National Library of Energy BETA

Sample records for hydrocarbons hydrogen oxygenates

  1. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  2. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop March 18, 2015 8:00AM EDT to...

  3. Molecular catalytic hydrogenation of aromatic hydrocarbons and...

    Office of Scientific and Technical Information (OSTI)

    hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Citation Details In-Document Search Title: Molecular catalytic hydrogenation of aromatic hydrocarbons and...

  4. Molecular catalytic hydrogenation of aromatic hydrocarbons and

    Office of Scientific and Technical Information (OSTI)

    catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. 01 COAL, LIGNITE, AND PEAT; 40 CHEMISTRY; COAL LIQUIDS;...

  5. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two aromatic hydrocarbons, 17 nitrated PAHs (NPAHs) and 8 oxygenated PAHs (OPAHs) were carried out during hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; Oxygenated polycyclic aromatic hydrocarbons

  6. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two;2 Abstract The size distribution of polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives of compounds. Keywords: Polycyclic aromatic hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; Oxygenated

  7. Getter pump for hydrogen and hydrocarbon gases

    DOE Patents [OSTI]

    Hsu, Wen Ling

    1987-10-14

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm/sup 2/. The graphite may be heated to a temperature greater than 1000/degree/C. The new device offers high capacity, low noise, and gas species selectivity. 2 figs.

  8. Simultaneous analysis of oxygenated and nitrated polycylic aromatic hydrocarbons on standard reference material 1649a (urban dust) and

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Simultaneous analysis of oxygenated and nitrated polycylic aromatic hydrocarbons on standard nitrated polycylic aromatic hydrocarbons (NPAHs) and 9 oxygenated polycylic aromatic hydrocarbons (OPAHs aromatic hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; Oxygenated polycyclic aromatic

  9. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons...

    Broader source: Energy.gov (indexed) [DOE]

    Introductory presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Office Director, at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from...

  10. The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

    E-Print Network [OSTI]

    The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

  11. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect (OSTI)

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  12. Method and apparatus for producing oxygenates from hydrocarbons

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    1995-01-01

    A chemical reactor for oxygenating hydrocarbons includes: a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed.

  13. Conversion of Mixed Oxygenates Generated from Synthesis Gas to Fuel Range Hydrocarbon

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Gerber, Mark A.; Lilga, Michael A.; Flake, Matthew D.

    2012-08-19

    The growing dependence in the U.S. on foreign crude oil supplies and increased concerns regarding greenhouse gas emission has generated considerable interest in research to develop renewable and environmentally friendly liquid hydrocarbon transportation fuels. One of the strategies for achieving this is to produce intermediate compounds such as alcohols and other simple oxygenates from biomass generated synthesis gas (mixture of carbon monoxide and hydrogen) and further convert them into liquid hydrocarbons. The focus of this research is to investigate the effects of mixed oxygenates intermediate product compositions on the conversion step to produce hydrocarbon liquids. A typical mixed oxygenate stream is expected to contain water (around 50%), alcohols, such as methanol and ethanol (around 35%), and smaller quantities of oxygenates such as acetaldehyde, acetic acid and ethyl acetate. However the ratio and the composition of the mixed oxygenate stream generated from synthesis gas vary significantly depending on the catalyst used and the process conditions. Zeolite catalyzed deoxygenation of methanol accompanied by chain growth is well understood under Methanol-to-Gasoline (MTG) like reaction conditions using an H-ZSM-5 zeolite as the catalyst6-8. Research has also been conducted to a limited extent in the past with higher alcohols, but not with other oxygenates present9-11. Also there has been little experimental investigation into mixtures containing substantial amounts of water. The latter is of particular interest because water separation from the hydrocarbon product would be less energy intensive than first removing it from the oxygenate intermediate stream prior to hydrocarbon synthesis, potentially reducing overall processing costs.

  14. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop

    Broader source: Energy.gov [DOE]

    The Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop was held March 18–19, 2015, hosted at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory's Washington D.C. offices.

  15. Method for making hydrogen rich gas from hydrocarbon fuel

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  16. Method for making hydrogen rich gas from hydrocarbon fuel

    DOE Patents [OSTI]

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  17. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  18. Polycyclic Aromatic Hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Polycyclic Aromatic Hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air + particle phases) of 16 polycyclic aromatic hydrocarbons (PAHs), 17 nitrated PAHs (NPAHs) and 9 oxygenated when (before or during the sampling) the OPAHs are formed. Keywords: Polycyclic aromatic hydrocarbons

  19. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (7 Rocky Brook Rd., Dover, MA 02030); Mitchell, William L. (111 Oakley Rd., Belmont, MA 02178); Bentley, Jeffrey M. (20 Landmark Rd., Westford, MA 01886); Thijssen, Johannes H. J. (1 Richdale Ave.#2, Cambridge, MA 02140)

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  20. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  1. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    SciTech Connect (OSTI)

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  2. Manufacture of aromatic hydrocarbons from coal hydrogenation products

    SciTech Connect (OSTI)

    A.S. Maloletnev; M.A. Gyul'malieva [Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-08-15

    The manufacture of aromatic hydrocarbons from coal distillates was experimentally studied. A flow chart for the production of benzene, ethylbenzene, toluene, and xylenes was designed, which comprised the hydrogen treatment of the total wide-cut (or preliminarily dephenolized) fraction with FBP 425{sup o}C; fractional distillation of the hydrotreated products into IBP-60, 60-180, 180-300, and 300-425{sup o}C fractions; the hydro-cracking of middle fractions for increasing the yield of gasoline fractions whenever necessary; the catalytic reform of the fractions with bp up to 180{sup o}C; and the extraction of aromatic hydrocarbons.

  3. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    SciTech Connect (OSTI)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  4. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  5. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  6. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures 

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  7. Process for the conversion of alcohols and oxygenates to hydrocarbons in a turbulent fluid bed reactor

    SciTech Connect (OSTI)

    Avidan, A. A.; Kam, A. Y.

    1985-04-23

    Improvements in converting C/sub 1/-C/sub 3/ monohydric alcohols, particularly methanol, related oxygenates of said alcohols and/or oxygenates produced by Fischer-Tropsch synthesis to light olefins, gasoline boiling range hydrocarbons and/or distillate boiling range hydrocarbons are obtained in a fluidized bed of ZSM-5 type zeolite catalyst operating under conditions effective to provide fluidization in the turbulent regime.

  8. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  9. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  10. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  11. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  12. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOE Patents [OSTI]

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  13. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOE Patents [OSTI]

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  14. Atmospheric Pressure Humid Argon DBD Plasma for the Application of Sterilization -Measurement and Simulation of Hydrogen, Oxygen, and Hydrogen

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Simulation of Hydrogen, Oxygen, and Hydrogen Peroxide Formation M.J. Kirkpatrick, B. Dodet, E. Odic Département Energie - Supélec, F-91192 Gif-sur-Yvette cedex, France AbstractHydrogen, oxygen, and hydrogen. The yield of the three species was studied as a function of the discharge power and gas flow rate. Hydrogen

  15. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H.J. (Cambridge, MA)

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  16. Method for simultaneous recovery of hydrogen from water and from hydrocarbons

    DOE Patents [OSTI]

    Willms, R. Scott (Los Alamos, NM)

    1996-01-01

    Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

  17. Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbons

    DOE Patents [OSTI]

    Willms, R. Scott (Los Alamos, NM); Birdsell, Stephen A. (Los Alamos, NM)

    2000-01-01

    Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbon feed material. The feed material is caused to flow over a heated catalyst which fosters the water-gas shift reaction (H.sub.2 O+COH.sub.2 +CO.sub.2) and the methane steam reforming reaction (CH.sub.4 +H.sub.2 O3 H.sub.2 +CO). Both of these reactions proceed only to partial completion. However, by use of a Pd/Ag membrane which is exclusively permeable to hydrogen isotopes in the vicinity of the above reactions and by maintaining a vacuum on the permeate side of the membrane, product hydrogen isotopes are removed and the reactions are caused to proceed further toward completion. A two-stage palladium membrane reactor was tested with a feed composition of 28% CQ.sub.4, 35% Q.sub.2 O (where Q=H, D, or T), and 31% Ar in 31 hours of continuous operation during which 4.5 g of tritium were processed. Decontamination factors were found to increase with decreasing inlet rate. The first stage was observed to have a decontamination factor of approximately 200, while the second stage had a decontamination factor of 2.9.times.10.sup.6. The overall decontamination factor was 5.8.times.10.sup.8. When a Pt/.alpha.-Al.sub.2 O.sub.3 catalyst is employed, decoking could be performed without catalyst degradation. However, by adjusting the carbon to oxygen ratio of the feed material with the addition of oxygen, coking could be altogether avoided.

  18. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2000-09-26

    A method is disclosed for synthesizing hydrogen gas from hydrocarbon fuel. A first mixture of steam and a first fuel is directed into a first tube 208 to subject the first mixture to a first steam reforming reaction in the presence of a first catalyst 214. A stream of oxygen-containing gas is pre-heated by transferring heat energy from product gases. A second mixture of the pre-heated oxygen-containing gas and a second fuel is directed into a second tube 218 disposed about the first tube 208 to subject the second mixture to a partial oxidation reaction and to provide heat energy for transfer to the first tube 208. A first reaction reformate from the first tube 208 and a second reaction reformate from the second tube 218 are directed into a third tube 224 disposed about the second tube 218 to subject the first and second reaction reformates to a second steam reforming reaction, wherein heat energy is transferred to the third tube 224 from the second tube 218.

  19. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2001-01-01

    An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

  20. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2002-01-01

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  1. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  2. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    SciTech Connect (OSTI)

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  3. Process, including membrane separation, for separating hydrogen from hydrocarbons

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  4. Explosion Hazard from a Propellant-Tank Breach in Liquid Hydrogen-Oxygen Rockets

    E-Print Network [OSTI]

    Muratov, Cyrill

    Explosion Hazard from a Propellant-Tank Breach in Liquid Hydrogen-Oxygen Rockets Viatcheslav Osipov liquid hydrogen-oxygen rockets during launch accidents is presented.The assessmentis based on the analysis of the data of purposefulrupture experiments with liquid oxygen and hydrogen tanks

  5. Hydrogen and oxygen concentrations in IXCs: A compilation

    SciTech Connect (OSTI)

    Liljegren, L.M.; Terrones, G.T.; Melethil, P.K.

    1996-06-01

    This paper contains four reports and two internal letters that address the estimation of hydrogen and oxygen concentrations in ion exchange columns that treat the water of the K-East and K-West Basins at Hanford. The concern is the flammability of this mixture of gases and planning for safe transport during decommissioning. A transient will occur when the hydrogen filter is temporarily blocked by a sandbag. Analyses are provided for steady-state, transients, and for both wet and dry resins.

  6. Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds by applying cubic equations of state (EoS) with conventional mixing and combining rules is not appropriate[3 (e.g. hydrocarbons, cyclohexanone, 1-butanol, surfactants, etc) LLE has been reported by some authors

  7. Catalytic conversion of hydrocarbons to hydrogen and high-value carbon

    DOE Patents [OSTI]

    Shah, Naresh; Panjala, Devadas; Huffman, Gerald P.

    2005-04-05

    The present invention provides novel catalysts for accomplishing catalytic decomposition of undiluted light hydrocarbons to a hydrogen product, and methods for preparing such catalysts. In one aspect, a method is provided for preparing a catalyst by admixing an aqueous solution of an iron salt, at least one additional catalyst metal salt, and a suitable oxide substrate support, and precipitating metal oxyhydroxides onto the substrate support. An incipient wetness method, comprising addition of aqueous solutions of metal salts to a dry oxide substrate support, extruding the resulting paste to pellet form, and calcining the pellets in air is also discloses. In yet another aspect, a process is provided for producing hydrogen from an undiluted light hydrocarbon reactant, comprising contacting the hydrocarbon reactant with a catalyst as described above in a reactor, and recovering a substantially carbon monoxide-free hydrogen product stream. In still yet another aspect, a process is provided for catalytic decomposition of an undiluted light hydrocarbon reactant to obtain hydrogen and a valuable multi-walled carbon nanotube coproduct.

  8. Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice

    E-Print Network [OSTI]

    Weijun Zheng; David Jewitt; Ralf I. Kaiser

    2005-11-18

    Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.

  9. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  10. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOE Patents [OSTI]

    Sindorf, John F. (Pewaukee, WI)

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  11. Hydrogen passivation and activation of oxygen complexes in silicon S. N. Rashkeev,a)

    E-Print Network [OSTI]

    Pantelides, Sokrates T.

