and solid phases. The study assists in developing a better understanding of the CLC process, which has many advantages such as being a potentially promising candidate for an efficient carbon dioxide capture technology. The study employs the kinetic theory of granular flow. The reactive fluid dynamic system of the fuel reactor is customized by incorporating the kinetics of an oxygen carrier reduction into a commercial computational fluid dynamics (CFD) code. An Eulerian multiphase treatment is used to describe the continuum two-fluid model for both gas and solid phases. CaSO4 and H2 are used as an oxygen carrier and a fuel, respectively. The computational results are validated with the experimental and numerical results available in the open literature. The CFD simulations are found to capture the features of the bubble formation, rise and burst in unsteady and quasi-steady states very well. The results show a significant increase in the conversion rate with higher dense bed height, lower bed width, higher free board height and smaller oxygen carrier particles which upsurge an overall performance of the CLC plant.

Atal Bihari Harichandan; Tariq Shamim

2014-01-01T23:59:59.000Z

297

Electro-hydrodynamics and kinetic modelling of polluted air flow activated by multi-tip-to-plane corona discharge  

SciTech Connect (OSTI)

The present paper is devoted to the 2D simulation of an Atmospheric Corona Discharge Reactor (ACDR) involving 10 pins powered by a DC high voltage and positioned 7 mm above a grounded metallic plane. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The simulation involves the electro-dynamic, chemical kinetic, and neutral gas hydrodynamic phenomena that influence the kinetics of the chemical species transformation. Each discharge stage (including the primary and the secondary streamers development and the resulting thermal shock) lasts about one hundred nanoseconds while the post-discharge stages occurring between two successive discharge phases last one hundred microseconds. The ACDR is crossed by a lateral air flow including 400 ppm of NO. During the considered time scale of 10 ms, one hundred discharge/post-discharge cycles are simulated. The simulation involves the radical formation and thermal exchange between the discharges and the background gas. The results show how the successive discharges activate the flow gas and how the induced turbulence phenomena affect the redistribution of the thermal energy and the chemical kinetics inside the ACDR.

Meziane, M.; Eichwald, O.; Ducasse, O.; Marchal, F. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Toulouse Cedex 9 F-31062 (France); Sarrette, J. P.; Yousfi, M. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Toulouse Cedex 9 F-31062 (France); CNRS, LAPLACE, Toulouse F-31062 (France)

2013-04-21T23:59:59.000Z

298

Numerical study of heavy-ion stopping in foam targets with one-dimensional subcell-scale hydrodynamic motions  

Science Journals Connector (OSTI)

Abstract Heavy-ion stopping in foam targets with subcell-scale hydro motions was numerically investigated in relation to ion-driven warm dense matter experiments. To simulate porous foam targets, we employed a simple 1D periodic multilayer model consisting of thin solid slabs and gaps between them. The averaged pore diameter and cell-wall thickness of the foam were represented by the gap width between the slabs and the slab thickness, respectively. The density- and temperature-dependent projectile stopping cross-sections were evaluated using a binary encounter model taking into account the electronic state of target atoms during heating and expansion. We employed a combination of 11Na projectiles and subrange 13Al foam targets with ?=0.05?solid. The hydrodynamic motion of the target was calculated with a 1D code. During homogenization, hot dense spots appeared at the original gap positions, owing to stagnation of the jets. As a result, even after the pores were filled with blow-off materials, the initial inhomogeneity was not completely smeared out, and the total energy loss was still not equal to that in the homogeneous equivalent, especially for large pore sizes.

Y. Oguri; K. Kondo; J. Hasegawa

2014-01-01T23:59:59.000Z

299

A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR  

E-Print Network [OSTI]

We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate level-solve packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation (PTC). We analyze the magnitude of the PTC parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the partial temperature scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. (Abridged)

A. I. Shestakov; S. S. R. Offner

2007-10-24T23:59:59.000Z

300

An axisymmetric hydrodynamical model for the torus wind in AGN. II: X-ray excited funnel flow  

E-Print Network [OSTI]

We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.

A. Dorodnitsyn; T. Kallman; D. Proga

2008-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

An axisymmetric hydrodynamical model for the torus wind in AGN. II: X-ray excited funnel flow  

E-Print Network [OSTI]

We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorp...

Dorodnitsyn, A; Proga, D

2008-01-01T23:59:59.000Z

302

RAyMOND: an N-body and hydrodynamics code for MOND  

Science Journals Connector (OSTI)

......are discussed in detail. Using idealized tests, in both serial and parallel runs, we...performance of the code using simple idealized tests. In future publications, we will use...Section-3, we show the results of N-body tests used to verify that the code is capturing......

G. N. Candlish; R. Smith; M. Fellhauer

2015-01-01T23:59:59.000Z

303

The energy conservation law in hydrodynamics vs the pseudo-law of alternative energy. Comment on 'Alternative energy vs pseudoscience' and the papers cited and not cited therein  

E-Print Network [OSTI]

A series of papers in the ISJAEE Journal on 'dam-free hydroelectric power station' concluded by paper: Zotyev, D. B., Alternative energy vs pseudo-science, ISJAEE. 2013. 8(130). P.131-136, is reviewed and commented. A comparison with the generally accepted energy conservation law in hydrodynamics reveals a disappointingly low scientific level of the reviewed papers (both pro- and contra- the dam-free concept), not excluding the published peer-reviewer reports. In the present version we emphasize that the ISJAEE journal published several papers, which neglect and reject the basic physical concepts, such as the Bernoulli integral, the energy conservation law in hydrodynamics, the wave function of photon and some others, with all these rejected concepts being far beyond the scientific scope of the journal. Some readers will be more concerned about the energy equation in hydrodynamics, in its theoretical form or in the Bernoulli integral form as being more traditional in technical hydromechanics. Some readers will be shocked with the statement that a photon does not possess the wave function. Overall, in this way or in that way, all readers will hardly stay unsurprised.

Igor Sokolov

2014-03-20T23:59:59.000Z

304

E-Print Network 3.0 - axisymmetric hydrodynamical model Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

two-fluid effects in simulations by including... for the first time to test different MHD models as well as the numerical codes which simulate them. PHYSICS... possible dynamo...

305

Measurements of static loading characteristics of a Flexurepivot Tilt Pad Hydrodynamic Bearing  

E-Print Network [OSTI]

and contributions to this research. To all the guys and gal of the Rotordynamics Lab: Miller Robison, Grigoiy Arauz, Jeff Sinclair, Dan Lubell, Jiming Li, Hector Laos, Chrisma Jackson, and Aquiles Lopez - thanks for aII the help during my tests and for making...

Walton, Nicholas Van Edward

2012-06-07T23:59:59.000Z

306

CE-QUAL-W2 Version 3: Hydrodynamic and Water Quality River Basin Modeling  

E-Print Network [OSTI]

-dimensional (longitudinal-vertical) water quality and hy- drodynamic computer simulation model that was originally developed segments. Test cases for this new code include a 244 km section of the Lower Snake River in Idaho and ver- tical velocities, temperature, and 21 other wa- ter quality parameters (such as dissolved oxy

Wells, Scott A.

307

Hydrodynamic simulations of long-scale-length two-plasmon-decay experiments at the Omega Laser Facility  

SciTech Connect (OSTI)

Direct-drive-ignition designs with plastic CH ablators create plasmas of long density scale lengths (L{sub n} {>=} 500 {mu}m) at the quarter-critical density (N{sub qc}) region of the driving laser. The two-plasmon-decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation-hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of L{sub n} approaching {approx}400 {mu}m have been created; (2) the density scale length at N{sub qc} scales as L{sub n}({mu}m) Asymptotically-Equal-To (R{sub DPP} Multiplication-Sign I{sup 1/4}/2); and (3) the electron temperature T{sub e} at N{sub qc} scales as T{sub e}(keV) Asymptotically-Equal-To 0.95 Multiplication-Sign {radical}(I), with the incident intensity (I) measured in 10{sup 14} W/cm{sup 2} for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (R{sub DPP}) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons f{sub hot} is found to have a similar behavior for both configurations: a rapid growth [f{sub hot} Asymptotically-Equal-To f{sub c} Multiplication-Sign (G{sub c}/4){sup 6} for G{sub c} < 4] followed by a saturation of the form, f{sub hot} Asymptotically-Equal-To f{sub c} Multiplication-Sign (G{sub c}/4){sup 1.2} for G{sub c} {>=} 4, with the common wave gain is defined as G{sub c}=3 Multiplication-Sign 10{sup -2} Multiplication-Sign I{sub qc}L{sub n}{lambda}{sub 0}/T{sub e}, where the laser intensity contributing to common-wave gain I{sub qc}, L{sub n}, T{sub e} at N{sub qc}, and the laser wavelength {lambda}{sub 0} are, respectively, measured in [10{sup 14} W/cm{sup 2}], [{mu}m], [keV], and [{mu}m]. The saturation level f{sub c} is observed to be f{sub c} Asymptotically-Equal-To 10{sup -2} at around G{sub c} Asymptotically-Equal-To 4. The hot-electron temperature scales roughly linear with G{sub c}. Furthermore, to mitigate TPD instability in long-scale-length plasmas, different ablator materials such as saran and aluminum have been investigated on OMEGA EP. Hot-electron generation has been reduced by a factor of 3-10 for saran and aluminum plasmas, compared to the CH case at the same incident laser intensity. draco simulations suggest that saran might be a better ablator for direct-drive-ignition designs as it balances TPD mitigation with an acceptable hydro-efficiency.

Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)

2013-03-15T23:59:59.000Z

308

An arbitrary Lagrangian–Eulerian approach to solving the quantum hydrodynamic equations of motion: Equidistribution with “smart” springs  

Science Journals Connector (OSTI)

Recently the quantum trajectory method (QTM) has been utilized in solving several quantum mechanical wave packet scattering problems including barrier transmission and electronic nonadiabatic dynamics. By propagating the real-valued action and amplitude functions in the Lagrangian frame only a fraction of the grid points needed for Eulerian fixed-grid methods are used while still obtaining accurate solutions. Difficulties arise however near wave functionnodes and in regions of sharp oscillatory features and because of this many quantum mechanical problems have not yet been amenable to solution with the QTM. This study proposes a hybrid of both the Lagrangian and Eulerian techniques in what is termed the arbitrary Lagrangian–Eulerian method (ALE). In the ALE method an additional equation of motion governing the momentum of the grid points is coupled into the quantum hydrodynamicequations. These new “quasi-” Bohmian trajectories can be dynamically adapted to the emergent features of the time evolving hydrodynamic fields and are non-Lagrangian. In this study it is shown that the ALE method applied to an uphill ramp potential that was previously unsolvable by the current Lagrangian QTM not only yields stable transmission probabilities with accuracies comparable to that of a high resolution Eulerian method but does so with a small number of grid points and for extremely long propagation times. To determine the grid point positions at each new time an equidistribution method is used that is constructed similar to the stiffness matrix of a classical spring system in equilibrium. Each “smart” spring is dependent on a local function M(x) called the monitor function which can sense gradients or curvatures of the fields surrounding its position. To constrain grid points from having zero separation and possible overlap a new system of equations is derived that includes a minimum separation parameter which prevents this from occurring.

Corey J. Trahan; Robert E. Wyatt

2003-01-01T23:59:59.000Z

309

Two-Dimensional Hydrodynamic Core-Collapse Supernova Simulations with Spectral Neutrino Transport II. Models for Different Progenitor Stars  

E-Print Network [OSTI]

1D and 2D supernova simulations for stars between 11 and 25 solar masses are presented, making use of the Prometheus/Vertex neutrino-hydrodynamics code, which employs a full spectral treatment of the neutrino transport. Multi-dimensional transport aspects are treated by the ``ray-by-ray plus'' approximation described in Paper I. Our set of models includes a 2D calculation for a 15 solar mass star whose iron core is assumed to rotate rigidly with an angular frequency of 0.5 rad/s before collapse. No important differences were found depending on whether random seed perturbations for triggering convection are included already during core collapse, or whether they are imposed on a 1D collapse model shortly after bounce. Convection below the neutrinosphere sets in about 40 ms p.b. at a density above 10**12 g/cm^3 in all 2D models, and encompasses a layer of growing mass as time goes on. It leads to a more extended proto-neutron star structure with accelerated lepton number and energy loss and significantly higher muon and tau neutrino luminosities, but reduced mean energies of the radiated neutrinos, at times later than ~100 ms p.b. In case of an 11.2 solar mass star we find that low (l = 1,2) convective modes cause a probably rather weak explosion by the convectively supported neutrino-heating mechanism after ~150 ms p.b. when the 2D simulation is performed with a full 180 degree grid, whereas the same simulation with 90 degree wedge fails to explode like all other models. This sensitivity demonstrates the proximity of our 2D models to the borderline between success and failure, and stresses the need of simulations in 3D, ultimately without the axis singularity of a polar grid. (abridged)

R. Buras; H. -Th. Janka; M. Rampp; K. Kifonidis

2005-12-07T23:59:59.000Z

310

Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields  

SciTech Connect (OSTI)

Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell (PIC) code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum and a divergent angle spectrum (average velocity-space polar angle of 52 Degree-Sign ). Transport simulations with the PIC-based divergence do not ignite for >1 MJ of fast-electron energy, for a modest (70 {mu}m) standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields {approx}50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields will likely be more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.