    Hydrogen passivation and activation of oxygen complexes in silicon S. N. Rashkeev,a) M. Di Ventra-principles calculations in terms of which we describe the role of hydrogen in passivating or activating oxygen complexes activity of the cluster. Furthermore, the addition of a hydrogen atom in the core structure of thermal

  12. Hydrogen absorption characteristics of oxygen-stabilized rare-earth iron intermetallic compounds

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydrogen absorption characteristics of oxygen-stabilized rare-earth iron intermetallic compounds M Abstract. -- The thermal behavior of oxygen-stabilized RjFegO^-hydrogen (R = Y, Dy, Ho) systems was studied decade to the study of the hydrogenation characte- ristics of a variety of intermetallic compounds, our

  13. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71 Hydrogen and Fuel Cells Success Stories en|

  14. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOE Patents [OSTI]

    Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

    2000-01-01

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  15. LeS D.4 Monitored Natural Attenuation -3 ENA OF HETEROCYCLIC HYDROCARBONS BY ADDING HYDROGEN PEROXIDE IN GROUND-

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    LeS D.4 Monitored Natural Attenuation - 3 ENA OF HETEROCYCLIC HYDROCARBONS BY ADDING HYDROGEN.troetschler@iws.uni-stuttgart.de Keywords: Enhanced Natural Attenuation, Aerobic Biological Degradation, Heterocyclic Hydro- carbons, PAH, Field Trial, Groundwater Circulation Wells (GCW) 1 Introduction Heterocyclic Hydrocarbons (NSO

  16. Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota

    E-Print Network [OSTI]

    Hu, Feng Sheng

    Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at SteelMenocal Keywords: seasonal precipitation middle Holocene oxygen isotopes hydrogen isotopes forest­prairie boundary midcontinental North America. However, neither the climatic driver nor the seasonal character of precipitation

  17. Doped Graphene as a Material for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Computational Study

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Doped Graphene as a Material for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Computational fuel cells for oxygen reduction at the cathode. In an attempt to find a cheap yet efficient catalyst in graphene are promising candidates for the use in fuel cell cathodes for oxygen reduction reaction (ORR). We

  18. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  19. Lecture Session (LeS): E.1 In-situ chemical oxidation-1 ENA OF HETEROCYCLIC HYDROCARBONS USING HYDROGEN PEROXIDE AND

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    , In situ Biological Degradation, Heterocyclic Hydrocarbons, PAH, Field Trial, Groundwater Circulation WellsLecture Session (LeS): E.1 In-situ chemical oxidation-1 ENA OF HETEROCYCLIC HYDROCARBONS USING (GCW), Hydrogen Peroxide Introduction Heterocyclic hydrocarbons (NSO-HET) containing nitrogen (N

  20. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    SciTech Connect (OSTI)

    Veirs, Douglas K.

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  1. Carbon-Doped Boron Nitride Nanomesh: Stability and Electronic Properties of Adsorbed Hydrogen and Oxygen

    E-Print Network [OSTI]

    Pandey, Ravi

    solutions for hydrogen storage. On the other hand, oxygen storage is also important in the energy industryCarbon-Doped Boron Nitride Nanomesh: Stability and Electronic Properties of Adsorbed Hydrogen, and at an intermediate siteis investigated with density functional theory. The calculated results find that atomic

  2. Photopyroelectric detection of hydrogen/oxygen mixtures C. Christofides, A. Mandelis, J. Rawski, and S. Rehm

    E-Print Network [OSTI]

    Mandelis, Andreas

    Photopyroelectric detection of hydrogen/oxygen mixtures C. Christofides, A. Mandelis, J. Rawski and Center for Hydrogen and Electrochemical Studies (CHES), University of Toronto, Toronto, Ontario MSS lA4 that the photopyroelectric (PPE) sensor made of thin-film polyvinylidene fluoride, sputter coated with palladium, can detect

  3. Alkaline Microfluidic Hydrogen-Oxygen Fuel Cell as a Cathode Characterization Platform

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Alkaline Microfluidic Hydrogen-Oxygen Fuel Cell as a Cathode Characterization Platform Fikile R on an alkaline microfluidic fuel cell for catalyst and electrode characterization. Its constantly refreshing investigated and the dual effects of enhanced oxygen reduction reaction activity and improved ionic

  4. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect (OSTI)

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  5. The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    active transition metals such as platinum and palladium, show great promise as sen- sors for hydrogenThe role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study Yung

  6. Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes

    E-Print Network [OSTI]

    Faraji, Sedigheh

    2010-06-08

    of clean energy for use in fuel cells [5]. For these reasons, H2 is an important industrial gas with many existing and future applications. Mixtures of hydrogen and carbon monoxide, known as synthesis gas (or syngas), are critical intermediates... in the production of both fuel-cell quality hydrogen and ultra-clean liquid fuels (Fischer-Tropsch Synthesis), which are easier to transport and store than natural gas [6, 7]. The Fischer-Tropsch process has received significant attention in the quest to produce...

  7. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  8. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  9. The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study

    E-Print Network [OSTI]

    Tobin, Roger G.

    active transition metals such as platinum and palladium, show great promise as sen- sors for hydrogenThe role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh with nonporous platinum gates. The devices studied are shown to be sensitive both to hydrogen and to propene. All

  10. Evidence of the production of hot hydrogen atoms in RF plasmas by catalytic reactions between hydrogen and oxygen species

    E-Print Network [OSTI]

    Jonathan Phillips; Chun Ku Chen; Randell Mills

    2005-08-31

    Selective H-atom line broadening was found to be present throughout the volume (13.5 cm ID x 38 cm length) of RF generated H2O plasmas in a GEC cell. Notably, at low pressures (ca. hydrogen was 'hot' with energies greater than 40 eV with a pressure dependence, but only a weak power dependence. The degree of broadening was virtually independent of the position studied within the GEC cell, similar to the recent finding for He/H2 and Ar/H2 plasmas in the same GEC cell. In contrast to the atomic hydrogen lines, no broadening was observed in oxygen species lines at low pressures. Also, in control Xe/H2 plasmas run in the same cell at similar pressures and adsorbed power, no significant broadening of atomic hydrogen, Xe, or any other lines was observed. Stark broadening or acceleration of charged species due to high electric fields can not explain the results since (i) the electron density was insufficient by orders of magnitude, (ii) the RF field was essentially confined to the cathode fall region in contrast to the broadening that was independent of position, and (iii) only the atomic hydrogen lines were broadened. Rather, all of the data is consistent with a model that claims specific, predicted, species can act catalytically through a resonant energy transfer mechanism to create hot hydrogen atoms in plasmas.

  11. Process for mild hydrocracking of hydrocarbon feeds

    SciTech Connect (OSTI)

    Nevitt, T.D.; Hopkins, P.D.; Tait, A.M.

    1984-02-14

    A process for mild hydrocracking of hydrocarbon feeds comprising contacting the feed with hydrogen under mild hydrocracking conditions in the presence of a catalytic composition comprising an active metallic component comprising at least one metal having hydrogenation activity and at least one oxygenated phosphorus component, and a support component comprising at least one non-zeolitic, porous refractory inorganic oxide matrix component and at least one shape selective crystalline molecular sieve zeolite component.

  12. FORMATION OF HYDROGEN, OXYGEN, AND HYDROGEN PEROXIDE IN ELECTRON-IRRADIATED CRYSTALLINE WATER ICE

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building the major constituent on the surfaces of small solar system objects such as Kuiper Belt objects (de Bergh to irradiation by energetic species from the solar wind (keV particles), the Galactic cosmic radiation field (ke

  13. Control of Fuel Cell Breathing: Initial Results on the Oxygen Starvation Problem

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Hydrogen Water Gas Difusion Layers Flow Fields & Current Collectors H2 Proton Electron Water Oxygen from wind, water, and sun, or reformed hydrocarbon fuel will help reduce our dependency on fossil fuels

  14. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  15. Process for making unsaturated hydrocarbons using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Yuschak, Thomas (Lewis Center, OH); LaPlante, Timothy J. (Columbus, OH); Rankin, Scott (Columbus, OH); Perry, Steven T. (Galloway, OH); Fitzgerald, Sean Patrick (Columbus, OH); Simmons, Wayne W. (Dublin, OH); Mazanec, Terry (Solon, OH) Daymo, Eric (Dublin, OH)

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  16. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect (OSTI)

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  17. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect (OSTI)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

  18. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    SciTech Connect (OSTI)

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  19. Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under Physiologically Relevant

    E-Print Network [OSTI]

    Gates, Kent. S.

    Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under found that micromolar concentrations of H2S generated single-strand DNA cleavage. Mechanistic studies indicate that this process involved autoxidation of H2S to generate superoxide, hydrogen peroxide, and

  20. Polycyclic Aromatic Hydrocarbons Orbiting HD 233517, an Evolved Oxygen-Rich Red Giant

    E-Print Network [OSTI]

    M. Jura; J. Bohac; B. Sargent; W. J. Forrest; J. Green; D. M. Watson; G. C. Sloan; F. Markwick-Kemper; C. H. Chen; J. Najita

    2005-12-14

    We report spectra obtained with the Spitzer Space Telescope in the 5 to 35 micron range of HD 233517, an evolved K2 III giant with circumstellar dust. At wavelengths longer than 13 microns, the flux is a smooth continuum that varies approximately as frequency to the -5/3 power. For wavelengths shorter than 13 microns, although the star is oxygen-rich, PAH features produced by carbon-rich species at 6.3 microns, 8.2 microns, 11.3 microns and 12.7 microns are detected along with likely broad silicate emission near 20 microns. These results can be explained if there is a passive, flared disk orbiting HD 233517. Our data support the hypothesis that organic molecules in orbiting disks may be synthesized in situ as well as being incorporated from the interstellar medium.

  1. Dissolution of monoaromatic hydrocarbons into groundwater from gasoline-oxygenate mixtures

    SciTech Connect (OSTI)

    Poulsen, M.; Lemon, L.; Barker, J.F. (Univ. of Waterloo, Ontario (Canada))

    1992-12-01

    The effects of the [open quotes]oxygenate[close quotes] additives methanol and methyl tert-butyl ether (MTBE) on the aqueous solubility of benzene, toluene, ethylbenzene, and xylenes (BTEX) from gasoline were evaluated through equilibrium batch experiments. For a gasoline:water ratio of 1:10 (v/v), up to 15% MTBE or up to 85% methanol in gasoline produced no enhanced BTEX solubility. However, at higher gasoline:water ratios, aqueous methanol concentrations above 10% enhanced BTEX solubility. The initial methanol content of the gasoline and the equilibrating gasoline- to water-phase ratio controlled the aqueous methanol concentration. Partitioning theory and the experimental results were used to calculate aqueous benzene and methanol concentrations in successive batches of fresh groundwater equilibrating with the fuel and subsequent residuals. These successive batches simulated formation of a plume of contaminated groundwater. The front of the plume generated from high-methanol gasoline equilibrating with groundwater at a gasoline:water ratio of more than 1 had high methanol content and elevated BTEX concentrations. Thus, release of high-methanol fuels could have a more serious, initial impact on groundwater than do releases of methanol-free gasoline. 22 refs., 4 figs., 3 tabs.

  2. The processing of alcohols, hydrocarbons and ethers to produce hydrogen for a PEMFC for transportation applications

    SciTech Connect (OSTI)

    Dams, R.A.J.; Hayter, P.R.; Moore, S.C.

    1997-12-31

    Wellman CJB Limited is involved in a number of projects to develop fuel processors to provide a hydrogen-rich fuel in Proton Exchange Membrane Fuel Cells (PEMFC) systems for transportation applications. This work started in 1990 which resulted in the demonstration of 10kW PEMFC system incorporating a methanol reformer and catalytic gas clean-up system. Current projects include: The development of a compact fast response methanol reformer and gas clean-up system for a motor vehicle; Reforming of infrastructure fuels including gasoline, diesel, reformulated fuel gas and LPG to produce a hydrogen rich gas for PEMFC; Investigating the potential of dimethylether (DME) as source of hydrogen rich gas for PEMFCs; The use of thin film palladium diffusers to produce a pure hydrogen stream from the hydrogen rich gas from a reformer; and Processing of naval logistic fuels to produce a hydrogen rich gas stream for PEMFC power system to replace diesel generators in surface ships. This paper outlines the background to these projects and reports their current status.

  3. Langmuir probe studies and ion energy distributions in pure argon, argon + 10% oxygen and pure hydrogen discharges used for cleaning stainless steel ultrahigh vacuum chambers

    E-Print Network [OSTI]

    Mathewson, A G; Hazeltine, S; Lee-Li, K; Foakes, A P; Störi, H

    1980-01-01

    Langmuir probe studies and ion energy distributions in pure argon, argon + 10% oxygen and pure hydrogen discharges used for cleaning stainless steel ultrahigh vacuum chambers

  4. System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons

    DOE Patents [OSTI]

    Reilly, Peter T. A. (Knoxville, TN)

    2010-03-23

    A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

  5. Low-Temperature Catalytic Process To Produce Hydrocarbons From Sugars

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2005-11-15

    Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.

  6. Nanoparticulate-catalyzed oxygen transfer processes

    DOE Patents [OSTI]

    Hunt, Andrew T. (Atlanta, GA); Breitkopf, Richard C. (Dunwoody, GA)

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  7. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  8. The effect of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palomino, Robert; Magee, Joseph W.; Llorca, Jordi; Senanayake, Sanjaya D.; White, Michael G.

    2015-05-20

    A combination of reactivity and structural studies using X-ray diffraction (XRD), pair distribution function (PDF), and transmission electron microscopy (TEM) was used to identify the active phases of Fe-modified Rh/TiO2 catalysts for the synthesis of ethanol and other C2+ oxygenates from CO hydrogenation. XRD and TEM confirm the existence of Fe–Rh alloys for catalyst with 1–7 wt% Fe and ~2 wt% Rh. Rietveld refinements show that FeRh alloy content increases with Fe loading up to ~4 wt%, beyond which segregation to metallic Fe becomes favored over alloy formation. Catalysts that contain Fe metal after reduction exhibit some carburization as evidencedmore »by the formation of small amounts of Fe3C during CO hydrogenation. Analysis of the total Fe content of the catalysts also suggests the presence of FeOx also increased under reaction conditions. Reactivity studies show that enhancement of ethanol selectivity with Fe loading is accompanied by a significant drop in CO conversion. Comparison of the XRD phase analyses with selectivity suggests that higher ethanol selectivity is correlated with the presence of Fe–Rh alloy phases. As a result, the interface between Fe and Rh serves to enhance the selectivity of ethanol, but suppresses the activity of the catalyst which is attributed to the blocking or modifying of Rh active sites.« less

  9. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Weisbrod, Kirk (Los Alamos, NM)

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  10. Optimization of Oxygen Purity for Coal Conversion Energy Reduction 

    E-Print Network [OSTI]

    Baker, C. R.; Pike, R. A.

    1982-01-01

    or liquefaction. Gasification of coal is a partial oxidation process in which steam and oxygen are reacted with coal to produce a mixture of hydrogen and carbon monoxide plus a number of other components. This mixture has a heating value of about 300 Btu..., or hydrocarbon liquids. The synthesis gas mixture can also be converted by means of the water gas shift reaction to produce hydrogen Which, in turn, can be reacted with coal to form hydrocarbon liquids by direct liquefaction techniques. Oxygen is required...

  11. Process for converting light alkanes to higher hydrocarbons

    DOE Patents [OSTI]

    Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA)

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  12. Fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas. Topical report February 1994--February 1995

    SciTech Connect (OSTI)

    1995-02-01

    Experiments were made on use of H and CH plasmas for converting waste materials and heavy oils to H-rich transportation fuels. Batch and continuous experiments were conducted with an industrial microwave generator and a commercial microwave oven. A continuously circulating reactor was constructed for conducting experiments on flowing oils. Experiments on decomposition of scrap tires showed that microwave plasmas can be used to decompose scrap tires into potentially useful liquid products. In a batch experiment using a commercial microwave oven, about 20% of the tire was converted to liquid products in about 9 minutes. Methane was decomposed in a microwave plasma to yield a liquid products composed of various compound types; GC/MS analyses identified unsaturated compounds including benzene, toluene, ethyl benzene, methyl and ethyl naphthalene, small amounts of larger aromatic rings, and olefinic compounds. Experiments on a crude oil in a continuously flowing reactor showed that distillate materials are produced using H and CH plasmas. Also, the recycle oils had an overall carbon aromaticity lower than that of starting feed material, indicating that some hydrogenation and methanation had taken place in the recycle oils.

  13. Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/

    DOE Patents [OSTI]

    Robinson, P.R.; Bamberger, C.E.

    1980-02-08

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  14. Synthesis and characterization of boron-oxygen-hydrogen thin films at low temperatures

    SciTech Connect (OSTI)

    Music, D. . E-mail: music@mch.rwth-aachen.de; Koelpin, H.; Atiser, A.; Kreissig, U.; Bobek, T.; Hadam, B.; Schneider, J.M.

    2005-08-11

    We have studied the influence of synthesis temperature on chemical composition and mechanical properties of X-ray amorphous boron-oxygen-hydrogen (B-O-H) films. These B-O-H films have been synthesized by RF sputtering of a B-target in an Ar atmosphere. Upon increasing the synthesis temperature from room temperature to 550 deg. C, the O/B and H/B ratios decrease from 0.73 to 0.15 and 0.28 to 0.07, respectively, as determined by elastic recoil detection analysis. It is reasonable to assume that potential sources of O and H are residual gas and laboratory atmosphere. The elastic modulus, as measured by nanoindentation, increases from 93 to 214 GPa, as the O/B and H/B ratios decreases within the range probed. Hence, we have shown that the effect of impurity incorporation on the elastic properties is extensive and that the magnitude of the incorporation is a strong function of the substrate temperature.

  15. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  16. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  17. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  18. Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2001-01-01

    Carbon monoxide is produced in a fast quench reactor. The production of carbon monoxide includes injecting carbon dioxide and some air into a reactor chamber having a high temperature at its inlet and a rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Carbon dioxide and other reactants such as methane and other low molecular weight hydrocarbons are injected into the reactor chamber. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  19. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect (OSTI)

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  20. Polycyclic Aromatic Triptycenes: Oxygen Substitution Cyclization Strategies

    E-Print Network [OSTI]

    VanVeller, Brett

    The cyclization and planarization of polycyclic aromatic hydrocarbons with concomitant oxygen substitution was achieved through acid catalyzed transetherification and oxygen-radical reactions. The triptycene scaffold ...

  1. Process for the selective removal of hydrogen sulphide and carbonyl sulfide from light hydrocarbon gases containing carbon dioxide

    SciTech Connect (OSTI)

    Bush, W.V.

    1988-06-07

    A process for the selective removal of H/sub 2/S and COS from a gas containing light hydrocarbons, H/sub 2/S, COS and CO/sub 2/, is described which comprises in a one step absorption, at treatment conditions, contacting the gas stream with a solvent stream consisting essentially of: (i) water, (ii) a bridgehead amine comprising a bicyclo tertiary amine or a bicyclo amidine to selectively hydrolyze the COS to H/sub 2/S and CO/sub 2/, (iii) a tertiary amine to selectively absorb the H/sub 2/S and to selectively exclude from absorption the CO/sub 2/ in the gas stream and the CO/sub 2/ produced by the hydrolysis of the COS, and (iv) a physical solvent acceptable for COS absorption wherein two streams are formed comprising: (1) a light hydrocarbon and CO/sub 2/-containing stream having 1 ppm to about 200 ppm H/sub 2/S and having 1 ppm COS to about 10 ppm COS and (2) a solvent stream rich in H/sub 2/S, water, tertiary amine and the bridgehead amine.

  2. Ab-initio study of hydrogen doping and oxygen vacancy at anatase TiO{sub 2} surface

    SciTech Connect (OSTI)

    Sotoudeh, M.; Mohammadizadeh, M. R.; Hashemifar, S. J.; Abbasnejad, M.

    2014-02-15

    Density functional–pseudopotential calculations were performed to study the effects of hydrogen doping and oxygen vacancy, both individually and together, on the electronic structure and stability of (001) surface of TiO{sub 2} in the anatase phase. Based on our calculations, O/Ti termination is the most stable one, and it appears that p-states of deep and surface O atoms and d-orbitals of surface Ti atoms have roles in the valence band and, the conduction band comes from the d-orbitals of deep Ti atoms. Although, no considerable change was seen during H doping, a mid-gap state appeared below the conduction band in the O vacancy configuration. In the framework of ab-initio atomistic thermodynamics, we argue that the anatase TiO{sub 2} prefers a defected O layer termination in the [001] direction. The obtained electronic structures indicate that H doping in the bulk creates the empty mid-gap state below the conduction band and hence decreases the band gap of the system. This phenomenon may explain the enhanced photocatalytic activity of the anatase TiO{sub 2} (001) surface after hydrogenation.

  3. Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon–air mixtures

    SciTech Connect (OSTI)

    Tang, C. L.; Huang, Z. H.; Law, C. K.

    2010-08-30

    The stretch-affected propagation speeds of expanding spherical flames of n-butane–air mixtures with hydrogen addition were measured at atmospheric pressure and subsequently processed through a nonlinear regression analysis to yield the stretch-free laminar flame speeds. Based on a hydrogen addition parameter (RH) and an effective fuel equivalence ratio (?F), these laminar flame speeds were found to increase almost linearly with RH, for ?F between 0.6 and 1.4 and RHRH from 0 to 0.5, with the slope of the variation assuming a minimum around stoichiometry. These experimental results also agree well with computed values using a detailed reaction mechanism. Furthermore, a mechanistic investigation aided by sensitivity analysis identified that kinetic effects through the global activation energy, followed by thermal effects through the adiabatic flame temperature, have the most influence on the increase in the flame speeds and the associated linear variation with RH due to hydrogen addition. Nonequidiffusion effects due to the high mobility of hydrogen, through the global Lewis number, have the least influence. Further calculations for methane, ethene, and propane as the fuel showed similar behavior, leading to possible generalization of the phenomena and correlation.

  4. Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds

    SciTech Connect (OSTI)

    Horodysky, A.G.; Law, D.A.

    1987-04-28

    A process is described for making an additive for lubricant compositions comprising co-reacting: a monoolefin selected from the group consisting of butenes, propenes, pentenes, and mixtures of two or more thereof; sulfur; hydrogen sulfide; polymeric nitrogen-containing compound selected from the group consisting of succinimides, amides, imides, polyoxyazoline polymers and alkyl imidazoline compounds; and a catalytic amount of an amine selected from the group consisting of polyethylene amines and hydroxyl-containing amines; at a temperature between about 130/sup 0/C and about 200/sup 0/C and a pressure of about 0 psig to about 900 psig, the reactants being reacted in a molar ratio of olefin, polymeric nitrogen-containing compound, and hydrogen sulfide to sulfur of 2 to 0.5, 0.001 to 0.4, and 0.5 to 0.7, respectively, and the concentration of amine being between 0.5 and 10 percent of the total weight of reactants.

  5. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  6. Theoretical studies on hydrogen ignition and droplet combustion

    E-Print Network [OSTI]

    Del Álamo, Gonzalo

    2006-01-01

    the combustion of hydrogen and carbon monoxide. Combustionfor carbon-monoxide hydrogen oxygen kinetics. Combustion

  7. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

  8. Hydrocarbon conversion

    SciTech Connect (OSTI)

    Koepke, J.W.; Abdo, S.F.

    1989-10-03

    This patent describes a hydrocracking process. It comprises: catalyzing a hydrocracking reaction by contacting a hydrocarbon feedstock with a hydrocracking catalyst under hydrocracking conditions to produce a product hydrocarbon having an increased octane number than the hydrocarbon feedstock. The hydrocracking catalyst consists essentially of at least one niobium component, at least one Group VIII metal component and at least one cracking component.

  9. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study

    SciTech Connect (OSTI)

    Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng

    2013-06-03

    Methanol synthesis from CO2 hydrogenation on the defective In2O3(110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from Ov1 to Ov6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the Ov1 defective site is the most thermodynamically favorable while the D4 surface with the Ov4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied and the D4 surface was found to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the Ov4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting in H2CO and hydroxyl. The HCOO hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. We gratefully acknowledge the supports from the National Natural Science Foundation of China (#20990223) and from US Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. PNNL is a multiprogram national laboratory operated for DOE by Battelle.

  10. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  11. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  12. The Hydriding Kinetics of Organic Hydrogen Getters

    SciTech Connect (OSTI)

    Powell, G. L.

    2002-02-11

    The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0.76. Silicone rubber based DEB getters hydride at a much lower rate, have little dependence on reaction extent, have a higher kinetic order in pressure (0.87), and have a lower activation energy. The kinetics of the reaction as a function of hydrogen pressure, stoichiometry, and temperature for hydrogen and deuterium near ambient temperature (0 to 75 C) for pressures near or below 100 Pa over a wide range (in some cases, the complete) hydrogenation range are presented along with multi-dimensional rate models.

  13. Hydrocarbon zeolite catalyst employed in hydrocracking process

    SciTech Connect (OSTI)

    Ward, J.W.

    1987-05-12

    A hydrocracking process is described which comprises contacting a hydrocarbon feedstock under hydrocracking conditions with hydrogen in the presence of a catalyst comprising at least one hydrogenation component, a crystalline aluminosilicate zeolite having catalytic activity for cracking hydrocarbons, and a dispersion of silica-alumina in a matrix consisting essentially of alumina, wherein the catalyst comprises particles in the shape of a three-leaf clover.

  14. UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices

    E-Print Network [OSTI]

    UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices: Production of Alcohols, Quinones. Clemett,3 Richard N. Zare3 Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultra, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account

  15. ccsd-00000318(version1):29Apr2003 Calculation of muon transfer from muonic hydrogen to atomic oxygen

    E-Print Network [OSTI]

    Boyer, Edmond

    ), the problem corresponds to an ultra-cold collision. The close-coupling time-independent quantum equations explanation. Werthm¨uller et al [4] suggest the existence of a resonance at low energies. It is worth to stress that such an increase has not been observed in the case of muonic hydrogen colliding with sulfur

  16. Hydrocarbonization research: completion report

    SciTech Connect (OSTI)

    Youngblood, E.L.; Cochran, H.D. Jr.; Westmoreland, P.R.; Brown, C.H. Jr.; Oswald, G.E.; Barker, R.E.