Strozzi, D. J.; Tabak, M.; Larson, D. J.; Divol, L.; Kemp, A. J.; Bellei, C.; Marinak, M. M.; Key, M. H. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

2012-07-15T23:59:59.000Z

311

X-ray emission from dense plasma in CTTSs: Hydrodynamic modeling of the accretion shock  

E-Print Network [OSTI]

High spectral resolution X-ray observations of CTTSs demonstrate the presence of plasma at T~2-3X10^6 K and n_e~10^11-10^13 cm^-3, unobserved in non-accreting stars. Stationary models suggest that this emission is due to shock-heated accreting material, but they do not allow to analyze the stability of such material and its position in the stellar atmosphere. We investigate the dynamics and the stability of shock-heated accreting material in CTTSs and the role of the stellar chromosphere in determining the position and the thickness of the shocked region. We perform 1-D HD simulations of the impact of the accretion flow onto chromosphere of a CTTS, including the effects of gravity, radiative losses from optically thin plasma, thermal conduction and a well tested detailed model of the stellar chromosphere. Here we present the results of a simulation based on the parameters of the CTTS MP Mus. We find that the accretion shock generates an hot slab of material above the chromosphere with a maximum thickness of 1...

Sacco, G G; Orlando, S; Maggio, A; Peres, G; Reale, F

2008-01-01T23:59:59.000Z

312

Luminescence from hydrodynamic cavitation  

Science Journals Connector (OSTI)

...vibrations, and may affect the efficiency of a hydraulic system, such as a pump or a turbine. The level of understanding...200-650nm response, quantum efficiency 20% at 400nm, rise time...300-820nm, peak quantum efficiency 20% at 420nm). The...

2011-01-01T23:59:59.000Z

313

Lattice Boltzmann equation hydrodynamics  

Science Journals Connector (OSTI)

By inserting position and time dependent “source” or “forcing” terms into the microscopic evolution equation of a lattice Boltzmann fluid and treating the generalized scheme within the usual Chapman-Enskog methodology, we show that the emergent dynamics of the lattice fluid may be usefully transformed. Our method of adjustment is demonstrated by implementing the cylindrical polar coordinate form of the continuity and momentum equations on a rectangular lattice and generating results for pipe flow. With straightforward systematic adjustment of the simulation, our approach produces results in excellent agreement with theory.

I. Halliday; L. A. Hammond; C. M. Care; K. Good; A. Stevens

2001-06-28T23:59:59.000Z

314

Hydrodynamic ultrasonic probe  

DOE Patents [OSTI]

An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

Day, Robert A. (Livermore, CA); Conti, Armond E. (San Jose, CA)

1980-01-01T23:59:59.000Z

315

Category:Testing Facility Operators | Open Energy Information  

Open Energy Info (EERE)

Facility Operators Facility Operators Jump to: navigation, search This category contains facilities for research on renewable technologies and uses the form Testing Facility Operator. Pages in category "Testing Facility Operators" The following 26 pages are in this category, out of 26 total. A Alden Research Laboratory, Inc B Bucknell University C Colorado State University Hydrodynamics Cornell University Hydrodynamics M Massachusetts Institute of Technology Hydrodynamics O Ohmsett Oregon State University Hydrodynamics P Pennsylvania State University Hydrodynamics S Sandia National Laboratories Hydrodynamics S cont. Stevens Institute of Technology T Texas A&M (Haynes) Texas A&M (OTRC) U United States Army Corp of Engineers (ERDC) United States Geological Survey, HIF United States Geological Survey, LSC

316

Probing the equation of state in Au+Au at 11 GeV/nucleon with (3+1)-dimensional hydrodynamics  

SciTech Connect (OSTI)

The effect of (i) the phase transition between a quark gluon plasma (QGP) and a hadron gas and (ii) the number of resonance degrees of freedom in the hadronic phase on the single inclusive distributions of 16 different types of produced hadrons for Au+Au collisions at the Brookhaven Alternating Gradient Synchroton (AGS) energies is studied. We have used an exact numerical solution of the relativistic hydrodynamical equations {ital without free parameters} which, because of its (3+1)-dimensional character, constitutes a considerable improvement over the classical Landau solution. We assume chemical equilibration and we use two different equations of state (EOS): one describing a phase transition from QGP to the hadronic phase and two versions of a purely hadronic EOS; we find that the first one gives an overall better description of the Au+Au experimental data at AGS energies. We reproduce and analyze measured meson and proton spectra and also make predictions for antiprotons, deltas, antideltas, and hyperons. The low m{sub t} enhancement in {pi}{sup {minus}} spectra is explained by baryon number conservation and strangeness equilibration. The sensitivity of various production channels to the EOS is analyzed. {copyright} {ital 1997} {ital The American Physical Society}

Arbex, N.; Ornik, U.; Pluemer, M.; Weiner, R.M. [Physics Department, University of Marburg, Marburg (Germany)] [Physics Department, University of Marburg, Marburg (Germany); [Soultek Internet Service, Marburg (Germany)

1997-02-01T23:59:59.000Z

317

A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy  

SciTech Connect (OSTI)

We present a new smoothed particle hydrodynamics (SPH) model for friction stir welding (FSW). FSW has found broad commercial application in the marine, aerospace, rail and automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few established numerical modeling techniques have been developed that can explain and predict important features of the process physics involved in FSW. This is particularly true in the areas of material ?ow, mixing mechanisms, and void formation. In this paper we present a novel modeling approach to simulate FSW that may have signi?cant advantages over current ?nite element or ?nite di?erence based methods. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, and the material’s strain and temperature history without employing complex tracking schemes. Three-dimensional simulations of FSW on AZ31 Mg alloy are presented. Numerical results are in a close quantitative agreement with experimental observations.

Pan, Wenxiao; Li, Dongsheng; Tartakovsky, Alexandre M.; Ahzi, Said; Khraisheh, Marwan; Khaleel, Mohammad A.

2013-09-06T23:59:59.000Z

318

Measurements versus Predictions for a Hybrid (Hydrostatic plus Hydrodynamic Thrust Bearing for a Range of Orifice Diameters  

E-Print Network [OSTI]

A fixed geometry hybrid thrust bearing is investigated with three different supply orifice diameters. The test rig uses a face-to-face thrust bearing design, with the test bearing acting as the rotor loading mechanism. A hydraulic shaker applies...

Esser, Paul R.

2011-08-08T23:59:59.000Z

319

An experimental study of the hydrodynamics and cluster formation in a circulating fluidized bed. Topical report, January 1, 1991--June 30, 1992  

SciTech Connect (OSTI)

This research program involves two major aspects. First, to evaluate techniques to effectively probe the polydisperse gas-solid flows and second, to apply these techniques to study the gas-solid flow structure and clusters in the riser of a circulating fluidized bed riser. Amongst the non-intrusive techniques a modified laser Doppler technique based on the fluorescence-emission concept has been adopted and the other techniques involve pitot-static pressure probes. A circulating fluidized bed (CFB) facility has been designed, built and is currently operational at West Virginia University. The design provides for maximum versatility in investigating the hydrodynamics of the CFB riser. Two stage cyclones are employed to capture the particles exhausted from the riser. Measurements of gas velocity distribution were carried out in the circulating fluidized bed riser. with particles having a mean diameter of 112 {mu}m and a density of 2305 kg/m{sup 3} and another set of particles with a mean diameter of 145 {mu}m and a density of 2245 kg/m{sup 3}. The experimental results showed that the local gas velocity varied with the radial position, elevation, solids circulation rate, superficial velocity and particle size. A general formula for gas velocity distribution in the circulating fluidized bed riser was obtained based on the particle circulation, superficial velocity and particle diameter. The pressure drops across the L-valve were also studied for different particle sizes, L-valve diameters and aeration. The solids flowrate was found to be a function of the L-valve geometry, operating parameters and solids properties. Pressure drop of L-valve increases with increasing solids diameter and decreasing diameter of the L-valve. Pressure drop across standpipe increases as the solids diameter and diameter of the standpipe decrease.

Gautam, M.; Jurewicz, J.; Heping, Y.; Clifton, K.

1992-07-01T23:59:59.000Z

320

Hydrodynamic potential of upper cretaceous Mesaverde group and Dakota formation, San Juan Basin, northwestern New Mexico and southwestern Colorado  

E-Print Network [OSTI]

. Geothermal-gradient map of the San Juan Basin area. 25 Diagram relating pressure head, P/p g, to total head, Z + P/p g 29 Index map of the San Juan Basin, New Mexico and Colorado showing areas of Dakota gas accumulation. 31 Southwest... wells near the present site of the New Mexico Public Service power plants in 1912-13; (6) Mesa Verde Oil Company drilled two wells near Flora Vista in 1918-19; and the T. E. Williams Syndicate drilled the the deepest test to date (3, 900 ft) 5 miles...

Dougless, Thomas Clay

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow  

SciTech Connect (OSTI)

To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse and fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.

Shi, Xing; Lin, Guang; Zou, Jianfeng; Fedosov, Dmitry A.

2013-07-20T23:59:59.000Z

322

Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling  

SciTech Connect (OSTI)

The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.

Pannala, S.; D'Azevedo, E.; Zacharia, T.

2002-02-26T23:59:59.000Z

323

Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models  

SciTech Connect (OSTI)

The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.

S. Dartevelle

2005-09-05T23:59:59.000Z

324

Hydrodynamic properties of carbon nanotubes  

Science Journals Connector (OSTI)

We study water flowing past an array of single walled carbon nanotubes using nonequilibrium molecular dynamics simulations. For carbon nanotubes mounted with a tube spacing of 16.4×16.4 nm and diameters of 1.25 and 2.50 nm, respectively, we find drag coefficients in reasonable agreement with the macroscopic, Stokes-Oseen solution. The slip length is -0.11 nm for the 1.25 nm carbon nanotube, and 0.49 for the 2.50 nm tube for a flow speed of 50 m/s, respectively, and 0.28 nm for the 2.50 nm tube at 200 m/s. A slanted flow configuration with a stream- and spanwise velocity component of 100 ms-1 recovers the two-dimensional results, but exhibits a significant 88 nm slip along the axis of the tube. These results indicate that slip depends on the particular flow configuration.

J. H. Walther; T. Werder; R. L. Jaffe; P. Koumoutsakos

2004-06-04T23:59:59.000Z

325

DATA ASSIMILATION IN HYDRODYNAMIC MODELS  

E-Print Network [OSTI]

.D. Programme (EF-835) and DHI Water & Environment who supported the project financially. v #12;vi #12;Papers, 16 January 2004 Jacob Viborg Tornfeldt Sørensen iii #12;iv #12;Acknowledgements First of all, a deep at the Technical University of Denmark and Dr. Henrik Madsen from DHI Water & Environment for their help

326

Property:Testing Facilities Overseen | Open Energy Information  

Open Energy Info (EERE)

Testing Facilities Overseen Testing Facilities Overseen Jump to: navigation, search This is a property of type Page and uses the Testing Facility form Pages using the property "Testing Facilities Overseen" Showing 25 pages using this property. A Alden Research Laboratory, Inc + Alden Tow Tank +, Alden Wave Basin +, Alden Small Flume +, ... B Bucknell University + Bucknell Hydraulic Flume + C Cornell University Hydrodynamics + DeFrees Flume 1 +, DeFrees Flume 2 +, DeFrees Flume 3 +, ... M Massachusetts Institute of Technology Hydrodynamics + MIT Tow Tank + O Ohmsett + Ohmsett Tow Tank + Oregon State University Hydrodynamics + Hinsdale Wave Basin 1 +, Hinsdale Wave Basin 2 + P Pennsylvania State University Hydrodynamics + Penn Reverberant Tank +, Penn Small Water Tunnel +, Penn Large Water Tunnel +

327

The Millennium Gas project aims to undertake smoothed-particle hydrodynamic resimulations of the Millennium Simulation, providing many hundred massive galaxy clusters for comparison with X-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at  

E-Print Network [OSTI]

. Abstract The Millennium Gas project aims to undertake smoothed-particle hydrodynamic-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at the hot gas and stellar fractions-core systems but are successful in matching the hot gas profiles of non-cool-core clusters. Although

Thomas, Peter

328

Evidence for Flow from Hydrodynamic Simulations of p?Pb Collisions at 5.02 TeV from v2 Mass Splitting  

Science Journals Connector (OSTI)

We show that a fluid dynamical scenario, already well tested against identified particle pt spectra, describes quantitatively the observed mass splitting of the elliptical flow coefficients v2 for pions and protons. This provides a strong argument in favor of the existence of a fluid dynamical expansion in p?Pb collisions at 5.02 TeV.

K. Werner; M. Bleicher; B. Guiot; Iu. Karpenko; T. Pierog

2014-06-13T23:59:59.000Z

329

A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions  

SciTech Connect (OSTI)

We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.

Markutsya, Sergiy [Ames Laboratory; Lamm, Monica H [Ames Laboratory

2014-11-07T23:59:59.000Z

330

An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility  

SciTech Connect (OSTI)

A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

2014-07-15T23:59:59.000Z

331

Hydrodynamic principles of wave power extraction  

Science Journals Connector (OSTI)

...Despite the abundance of wave power in the sea, technologies...extraction share with offshore wind power at least two similar challenges...present, the estimated power-generating capacity of...20-40 buoys to match a wind turbine of 2MW capacity...

2012-01-01T23:59:59.000Z

332

Hydrodynamic simulations of an imploding bubble  

Science Journals Connector (OSTI)

Numerical solutions of the hydrodynamicequations of motion for a collapsing bubble have shown that shock waves can be generated during the collapse. It has been shown that these shock waves can supply and remove energy from the center of the bubble rapidly enough to account for the picosecond duration flashes that are observed experimentally. However these solutions have not included energy loss mechanisms so the calculated temperatures are excessively high. More accurate numerical simulations are discussed that (i) model the shocked gas as a plasma with distinct ion electron and radiation temperatures and (ii) include energy losses by ion conduction electron conduction and radiant energy transport. As an example a sonoluminescing bubble of deuterium is considered whose sinusoidal driving amplitude is enhanced by a small pressure spike. Although the calculated radiation and electron temperatures are only tens of eV the calculated peak ion temperatures are a couple hundred eV (?2?000?000 K) which may be sufficient to initiate a very small number of thermonuclear reactions at the center of the bubble. [Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. W?7405?Eng?48.

William C. Moss; Douglas B. Clarke; John W. White; David A. Young

1996-01-01T23:59:59.000Z

333

Hydrodynamic solutions for a sonoluminescing gas bubble  

Science Journals Connector (OSTI)

Analytic solutions for a sonoluminescing gas bubble have been obtained which provide density pressure and temperature distributions for the gas inside a bubble oscillating under the ultrasonic field. The solutions have revealed that sonoluminescence should occur just prior to the bubble collapse and its duration is less than 300 ps and that increase and subsequent decrease in the bubble wall acceleration induces the quenching of gas followed by the substantial temperature rise up to 100?000 K which can be regarded as a thermal spike. The gas temperature inside the bubble near collapse is determined primarily by the amount of radiation heat loss. Shock formation during the bubble collapse is questionable because gas density as well as pressure at the bubble center are much greater than those at the bubble wall during this stage. It also turns out that the number of electrons ionized the ion species and the kinetic energy of electrons affect the spectrum of light emission crucially. The spectralradiance calculated is in good agreement with the observed data qualitatively which suggests that the origin of sonoluminescences is bremsstrahlung rather than thermal blackbody radiation. [Work supported by Korea Science and Engineering Foundation.

Ho?Young Kwak; Jung?Hee Na

1996-01-01T23:59:59.000Z

334

Notes 00. Introduction to Hydrodynamic Lubrication  

E-Print Network [OSTI]

/product/448_448.htm Portable Generator http://www.notebookre view.com/ http://www.wir efly.com/ Mobile electronic equipment Large Scale Combustor http://www.uavpayloads.com/pr oducts.php4 UAV Micro Gas Turbine http://www.m-dot.com/page8.html Application...://www.robhaz.com/ RescueRobot http://www2.northerntool.c om/product/448_448.htm Portable Generator http://www.notebookre view.com/ http://www.wir efly.com/ Mobile electronic equipment Large Scale Combustor http://www.uavpayloads.com/pr oducts.php4 UAV Micro Gas Turbine...

San Andres, Luis

2010-01-01T23:59:59.000Z

335

13.021 Marine Hydrodynamics, Fall 2001  

E-Print Network [OSTI]

The fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. Transport theorem and conservation principles. Navier-Stokes' equation. Dimensional analysis. Ideal ...

Yue, Dick Kau-Ping

336

BIOMIMETIC SURVIVAL HYDRODYNAMICS AND FLOW SENSING  

E-Print Network [OSTI]

;May 2014 4 SWIMMING FISH AND FLYING BIRDS Why fish have no propellers? Why birds flap their wings? #12 leaves a pure vortex "Formation of a Vortex Ring by Giving an Impulse to a Circular Disk

Daraio, Chiara

337

Supersonic Hydrodynamic Turbulence 1 Alexei Kritsuk  

E-Print Network [OSTI]

gas turbulence is known not to have an isotropic or homogeneous nature. Therefore, we can draw cascade Summary References: Kritsuk, Norman, & Padoan, ApJL 638, L25, 2006 Kritsuk, Wagner, Norman) 1895 Reynolds ("Reynolds decomposition", "Reynolds equation") 1922 Richardson ("Richardson cascade

Kritsuk, Alexei

338

Ratchets in hydrodynamic flow: more than waterwheels  

Science Journals Connector (OSTI)

...dynamics of DNA in microfabricated environments. Understanding the dynamics of long...physicists like but profoundly irritates engineers because it seems to take a simple idea...Acknowledgements: The content is solely the responsibility of the authors and does not necessarily...

2014-01-01T23:59:59.000Z

339

Hydrodynamic principles of wave power extraction  

Science Journals Connector (OSTI)

...Based on statistical data, Thorpe [12] has estimated the wave power potential along various...and K. Budal1982Wave-power absorption by parallel...de2008Phase control through load control of oscillating-body...and C. C. Mei2009Wave power extraction by a compact...

2012-01-01T23:59:59.000Z

340

Current SPE Hydrodynamic Modeling and Path Forward  

SciTech Connect (OSTI)

Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.

Knight, Earl E. [Los Alamos National Laboratory; Rougier, Esteban [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dilepton production in schematic causal viscous hydrodynamics  

E-Print Network [OSTI]

;? ?n } pn ? { ? ? 2r v 2 r ? n + #17;? ?n } ( pi ?? ) n ? ? ? 2r v 2 r ? n ( pi ? ? ) n ] , (A1) ??r?n+1 [ ?n+1 ?n Tnsn+1 ? ( pi ? ? ) n ? ( pi ?? ) n ] = R2n R2n+1 ??r?n [ Tnsn ? { 1+ 2(?R ?R)n...#17;? ??r?nRn } ( pi ? ? ) n ? { 1+ (?R ?R)n#17;? ??r?nRn + #17;? ?n } ( pi ?? ) n ] , (A2) ??r?n+1 [ ( pi ?? ) n+1 ? ( pi ?? ) n ? 2 3 ( ?s ?pi ) n ] = R2n#17;? R2n+1 [{ 2??r?n ?n ? 1 (?pi )n } ( pi...

Song, Taesoo; Han, Kyong Chol; Ko, Che Ming.

2011-01-01T23:59:59.000Z

342

THERMODYNAMIC AND HYDRODYNAMIC PROPERTIES OF HYDROTHERMAL SYSTEMS  

E-Print Network [OSTI]

1Jniversity Stanford,(California INTRODUCTION Geothermal energy has received much attention i n. There is considerable l i t e r a t u r e on the possible methods of geothermal energy extraction, and practical usage of geothermal energy is growing worldwide. The goal of any geothermal production system is t o extract heat from

Stanford University

343

QCD hydrodynamics for LHC and RHIC  

SciTech Connect (OSTI)

The realistic and detailed description of an energetic heavy ion reaction requires a Multi Module Model, where the different stages of the reaction are each described with a suitable theoretical approach. One fluid dynamical models provide an adequate and accurate description of the middle stages of the reaction. In addition, fluid dynamical calculations require initial and freeze out conditions. In this work we concentrate on the modeling of the initial stages of the reaction, before the local thermal equilibrium is achieved, and on the freeze out process. We discuss the possibility of the fast simultaneous hadronization and chemical freeze out of supercooled QGP, as a possible solution of the HBT 'puzzle'.

Csernai, L. P. (László P.); Gorenste?n, M. I. (Mark Isaakovich); Magas, V. K.

2002-01-01T23:59:59.000Z

344

Some peculiar features of hydrodynamic instability development  

Science Journals Connector (OSTI)

...participation [9-22]. 2. Taylor bubble cupola stability Figure-1 presents streak...this effect influence the stability of bubble cupolas? In the study of...bubbles actually being Taylor bubbles); the stability of their cupola guarantees...

2013-01-01T23:59:59.000Z

345

Ratchets in hydrodynamic flow: more than waterwheels  

Science Journals Connector (OSTI)

...USA 3 Department of Physics, Princeton University, , Princeton, NJ 08544, USA 4 Department...a post-doctoral period at Princeton (a great lucky break) as...solution essentially creates a plasma of positive and negatively...

2014-01-01T23:59:59.000Z

346

MHD duct flows under hydrodynamic “slip” condition  

E-Print Network [OSTI]

metal blankets of a fusion reactor), H a ? 10 3 ? 10 5 . Ineld typical to future fusion reactors, the estimate for thewith those in the fusion reactor, are used. Finally, it

Smolentsev, S.

2009-01-01T23:59:59.000Z

347

Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office  

SciTech Connect (OSTI)

Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

King, Michael J; Bredehoeft, John D., Dr.

2010-09-03T23:59:59.000Z

348

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

Test Platform Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Water Type Saltwater Cost(per day) Contact POC Special Physical Features The Tidal Testing Platform is presently a 10.7m long x 3m wide pontoon barge with a derrick and an opening for deploying tidal energy devices. The platform is intentionally configured to be adaptive for the changing needs of different devices. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

349

Simulation and Analysis of Converging Shock Wave Test Problems  

SciTech Connect (OSTI)

Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

2012-06-21T23:59:59.000Z

350

Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility  

SciTech Connect (OSTI)

In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

2014-04-01T23:59:59.000Z

351

A Hydrodynamic Study of Flow in Irrigation Furrows  

E-Print Network [OSTI]

profiles. An estimate of furrow hydraulic roughness was obtained from field data. A procedure for determining infiltration rates from measurements of surface flow volume and irrigation stream advance is proposed for the case for which the cumulative...

Wilke, O.C.

352

SHORT COMMUNICATION Hydrodynamic dispersion of neutral solutes in nanochannels  

E-Print Network [OSTI]

of streaming potential Xiangchun Xuan Ã? David Sinton Received: 21 February 2007 / Accepted: 23 April 2007 et al. 2005; Pennathur and Santiago 2005a, b; Xuan and Li 2006b; De Leebeeck and Sinton 2006 underestimated or overestimated depending on relative electrical double layer thickness (De Leebeeck and Sinton

Xuan, Xiangchun "Schwann"

353

Hydrodynamical Simulations of Strong Tides in Astrophysical Systems  

E-Print Network [OSTI]

Skinner, G. EXIST’s Gamma-Ray Burst Sensitivity. ApJ Barnes,E. The progenitors of short gamma-ray bursts. New Journal ofde Ven, G. Short Gamma-ray Bursts from Dynamically Assembled

Guillochon, James Francis

2013-01-01T23:59:59.000Z

354

Generalized hydrodynamic model for fluid flows: From nanoscale to macroscale  

E-Print Network [OSTI]

Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China T. S. Zhaob science, chemistry, biology, and many other subjects. Particularly, with the growing interest

Zhao, Tianshou

355

Hydrodynamical Simulations of Strong Tides in Astrophysical Systems  

E-Print Network [OSTI]

R. and Fowler, W. A. Thermonuclear Reaction Rates V. AtomicDetonation Transition in Thermonuclear Supernovae. ApJ 478,N. and Nelemans, G. Faint Thermonuclear Supernovae from AM

Guillochon, James Francis

2013-01-01T23:59:59.000Z

356

Information geometry and the hydrodynamical formulation of quantum mechanics  

E-Print Network [OSTI]

Let (M,g) be a compact, connected and oriented Riemannian manifold. We denote D the space of smooth probability density functions on M. In this paper, we show that the Frechet manifold D is equipped with a Riemannian metric g^{D} and an affine connection \

Molitor, Mathieu

2012-01-01T23:59:59.000Z

357

Derivation of the lattice Boltzmann model for relativistic hydrodynamics  

SciTech Connect (OSTI)

A detailed derivation of the lattice Boltzmann scheme for relativistic fluids recently proposed in M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys. Rev. Lett. 105, 014502 (2010) is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid-dynamic problems, namely, shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast wave on massive interstellar clouds. Close to second-order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time steps, are reported.

Mendoza, M.; Herrmann, H. J. [Computational Physics for Engineering Materials, Institute for Building Materials, ETH Zuerich, Schafmattstrasse 6, HIF, CH-8093 Zuerich (Switzerland); Boghosian, B. M. [Department of Mathematics, Tufts University, Bromfield-Pearson, Medford, Massachusetts 02155 (United States); Succi, S. [Istituto per le Applicazioni del Calcolo C.N.R., Via dei Taurini, 19 00185, Rome, Italy, and Freiburg Institute for Advanced Studies, Albertstrasse, 19, D-79104, Freiburg (Germany)

2010-11-15T23:59:59.000Z

358

Lattice Boltzmann versus Molecular Dynamics Simulation of Nanoscale Hydrodynamic Flows  

SciTech Connect (OSTI)

A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by molecular dynamics (MD) computer simulation and compared to results of lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.