    1981-01-01

    Hydrocarbonization is a relatively simple process used for producing oil, substitute natural gas, and char by heating coal under a hydrogen-rich atmosphere. This report describes studies that were performed in a bench-scale hydrocarbonization system at Oak Ridge National Laboratory (ORNL) during the period 1975 to 1978. The results of mock-up studies, coal metering valve and flowmeter development, and supporting work in an atmospheric hydrocarbonization system are also described. Oil, gas, and char yields were determined by hydrocarbonization of coal in a 0.1-m-diam fluidized-bed reactor operated at a pressure of 2170 kPa and at temperatures ranging from 694 to 854 K. The nominal coal feed rate was 4.5 kg/h. Wyodak subbituminous coal was used for most of the experiments. A maximum oil yield of approx. 21% based on moisture- and ash-free (maf) coal was achieved in the temperature range of 810 to 840 K. Recirculating fluidized-bed, uniformly fluidized-bed, and rapid hydropyrolysis reactors were used. A series of operability tests was made with Illinois No. 6 coal to determine whether caking coal could be processed in the recirculating fluidized-bed reactor. These tests were generally unsuccessful because of agglomeration and caking problems; however, these problems were eliminated by the use of chemically pretreated coal. Hydrocarbonization experiments were carried out with Illinois No. 6 coal that had been pretreated with CaO-NaOH, Na/sub 2/CO/sub 3/, and CaO-Na/sub 2/CO/sub 3/. Oil yields of 14, 24, and 21%, respectively, were obtained from the runs with treated coal. Gas and char yield data and the composition of the oil, gas, and char products are presented.

  17. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A. (Verona, WI); Ruiz, Juan Carlos Serrano (Madison, WI); West, Ryan M. (Madison, WI)

    2012-04-03

    Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

  18. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  19. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Bauer, Hans F. (Morgantown, WV); Grimes, Robert W. (Laramie, WY)

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  20. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  1. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  2. Reactions of platinum in oxygen- and hydrogen-treated Pt/. gamma. -Al/sub 2/O/sub 3/ catalysts. II. Ultraviolet-visible studies, sintering of platinum, and soluble platinum

    SciTech Connect (OSTI)

    Lietz, G.; Lieske, H.; Spindler, H.; Hanke, W.; Voelter, J.

    1983-05-01

    Alumina-supported platinum (Pt/..gamma..-Al/sub 2/O/sub 3/) catalysts treated in oxygen between 100 and 600/sup 0/C and in hydrogen at 500/sup 0/C were studied by uv-vis reflectance spectroscopy. The formation of different oxidized Pt surface species previously indicated by temperature programmed reduction (TPR) studies (H. Lieske, G. Lietz, H. Spindler, and J. Voelter, J. Catal. 81, 8(1983)) was confirmed by characteristic uv-vis spectra. The results are used as the basis for a model describing the types of surface reactions and details of the platinum surface species formed in oxygen and in hydrogen, and for a model of the sintering in oxygen. The amount of soluble platinum was found to correspond with the amount of highly dispersed platinum. Hence, only surface platinum atoms are soluble. 16 figures.

  3. Continuous removal of polynuclear aromatics from hydrocarbon recycle oil

    SciTech Connect (OSTI)

    Bosserman, P.J.; Taniguchi, V.T.

    1992-06-23

    This patent describes an oil refining process. It comprises forming a liquid capable of solubilizing aromatic compounds having at least about 5 fused aromatic rings; and catalytically hydrocracking a hydrocarbon feedstock by: contacting the feedstock in a hydrocracking zone with added hydrogen and a hydrocracking zone with added hydrogen and a hydrocracking catalyst at a temperature and pressure sufficient to give a substantial conversion to lower boiling products; and condensing a hydrocarbon effluent from the hydrocracking zone and separating the condensed effluent into (AA) a low boiling hydrocarbon product and (BB) an unconverted hydrocarbon oil containing one or more fused polynuclear aromatic compounds.

  4. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  5. Catalytic method for synthesizing hydrocarbons

    DOE Patents [OSTI]

    Sapienza, Richard S. (Shoreham, NY); Sansone, Michael J. (Summit, NJ); Slegeir, William A. R. (Hampton Bays, NY)

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  6. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  7. Production of hydrocarbon fractions by hydrocracking

    SciTech Connect (OSTI)

    Degnan, T.F.; Kirker, G.W.; Socha, R.F.; Stapleton, M.R.; Johnson, I.D.

    1991-05-14

    This patent describes a process which comprises hydrocracking a hydrocarbon feedstock having an initial boiling point about 343{degrees} C. in the presence of a catalyst having cracking and hydrogenating activity. It comprises: catalyst comprising a layered silicate containing interspathic polymeric silica, in order to produce a hydrocarbon product having at least 35 percent by weight of hydrocarbons having a boiling point below 343{degrees} c., the catalyst further comprising at least one metal selected from the group consisting of Cr, Mo, W, Fe, Co, and Ni, wherein the hydrocracking occurs at conversions to product having a boiling point of less than 343{degrees} C. of greater than 70 percent volume of charge.

  8. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOE Patents [OSTI]

    Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  9. Reactions of platinum in oxygen- and hydrogen-treated Pt/. gamma. -Al/sub 2/O/sub 3/ catalysts. I. Temperature-programmed reduction, adsorption, and redispersion of platinum

    SciTech Connect (OSTI)

    Lieske, H.; Lietz, G.; Spindler, H.; Voelter, J.

    1983-05-01

    Alumina-supported platinum (Pt/..gamma..-Al/sub 2/O/sub 3/) catalysts with and without chloride (Cl) were treated at different temperatures in oxygen (O) or hydrogen (H/sub 2/) and were studied by temperature-programmed reduction and by hydrogen adsorption. Two surface oxides, ..cap alpha..- and ..beta..-(PtO/sub 2/)/sub s/, and two chloride-containing surface complexes, (Pt/sup IV/(OH)/sub x/Cl/sub y/)/sub s/ and (Pt/sup IV/O/sub x/Cl/sub y/)/sub s/, could be found and a comprehensive scheme of surface reactions is proposed. Redispersion of Pt in oxygen is possible only in the presence of chloride and is connected with the formation of (Pt/sup IV/O/sub x/Cl/sub y/)/sub s/. A model for the redispersion is proposed. 7 figures.

  10. HYDROCARBONS & ENERGY FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2011-01-01

    LBL-8596 itr-t C,d.. HYDROCARBONS & ENERGY FROM PLANTS jmethods of isolating the hydrocarbon-like material from I.privatelyownedrights. HYDROCARBONS AND ENERGY FROM PLANTS

  11. QSAR model of the phototoxicity of polycyclic aromatic hydrocarbons Fabiana Alves de Lima Ribeiro, Marcia Miguel Castro Ferreira*

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    QSAR model of the phototoxicity of polycyclic aromatic hydrocarbons Fabiana Alves de Lima Ribeiro of 67 polycyclic aromatic hydrocarbons (PAHs) is performed and a prediction rule for the phototoxicity be produced from saturated hydrocarbons under oxygen-deficient conditions. Hydrocarbons with very low

  12. Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels

    E-Print Network [OSTI]

    Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

  13. A nanosized hydrogen generator | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen in H2O to produce free hydrogen. The commercial separation process uses natural gas to react with superheated steam to strip away hydrogen atoms producing hydrogen fuel,...

  14. Process for removal of carbonyl sulfide in liquified hydrocarbon gases with absorption of acid gases

    SciTech Connect (OSTI)

    Beavon, D.K.; Mackles, M.

    1980-11-11

    Liquified hydrocarbon gases containing at least carbonyl sulfide as an impurity are purified by intimately mixing the liquified hydrocarbon gas with an aqueous absorbent for hydrogen sulfide in a hydrolysis zone maintained at a temperature and a pressure sufficient to maintain the liquified hydrocarbon gas in the liquid state and hydrolyze the carbonyl sulfide to hydrogen sulfide and carbon dioxide. The liquified hydrocarbon gas containing at least a portion of the formed carbonyl sulfide and carbon dioxide is separated from the liquid absorbent and passed to an absorption zone where it is contacted with a liquid hydrogen sulfide absorbent where at least the formed hydrogen sulfide is separated from the liquified petroleum gas. A stage of absorption of at least hydrogen sulfide may proceed mixing of the liquified hydrocarbon gas with the absorbent in the hydrolysis reaction zone. The absorbent employed does not combine irreversibly with carbonyl sulfide, hydrogen sulfide, and carbon dioxide, and preferably is an aqueous solution of diethanolamine.

  15. Thermochemical method for producing hydrogen from hydrogen sulfide

    SciTech Connect (OSTI)

    Herrington, D.R.

    1984-02-21

    Hydrogen is produced from hydrogen sulfide by a 3-step, thermochemical process comprising: (a) contacting hydrogen sulfide with carbon dioxide to form carbonyl sulfide and water, (b) contacting the carbonyl sulfide produced in (a) with oxygen to form carbon monoxide and sulfur dioxide, and (c) contacting the carbon monoxide produced in (b) with water to form carbon dioxide and hydrogen.

  16. Plasma-assisted conversion of solid hydrocarbon to diamond

    DOE Patents [OSTI]

    Valone, Steven M. (Santa Fe, NM); Pattillo, Stevan G. (Los Alamos, NM); Trkula, Mitchell (Los Alamos, NM); Coates, Don M. (Santa Fe, NM); Shah, S. Ismat (Wilmington, DE)

    1996-01-01

    A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

  17. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOE Patents [OSTI]

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  18. Oxygen addition to sulfur of metal thiolates 

    E-Print Network [OSTI]

    Soma, Takako

    1996-01-01

    chemistry. The oxidation reactions of metal thiolates by hydrogen peroxide, molecular oxygen, dioxiranes, and peracids have been reviewed. The compounds resulting from oxidation and oxygenation of nickel thiolate complexes have been isolated, separated...

  19. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  20. High-Pressure Catalytic Reactions of C6 Hydrocarbons on Platinum Single-Crystals and nanoparticles: A Sum Frequency Generation Vibrational Spectroscopic and Kinetic Study

    E-Print Network [OSTI]

    Bratlie, Kaitlin

    2007-01-01

    100) at 300K in 1.5 Torr C Hydrocarbons and 15 Torr HydrogenSpecies in 1.5 Torr C Hydrocarbons and 15 Torr Hydrogen300K under 1.5 Torr C Hydrocarbons in the Absence of Excess

  1. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    #12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer;#12;Vent 1 Vent 2 Product outHydrocarbon in Steam in Catalyst in light Warning Computer controller Tank

  2. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure #12;#12;#12;#12;#12;#12;#12;#12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer operator

  3. NATURAL MARINE HYDROCARBON SEEPAGE

    E-Print Network [OSTI]

    Luyendyk, Bruce

    oil and gas (Fischer, 1977).The offshore gaseous seepage is controlled Geology; November 1999; v. 27; no. 11; p. 1047­1050; 4 figures. 1047 Decrease in natural marine hydrocarbon seepage near Coal OilNATURAL MARINE HYDROCARBON SEEPAGE Hydrocarbon seepage from the world's conti- nental shelves

  4. 2, 16451664, 2005 Hydrocarbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 2, 1645­1664, 2005 Hydrocarbon emissions from a boreal fen S. Haapanala et al. Title Page Discussions is the access reviewed discussion forum of Biogeosciences Measurements of hydrocarbon emissions Hydrocarbon emissions from a boreal fen S. Haapanala et al. Title Page Abstract Introduction Conclusions

  5. Is cyclobutane a hydrocarbon?

    E-Print Network [OSTI]

    Martin, Ralph R.

    Is cyclobutane a hydrocarbon? Biologically interesting entities possibly > 1,000,000 Does cyclobutane have a four- membered ring? Is cyclobutane a hydrocarbon? Expressive and decidable formalism needs to be classified under chemical classes: Is dinitrogen inorganic? Is acetylene a hydrocarbon

  6. Anaerobic Hydrocarbon Degradation in

    E-Print Network [OSTI]

    Bruns, Tom

    Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate of iron(III) oxide to stimulate in- situ hydrocarbon degradation in anaerobic petroleum- contaminated did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe

  7. Catalysts for synthesizing various short chain hydrocarbons

    DOE Patents [OSTI]

    Colmenares, Carlos (Alamo, CA)

    1991-01-01

    Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

  8. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Colorado Boulder Anaerobic MBR: Challenges and Opportunities, Art Umble, MWH Americas Microbial Fuel Cell Technologies-MxCs: Can They Scale? Bruce Logan, Penn State University...

  9. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1ActivityfromWorkshop: Agenda and

  10. Recombinant hydrogen-producing cyanobacterium and uses thereof

    DOE Patents [OSTI]

    Xu, Qing; Smith, Hamilton O

    2014-10-14

    A recombinant cyanobacterium comprising an oxygen-tolerant, hydrogen-evolving hydrogenase, kit, and methods of use.

  11. Fuel-flexible partial oxidation reforming of hydrocarbons for automotive applications.

    SciTech Connect (OSTI)

    Ahmed, S.; Carter, J. D.; Kopasz, J. P.; Krumpelt, M.; Wilkenhoener, R.

    1999-06-07

    Micro-reactor tests indicate that our partial oxidation catalyst is fuel-flexible and can reform conventional (gasoline and diesel) and alternative (ethanol, methanol, natural gas) fuels to hydrogen rich product gases with high hydrogen selectivity. Alcohols are reformed at lower temperatures (< 600 C) while alkanes and unsaturated hydrocarbons require slightly higher temperatures. Cyclic hydrocarbons and aromatics have also been reformed at relatively low temperatures, however, a different mechanism appears to be responsible for their reforming. Complex fuels like gasoline and diesel, which are mixtures of a broad range of hydrocarbons, require temperatures of > 700 C for maximum hydrogen production.

  12. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    SciTech Connect (OSTI)

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  13. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I. (La Verne, CA); Knell, Everett W. (Los Alamitos, CA); Winter, Bruce L. (Danville, CA)

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  14. Engineering Chlorinated hydrocarbons such as

    E-Print Network [OSTI]

    Chemical Engineering Abstract Chlorinated hydrocarbons such as trichloroethylene (TCE) form a class carriers/supports for NZVI particles to address the in situ remediation of chlorinated hydrocarbons. We

  15. Analysis of a direct methane conversion to high molecular weight hydrocarbons 

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01

    Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

  16. Sampling precautions for the measurement of nitrated polycyclic aromatic hydrocarbons in ambient air

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Sampling precautions for the measurement of nitrated polycyclic aromatic hydrocarbons in ambient of polycyclic aromatic hydrocarbons (PAHs) and of their oxidation products, such as nitrated and oxygenated PAHs samplers (cascade impactor and conventional high volume sampler) installed in parallel during several field

  17. Plasma Processing Of Hydrocarbon

    SciTech Connect (OSTI)

    Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

    2007-05-01

    The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

  18. System and process for upgrading hydrocarbons

    SciTech Connect (OSTI)

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  19. Ultrafast kinetics subsequent to shock in an unreacted, oxygen...

    Office of Scientific and Technical Information (OSTI)

    subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to...

  20. Thermal hydrocracking of heavy hydrocarbon oils with heavy oil recycle

    SciTech Connect (OSTI)

    Denis, J.D.; Khulbe, C.P.; Pruden, B.B.

    1981-02-24

    An improved process is described for the hydrocracking of heavy hydrocarbon oils, such as oils extracted from tar sands. The heavy hydrocarbon oil feedstock in the presence of an excess of hydrogen is passed through a confined hydrocracking zone under upflow liquid conditions, and the effluent emerging from the top of the hydrocracking zone is passed into a hot separator where it is separated into a gaseous stream containing hydrogen and vaporous hydrocarbons and a liquid stream containing heavy hydrocarbons. The hot separator is maintained near the temperature of the hydrocracking zone and the effluent from the hydrocracking zone enters the separator in a lower region below the liquid level in the separator. The gaseous stream containing hydrogen and vaporous hydrocarbons is withdrawn from the top of the separator while a portion of the liquid phase in the separator is recycled to the hydrocracking zone without further treatment and in quantities sufficient to increase the superficial liquid flow velocity in the hydrocracking zone such that deposition of coke in the hydrocracking zone is substantially eliminated.

  1. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W. (Highland Park, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Des Plaines, IL)

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  2. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  3. Hydrocarbon Processing`s process design and optimization `96

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    This paper compiles information on hydrocarbon processes, describing the application, objective, economics, commercial installations, and licensor. Processes include: alkylation, ammonia, catalytic reformer, crude fractionator, crude unit, vacuum unit, dehydration, delayed coker, distillation, ethylene furnace, FCCU, polymerization, gas sweetening, hydrocracking, hydrogen, hydrotreating (naphtha, distillate, and resid desulfurization), natural gas processing, olefins, polyethylene terephthalate, refinery, styrene, sulfur recovery, and VCM furnace.

  4. Process for light-driven hydrocarbon oxidation at ambient temperatures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM)

    1990-01-01

    A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

  5. Process for conversion of lignin to reformulated hydrocarbon gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  6. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  7. HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS

    E-Print Network [OSTI]

    Calvin, Melvin

    2013-01-01

    molecular weights of various hydrocarbon materials for fuelof oil and alcohol from hydrocarbon-producing plants. Into Die Naturwissenschaften HYDROCARBONS FROM PLANTS: METHODS

  8. Secondary Organic Aerosol Formation From Aromatic Hydrocarbon

    E-Print Network [OSTI]

    Tang, Ping

    2013-01-01

    Jimenez, J.L. , 2005. Hydrocarbon- like and oxygenatedoxidation of aromatic hydrocarbons in the presence of drySummary of aromatic hydrocarbon photooxidation experiments

  9. Oxidation resistant organic hydrogen getters

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  10. TABLE30.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 315 4 319 202 52 301 555 Other HydrocarbonsHydrogenOxygenates ... 769 0 769 18 29 0 47 Other HydrocarbonsHydrogen...

  11. Research and development of rapid hydrogenation for coal conversion to synthetic motor fuels (riser cracking of coal). Final report, April 1, 1976-September 30, 1980

    SciTech Connect (OSTI)

    Duncan, D. A.; Beeson, J. L.; Oberle, R. D.

    1981-02-01

    The objective of the program described was to develop a noncatalytic process for the hydropyrolysis of lignite and coal to produce high-octane blending gasoline constituents, methane, ethane, and carbon oxides. The process would operate in a balanced plant mode, using spent char to generate process hydrogen by steam-oxygen gasification. The technical program included the construction and operating of a bench-scale unit (5-10 lb/hr), the design, construction, and operation of a process development unit (PDU) (100 lb/hr), and a final technical and economic assessment of the process, called Riser Cracking of Coal. In the bench-scale unit program, 143 runs were made investigating the effects of pressure, temperature, heating rate, residence time, and particle size, processing North Dakota lignite in hydrogen. Some runs were made in which the hydrogen was preheated to pyrolysis temperatures prior to contact with the coal, and, also, in which steam was substituted for half of the hydrogen. Attempts to operate the bench-scale unit at 1200 psig and 1475/sup 0/F were not successful. Depth of carbon conversion was found to be influenced by hydrogen pressure, hydrogen-to-coal ratio, and the severity of the thermal treatment. The composition of hydrocarbon liquids produced was found to change with severity. At low severity, the liquids contained sizable fractions of phenols and cresols. At high severity, the fraction of phenols and cresols was much reduced, with an attendant increase in BTX. In operating the PDU, it was necessary to use more oxygen than was planned to achieve pyrolysis temperatures because of heat losses, and portions of hydrocarbon products were lost through combustion with a large increase in carbon oxide yields. Economic studies, however, showed that selling prices for gasoline blending stock, fuel oil, and fuel gas are competitive in current markets, so that the process is held to warrant further development.

  12. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  13. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  14. Hydrocracking process with integrated distillate product hydrogenation reactor

    SciTech Connect (OSTI)

    Hoehn, R.K.; Reno, M.E.

    1991-06-25

    This patent describes a hydrocracking process. It comprises passing a feed stream which comprises an admixture of hydrocarbons boiling above 240 degrees Centigrade and hydrogen through a hydrocracking reaction zone maintained at hydrocracking conditions and producing a mixed-phase hydrocracking reaction zone effluent stream; separating the mixed-phase hydrocracking reaction zone effluent stream into a first vapor stream, which comprises hydrogen, light hydrocarbons and distillate hydrocarbons, and a first liquid stream, which comprises distillate hydrocarbons; forming a second vapor stream and a second liquid, stream by partially condensing the first vapor stream, with the second liquid stream comprising distillate hydrocarbons and having a lower average boiling point than the first liquid stream; passing the second liquid stream and added hydrogen through a hydrogenation reaction zone maintained at hydrogenation conditions and producing a hydrogenation zone effluent stream; and, passing distillate hydrocarbons present in the hydrogenation zone effluent stream and the first liquid stream into a fractionation zone, and recovering a hydrocracking zone product stream.

  15. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, Richard S. (Shoreham, NY); Sansone, Michael J. (Summit, NJ); Slegeir, William A. R. (Hampton Bays, NY)

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  16. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  17. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  18. Hydrocarbon Reservoir Parameter Estimation Using

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Hydrocarbon Reservoir Parameter Estimation Using Production Data and Time-Lapse Seismic #12;#12;Hydrocarbon Reservoir Parameter Estimation Using Production Data and Time-Lapse Seismic PROEFSCHRIFT ter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Recovery process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Field

  19. Applications of hydrogenation and dehydrogenation on noble metal catalysts 

    E-Print Network [OSTI]

    Wang, Bo

    2009-05-15

    Hydrogenation and dehydrogenation on Pd- and Pt- catalysts are encountered in many industrial hydrocarbon processes. The present work considers the development of catalysts and their kinetic modeling along a general and rigorous approach. The first...

  20. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, R.L.

    1997-03-11

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  1. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1997-01-01

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  2. Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments

    DOE Patents [OSTI]

    Carpenter, Michael A. (Scotia, NY); Sirinakis, George (Bronx, NY)

    2011-01-04

    A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900.degree. C., exposing the sensing material and gas to a temperature above 400.degree. C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed.

  3. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  4. Optrode for sensing hydrocarbons

    DOE Patents [OSTI]

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1987-05-19

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.

  5. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  6. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  7. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L. (Scottsdale, AZ)

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  8. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  9. Integrated hydrocarbon reforming system and controls

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  10. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice (Des Plaines, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  11. In-Cylinder Reaction Chemistry and Kinetics During Negative Valve Overlap Fuel Injection Under Low-Oxygen Conditions

    SciTech Connect (OSTI)

    Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL; Pihl, Josh A [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2013-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) as well as other forms of advanced combustion. During this event, at least a portion of the fuel hydrocarbons can be converted to products containing significant levels of H2 and CO, as well as other short chain hydrocarbons by means of thermal cracking, water-gas shift, and partial oxidation reactions, depending on the availability of oxygen and the time-temperature-pressure history. The resulting products alter the autoignition properties of the combined fuel mixture for HCCI. Fuel-rich chemistry in a partial oxidation environment is also relevant to other high efficiency engine concepts (e.g., the dedicated EGR (D-EGR) concept from SWRI). In this study, we used a unique 6-stroke engine cycle to experimentally investigate the chemistry of a range of fuels injected during NVO under low oxygen conditions. Fuels investigated included iso-octane, iso-butanol, ethanol, and methanol. Products from NVO chemistry were highly dependent on fuel type and injection timing, with iso-octane producing less than 1.5% hydrogen and methanol producing more than 8%. We compare the experimental trends with CHEMKIN (single zone, 0-D model) predictions using multiple kinetic mechanisms available in the current literature. Our primary conclusion is that the kinetic mechanisms investigated are unable to accurately predict the magnitude and trends of major species we observed.

  12. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    E-Print Network [OSTI]

    2014-01-01

    Ambient aromatic hydrocarbon measurements at Welgegund,Ambient aromatic hydrocarbon measurements at Welgegund,Ambient aromatic hydrocarbon measurements at Welgegund,

  13. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  14. Catalysts for conversion of methane to higher hydrocarbons

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  15. Processes for converting methane to higher molecular weight hydrocarbons via sulfur-containing intermediates

    SciTech Connect (OSTI)

    Han, S.; Palermo, R.E.

    1989-09-05

    This patent describes a process for converting methane to higher molecular weight hydrocarbons. The process comprising the steps of contacting methane with carbonyl sulfide in the presence of UV light under conditions sufficient to generate Ch/sub 3/SH; and contacting CH/sub 3/SH with a catalyst under conditions sufficient to produce hydrogen sulfide and a mixture of hydrocarbons having at least two carbon atoms.

  16. Catalysts and process for liquid hydrocarbon fuel production

    DOE Patents [OSTI]

    White, Mark G; Liu, Shetian

    2014-12-09

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  17. Hydrocarbon Processing`s Advanced control and information systems `95

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This special report presents control strategies and information systems for most hydrocarbon processes and plants. Each summary (76 in all) contains information on application, control strategy, economics, commercial installations, and licensor. The processes include NGL recovery, alkylation, blending, catalytic reforming, caustic treating, cryogenic separation, delayed coking, fractionation, hydrocracking, hydrogen production, isomerization, lube oil extraction, oil transport and storage, pipeline management, information management, sulfur recovery, waste water treatments, and others.

  18. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  19. Process for removing carbonyl sulfide from hydrocarbon feedstreams

    SciTech Connect (OSTI)

    Holmes, E.S.; Kosseim, A.J.

    1992-04-14

    This patent describes a process for removing carbon dioxide, hydrogen sulfide and carbonyl sulfide from a feedstream containing carbon dioxide, hydrogen sulfide and carbonyl sulfide and hydrocarbons. It comprises: contacting the feedstream in a hydrolysis zone with a first portion of a lean solution stream comprising an aqueous alkaline solution at an effective hydrolysis temperature to convert at least a portion of the carbonyl sulfide to carbon dioxide and hydrogen sulfide, withdrawing a first effluent stream containing a reduced concentration of carbonyl sulfide relative to the feedstream, and withdrawing a first rich solution stream comprising the aqueous alkaline solution, carbon dioxide and hydrogen sulfide; contacting the first effluent stream in an absorption zone with a second portion of the lean solution stream at an effective absorption temperature to absorb carbon dioxide and hydrogen sulfide, and withdrawing a second rich solution stream comprising the aqueous alkaline solution, carbon dioxide and hydrogen sulfide; combining at least a portion of the first rich solution stream and the second rich solution stream and contacting the combined rich solution stream in a regeneration zone at effective conditions to desorb carbon dioxide and hydrogen sulfide, withdrawing a vent gas stream comprising carbon dioxide and hydrogen sulfide, and withdrawing the lean solution stream; separating the lean solution stream into the first and second portions; and recycling the first portion of the lean solution stream to the hydrolysis zone and the second portion of the lean solution stream to the absorption zone.