Horbach, Juergen [Institut fuer Physik, Johannes-Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Succi, Sauro [Istituto Applicazioni Calcolo, CNR, Via le del Policlinico 137, 00161, Rome (Italy)

2006-06-09T23:59:59.000Z

359

Hydrodynamics, heat transfer and flow boiling instabilities in microchannels   

E-Print Network [OSTI]

Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

Barber, Jacqueline Claire

2010-01-01T23:59:59.000Z

360

Hydrodynamic stretching of single cells for large population mechanical phenotyping  

Science Journals Connector (OSTI)

...000 cellsmL for the assay. Microfluidic device fabrication and device dimensions. The devices were designed in AutoCAD (Autodesk). Transparency photo-masks for these designs were printed at 20,000 dots per inch (CAD/Art Services, Inc.). Molds...

Daniel R. Gossett; Henry T. K. Tse; Serena A. Lee; Yong Ying; Anne G. Lindgren; Otto O. Yang; Jianyu Rao; Amander T. Clark; Dino Di Carlo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogeology and hydrodynamics of coral reef pore waters  

SciTech Connect (OSTI)

A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of their effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.

Buddemeier, R.W.; Oberdorfer, J.A.

1988-06-29T23:59:59.000Z

362

Perimeter exchange, hydrodynamics, and scalar transport in an estuary  

E-Print Network [OSTI]

energy – that tidal straining leads to stable stratification, as is expected on ebb tides.tide to the analysis performed for the early ebb, we return to the framework of the evolution of the potential energy

MacVean, Lissa Jillian

2010-01-01T23:59:59.000Z

363

Hydrodynamically tunable optofluidic cylindrical microlens{{ Xiaole Mao,ab  

E-Print Network [OSTI]

of different refractive indices, a 5 M CaCl2 solution (nD = 1.445) and deionized (DI) water (nD = 1.335). When interface to be distorted and the CaCl2 solution bows outwards into the DI water portion. The bowed fluidic

364

FADEL et al A coupled hydrodynamic biological model for  

E-Print Network [OSTI]

supply, agriculture, swimming and energy production. They are colonial species that are common bloom is a world wide problem that became frequent in the last decade. Microcystis aeruginosa is a toxic applied to simulate the growth of cyanobacteria colonies found in a French reservoir. As primary results

Paris-Sud XI, Université de

365

Smoothed Particle Hydrodynamics pore-scale simulations of unstable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First, we derived analytical expressions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we used the model to study viscous...

366

Cosmic string, hydrodynamics and microanisotropies in the cosmic background radiation  

Science Journals Connector (OSTI)

... R/c, and in the region r ^ R, the metric will be approximately Schwarzschild. For these reasons I shall take the ... . For these reasons I shall take the Schwarzschild metric for r^ R, and 'cut out' the sphere r < R which ...

S.T. Chase

1986-09-04T23:59:59.000Z

367

Hydrodynamic evaluation of high-speed semi-SWATH vessels  

E-Print Network [OSTI]

High-speed semi-displacement vessels have enjoyed rapid development and widespread use over the past 25 years. Concurrent with their growth as viable commercial and naval platforms, has been the advancement of three-dimensional ...

Guttenplan, Adam (Adam David)

2007-01-01T23:59:59.000Z

368

Macrostatistical hydrodynamics. Progress report, April 15, 1991--September 14, 1992  

SciTech Connect (OSTI)

During the course of these efforts we have been studying suspension of particles in Newtonian and non-Newtonian liquids, embodying a combination of analysis, experiments, and numerical simulations. Experiments primarily involved tracking small balls as they fall slowly through otherwise quiescent suspensions of neutrally buoyant particles. Detailed trajectories of the balls, obtained either with new experimental techniques or by numerical simulation, were statistically interpreted in terms of the mean settling velocity and the dispersion about the mean. We showed that falling-ball rheometry, using small balls relative to the suspended particles, could be a means of measuring the macroscopic zero-shear-rate viscosity without significantly disturbing the original microstructure; therefore, falling-ball rheometry can be a powerful tool for use in studying the effects of microstructures on the macroscopic properties of suspensions. We plan to extend this work to the study of more complex, structured fluids, and to use other tools (e.g., rolling-ball rheometry) to study boundary effects. We also propose to study flowing suspensions to obtain non-zero-shear-rate viscosities. The intent is to develop an understanding of the basic principles needed to treat generic multiphase flow problems, through a detailed study of model systems. 8 refs.

Brenner, H.

1992-06-01T23:59:59.000Z

369

Perimeter exchange, hydrodynamics, and scalar transport in an estuary  

E-Print Network [OSTI]

3.2.2 L ATERAL SALINITY GRADIENTS 3.2.3 V ELOCITIES ii 3.2.4Figure 3-6: Vertical salinity gradients Figure 3-7: Cross-with the longitudinal salinity gradient, are responsible for

MacVean, Lissa Jillian

2010-01-01T23:59:59.000Z

370

Hydrodynamics of Hypersonic Jets: Experiments and Numerical Simulations  

E-Print Network [OSTI]

Stars form in regions of the galaxy that are denser and cooler than the mean interstellar medium. These regions are called Giant Molecular Clouds. At the beginning of their life, up to $10^5-10^6$ years, stars accrete matter from their rich surrounding environment and are origin of a peculiar phenomenon that is the jet emission. Jets from Young Stellar Objects (YSOs) are intensively studied by the astrophysical community by observations at different wavelengths, analytical and numerical modeling and laboratory experiments. Indications about the jet propagation and its resulting morphologies are here obtained by means of a combined study of hypersonic jets carried out both in the laboratory and by numerical simulations.

Belan, Marco; Tordella, Daniela; Massaglia, Silvano; Ferrari, Attilio; Mignone, Andrea; Bodenschatz, Eberhard

2011-01-01T23:59:59.000Z

371

Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids  

Science Journals Connector (OSTI)

...Modelling, Moscow Institute of Nuclear Safety, , 113191 Moscow, Russia One contribution...GROMOS for the peptide. The GROMACS software package was used for integrating the...mechanism associated with downstream radiation in subsonic jets. J. Fluid Mech. 710...

2014-01-01T23:59:59.000Z

372

3+1 formulation of non-ideal hydrodynamics  

Science Journals Connector (OSTI)

......in Thorne K. S., Price R. H., Macdonald D...in the contexts of re-heating processes after inflation...and feo = 11, ei l, { OIL} with the orthonormal...339 Thorne K. S., Price R. H., Macdonald D...in Thorne K. S., Price R. H., Macdonald D......

Jochen Peitz; Stefan Appl

1998-05-11T23:59:59.000Z

373

Hydrodynamic motions and neutrino emissivity of neutron stars  

Science Journals Connector (OSTI)

......85. In contrast to the modified URCA reactions which pro- ceed practically all over the core volume, the direct URCA reactions...85. In contrast to the modified URCA reactions which pro- ceed practically all over the core volume, the direct URCA reactions......

V. A. Urpin; D. A. Shalybkov

1996-07-01T23:59:59.000Z

374

Los Alamos conducts important hydrodynamic experiment in Nevada  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the experiment, conducted at NNSS's U1a underground complex in collaboration with NSTec and supported by Sandia National Laboratories, Los Alamos scientists and technicians...

375

Hydrodynamics and sediment transport in natural and beneficial use marshes  

E-Print Network [OSTI]

Since 1970, U.S. Army Corps of Engineers, Galveston District, has been using dredged sediments from the Houston ship channel to create and restore salt marshes in Galveston Bay. Some projects have failed due to excessive sediment erosion...

Kushwaha, Vaishali

2006-10-30T23:59:59.000Z

376

Basic hydrodynamic aspects of a solar energy based desalination process  

SciTech Connect (OSTI)

The theoretical feasibility of a solar energy based desalination scheme is analyzed in this study. The proposed scheme exploits the vapor pressure difference between fluids of different salinities and temperatures to produce fresh water from seawater. The scheme`s basic components are a seawater column, an injection pipe heated on top through a heat exchanger loop, a withdrawal pipe, a vacuum chamber filled with vapour, and a fresh water column cooled on top where vapour condenses into fresh water. A mathematical model was developed to simulate unsteady mass, heat and solute transfer during the desalination process. The governing equations were integrated numerically in space and time through a finite difference technique. The numerical simulations considered both steady-state and time dependent heat sources. The numerical results proved the theoretical feasibility of the proposed desalination scheme. However, the presence of an unsteady heat source, typical to solar energy based schemes, may lead to an unstable density profile in the water column and reduce the scheme efficiency if not properly controlled. 16 refs., 8 figs.

Bemporad, G.A. [ISMES Spa, Bergamo (Italy)] [ISMES Spa, Bergamo (Italy)

1995-02-01T23:59:59.000Z

377

What can we learn from hydrodynamic analysis at RHIC?  

E-Print Network [OSTI]

We can establish a new picture, the perfect fluid sQGP core and the dissipative hadronic corona, of the space-time evolution of produced matter in relativistic heavy ion collisions at RHIC. It is also shown that the picture works well also in the forward rapidity region through an analysis based on a new class of the hydro-kinetic model and that this is a manifestation of rapid increase of entropy density in the vicinity of QCD critical temperature, namely deconfinement.

Tetsufumi Hirano

2005-11-14T23:59:59.000Z

378

What can we learn from hydrodynamic analysis of elliptic flow?  

E-Print Network [OSTI]

We can establish a new picture, the perfect fluid sQGP core and the dissipative hadronic corona, of the space-time evolution of produced matter in relativistic heavy ion collisions at RHIC. It is also shown that the picture works well also in the forward rapidity region through an analysis based on a new class of the hydro-kinetic model and is a manifestation of deconfinement.

Tetsufumi Hirano

2005-10-03T23:59:59.000Z

379

AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING...  

Office of Scientific and Technical Information (OSTI)

Corporation University of California Los Angeles, California - 2 - .w- UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service L E G A L N O T I C E This report...

380

Parallel Computational Strategies for Viscous Hydrodynamics with Applications to Microfluidics  

Science Journals Connector (OSTI)

Determination of the motion of particles in a viscous fluid is a problem found in disciplines including colloid science, suspension rheology and protein science. These low-Reynolds-number flows also from the basi...

Sangtae Kim

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Linear inductive voltage adders (IVA) for advanced hydrodynamic radiography  

SciTech Connect (OSTI)

The electron beam which drifts through the multiple cavities of conventional induction linacs (LIA) is replaced in an IVA by a cylindrical metal conductor which extends along the entire length of the device and effectuates the addition of the accelerator cavity voltages. In the approach to radiography, the linear inductive voltage adder drives a magnetically immersed electron diode with a millimeter diameter cathode electrode and a planar anode/bremsstrahlung converter. Both anode and cathode electrodes are immersed in a strong (15--50 T) solenoidal magnetic field. The electron beam cross section is approximately of the same size as the cathode needle and generates a similar size, very intense x-ray beam when it strikes the anode converter. An IVA driven diode can produce electron beams of equal size and energy as a LIA but with much higher currents (40--50 kA versus 4--5 kA), simpler hardware and thus lower cost. The authors present here first experimental validations of the technology utilizing HERMES 3 and SABRE IVA accelerators. The electron beam voltage and current were respectively of the order of 10 MV and 40 kA. X-ray doses of up to 1 kR {at} 1 m and spot sizes as small as 1.7 mm (at 200 R doses) were measured.

Mazarakis, M.G.; Boyes, J.D.; Johnson, D.L. [and others

1998-09-01T23:59:59.000Z

382

The role of hydrodynamics on seed dispersal in seagrasses  

Science Journals Connector (OSTI)

Posidonia australis releases floating fruit that contain a single negatively buoyant seed that lacks dormancy. Halophila ovalis produces fruit and dormant seeds ...

383

Hydrodynamics and fluctuations in relativistic heavy-ion collisions  

E-Print Network [OSTI]

: centrality dependence Data > hydro Small discrepancy between STAR and PHENIX data Au-Au collision per nucleon is in the details! A small effect: Average value 0.3%, maximum value 3% Should we care? #12;A primer is independent of pT, as predicted by hydro. But... the value is significantly larger than 0.5 #12;More data

384

HEIGHTS initial simulation of discharge produced plasma hydrodynamics and radiation  

E-Print Network [OSTI]

and radia- tion of two-gas mixtures in dense plasma focus DPF de- vices in the presence of impurities

Harilal, S. S.

385

RAMSES-RT: radiation hydrodynamics in the cosmological context  

Science Journals Connector (OSTI)

......decreasing gas internal energy (i.e. in the direction opposite of the energy gradient). This is...moment-based RT. Gonzalez, Audit Huynh (2007), Aubert...hereafter AT08 and Vaytet, Audit Dubroca (2010) - and...read external spectral energy distribution (SED......

J. Rosdahl; J. Blaizot; D. Aubert; T. Stranex; R. Teyssier

2013-01-01T23:59:59.000Z

386

Truncated Moment Formalism for Radiation Hydrodynamics in Numerical Relativity  

Science Journals Connector (OSTI)

......closure relation among the radiation stress tensor, energy density, and energy flux, and a variable Eddington factor, which works...Transfer (1984) 31:149. 15) Gonzalez M. , Audit E., Huynh P. Astron. Astrophys. (2007) 464......