  20. Author's personal copy Photoelectrochemical hydrogen production from water/

    E-Print Network [OSTI]

    Wood, Thomas K.

    coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resources criteria for these materials are low cost, environmentally friendly, high efficiency and stability. TiO2

  1. Deconvolution and Quantification of Hydrocarbon-like and Oxygenated

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    linear regressions that use mass-to-charge ratios (m/z's) 57 (mostly C4H9 +) and 44 (mostly CO2 +)sthe a small fraction of this mass. Introduction Organic material comprises a significant, yet poorly char- acterized, fraction of the fine particles in the atmosphere (1-4). The number and complexity of particulate

  2. Methane-derived hydrocarbons produced under upper-mantle conditions

    SciTech Connect (OSTI)

    Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.

    2009-08-13

    There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

  3. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    DOE Patents [OSTI]

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  4. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    E-Print Network [OSTI]

    Benner, Linda S.

    2013-01-01

    NV~ August 25-29, 1980 HYDROCARBON FORMATION ON POLYMER-catalyzed reduction of CO to hydrocarbons Tropscb. Among theof CO to saturated linear hydrocarbons and appears to retain

  5. Engineering Chlorinated hydrocarbons such as trichloroethylene

    E-Print Network [OSTI]

    Chemical Engineering Abstract Chlorinated hydrocarbons such as trichloroethylene (TCE) form a class carriers/supports for NZVI particles to address the in situ remediation of chlorinated hydrocarbons. We Remediation of Chlorinated Hydrocarbons Dr. Vijay John Department of Chemical & Biomolecular Engineering

  6. HYDROCARBON CONSTITUENTS OF ICELAND LEAF FOSSIL

    E-Print Network [OSTI]

    Han, Jerry; Calvin, Melvin.

    2008-01-01

    L.S. (1962) Isoprenoid hydrocarbons in petroleum. Anal.and EVANS E. D. (1965) Hydrocarbons in non-reservo; r-rockVI. Distribution of wax hydrocarbons in plants at different

  7. An integrated process for simultaneous desulfurization, dehydration, and recovery of hydrocarbon liquids from natural gas streams

    SciTech Connect (OSTI)

    Sciamanna, S.F. ); ))

    1988-01-01

    Conventional processing schemes for desulfurizing, drying, and separation of natural gas liquids from natural gas streams require treating the gas by a different process for each separation step. In a simpler process, based on the University of California, Berkeley Sulfur Recovery Process (UCBSRP) technology, hydrogen sulfide, propane and heavier hydrocarbons, and water are absorbed simultaneously by a polyglycol ether solvent containing a homogenous liquid phase catalyst. The catalyst promotes the subsequent reaction of hydrogen sulfide with added sulfur dioxide to produce a high quality sulfur product. Hydrocarbons are separated as two product streams with the split between propane and butane. This new process offers an overall reduction in both capital and energy costs.

  8. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars...

  9. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop held March 18-19, 2015. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production More Documents & Publications Enhanced Anaerobic Digestion and Hydrocarbon...

  10. MULTIPHOTON DISSOCIATION PRODUCTS FROM HALOGENATED HYDROCARBONS

    E-Print Network [OSTI]

    Sudbo, Aa. S.

    2011-01-01

    FROM HALOGENATED HYDROCARBONS RECE1VED Aa. S. Sudbo, P. A.FROM HALOGENATED HYDROCARBONS LBL-6966 Aa. S. Sudbo, t P. A.

  11. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases

    E-Print Network [OSTI]

    Korge, P; Calmettes, G; Weiss, JN

    2015-01-01

    hydrogen peroxide production as determined by the pyridinereactive oxygen production, J. Biol. Chem. 280 (2005) 25305–NADPH fuels superoxide production in the failing heart, J.

  12. Hydrocarbon sensors and materials therefor

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  13. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms

    SciTech Connect (OSTI)

    Khan, NE; Myers, JA; Tuerk, AL; Curtis, WR

    2014-11-01

    Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus (R) bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2(sic)/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. (C) 2014 Elsevier Ltd. All rights reserved.

  14. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  15. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); McLean, Joseph B. (So. Somerville, NJ); Comolli, Alfred G. (Yardley, PA)

    1989-01-01

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  16. Hydrogen in Type Ic Supernovae?

    E-Print Network [OSTI]

    David Branch; David J. Jeffery; Timothy R. Young; E. Baron

    2006-05-09

    By definition, a Type Ic supernova (SN Ic) does not have conspicuous lines of hydrogen or helium in its optical spectrum. SNe Ic usually are modelled in terms of the gravitational collapse of bare carbon-oxygen cores. We consider the possibility that the spectra of ordinary (SN 1994I-like) SNe Ic have been misinterpreted, and that SNe Ic eject hydrogen. An absorption feature usually attributed to a blend of Si II 6355 and C II 6580 may be produced by H-alpha. If SN 1994I-like SNe Ic eject hydrogen, the possibility that hypernova (SN 1998bw-like) SNe Ic, some of which are associated with gamma-ray bursts, also eject hydrogen should be considered. The implications of hydrogen for SN Ic progenitors and explosion models are briefly discussed.

  17. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  18. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  19. Hydrogen Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  20. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  1. Vehicle Technologies Office Merit Review 2014: Intake Air Oxygen Sensor

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about intake air oxygen sensors.

  2. Vehicle Technologies Office Merit Review 2015: Intake Air Oxygen Sensor

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about intake air oxygen sensor.

  3. Ultrafast kinetics subsequent to shock in an unreacted, oxygen...

    Office of Scientific and Technical Information (OSTI)

    subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Armstrong, M R; Zaug, J M; Grant, C D; Crowhurst, J C; Bastea, S 75...

  4. Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and

    E-Print Network [OSTI]

    Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties of hydrogen bonds mediated by oxygen-containing functional groups and water molecules. A quantitative analysis of the formation of hydrogen bond networks further shows that they play a central role in *Address correspondence

  5. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    can be produced from coal gasification at delivered costs ofper kilogram. Gasification of Coal and Other Hydrocarbons Inkg/day Small Coal Oxygen-blown Gasification 313,090 kg/day

  6. Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor

    E-Print Network [OSTI]

    Mallinson, Richard

    Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge to convert methane into useful products such as higher hydrocarbons, synthesis gas, and organic oxygenate is important for a process to have commercial potential. Thus, this study examines the effect methane

  7. IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND

    E-Print Network [OSTI]

    FOR HYDROGEN PRODUCTION · Conventional Natural Gas Steam Reforming CH4 + H2O 3H2 + CO Endothermic (EnergyCO + (n+1)H2 + n2e - Liquid Hydrocarbons iii) 2C + H2 O + O 2- 2 CO + H2 + 2e- Coal i) CH4 + O 2- CO + 2H2 Side 1/2O2 +2e- O2- Natural Gas ii) Cn H2n+2 + nO 2- nCO + (n+1)H2 + n2e - Liquid Hydrocarbons iii) 2C

  8. The influence of impregnation by hydrocarbons on coal structure during its thermal evolution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    structure (hydrocarbon/oil-like substances) on the thermal evolution of the coal. The transformation ratio of the resultant products was performed. Changes in textural and microtextural properties associated and other hydrogenated products. This is, therefore, related to coals with high liptinite contents [6, 7, 8

  9. Simultaneous demetalization and hydrocracking of heavy hydrocarbon oils

    SciTech Connect (OSTI)

    Belinko, K.; Packwood, R.H.; Patmore, D.J.; Ranganathan, R.

    1983-03-15

    A process is described for the simultaneous demetalization and hydrocracking of heavy hydrocarbon oils. The process permits the recovery of metals such as vanadium and nickel in an economic manner by passing a slurry of a heavy hydrocarbon oil and carbonaceous additive particles, such as coal, in the presence of hydrogen through a confined vertical hydrocracking zone at high temperatures and pressures. A mixed effluent containing a gaseous phase and a liquid phase is removed from the top of a hydrocracking zone, while there is removed from the bottom of the hydrocracking zone a portion of the hydrocracking zone contents containing carbonaceous remains of the additive particles to which is adsorbed the metal residues from the feedstock. The effluent removed from the top of the hydrocracking zone can be subsequently fed directly to a catalytic hydrocracking unit.

  10. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  11. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, Wei (Cambridge, MA); Flytzani-Stephanopoulos, Maria (Winchester, MA)

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  12. Method for direct conversion of gaseous hydrocarbons to liquids

    DOE Patents [OSTI]

    Kong, Peter C.; Lessing, Paul A.

    2006-03-07

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  13. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  14. HYDROCARBONS FROM AUSTRALIAN OIL, 200 MILLION YEARS OLD

    E-Print Network [OSTI]

    Van Hoeven, William; Haug, Pat; Burlingame, A.L.; Calvin, Kelvin.

    1966-01-01

    of Moonie Oil "Branched- Cyclic" Hydrocarbon FractionNo. W -7405 -eng -48 HYDROCARBONS FROM AUSTRALIAN OIL, 200and Melvin Calvin July HYDROCARBONS FROM AUSTRALIAN OIL, 200

  15. Parenteral Hydrocarbon Injection and Associated Toxicities: Two Case Reports

    E-Print Network [OSTI]

    Nelson, Michael E.; Nasr, Isam

    2013-01-01

    Products Containing Hydrocarbons. JAMA. 1981;246:840–843.Tissue Injection of Hydrocarbons: A Case Report and Reviewand Nasr Parenteral Hydrocarbon Injection and Associated

  16. Sandia Energy - Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergyGeoscience HomeGridHighHydrogen

  17. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015

  18. Hydrogen production by high-temperature water splitting using electron-conducting membranes

    DOE Patents [OSTI]

    Lee, Tae H.; Wang, Shuangyan; Dorris, Stephen E.; Balachandran, Uthamalingam

    2004-04-27

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at disassociation temperatures the hydrogen from the disassociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the disassociation of steam producing hydrogen and oxygen.

  19. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  20. EFFICIENT OXYGEN SEPARATION MEMBRANE

    E-Print Network [OSTI]

    Mucina, Ladislav

    EFFICIENT OXYGEN SEPARATION MEMBRANE Summary of technology Oxygen can be separated from air using a uniquely structured ceramic ion transport membrane for oxygen separation thatshowsremarkablyhighflux © Curtin University 2013 Gas diffusion in conventional membrane Gas diffusion in new membrane New membrane

  1. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

  2. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang, Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2011-11-29

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  3. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang; Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  4. DME-to-oxygenates process studies

    SciTech Connect (OSTI)

    Tartamella, T.L.; Sardesai, A.; Lee, S.; Kulik, C.J.

    1994-12-31

    The feasibility of the production of hydrocarbons from dimethyl ether (DNM) has been illustrated in a fixed bed micro-reactor as well as a bench scale fluidized bed reactor by the University of Akron/EPRI DME-to-Hydrocarbon (DTG) Process. The DTG process has distinct advantages over its methanol based counterpart. Specifically, the DTG process excels in the area of higher productivity, higher per-pass conversion, and lower heat duties than the MTG process. Also of special importance is the production of oxygenates -- including MTBE, ETBE, and TAME. DME may be reacted with isobutylene to produce a mixture of MTBE and ETBE. The properties of ETBE excel over MTBE in the areas of lower RVP and higher RON. According to industrial reports, MTBE is the fastest growing chemical (1992 US capacity 135,350 BPD, with expected growth of 34%/year to 1997). Also, recent renewed interest as an octane-enhancer and as a source of oxygen has spurred a growing interest in nonrefinery synthesis routes to ETBE. TAME, with its lower RVP and higher RON has proven useful as a gasoline blending agent and octane enhancer and may also be produced directly from DME. DME, therefore, serves as a valuable feedstock in the conversion of may oxygenates with wide-scale industrial importance. It should be also noted that the interest in the utilization of DME as process feedstock is based on the favorable process economics of EPRI/UA`s liquid phase DME process.

  5. Biological enhancement of hydrocarbon extraction

    DOE Patents [OSTI]

    Brigmon, Robin L. (North Augusta, SC); Berry, Christopher J. (Aiken, SC)

    2009-01-06

    A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

  6. Method for producing viscous hydrocarbons

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  7. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    DOE Patents [OSTI]

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  8. Solar Hydrogen Production

    SciTech Connect (OSTI)

    Koval, C.; Sutin, N.; Turner, J.

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  9. Liquid hydrogen - An alternative aviation fuel

    SciTech Connect (OSTI)

    Price, R.O.

    1991-02-01

    This paper examines the past and current activities concerning the development of liquid hydrogen as an alternative turbine engine aviation fuel, and also provides a look at the technical and market requirements that determine the viability of substitutes for conventional jet fuel. Alternative aviation fuels must address the following issues: availability, distribution, energy density, compatibility, economics, safety, handling, and quality control. Preliminary hardware demonstrations and analyses have shown that liquid hydrogen seems to be technically feasible, and may be eventually superior to petroleum-based jet fuel. Disadvantages include low ignition energy and a high flame velocity. From the environmental standpoint, hydrogen combustion in aircraft turbine engines can be expected to eliminate smoke emissions, hydrocarbon, and carbon monoxide. As to the marketing perspective, liquid hydrogen has broad applicability as a fuel in other transportation sectors that could allow multiindustry involvement in its development and commercialization.