Masaru Shibata; Kenta Kiuchi; Yu-ichiro Sekiguchi; Yudai Suwa

2011-06-01T23:59:59.000Z

387

AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING...  

Office of Scientific and Technical Information (OSTI)

of the non-bubbling , i e . , the bare area which surrounds t h e b o i l i n g patch, increases. Conse- quently, within t h e rance of a c t i v a t i o n new, smaller c a...

388

Equilibrium and hydrodynamic studies of water extraction from fermentation broth  

E-Print Network [OSTI]

Previous studies using tertiary amines to extract water from reagent-grade carboxylate salts (calcium acetate, propionate, and butyrate) have shown selectivity for water and not for the carboxylate salts. These results allow the design...

Adorno-Gomez, Wilberto

2012-06-07T23:59:59.000Z

389

Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles  

E-Print Network [OSTI]

ka B.P.), such as the Williston, Michigan, and Illinois basins. We show that in such basins fluid of the Williston and Alberta basins. Under such con- ditions fluid fluxes in aquifers can be expected

Bense, Victor

390

Hydrodynamical modeling of targets compression to high densities  

E-Print Network [OSTI]

by composite schemes on moving grid. Both models also include heat conductivity. The quotidian equation, E is total energy and heat flux W is given by W = - grad T (2) where T is temperature and is heat note that for most presented computations the heat conductivity is negligible. The above system

Limpouch, Jiri

391

TOPOLOGICAL METHODS IN HYDRODYNAMICS Vladimir I. Arnold Boris A. Khesin  

E-Print Network [OSTI]

obstructions to energy relaxation 137 #12; TABLE OF CONTENTS v 2.A. Model example: Two linked flux tubes 137 2 of the Euler equa­ tion 59 11.A.Approximations by vortex systems in the plane 59 11.B.Nonintegrability of four or more point vortices 62 11.C.Hamiltonian vortex approximations in three dimensions 63 #12; iv

Toronto, University of

392

Deterministic hydrodynamics: Taking blood apart John A. Davis*  

E-Print Network [OSTI]

*¶ *Princeton Institute for the Science and Technology of Materials, and Departments of Electrical Engineering and ¶Physics, Princeton University, Princeton, NJ 08544; and Wadsworth Center, Albany, NY 12201 Contributed of blood plasma with no dilution by using a continuous- flow deterministic array that separates blood

393

Aurel Stodola BIOMIMETIC "SURVIVAL" HYDRODYNAMICS AND FLOW SENSING  

E-Print Network [OSTI]

and a pioneer in the area of technical thermodynamics and its applications in gas and steam turbines. He has, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts that detects the wake of prey up to 30 seconds after it has passed. Survival dictated the development

Daraio, Chiara

394

Hydrodynamic Property of Oscillating Superfluid 3He in Aerogel  

SciTech Connect (OSTI)

The investigation of the superfluidity of liquid 3He in aerogel of 97.5% and 98.5% porosities using the fourth sound resonance technique revealed two distinct observations. First, the superfluid transition temperature TC and the superfluid density {rho}s/{rho} of 3He in aerogel are greatly suppressed. Second, the sound attenuation does not depend on temperature at higher temperatures, but monotonically diminishes with decreasing temperature at lower temperatures.

Obara, K.; Nago, Y.; Yano, H.; Ishikawa, O.; Hata, T. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Yokogawa, H.; Yokoyama, M. [Advanced Technology Research Laboratory, Matsushita Electric Works, Ltd. (Japan)

2006-09-07T23:59:59.000Z

395

Models for Study of the Hydrodynamic Actions on Hydraulic Structures  

Science Journals Connector (OSTI)

In the conception of dams and appurtenant works, specially when they create high heads and/or are located in rivers with large discharges, special importance is assumed by the correct design of spillways.

C. Matias Ramos

1989-01-01T23:59:59.000Z

396

Experimental Characterization of Scale Model Wave Energy Converter Hydrodynamics.  

E-Print Network [OSTI]

??A prototype point absorber style wave energy converter has been proposed for deployment off the West coast of Vancouver Island near the remote village of… (more)

McCullough, Kendra Mercedes Sunshine

2013-01-01T23:59:59.000Z

397

RELAXATION OF WARPED DISKS: THE CASE OF PURE HYDRODYNAMICS  

SciTech Connect (OSTI)

Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.

Sorathia, Kareem A.; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Hawley, John F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

2013-05-10T23:59:59.000Z

398

HydrodynamicHydrodynamic activitiesactivities in CeSOSin CeSOS Odd M. FaltinsenOdd M. Faltinsen  

E-Print Network [OSTI]

. Faltinsen Transport Marine operations p Seafood production Oil and gas production Physically simplified lines wave maker water surface 2D sketch of the wave tank Water divided by cells Within each cell

Nørvåg, Kjetil

399

Method development for enhanced antifouling testing using novel natural products against marine biofilms.  

E-Print Network [OSTI]

??Marine biofouling is the accumulation of organisms on underwater surfaces, causing increased ship hydrodynamic drag, which results in higher fuel consumption and decreased speed and… (more)

Salta, M.

2012-01-01T23:59:59.000Z

400

Category:Testing Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search This category is defined by the form Testing Facility. Subcategories This category has only the following subcategory. H [×] Hydrodynamic Testing Facility Type‎ 9 pages Pages in category "Testing Facilities" The following 82 pages are in this category, out of 82 total. 1 1.5-ft Wave Flume Facility 10-ft Wave Flume Facility 11-ft Wave Flume Facility 2 2-ft Flume Facility 3 3-ft Wave Flume Facility 5 5-ft Wave Flume Facility 6 6-ft Wave Flume Facility A Alden Large Flume Alden Small Flume Alden Tow Tank Alden Wave Basin B Breakwater Research Facility Bucknell Hydraulic Flume C Carderock 2-ft Variable Pressure Cavitation Water Tunnel Carderock 3-ft Variable Pressure Cavitation Water Tunnel Carderock Circulating Water Channel

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Calibration curves for some standard Gap Tests  

SciTech Connect (OSTI)

The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

Bowman, A.L.; Sommer, S.C.

1989-01-01T23:59:59.000Z

402

Development and Test Plans for a small Vertical Axis Turbine Designed and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Test Plans for a small Vertical Axis Turbine Designed and Development and Test Plans for a small Vertical Axis Turbine Designed and Built by the Russian State Rocket Center under Berkeley Lab auspices Speaker(s): Anthony Radspieler Jr. Glen Dahlbacka Joseph Rasson Date: March 4, 2010 - 12:00pm Location: 90-3122 Berkeley Lab Engineering Division teamed with Empire Magnetics, Rohnert Park and the Makeyev State Rocket Center under a DOE NNSA non-proliferation project to develop and test a series of small wind turbines of vertical axis design. Over the years, about 100 Russian scientists and engineers worked on the project and the hydrodynamic, aerodynamic and mechanical test facilities of the SRC were used. The objective was to create a highly manufacturable Darieus unit with a modest Tip Speed Ratio (quiet and low

403

MHD seawater thruster performance: A comparison of predictions with experimental results from a two Tesla test facility  

SciTech Connect (OSTI)

A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))

1992-01-01T23:59:59.000Z

404

Hydrodynamic Limit for an Hamiltonian System with Boundary Conditions and Conservative Noise  

E-Print Network [OSTI]

We study the hyperbolic scaling limit for a chain of N coupled anharmonic oscillators. The chain is attached to a point on the left and there is a force (tension) $\\tau$ acting on the right. In order to provide good ergodic properties to the system, we perturb the Hamiltonian dynamics with random local exchanges of velocities between the particles, so that momentum and energy are locally conserved. We prove that in the macroscopic limit the distributions of the elongation, momentum and energy, converge to the solution of the Euler system of equations, in the smooth regime.

Nadine Even; Stefano Olla

2013-10-25T23:59:59.000Z

405

Derivation of the Lattice Boltzmann Model for Relativistic Hydrodynamics M. Mendoza,1,  

E-Print Network [OSTI]

in condensed mat- ter. The dynamics of such systems requires solving highly nonlinear equations, rendering fields of modern physics, e.g. astrophysics, nuclear and high-energy physics and, lately, also/computational efficiency, especially on parallel computers [7], and easy handling of complex ge- ometries. In this paper

406

Petascale Algorithms for Reactor Hydrodynamics Paul Fischer, James Lottes, David Pointer, and Andew Siegel  

E-Print Network [OSTI]

Siegel Argonne National Laboratory, Argonne, IL 60439, U.S.A. E-mail: fischer@mcs.anl.gov Abstract. We to P = 65, 000 processors on the IBM BG/P at the Argonne Leadership Computing Facility. 1. Introduction Petascale computing is expected to play a pivotal role in the design and analysis of next generation nuclear

Fischer, Paul F.

407

The Viscosity Bound Conjecture and Hydrodynamics of M2-Brane Theory at Finite Chemical Potential  

E-Print Network [OSTI]

Kovtun, Son and Starinets have conjectured that the viscosity to entropy density ratio $\\eta/s$ is always bounded from below by a universal multiple of $\\hbar$ i.e., $\\hbar/(4\\pi k_{B})$ for all forms of matter. Mysteriously, the proposed viscosity bound appears to be saturated in all computations done whenever a supergravity dual is available. We consider the near horizon limit of a stack of M2-branes in the grand canonical ensemble at finite R-charge densities, corresponding to non-zero angular momentum in the bulk. The corresponding four-dimensional R-charged black hole in Anti-de Sitter space provides a holographic dual in which various transport coefficients can be calculated. We find that the shear viscosity increases as soon as a background R-charge density is turned on. We numerically compute the few first corrections to the shear viscosity to entropy density ratio $\\eta/s$ and surprisingly discover that up to fourth order all corrections originating from a non-zero chemical potential vanish, leaving the bound saturated. This is a sharp signal in favor of the saturation of the viscosity bound for event horizons even in the presence of some finite background field strength. We discuss implications of this observation for the conjectured bound.

Omid Saremi

2006-01-20T23:59:59.000Z

408

Measurements and Linear Wave Theory Based Simulations of Vegetated Wave Hydrodynamics for Practical Applications  

E-Print Network [OSTI]

density exceeding some threshold where maximum wave attenuation capabilities are exceeded and lowering of damping ensues. Additionally, wave attenuation increased with higher stem spatial variation due to less wake sheltering. A one-dimensional model...

Anderson, Mary Elizabeth

2011-10-21T23:59:59.000Z

409

Experimental studies of the hydrodynamic characteristics of a sloped wave energy device   

E-Print Network [OSTI]

Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

Lin, Chia-Po

2000-07-19T23:59:59.000Z

410

Some peculiarities of turbulent mixing growth and perturbations at hydrodynamic instabilities  

Science Journals Connector (OSTI)

...aerohydrodynamics, gas dynamics, inertial thermonuclear fusion (ITF), etc. So, when compressing a thermonuclear target, growth of these instabilities...convergence, mixing of its material and thermonuclear fuel. It strongly reduces the neutron...

2013-01-01T23:59:59.000Z

411

Hydrodynamics of the Mission Canyon Formation in the Billings Nose area, North Dakota  

E-Print Network [OSTI]

of salinities to pressure gradients. . . . . . . -. . Values used in correction of potentiometric maps Conversion of water resistivities to salinities. 83 Calculation of time-temperature index (TTI) for burial history of Bakken Shale in Figure 35 96 Summary... shouting gently north~ard plunging anticlinal structure. Contour interval 50 ft (15 m). Modified from Walen (pers. comm. , 1983). 32 R 101 W R 1OOW T 143 N o 66S 0 0 4 P4 4 o 4 0 ~ q ~ 0 ~ T 142 N 0 & o )60 ~ ~ 0 ~ ~ 0 6600 4...

Mitsdarffer, Alan Ray

2012-06-07T23:59:59.000Z

412

Localness of energy cascade in a hydrodynamic turbulence, I. Smooth coarse-graining  

SciTech Connect (OSTI)

We introduce a novel approach to scale-decomposition of the fluid kinetic energy (or other quadratic integrals) into band-pass contributions from a series of length-scales. Our decomposition is based on a multiscale generalization of the 'Germano identity' for smooth, graded filter kernels. We employ this method to derive a budget equation that describes the transfers of turbulent kinetic energy both in space and in scale. It is shown that the inter-scale energy transfer is dominated by local triadic interactions, assuming only the scaling properties expected in a turbulent inertial-range. We derive rigorous upper bounds on the contributions of non-local triads, extending the work of Eyink (2005) for low-pass filtering. We also propose a physical explanation of the differing exponents for our rigorous upper bounds and for the scaling predictions of Kraichnan (1966,1971). The faster decay predicted by Kraichnan is argued to be the consequence of additional cancellations in the signed contributions to transfer from non-local triads, after averaging over space. This picture is supported by data from a 512 pseudospectral simulation of Navier-Stokes turbulence with phase-shift dealiasing.

Aluie, Hussein [Los Alamos National Laboratory; Eyink, Gregory L [JOHNS HOPKINS UNIV.

2009-01-01T23:59:59.000Z

413

Evaluation of Collector Well Configurations to Model Hydrodynamics in Riverbank Filtration and Groundwater Remediation  

E-Print Network [OSTI]

to better visualize and understand the findings generated by the model. The original model created in section 4.1 was designed by Dugat [2009]. Modifications to the original model are expanded upon in section 4.2. Figures 3-4 show the basic set-up... to better visualize and understand the findings generated by the model. The original model created in section 4.1 was designed by Dugat [2009]. Modifications to the original model are expanded upon in section 4.2. Figures 3-4 show the basic set-up...

De Leon, Tiffany Lucinda

2011-10-21T23:59:59.000Z

414

Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines  

SciTech Connect (OSTI)

Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

2014-04-01T23:59:59.000Z

415

Hydrodynamics of fluid around a collapsing bubble in the spark bubble droplet generation process  

Science Journals Connector (OSTI)

......negligible compared with the atmospheric or reference pressure of the...the physical properties of water such as surface tension and...considered at room temperature and atmospheric pressure. Figure 2 shows the...deformation of steep waves on water: I. A numerical method of......

Abdolrahman Dadvand; Mazyar Dawoodian; Boo Cheong Khoo

2014-08-01T23:59:59.000Z

416

Entropy Viscosity Method for Lagrangian Hydrodynamics and Central Schemes for Mean Field Games  

E-Print Network [OSTI]

problem on a computational mesh that moves with the material velocity. The method is based on two major concepts. The first one is producing high order convergence rates for smooth solutions even with active viscosity terms. This is achieved by using high...

Tomov, Vladimir

2014-04-18T23:59:59.000Z

417

Computational fluid dynamics simulation of hydrodynamics and chemical reaction in a CFB downer  

Science Journals Connector (OSTI)

Abstract A computational fluid dynamics (CFD) model for simulating the chemical reaction process in a gas–particle circulating fluidized bed (CFB) downer is introduced by combining the two-fluid model (TFM) for the gas–particle turbulent flows and the c 2 ¯ ? ? c model for the turbulent mass transfer. With the proposed model, the species concentration and solid volume fraction as well as the velocity distributions along the CFB downer are able to be predicted. In mathematical expression of the proposed model, the recently developed formulations of c 2 ¯ ? ? c is adopted to close the turbulent mass transfer equations so that the turbulent mass diffusivity can be determined without relying on empirical methods. As for the gas–solid two phase turbulent momentum transfer equations, the methodology of kg ? ?g ? kp ? ?p ? ? is used for their closures. To validate the proposed model, simulation is carried out for the catalytic ozone decomposition in a gas–solid CFB downer. The simulation results are compared with the experimental data and satisfactory agreement is found between them in both axial/radial distributions of concentration and solid volume fraction. Furthermore, the simulations reveal that the turbulent mass diffusivity varies along axial and radial directions, and the turbulent Schmidt number is not a constant throughout the CFB downer.

Wenbin Li; Kuotsung Yu; Botan Liu; Xigang Yuan

2015-01-01T23:59:59.000Z

418

Hydrodynamic models for San Francisco Bay: An overview of what we can model, when  

E-Print Network [OSTI]

on the domain (SF Bay) #12;A Grid: Northern SF Bay/Golden Gate ChuaandFringer(2011) Finest resolution: 10 m average Thermal front near Dumbarton Bridge #12;More complicated models: Sediment transport in South SF

419

A Lattice Boltzmann Framework for the simulation of boiling hydrodynamics in BWRs.  

SciTech Connect (OSTI)

Multi phase and multi component flows are ubiquitous in nature as well as in many man-made processes. A specific example is the Boiling Water Reactor (BWR) core, in which the coolant enters the core as liquid, undergoes a phase change as it traverses the core and exits as a high quality two-phase mixture. Two-phase flows in BWRs typically manifest a wide variety of geometrical patterns of the co-existing phases depending on the local system conditions. Modeling of such flows currently relies on empirical correlations (for example, in the simulation of bubble nucleation, bubble growth and coalescence, and inter-phase surface topology transitions) that hinder the accurate simulation of two-phase phenomena using Computational Fluid Dynamics (CFD) approaches. The Lattice Boltzmann Method (LBM) is in rapid development as a modeling tool to understand these macro-phenomena by coupling them with their underlying micro-dynamics. This paper presents a consistent LBM formulation for the simulation of a two-phase water-steam system. Results of initial model validation in a range of thermodynamic conditions typical for BWRs are also shown. The interface between the two coexisting phases is captured from the dynamics of the model itself, i.e., no interface tracking is needed. The model is based on the Peng-Robinson (P-R) non-ideal equation of state and can quantitatively approximate the phase-coexistence curve for water at different temperatures ranging from 125 to 325 oC. Consequently, coexisting phases with large density ratios (up to {approx}1000) may be simulated. Two-phase models in the 200-300 C temperature range are of significant importance to nuclear engineers since most BWRs operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a gravity-free environment of the corresponding coexisting phase until steady state is reached satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. Comparing the LBM surface tension thus calculated using the LBM to the corresponding experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. Using this approach, spatial scaling of the LBM emerges from the model itself and is not imposed externally.

Jain, P. K.; Tentner, A.; Uddin, R. (Nuclear Engineering Division); (Univ. of Illinois)

2008-01-01T23:59:59.000Z

420

Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films  

E-Print Network [OSTI]

in the formation of the ice on the cooling coil due to thedelay the formation of ice on the cooling coil. An internalthe formation of ice on the cooling coil, thus reducing the

Pineda Vargas, Sergio Manuel

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nearshore hydrodynamics as loading and forcing factors for Escherichia coli contamination at an embayed beach  

E-Print Network [OSTI]

of contamination during subsequent sediment resuspension events, suggesting that deposition­resuspension cycles

422

Hydrodynamic Model of Lake Michigan Mass Balance (LMMB) Primary Investigator: David Schwab -NOAA /GLERL  

E-Print Network [OSTI]

-dimensional circulation in Lake Michigan at space and time scales adequate to resolve sediment resuspension and transport resuspension and transport model being developed at the EPA Large Lakes Research Station (LLRS). We are using- resuspension-transport and fate model to assist in the mass balance calculations for Lake Michigan toxics. 1999

423

High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia  

E-Print Network [OSTI]

and dynamical features like tidal jets and recirculation eddies in the wake of islands. A new strategy is suggested to refine the mesh in areas of interest taking into account the bathymetric field about 10% of the along-shelf length. The complex topography, the wind, the tides, and the circu- lation

Frey, Pascal

424

A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations  

Science Journals Connector (OSTI)

......similar to many Eulerian grid codes. However, arepo works...advantages compared to traditional grid codes in that its mesh can...we can readily employ the infrastructure and communication algorithms...absorbing obstacles, for our hybrid treatment of point sources......

Margarita Petkova; Volker Springel

2011-08-21T23:59:59.000Z

425

E-Print Network 3.0 - axis radiographic hydrodynamic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or radiographs, not only the radius of the prosthesis head... prostheses Polyethylene wear Radiograph Polyethylene cup Linear wear Volumetric wear...

426

Extended three-dimensional ADCIRC hydrodynamic model to include baroclinic flow and sediment transport  

E-Print Network [OSTI]

horizontal velocity u and v. The free surface elevation as described in Eq.2.6 is solved by substituting the vertically-integrated momentum equa- tions into the continuity equation to form the GWCE. The momentum equations applied in ADCIRC-3D are... are components of vertical shear stress; and ? o is a reference den- sity of water. Velocities are determined from the non-conservative form of the momentum equa- tion. The solution strategy for solving horizontal velocities u and v in Eqs. (2.8a,b) in- cludes...

Pandoe, Wahyu Widodo

2004-09-30T23:59:59.000Z

427

Using Genetic Algorithms to Optimize Bathymetric Surveys for Hydrodynamic Model Input  

E-Print Network [OSTI]

/ L r a t i o (a) Fig. 2.6: Sensitivity of model results to shoal form parameters: (a) Rx / L and Ry / L (b) hs / h. 12 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3 h s / h r a t i o R e la ti ve R M S ch a n... . 4 1 . 6 1 . 8 2 - 0 . 0 1 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 R e so lu t i o n ( i n m ) R e la ti ve r m s e rr o r D a t a p o i n t s F i t t o d a t a p o i n t s 0 . 2 0 . 4 0 . 6 0 . 8 1 1...

Manian, Dinesh

2010-07-14T23:59:59.000Z

428

Growth impact of hydrodynamic dispersion in a Couette-Taylor bioreactor  

Science Journals Connector (OSTI)

The development of a distributed parameter model of microalgae growth is presented. Two modelling frameworks for photo-bioreactor modelling, Eulerian and Lagrangian, are discussed and the complications residing in the multi-scale nature of transport ... Keywords: Boundary value problem, Distributed parameter system, Multi-scale modelling, Photosynthetic factory, Random walk

ŠTpáN Papá?Ek; VáClav ŠTumbauer; Dalibor ŠTys; Karel Petera; Ctirad Matonoha

2011-10-01T23:59:59.000Z

429

Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials  

E-Print Network [OSTI]

. We create compound elements with complex particle handling modes by tiling this core element using that moved in straight lines and refracted into media in which the speed of light was material-dependent (1 (5), whereas particles below a critical size move with the flow. A ray diagram of optical

430

Hydrodynamic modeling of poly-solid reactive circulating fluidized beds: Application to Chemical Looping Combustion.  

E-Print Network [OSTI]

??Une étude précise des écoulements gaz-particules poly-solides et réactifs rencontrés dans les lits fluidisés circulants (LFC) appliqués au procédé de Chemical Looping Combustion (CLC) est… (more)

Nouyrigat, Nicolas

2012-01-01T23:59:59.000Z

431

Hydrodynamic modeling of poly-solid reactive circulating fluidized beds : Application to Chemical Looping Combustion.  

E-Print Network [OSTI]

??Une étude précise des écoulements gaz-particules poly-solides et réactifs rencontrés dans les lits fluidisés circulants (LFC) appliqués au procédé de Chemical Looping Combustion (CLC) est… (more)

Nouyrigat, Nicolas

2012-01-01T23:59:59.000Z

432

Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).  

SciTech Connect (OSTI)

An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

2006-08-01T23:59:59.000Z

433

Mathematical Note on the Fundamental Solution (Kelvin Source) in Ship Hydrodynamics  

Science Journals Connector (OSTI)

......simplifying assumption that the ship is thin. The velocity potential...over the mid-plane of the ship. The potential of a Kelvin...as known from the form of the ship the linearized problem can therefore...distribution of sources is the effect of interference. The present......

F. URSELL

1984-01-01T23:59:59.000Z

434

Force and hydrodynamic efficiency measurements of a three-dimensional flapping foil  

E-Print Network [OSTI]

Investigations into unsteady flapping foil propulsion have shown that it is an efficient and high thrust means of propulsion. Extensive work has been done to optimize the efficiency of two-dimensional flapping foils, varying ...

McLetchie, Karl-Magnus Weidmann

2004-01-01T23:59:59.000Z

435

Aust. J. ZOO^., 1993, 42, 79-101 Influence of Hydrodynamic Design  

E-Print Network [OSTI]

with that for mammals using hydrofoils. Lift-based swimmingis a rapid and high-powered propulsive mode. Oscillations fully aquatic mammals use lift-based propulsion with hydrofoils. Because paddling generates thrust of the hydrofoil generate thrust throughout the stroke cycle. For cetaceans and pinnipeds, propulsive efficiency

Fish, Frank

436

Hydrodynamic performance and vortex shedding of a biologically inspired three-dimensional flapping foil  

E-Print Network [OSTI]

The dynamics of flapping remains a subject a great theoretical and practical interest. Propulsion and maneuvering by flapping, optimized through years of evolution, is ubiquitous in nature, yet marine pulsars inspired by ...

Lim, Keith, K. L

2005-01-01T23:59:59.000Z

437

Hydrodynamics of high speed planing hulls with partially ventilated bottom and hydrofoils  

E-Print Network [OSTI]

The influence of a cambered shaped bottom step on the performance of sea going V-stepped planing hulls is investigated using numerical methods. The shape of the step was designed to decrease the Drag/Lift ratio of the hull ...

Sheingart, Zvi

2014-01-01T23:59:59.000Z

438

Thermo-Hydrodynamic analysis of turbulent cryogenic eccentric annular seals and effects of seal flexibility  

E-Print Network [OSTI]

of the corresponding component and is given by, D B -a -B - B ? +U ? + V ? +W- Dt Bt Bz Bq By (2. 5) Due to bulk flow assumption (Fig. 7), no cross-film shear stress~ rzqy exist and hence, it is neglected. I-BU -BU - BU aUl aP a, ? p[U ? +V ? +W ? + ? J...' av* - av' - av'1 +-~ ? +V ? +W ? +U ? J 2[at aq ay a t aP -aP - aP -aP 1 ? +V ? +W ? +U ? J at aq ay a B(K ? ) ( BP BPi ay ( aq+ asJ a(, ?V+ r, ?U) (2. 6) ay 14 Fig. 7. Bulk Flow Model (Nelson and Nguyen, 1984) where, ps+ Us+ tFs (2. 10...