  10. Process for the thermochemical production of hydrogen

    DOE Patents [OSTI]

    Norman, John H. (La Jolla, CA); Russell, Jr., John L. (La Jolla, CA); Porter, II, John T. (Del Mar, CA); McCorkle, Kenneth H. (Del Mar, CA); Roemer, Thomas S. (Cardiff, CA); Sharp, Robert (Del Mar, CA)

    1978-01-01

    Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.

  11. Analysis of Ultrasonic Velocities in Hydrocarbon Mixtures

    E-Print Network [OSTI]

    of measurements on ultrasonic velocities of liquid hydrocarbons and mixtures. They found that their dataAnalysis of Ultrasonic Velocities in Hydrocarbon Mixtures James G. Berryman Lawrence Livermore on hydrocarbon mixtures was shown by Wang and Nur [JASA 89, 2725 (1991)] to agree quite well with the predictions

  12. Aromaticity of Polycyclic Conjugated Hydrocarbons Milan Randic*

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    Aromaticity of Polycyclic Conjugated Hydrocarbons Milan Randic´* National Institute of Chemistry Chemistry 3462 G. Clar 6n Rule versus Hu¨ckel 4n + 2 Rule 3464 H. Hydrocarbons versus Heteroatomic Systems Ordering 3476 VI. On Enumeration of Benzenoid Hydrocarbons 3477 VII. Kekule´ Valence Structures Count 3479

  13. Clar number of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Clar number of catacondensed benzenoid hydrocarbons Sandi Klavzara, , Petra Zigerta , Ivan Gutmanb sextets in any of the Clar formulae) of a catacondensed benzenoid hydrocarbon: CL is equal to the minimum; Resonance graph; Benzenoid hydrocarbons 1. Introduction Within the theory that was formulated [1, 2

  14. Polycyclic Aromatic Hydrocarbon Biodegradation Rates: A

    E-Print Network [OSTI]

    Peters, Catherine A.

    Polycyclic Aromatic Hydrocarbon Biodegradation Rates: A Structure-Based Study K R I S T I N E H . W structure in determining the biodegradation rates of polycyclic aromatic hydrocarbons (PAHs). Laboratory. Introduction Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants that are commonly found

  15. Cuticular Hydrocarbon Research1 Marion Page2

    E-Print Network [OSTI]

    Cuticular Hydrocarbon Research1 Marion Page2 We have been studying existing taxonomies of forest in the utility of cuticular (surface) hydrocarbons as taxonomic characters (Haverty and others 1988, 1989, Page to be genetically fixed. Because the insects studied so far synthesize all or most of their hydrocarbon components

  16. Clar number of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Clar number of catacondensed benzenoid hydrocarbons Sandi KlavŸzar a,# , Petra Ÿ Zigert a , Ivan hydrocarbon: CL is equal to the minimum number of straight lines required to intersect all hexagons theory; Clar formula; Clar number; Resonance graph; Benzenoid hydrocarbons 1. Introduction Within

  17. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  18. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  19. Steering proton migration in hydrocarbons using intense few-cycle laser fields

    E-Print Network [OSTI]

    Kübel, M; Burger, C; Kling, Nora G; Li, H; Alnaser, A S; Bergues, B; Zherebtsov, S; Azzeer, A M; Ben-Itzhak, I; Moshammer, R; de Vivie-Riedle, R; Kling, M F

    2015-01-01

    Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to control the movement of nuclei with tailored light, within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are monitored using coincident 3D momentum imaging spectroscopy, and described with a quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wavepacket by the intense off-resonant laser field.

  20. Hydrogen donor solvent coal liquefaction process

    DOE Patents [OSTI]

    Plumlee, Karl W. (Baytown, TX)

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  1. Catalysis Letters Vol. 72, No. 3-4, 2001 197 Catalytic ammonia decomposition: COx-free hydrogen production

    E-Print Network [OSTI]

    Goodman, Wayne

    , e.g., COx, formed during reforming of hydrocarbons and alcohols) makes this process an ideal source is the recent interest in the generation of clean hydrogen for fuel cells. Conventional processes such as steam applications [18­21]. We have inves- tigated step-wise steam reforming of methane/hydrocarbons as a method

  2. Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

  3. Photoelectrochemical hydrogen production from water/ methanol decomposition using Ag/TiO2 nanocomposite

    E-Print Network [OSTI]

    coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resources are low cost, environmentally friendly, high efficiency and stability. TiO2 is a strong candidate due

  4. Oxygen stabilized zirconium-vanadium-iron alloy

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Woodridge, IL); Gruen, Dieter M. (Downers Grove, IL)

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  5. In vivo effect of inosine, pyruvate, and phosphate on the oxygen hemoglobin equilibrium curve and tissue oxygenation 

    E-Print Network [OSTI]

    Ross, Joe Nevill

    1974-01-01

    and Mixed Venous Blood Samples 2, 3-Diphosphoglycerate Determination M asurement of Mean Capillary Oxygen Tersion ( P-0 ) c 2 Measurement of P O Results 10 13 13 16 Discussion 25 Conclusion References Appendix I . Appendix II Appendix III... equilibrium curve pkI The r, egative log o. the hydrogen ion concentratior PO PCO P 02 a 2 P-0 a v 2 Partial pressure oi' oxygen Partial pressure of carbon dioxide Partial pressure of oxygen ir' arteria. l blood The oxygen partial pressure...

  6. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

  7. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy J. (330 Thrasher Ave., Livermore, CA 94550); Even, Jr., William R. (4254 Drake Way, Livermore, CA 94550)

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  8. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  9. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides Sami Khan, Gisele Azimi, Bilge Yildiz, and Kripa K. Varanasi

    E-Print Network [OSTI]

    Yildiz, Bilge

    hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs of hydrocarbon adsorption on the wettability of rare earth oxide ceramics Appl. Phys. Lett. 105, 011601 (2014 with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms

  10. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  12. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  13. Catalytic partial oxidation of hydrocarbons

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Krummenacher, Jakob J.; West, Kevin N.

    2007-08-28

    A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.

  14. Catalytic partial oxidation of hydrocarbons

    DOE Patents [OSTI]

    Schmidt, Lanny D. (Minneapolis, MN); Krummenacher, Jakob J. (Minneapolis, MN); West, Kevin N. (Minneapolis, MN)

    2009-05-19

    A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.

  15. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN FUELLED VEHICLES by Katherine Aminta Muncaster of Research Project: Can Hydrogen Win?: Exploring Scenarios for Hydrogen Fuelled Vehicles Report No.: 459 explored the conditions under which hydrogen might succeed in Canada's transportation sector in a carbon

  16. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  17. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  18. Design and Applications of Anti Albumin-Adduct Antibodies to Assess Human Exposure to Aromatic Hydrocarbons

    E-Print Network [OSTI]

    Chung, Ming Kei

    2013-01-01

    measurement  of  polycyclic  aromatic  hydrocarbon-­?before  measurement  of  hydrocarbon-­?HSA  adducts   with  measurement  of  polycyclic  aromatic  hydrocarbon-­?

  19. Relative Economic Incentives for Hydrogen from Nuclear, Renewable, and Fossil Energy Sources

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL] [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL)

    2007-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  20. RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES

    SciTech Connect (OSTI)

    Gorensek, M; Charles W. Forsberg, C

    2008-08-04

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  1. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOE HydrogenProduction Hydrogen is

  2. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOE Patents [OSTI]

    Rolllins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  3. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  4. Modification of Gold Catalysis withModification of Gold Catalysis with Aluminum Phosphate for OxygenAluminum Phosphate for Oxygen--Reduction ReactionReduction Reaction

    E-Print Network [OSTI]

    Park, Byungwoo

    (PEMFC + DMFC) General MotorsPanasonic Power Source * PEMFC: proton exchange membrane fuel cell DMFC) H+ Oxygen or Air Ecat Hydrogen (PEMFC) (DMFC) Carbon Dioxide Water CatalystsCatalysts Membrane

  5. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  6. Understanding How Surface Morphology and Hydrogen Dissolution Influence Ethylene Hydrogenation on Palladium

    SciTech Connect (OSTI)

    Dohnalek, Zdenek; Kim, Jooho; Kay, Bruce D.

    2008-10-09

    Ethylene hydrogenation is a prototypical reaction for catalytic hydrogenation of unsaturated hydrocarbons and as such it has been studied on a number of metals. On single crystalline Pd(111), Pd(110), and Pd(100) surfaces this reaction has been shown to be structure insensitive and to occur with extremely low yield (0.1%) (refs). Recent studies on support4ed Pd particles showed an approximately 10-folded increase in the ethane yield per surface Pd atom which was attributed to the increased surface to bulk Pd ratio on the particles thereby giving rise to reduced sorption of hydrogen into the bulk. The enhanced concentration of surface hydrogen is believed to result in the observed increase in catalytic activity. Even on these nanoparticles the C2H6 yield is relatively low (~2%)(refs).

  7. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  8. The Science and Economics of Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    THE RESNICK SUSTAINABILITY INSTITUTE AT CALTECH RESNICK.CALTECH.EDU Solar energy has the capacity to replace sunlight and water into hydrogen and oxygen, effectively storing solar energy in molecular hydrogen bonds the design, fabrication and characterization of an integrated solar water splitting device and the techno

  9. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM)

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  10. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  11. Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes

    DOE Patents [OSTI]

    Nizamoff, Alan J. (Convent Station, NJ)

    1980-01-01

    In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.

  12. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  13. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  14. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01

    another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

  15. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  16. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

    1988-06-14

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  17. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Westmont, IL); Gatsis, John G. (Des Plaines, IL); Funk, Edward W. (Highland Park, IL)

    1988-01-01

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  18. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  19. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Hydrocarbon Precursor Production from Sewage Sludge Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste...

  20. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  1. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  2. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Grove, IL)

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  3. Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis

    E-Print Network [OSTI]

    Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis Rongrong Jiang and Andreas applied the sequence comparison-based approach to develop a novel hydrogen peroxide-forming NADH oxidase (nox-1) from Lactococcus lactis (L. lactis) that reduces oxygen to hydrogen peroxide. The nox-1 gene

  4. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of

    E-Print Network [OSTI]

    Kirschvink, Joseph L.

    Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic with photochemical reactions involving water vapor would give rise to the sustained production of hydrogen peroxide. The photochemical production of hydrogen peroxide has been proposed previously as the primary mechanism

  5. Mechanistic Modeling of Sulfur-Deprived Photosynthesis and Hydrogen Production in

    E-Print Network [OSTI]

    Mechanistic Modeling of Sulfur-Deprived Photosynthesis and Hydrogen Production in Suspensions linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated- modate the production of hydrogen gas by partially- deactivating O2 evolution activity, leading

  6. Apparatus for the production of heavier hydrocarbons from gaseous light hydrocarbons

    SciTech Connect (OSTI)

    Agee, K.L.

    1990-11-27

    This patent describes apparatus for producing heavier hydrocarbons from one or more gaseous light hydrocarbons. It comprises a partial oxidation burner means; a synthesis gas generation vessel; a hydrocarbon synthesis reactor; first conduit means; separating means; second conduit means; catalytic combustion means; third conduit means; carbon dioxide separating means; fourth conduit means; and fifth conduit means.

  7. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOE Patents [OSTI]

    Comolli, Alfred G. (Yardley, PA); Lee, Lap-Keung (Cranbury, NJ)

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  8. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01

    induction of 2-3 Tesla made from MgB2 superconductors indirectly cooled by LH2, besides the energy efficiency, the new technique generates a homogeneous heat distribution within the metal, so that any local overheating is avoided. As an aside... SMES device in combination with Vanadium Redox-flow Batteries as a generation reserve to regulate variations of power generation demand [25]. The use of liquid hydrogen is capable of enabling the superconducting industry as it is facing resource...

  9. Chlorinated Hydrocarbon Levels in Fishes and Shellfishes of the

    E-Print Network [OSTI]

    measurements. /n contrast, correlations were often significant between chlorinated hydrocarbons. such as DDEChlorinated Hydrocarbon Levels in Fishes and Shellfishes of the Northeastern Pacific Ocean Introduction Reports of excessive amounts of chlorinated hydrocarbons in fishery products have threatened

  10. Hydrocarbon-free resonance transition 795 nm rubidium laser

    E-Print Network [OSTI]

    Wu, Sheldon Shao Quan

    2009-01-01

    and R. J. Beach, "Hydrocarbon-free resonance transition 795-a Reliable Diode-Pumped Hydrocarbon-Free 795-nm Rubidiumand R. J. Beach, "Hydrocarbon-free resonance transition 795-

  11. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian efficient remediation of many sites contaminated with haloge- nated hydrocarbons. Trichloroethylene (TCE hydrocarbon, ethylene dibromide (EDB; dibromoeth- ane), was used as a soil fumigant to kill nematodes

  12. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  13. Theoretical studies of transition metal surfaces as electrocatalysts for oxygen electroreduction 

    E-Print Network [OSTI]

    Lamas, Eduardo J.