Venkataraman, Balaji

2012-06-07T23:59:59.000Z

439

Hydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylinders  

SciTech Connect (OSTI)

We report on experimental measurements and numerical predictions of shear-induced migration of particles in concentrated suspensions subjected to flow in the wide gap between a rotating inner cylinder placed eccentrically within a fixed outer cylinder (a cylindrical bearing). The suspensions consists of large, noncolloidal spherical particles suspended in a viscous Newtonian liquid. Nuclear magnetic resonance (NMR) imaging is used to measure the time evolution of concentration and velocity profiles as the flow induced particle migration from the initial, well-mixed state. A model originally proposed by Phillips et al. (1992) is generalized to two dimensions. The coupled equations of motion and particle migration are solved numerically using an explicit pseudo-transient finite volume formulation. While not all of the qualitative features observed in the experiments are reproduced by this general numerical implementation, the velocity predictions show moderately good agreement with the experimental data.

Phan-Thien, Nhan [Univ. of Sydney, Sydney, New South Wales (Australia). Dept. of Mechanical Engineering; Graham, A.L.; Abbott, J.R. [Los Alamos National Lab., NM (United States); Altobelli, S.A. [Lovelace Medical Foundation, Albuquerque, New Mexico (United States); Mondy, L.A. [Sandia National Labs., Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

440

A Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars  

Science Journals Connector (OSTI)

......increase of the centrifugal force makes it a potentially important...appendix of TO05, the centrifugal force acting on this plasma should...characteristic equation The fundamental (m= 0) mode has a zero frequency...Stegun I. A., 1972, Handbook of Mathematical Functions......

R. H. D. Townsend; S. P. Owocki; A. Ud-Doula

2007-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage  

Science Journals Connector (OSTI)

Peter Eichhubl is a Research Scientist at the Bureau of Economic Geology and John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin. ... Arbogast, T.; Cowsar, L. C.; Wheeler, M. F.; Yotov, I.Mixed Finite Element Methods on Nonmatching Multiblock Grids Siam Journal on Numerical Analysis 2000, 37, 1295– 1315 ...

Susan J. Altman; Behdad Aminzadeh; Matthew T. Balhoff; Philip C. Bennett; Steven L. Bryant; M. Bayani Cardenas; Kuldeep Chaudhary; Randall T. Cygan; Wen Deng; Thomas Dewers; David A. DiCarlo; Peter Eichhubl; Marc A. Hesse; Chun Huh; Edward N. Matteo; Yashar Mehmani; Craig M. Tenney; Hongkyu Yoon

2014-05-28T23:59:59.000Z

442

Simulation of the dynamic behaviour of a geared transmission on hydrodynamic journal bearings  

E-Print Network [OSTI]

sensitive applications for which stealthiness is crucial, such as marine propulsion. In these applications des Structures, DCNS Propulsion, Indret, 44620 La Montagne, France romain

Paris-Sud XI, Université de

443

Micro-swimmers with hydrodynamic interactions Greg Huber,a,b,c  

E-Print Network [OSTI]

from that of larger creatures (such as cephalopods, fish and marine mammals), which obtain propulsive-paddle swimmer, resistive force, slender body 1. Introduction The self-propulsion of microorganisms is a topic]. As a useful prototype for exploring the fundamental mechanisms of self-propulsion at low Reynolds number

Ahlers, Guenter

444

Wake II model for hydrodynamic forces on marine pipelines for the wave plus current case  

E-Print Network [OSTI]

. Kostas Lambrakos, for their time and advice relating the Wake II model, necessary for the success in completing this research. I am grateful to the Instituto Mexicano del Petroleo (Mexican Institute of Petroleum) for its support during all my graduate...

Ramirez Sabag, Said

1999-01-01T23:59:59.000Z

445

Research papers Hydrodynamic timescales in a hyper-tidal region of  

E-Print Network [OSTI]

. The mean age gradient is directed offshore, approximately parallel to both the salinity gradient. Based upon the mean salinity distribution, this would suggest a flushing time of approximately 136 days that salinity may be used to estimate the age of freshwater, which is not directly observable in practice

Polton, Jeff

446

Three-dimensional Modeling of Tidal Hydrodynamics in the San Francisco Estuary  

E-Print Network [OSTI]

predominantly on salinity gradients (Cloern and Nicholsanalyzed. The salinity gradient (dS/dx) was estimated alonglocal longitudi- nal salinity gradient was determined by a

Gross, Edward S.; MacWilliams, Michael L.; Kimmerer, Wim J.

2009-01-01T23:59:59.000Z

447

Hydrodynamics and Water Quality in Rodeo Lagoon, a Hypereutrophic Coastal Lagoon  

E-Print Network [OSTI]

sediments along the salinity gradient of the Patuxent River,along the estuarine salinity gradient. Temperature is alsoa longitudinal salinity gradient from the ocean towards

Cousins, Mary Alice Melugin

2010-01-01T23:59:59.000Z

448

A tool to create hydrodynamically optimized hull-forms with geometrical constraints from internal arrangements  

E-Print Network [OSTI]

Internal arrangements and bulky equipment like machinery have been treated for many years as a secondary aspect of the ship design. Traditionally, in the design process, the centerpiece of the effort is the hull and its ...

Nestoras, Konstantinos, Nav.E. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

449

Experimental visualization of the near-boundary hydrodynamics about fish-like swimming bodies  

E-Print Network [OSTI]

This thesis takes a look at the near boundary flow about fish-like swimming bodies. Experiments were performed up to Reynolds number 106 using laser Doppler velocimetry and particle imaging techniques. The turbulence in ...

Techet, Alexandra Hughes

2001-01-01T23:59:59.000Z

450

Evolution of M82-like starburst winds revisited: 3D radiative cooling hydrodynamical simulations  

Science Journals Connector (OSTI)

......density has a mass of- 106 Mo...gas in the wind is therefore-2...the total GW mass, while only...and high-velocity, low-density...SC40-01: map of the gas...SC40-01: map of the energy...direction to the wind) at a time...the average velocity of the filaments...the total mass of the high-density......

C. Melioli; E. M. de Gouveia Dal Pino; F. G. Geraissate

2013-01-01T23:59:59.000Z

451

Hydrogen and metal line absorption around low-redshift galaxies in cosmological hydrodynamic simulations  

Science Journals Connector (OSTI)

......heating from the winds. In contrast...expels gas at high velocities, around the escape velocity for-1012Mo haloes...Moreover, the wind energy is deposited...energy. The Hi maps shown in Fig...all cosmic metal mass that lies within......

Amanda Brady Ford; Benjamin D. Oppenheimer; Romeel Davé; Neal Katz; Juna A. Kollmeier; David H. Weinberg

2013-06-11T23:59:59.000Z

452

Tailoring hydrodynamics of non-wetting droplets with nano-engineered surfaces  

E-Print Network [OSTI]

Considering that contacts between liquid and solid are ubiquitous in almost all energy processes, including steam turbines, oil pumping, condensers and boilers, the efficiency of energy transportation can be maximized such ...

Kwon, Hyuk-Min

2013-01-01T23:59:59.000Z

453

A new method for moving–boundary hydrodynamic problems in shallow water  

Science Journals Connector (OSTI)

...moving-boundary simulations: (a) fully wet...element; (d) flooding-type partly wet...for river flood simulation. Proc. Inst...M. 1994 Plain flooding: near and far field simulations. In Modelling flood...

1999-01-01T23:59:59.000Z

454

Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences  

Science Journals Connector (OSTI)

...These include the flooding of a river valley...discussed. geophysical simulations|particle methods...These include the flooding of a river valley...Algorithms Computer Simulation Ecology methods...These include the flooding of a river valley...Keywords: geophysical simulations; particle methods...

2004-01-01T23:59:59.000Z

455

Comparison Between Two Hydrodynamic Models for Flooding Simulations at River Lima Basin  

Science Journals Connector (OSTI)

According to EU flood risks directive, flood hazard maps should include information on hydraulic ... Lima basin, Portugal. This river includes several flood-prone areas. Ponte Lima town is one of the places of hi...

José Pinho; Rui Ferreira; Luís Vieira; Dirk Schwanenberg

2014-11-01T23:59:59.000Z

456

Gas around galaxy haloes: methodology comparisons using hydrodynamical simulations of the intergalactic medium  

Science Journals Connector (OSTI)

......used the DiRAC Data Analytic system at the University of Cambridge, operated by the University of Cambridge High Performance Computing Service on behalf of the STFC DiRAC HPC Facility ( www.dirac.ac.uk ). This equipment was funded by BIS......

Avery Meiksin; James S. Bolton; Eric R. Tittley

2014-01-01T23:59:59.000Z

457

Hydrodynamical simulations of galaxy clusters in dark energy cosmologies – I. General properties  

Science Journals Connector (OSTI)

......among different dark energy models. For each dark energy model we evaluated the volumes that a cluster survey must cover in order...0, PRIN MIUR 2009 Dark Energy and Cosmology with Large Galaxy Survey and PRIN INAF 2009......

C. De Boni; K. Dolag; S. Ettori; L. Moscardini; V. Pettorino; C. Baccigalupi

2011-08-11T23:59:59.000Z

458

The evolution and explosion of massive Stars II: Explosive hydrodynamics and nucleosynthesis  

SciTech Connect (OSTI)

The nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metallicities Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities). Altogether 78 different model supernova explosions are calculated. In each case nucleosynthesis has already been determined for 200 isotopes in each of 600 to 1200 zones of the presupernova star, including the effects of time dependent convection. Here each star is exploded using a piston to give a specified final kinetic energy at infinity (typically 1.2 {times} 10{sup 51} erg), and the explosive modifications to the nucleosynthesis, including the effects of neutrino irradiation, determined. A single value of the critical {sup 12}C({sub {alpha},{gamma}}){sup 16}O reaction rate corresponding to S(300 keV) = 170 keV barns is used in all calculations. The synthesis of each isotope is discussed along with its sensitivity to model parameters. In each case, the final mass of the collapsed remnant is also determined and often found not to correspond to the location of the piston (typically the edge of the iron core), but to a ``mass cut`` farther out. This mass cut is sensitive not only to the explosion energy, but also to the presupernova structure, stellar mass, and the metallicity. Unless the explosion mechanism, for unknown reasons, provides a much larger characteristic energy in more massive stars, it appears likely that stars larger than about 30 M{sub {center_dot}} will experience considerable reimplosion of heavy elements following the initial launch of a successful shock. While such explosions will produce a viable, bright Type II supernova light curve, lacking the radioactive tail, they will have dramatically reduced yields of heavy elements and may leave black hole remnants of up to 10 and more solar masses.

Woosley, S.E. [California Univ., Santa Cruz, CA (United States); [Lawrence Livermore National Lab., CA (United States); Weaver, T.A. [Lawrence Livermore National Lab., CA (United States)

1995-08-30T23:59:59.000Z

459

HYDRODYNAMICS OF THE ATMOSPHERE AND NUMERICAL WEATHER PREDICTION—A SYNTHESIS  

Science Journals Connector (OSTI)

...SYNTHESIS Jule G. Charney MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1650...SYNTHESIS* BY JULE G. CHARNEY MASSACHUSETTS INSTITUTE OF TECHNOLOGY The...circulation that would be set up by solar heating on a uniform, rotating...assumed to be transparent to solar radiation and "grey" VOL...

Jule G. Charney

1959-01-01T23:59:59.000Z

460

Hydrodynamics of chains in ferrofluid-based magnetorheological fluids under rotating magnetic field  

Science Journals Connector (OSTI)

Ferrofluid-based magnetorheological (MR) fluid is prepared by dispersing micron-size magnetic spheres in a ferrofluid. We report here the mechanism of chain formation in ferrofluid based MR fluid, which is quite different from conventional MR fluid. Some of the nanomagnetic particles of ferrofluid filled inside the microcavities are formed due to association of large particles, and some of them are attached at the end of large particles. Under rotating magnetic field, fragmentation of a single chain into three parts is observed. Two of them are chains of micron-size magnetic particles which are suspended in a ferrofluid, and the third one is the chain of nanomagnetic particles of ferrofluid, which may be the connecting bridge between the two chains of larger magnetic particles. The rupture of a single chain provides evidence for the presence of nanomagnetic particles within the magnetic field-induced chainlike structure in this bidispersed MR fluid.

Rajesh Patel and Bhupendra Chudasama

2009-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrodynamics and Water Quality in Rodeo Lagoon, a Hypereutrophic Coastal Lagoon  

E-Print Network [OSTI]

C = east side of lagoon (Bunker Rd. bridge) D = Rodeo Lakesubsequent construction of the Bunker Road crossing in 1937a weir just to the east of Bunker Road (E, Fig. 1-3; Fig. 4-

Cousins, Mary Alice Melugin

2010-01-01T23:59:59.000Z

462

Hydrodynamic coupling of two sharp-edged beams vibrating in a viscous fluid  

Science Journals Connector (OSTI)

...applications to the atomic force microscope. J. Appl...applications to the atomic force microscope. J. Appl...sensitivity of atomic force microscope cantilevers...Meirovitch, L . 2001 Fundamentals of vibrations. New York...and IA Stegun. 1972 Handbook of mathematical functions...

2014-01-01T23:59:59.000Z

463

Bouncing and walking droplets : towards a hydrodynamic pilot-wave theory  

E-Print Network [OSTI]

Coalescence of a liquid drop with a liquid bath can be prevented by vibration of the bath. In a certain parameter regime, a purely vertical bouncing motion may ensue. In another, this bouncing state is destabilized by the ...

Molác?ek, Jan, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

464

Characterizing osmotic lysis kinetics under microfluidic hydrodynamic focusing for erythrocyte fragility studies  

E-Print Network [OSTI]

mellitus, myocardial infarction, hypertension, and sickle cell anemia. Here we demonstrate a simple and sickle cell anemia with different underlying mechanisms.12,13 For example due to diabetes mellitus in the lactate concentration of the extracellular environment.16 In sickle cell anemia, hemoglobin is polymerized

Lu, Chang

465

Exploring Hydrodynamic Modeling of Texas Bays With focus on Corpus Christi Bay & Lavaca Bay  

E-Print Network [OSTI]

evaporation data or data from which evaporation may be estimated are required. In order to estimate evaporation, ELCOM requires solar radiation data, water/air temperature data, wind speed data, cloud cover, and other geographically significant factors..., and this inflow has been demonstrated to be significant from the TxBLEND modeling. The inflow will be estimated from the USGS gauged riverflow on the Nueces river, minus estimated evaporation losses. Environmental Forcing Group #3 – Exchange between Oso Bay...

Furnans, Jordan

2004-01-01T23:59:59.000Z

466

EFFECTS OF CHAMBER GEOMETRY AND GAS PROPERTIES ON HYDRODYNAMIC EVOLUTION OF IFE Zoran Dragojlovic1  

E-Print Network [OSTI]

-dependent response of the chamber environment between target ignitions. The fusion burn following the target ignition Dragojlovic1 and Farrokh Najmabadi2 Department of Electrical & Computer Engineering and Center for Energy releases large quantities of energy into the chamber. This energy should be removed and the environment

Najmabadi, Farrokh

467

Architecture of a Nascent Sphingomonas sp. Biofilm under Varied Hydrodynamic Conditions  

Science Journals Connector (OSTI)

...LSM 410 confocal system with a Zeiss Axiovert...Flow cells are ideal tools for the generation...presented a method for assessment of experimental reproducibility...extremely heterogeneous systems (65) and, therefore...interactions in biofilm systems: an overview. Water...microscopy as experimental tools. Spatial and temporal...

V. P. Venugopalan; M. Kuehn; M. Hausner; D. Springael; P. A. Wilderer; S. Wuertz

2005-05-01T23:59:59.000Z

468

General Hydrodynamics of He-3-a in Finite Magnetic-Fields  

E-Print Network [OSTI]

by setting to zero the full variational derivatives with respect to Q, I, $i, and, f. Using Sv,' 8(B,y) Sv A PE Sl; p(I x V,I)?I I which follow from (11), we find the (@,l) equilibri- um conditions to be O=V z' 0 = I x 4, 'Ir, =?Q, ?8,$??[I x ( h...?"'f +a?pmp) (I x '(7); (/I H,)? (24) a]() j(, v ' v = y l ' V )( v +maBapIIp X' P(V" O)-i = P'(i x q )?(a,8'l?+-n,8?'l )8 vg, 4~ ?yPf, (h ?H ) ?V" v'a- y"l '7 x?v" +m D pIIp, (27) ZP ?yP[ f & {h?A)] ?P{v" 9)f = n?p(-f &f[)p+mp(Bp V~ 7'-'D p Qf+E(jp 8...

SASLOW, WM; Hu, Chia-Ren.

1981-01-01T23:59:59.000Z

469

Mass transfer in eccentric binaries: the new oil-on-water smoothed particle hydrodynamics technique  

Science Journals Connector (OSTI)

......us to place the oil layer closer to the surface. 2.5 Production of the single-star...reliability of the oil-on-water model...Because the potential field is circular, corotating...5. Figure 6 The cumulative number of oil particles released......

Ross P. Church; Johann Dischler; Melvyn B. Davies; Christopher. A. Tout; Tim Adams; Martin E. Beer

2009-05-11T23:59:59.000Z

470

Hydrodynamics at RHIC -- how well does it work, where and how does it break down?  

E-Print Network [OSTI]

I review the successes and limitations of the ideal fluid dynamic model in describing hadron emission spectra from Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC).

Ulrich W. Heinz

2004-12-24T23:59:59.000Z

471

Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion.  

E-Print Network [OSTI]

??The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to… (more)

Yáñez Vico, Carlos

2012-01-01T23:59:59.000Z

472

Comparasion of finite difference and finite element hydrodynamic models applied to the Laguna Madre Estuary, Texas  

E-Print Network [OSTI]

Station. Calibrated Velocity at the Humble Channd Station. . Calibrated Vdocity at the GIWW at JFK Causeway Station . . Calibrated Velocity at the GIWW Marker 199 Station. Calibrated Velocity at the North of Bagm Bay Station. Calibrated Velocity... Station. . . . . . . . . . Comparison of Velocity at the Humble Channel Station . Page 63 63 67 67 67 68 68 71 71 71 72 72 72 73 73 74 79 80 82 82 82 83 83 &3 LIST OF FIGURES - continued 61 62 63 65 66 67 68 Comparison...

McArthur, Karl Edward

2012-06-07T23:59:59.000Z

473

Understanding macroalgal dispersal in a complex hydrodynamic environment: a combined population genetic and physical modelling approach  

Science Journals Connector (OSTI)

...in the ocean and coastal environments are now readily available...ocean scientists and coastal engineers. Therefore, it is argued...reproductive processes in the marine environment. By contrast, it is advocated...deterministic, because in the marine environment there is strong directionality...

2014-01-01T23:59:59.000Z

474

Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle  

SciTech Connect (OSTI)

The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

Barletti, Luigi, E-mail: luigi.barletti@unifi.it [Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)

2014-08-15T23:59:59.000Z

475

Hydrodynamics and drive-train dynamics of a direct-drive floating wind turbine   

E-Print Network [OSTI]

Floating wind turbines (FWTs) are considered a new lease of opportunity for sustaining growth from offshore wind energy. In recent years, several new concepts have emerged, with only a few making it to demonstration or ...

Sethuraman, Latha

2014-06-30T23:59:59.000Z

476

Migration and Accretion of Protoplanets in 2D and 3D Global Hydrodynamical Simulations  

E-Print Network [OSTI]

Planet evolution is tightly connected to the dynamics of both distant and close disk material. Hence, an appropriate description of disk-planet interaction requires global and high resolution computations, which we accomplish by applying a Nested-Grid method. Through simulations in two and three dimensions, we investigate how migration and accretion are affected by long and short range interactions. For small mass objects, 3D models provide longer growth and migration time scales than 2D ones do, whereas time lengths are comparable for large mass planets.

G. D'Angelo; W. Kley; Th. Henning

2002-08-30T23:59:59.000Z

477

Hydrodynamic flow in Lower Cretaceous Muddy Sandstones, Rozet Field, Powder River Basin, Wyoming  

E-Print Network [OSTI]

structures are similar although no cross-bedding is observed (Fig. 15). Scour and fill within zone 2 does indicate fluvial development with overlying deltaic deposits. Overlying the fluvial-deltaic deposits of zone 2 is a massive and partly laminated.... Second Muddy zone; sandstone with ripples (r) and inclined laminations (i); scour and fill feature indicated by arrow. D: Skull Creek Shale; top slightly bioturbated overlying black poker chip shale. 37 e462 0 649 3 38 ROZET EAST AMERADA BOYD...

Smith, David Arthur

2012-06-07T23:59:59.000Z

478

ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing  

Science Journals Connector (OSTI)

......structure, which are related to energy, flux and radiation pressure...closure relation (Gonzalez, Audit Huynh 2007; Aubert Teyssier...specific intensity in units of energy per time t per solid angle per...Photon time-step E ph Photon energy E i Ionization energy of the......

John H. Wise; Tom Abel

2011-07-11T23:59:59.000Z

479

Unusual Doppler effect in superfluid and nonanalyticity of4He-3He hydrodynamics  

Science Journals Connector (OSTI)

We investigate the influence of3He admixture on the Doppler shift of different sounds in superfluid4He with internal motion. This influence proves to be very strong in the whole region of the nontrivial temperatu...

Y. A. Nepomnyashchy; N. Gov; A. Mann; M. Revzen

1995-08-01T23:59:59.000Z

480

Effect of Hydrodynamic Interactions on DNA Dynamics in Extensional Flow: Simulation and Single Molecule Experiment  

E-Print Network [OSTI]

a combination of single molecule experimental techniques and Brownian dynamics (BD) simulation to investigate, and chain stretch in strong flows. More recently, the advent of single molecule visualizations using. A careful coupling of single molecule visualization and Brownian dynamics simulation of polymer chains

Shaqfeh, Eric

Note: This page contains sample records for the topic "hydrodynamics hydrodynamic testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The H-Cube Project: Hydrodynamics, Heterogeneity and Homogenization in CO2 storage modeling  

E-Print Network [OSTI]

. Audigane, BRGM, E. Mouche, CEA, S. Viseur, CEREGE, D. Guérillot, TERRA 3E And the H-CUBE team Key words-scaling processes We propose to assess the buoyant forces on the CO2 and brine vertical migration of heterogeneity field distribution on the same 3D static earth model appropriate ranking measures of the static

Paris-Sud XI, Université de

482

Journal of Magnetism and Magnetic Materials 293 (2005) 578583 Theoretical comparison of magnetic and hydrodynamic  

E-Print Network [OSTI]

Ã?, Mikkel Fougt Hansen, Henrik Bruus MIC--Department of Micro and Nanotechnology, Technical University). #12;inhomogeneous magnetic field created by micro- structures that are magnetized by either electro wish to highlight the importance of hydro- dynamic interactions in connection with bead capturing

483

On the influence of higher order gradient terms on the hydrodynamics of liquid crystals  

E-Print Network [OSTI]

.30 15 OCTOBRE 1980, 1 1. Introduction. - When dealing with the hydro- dynamics of liquid crystals [1]. It is the purpose of the present letter to investigate the influence of these higher order terms on the hydro theory can be set up because micro- scopic theories may prove in the future that there exist nonanalytic

Paris-Sud XI, Université de

484

Hydrodynamical simulations of the stream–core interaction in the slow merger of massive stars  

Science Journals Connector (OSTI)

......we rather expect the development of weak shocks. Then...stream matter has a temperature of 6 107 K and a density...fraction, density and temperature) for a stationary...At that depth the temperature in the stream is 6...becomes increasingly snake-shaped as the relative......

N. Ivanova; Ph. Podsiadlowski; H. Spruit

2002-08-21T23:59:59.000Z

485

E-Print Network 3.0 - anisotropic hydrodynamics bulk Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purdue University Collection: Mathematics 33 Observational evidence for anisotropic solar wind turbulence Summary: 1 Observational evidence for anisotropic solar wind turbulence on...

486

Collective hydrodynamics of soft microparticles in quasi-two-dimensional confinement  

E-Print Network [OSTI]

Flow of microparticles through geometrically confined spaces is a core element of most microfluidic technologies. Flowing particles are typically ordered and manipulated with external forces or coflowing streams, but these ...

Uspal, William Eric

2014-01-01T23:59:59.000Z

487

High Performance Computing for Stability Problems - Applications to Hydrodynamic Stability and Neutron Transport Criticality.  

E-Print Network [OSTI]

??In this work we examine two kinds of applications in terms of stability and perform numerical evaluations and benchmarks on parallel platforms. We consider the… (more)

Subramanian, Chandramowli

2011-01-01T23:59:59.000Z

488

Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US  

E-Print Network [OSTI]

.O. Box 1000, 61 Route 9W, Palisades, NY 10964-8000, USA c Department of Geology and Geophysics, Texas A, and U, which suggested reductive precipitation in the pond's hypolimnion. Uranium levels, however, were between surface and groundwaters with U- and As-rich geological formations rather than large- scale

Louchouarn, Patrick

489

Hydrodynamic Optimisation of point wave-energy converter using laboratory experiments.  

E-Print Network [OSTI]

??Investment in renewable energy technology, such as wave power, is increasingly seen as a beneficial and economically-viable alternative to existing fossil-based power plants. New Zealand… (more)

Kelly, Scott John

2007-01-01T23:59:59.000Z

490

Virial tests for post-Newtonian stationary black-hole-disk systems  

E-Print Network [OSTI]

We investigated hydrodynamical post-Newtonian models of selfgravitating stationary black-hole-disk systems. The post-Newtonian scheme presented here and also in our recent paper is a continuation of previous, purely Newtonian studies of selfgravitating hydrodynamical disks rotating according to the Keplerian rotation law. The post-Newtonian relativistic corrections are significant even at the 1PN level. The 1PN correction to the angular velocity can be of the order of 10% of its Newtonian value. It can be expres