    2007-09-17

    In the last few years the quest towards a hydrogen based economy has intensified interest for effective and less expensive catalysts for fuel cell applications. Due to its slow kinetics, alternative catalysts for the oxygen ...

  14. CROSSED BEAM REACTIVE SCATTERING OF OXYGEN ATOMS AND SURFACE SCATTERING STUDIES OF GASEOUS CONDENSATION

    E-Print Network [OSTI]

    Sibener, S.J.

    2010-01-01

    F. 0( D,) Production When dilute oxygen-helium gas mixturesoxygen-helium mixture for maximizing Of D ) production. D Ihelium mixtures (12S torr total pressure, 145 watts I The genera­ and have observed atomic hydrogen production.

  15. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Phillip, Bradley L. (20976 Fairmount Blvd., Shaker Heights, Cuyahoga County, OH 44120)

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  16. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Phillip, Bradley L. (Shaker Heights, OH)

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  17. Kinetics of Hydrogen Abstraction Reaction Class H + H-C(sp3): First-Principles Predictions Using the Reaction Class Transition State Theory

    E-Print Network [OSTI]

    Truong, Thanh N.

    -principles predictions using more rigorous methodologies. I. Introduction Hydrogen abstractions of hydrocarbons carriers in thermal decomposition of hydrocarbons. Despite its significance, there are only about 10 of the conventional transition state theory (TST) to analyze available experimental rate constants and to propose

  18. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (Somerville, NJ)

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  19. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  20. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  1. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  2. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  3. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  4. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  5. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  7. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Energy Savers [EERE]

    HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Presentation from the...

  8. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

  9. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The...

  10. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  11. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of...

  12. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  13. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  14. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  15. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  16. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    SciTech Connect (OSTI)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  17. Hydrogen Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipmentpDepartmentHydrogen: Over

  18. Hydrogen production by high temperature water splitting using electron conducting membranes

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Wang, Shuangyan; Dorris, Stephen E.; Lee, Tae H.

    2006-08-08

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing protons or hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at dissociation temperatures the hydrogen from the dissociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the dissociation of steam producing hydrogen and oxygen. The oxygen is thereafter reacted with methane to produce syngas which optimally may be reacted in a water gas shift reaction to produce CO2 and H2.

  19. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  20. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy (Culver City, CA)

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  1. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  2. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  3. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  4. Effective Viscosity of Confined Hydrocarbons

    E-Print Network [OSTI]

    I. M. Sivebaek; V. N. Samoilov; B. N. J. Persson

    2012-01-24

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity \\mu eff for nanometer-thin films depends linearly on the logarithm of the shear rate: log(effective viscosity) = C - n log (shear rate), where n varies from 1 (solidlike friction) at very low temperatures to 0 (Newtonian liquid) at very high temperatures, following an inverse sigmoidal curve. Only the shortest chain molecules melt, whereas the longer ones only show a softening in the studied temperature interval 0 < T < 900 K. The results are important for the frictional properties of very thin (nanometer) films and to estimate their thermal durability.

  5. Design and Testing of a Labview- Controlled Catalytic Packed- Bed Reactor System For Production of Hydrocarbon Fuels

    SciTech Connect (OSTI)

    Street, J.; Yu, F.; Warnock, J.; Wooten, J.; Columbus, E.; White, M. G.

    2012-05-01

    Gasified woody biomass (producer gas) was converted over a Mo/H+ZSM-5 catalyst to produce gasolinerange hydrocarbons. The effect of contaminants in the producer gas showed that key retardants in the system included ammonia and oxygen. The production of gasoline-range hydrocarbons derived from producer gas was studied and compared with gasoline-range hydrocarbon production from two control syngas mixes. Certain mole ratios of syngas mixes were introduced into the system to evaluate whether or not the heat created from the exothermic reaction could be properly controlled. Contaminant-free syngas was used to determine hydrocarbon production with similar mole values of the producer gas from the gasifier. Contaminant-free syngas was also used to test an ideal contaminant-free synthesis gas situation to mimic our particular downdraft gasifier. Producer gas was used in this study to determine the feasibility of using producer gas to create gasoline-range hydrocarbons on an industrial scale using a specific Mo/H+ZSM-5 catalyst. It was determined that after removing the ammonia, other contaminants poisoned the catalyst and retarded the hydrocarbon production process as well.

  6. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  7. Liquid Hydrogen Bubble Chambers

    E-Print Network [OSTI]

    Alvarez, Luis W.

    1956-01-01

    t No. W - 7 4 0 5 -eng-48 ,LIQUID HYDROGEN EUSBLE CHA,MBEEZSand 3erkeley to iind if liquid hydrogen could be used as thethat supezheated 'liquid hydrogen could be made to boil

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    1096 (1990). S. Furuhama, "Hydrogen Engine Systems for LandGelse, "The Mercedes-Benz Hydrogen Engine for Application inI do assume that the hydrogen engines would run ultra lean,

  9. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  10. Using supercritical fluids to refine hydrocarbons

    DOE Patents [OSTI]

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  11. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  12. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  13. Hydrogen and Infrastructure Costs

    Broader source: Energy.gov (indexed) [DOE]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

  14. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  15. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  16. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  17. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    SciTech Connect (OSTI)

    Barbi, E.; Mahan, J.R.; O'brien, W.F.; Wagner, T.C.

    1989-04-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated. 10 references.

  18. Hydrogenation of O and OH on Pt(111): A comparison between the reaction rates of the first and the second hydrogen addition steps

    SciTech Connect (OSTI)

    Näslund, L.-Å., E-mail: lars-ake.naslund@liu.se [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-03-14

    The formation of water through hydrogenation of oxygen on platinum occurs at a surprisingly low reaction rate. The reaction rate limited process for this catalytic reaction is, however, yet to be settled. In the present work, the reaction rates of the first and the second hydrogen addition steps are compared when hydrogen is obtained through intense synchrotron radiation that induces proton production in a water overlayer on top of the adsorbed oxygen species. A substantial amount of the produced hydrogen diffuses to the platinum surface and promotes water formation at the two starting conditions O/Pt(111) and (H{sub 2}O+OH)/Pt(111). The comparison shows no significant difference in the reaction rate between the first and the second hydrogen addition steps, which indicates that the rate determining process of the water formation from oxygen on Pt(111) is neither the first nor the second H addition step or, alternatively, that both H addition steps exert rate control.

  19. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  20. Solubilization of petroleum hydrocarbons using biosurfactants 

    E-Print Network [OSTI]

    Kanga, Shahrukh

    1995-01-01

    that bioavailability of the crude oil to the microorganisms limited the degradation rates (Mills, 1994). Preliminary experiments at our laboratories have also indicated enhanced solubilities of petroleum hydrocarbons due to the effects of biosurfactants (Kanga et al...

  1. Process and apparatus for coal hydrogenation

    DOE Patents [OSTI]

    Ruether, John A. (McMurray, PA); Simpson, Theodore B. (McLean, VA)

    1991-01-01

    In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.

  2. Hydroconversion of liquid hydrocarbons in a staged autothermal reactor

    SciTech Connect (OSTI)

    Blass, SD; Bhan, A; Schmidt, LD

    2013-01-31

    An autothermal staged reactor was assembled containing a top stage of Rh-Ce/alpha-Al2O3 which generated heat and H-2 by reacting CH4 and air that passed through a downstream stage containing 0.5 wt% Pt/gamma-Al2O3 mixed with either HBEA, HZSM-5, or USY in a heat-integrated non-isothermal reactor. The H-2 produced subsequently reacts in a 20:1 ratio with a co-feed of hexane or decane or 2-decanone fed to the reactor between the stages. The large-sized pores of HBEA and USY allowed deoxygenation of 2-decanone to form decene isomers which can crack or cyclize to form up to a 36% yield of methylated and ethylated monoaromatics. The medium-sized pores of HZSM-5 restricted decene formation from 2-decanone by catalyzing cracking reactions to C2-6 compounds which can cyclize to form aromatics. By contrast, the reactor effluent from non-oxygenated reactants decane and hexane contained less than 5% aromatics. Thus, we extend the scope of staged autothermal reactor functionality to hydrocracking and hydroisomerization of higher saturated and oxygenated hydrocarbons. (C) 2012 Elsevier B.V. All rights reserved.

  3. Methods of reforming hydrocarbon fuels using hexaaluminate catalysts

    DOE Patents [OSTI]

    Gardner, Todd H. (Morgantown, WV); Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV)

    2012-03-27

    A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

  4. Identification of biological processes in a mixed hydrocarbon plume at a paint manufacturing facility

    SciTech Connect (OSTI)

    McLaughlan, R.G.; Walsh, K.P.; Henkler, R.D.; Anderson, B.N.

    1996-12-31

    In situ biodegradation is increasingly being used as a cost effective remedial strategy for contaminated sites. However, for the remediation to be successful, it is necessary to understand the fundamental geochemical and microbiological processes occurring at a particular site. At a paint manufacturing facility, a mixed hydrocarbon plume containing both BTEX and paraffinic hydrocarbons (Stoddard solvent) has contaminated the aquifer. The microbial processes occurring in the plume were investigated to better define the capacity of the aquifer to degrade hydrocarbons. Microbial oxidation of hydrocarbons is known to be coupled with the reduction of redox active species including oxygen, nitrate, ferric iron and sulphate as well as the production of methane. Water quality data, redox parameters and contaminant information were collected from the site to identify candidate biological processes occurring. The results show that as the contaminant concentration increases, the redox decreases indicating the generation of a more reduced environment. The decreasing redox correlates with increased concentrations of ammonia, ferrous iron and sulphide. The data indicates that there have been a range of different electron acceptor systems operating at the site. This has been correlated with a theoretical amount of benzene consumed. The chemistry from the wells at the site show that at least 47 mg/L of benzene is capable of being mineralized within the aquifer by microbial based transformations given the current contaminant loading and flowrate. 3 refs., 1 fig., 2 tabs.

  5. Waste control alternatives for chlorinated hydrocarbons 

    E-Print Network [OSTI]

    Pearce, Terry Allan

    1975-01-01

    WASTE CONTROL ALTERNATIVES FOR CHLORINATED HYDROCARBONS A Thesis by TERRY ALLAN PEARCE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Chemical Engineering WASTE CONTROL ALTERNATIVES FOR CHLORINATED HYDROCARBONS A Thesis by TERRY ALLAN PEARCE Approved as to style and content by: , ~ I ' p Chairman of Committee ead of Departmen em er Member May 1975 ABSTRACT Waste...

  6. Hydrocarbon habitat of the west Netherlands basin

    SciTech Connect (OSTI)

    De Jager, J. (Nederlandse Aardolie Maatschappij, Assen (Netherlands)); Doyle, M. (Petroleum Development Oman, Muscat (Oman)); Grantham, P. (KSEPL/Shell Research, Rijswijk (Netherlands)); Mabillard, J. (Shell Nigeria, Port Harcourt (Nigeria))

    1993-09-01

    The complex West Netherlands Basin contains oil and gas in Triassic and Upper Jurassic to Cretaceous clastic reservoir sequences. The understanding has always been that the Carboniferous coal measures have generated only gas and the Jurassic marine Posidonia Shale only oil. However, detailed geochemical analyses show that both source rocks have generated oil and gas. Geochemical fingerprinting established a correlation of the hydrocarbons with the main source rocks. The occurrence of these different hydrocarbons is consistent with migration routes. Map-based charge modeling shows that the main phase of hydrocarbon generation occurred prior to the Late Cretaceous inversion of the West Netherlands Basin. However, along the southwest flank of the basin and in lows between the inversion highs, significant charge continued during the Tertiary. Biodegradation of oils in Jurassic and Cretaceous reservoirs occurred during the earliest Tertiary, but only in reservoirs that were at that time at temperatures of less then 70 to 80[degrees]C, where bacteria could survive. This study shows that also in a mature hydrocarbon province an integrated hydrocarbon habitat study with modern analyses and state-of-the-art technology can lead to a much improved understanding of the distribution of oil and gas in the subsurface. The results of this study will allow a better risk assessment for remaining prospects, and an improved prediction of the type of trapped hydrocarbons in terms of gas, oil, and biodegraded oil.

  7. Methods and systems for the production of hydrogen

    DOE Patents [OSTI]

    Oh, Chang H. (Idaho Falls, ID); Kim, Eung S. (Ammon, ID); Sherman, Steven R. (Augusta, GA)

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  8. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  9. Oxygen and hydrogen isotopes in thermal waters at Zunil, Guatemala

    SciTech Connect (OSTI)

    Fournier, R.O.; Hanshaw, B.B.; Urrutia Sole, J.F.

    1982-10-01

    Enthalpy-chloride relations suggest that a deep reservoir exists at Zunil with a temperature near 300/sup 0/C. Water from that reservoir moves to shallower and cooler local reservoirs, where it mixes with diluted water and then attains a new water-rock chemical equilibrium. This mixed water, in turn, generally is further diluted before being discharged from thermal springs. The stable-isotopic composition of the thermal water indicates that recharge for the deep water at Zunil comes mainly from local sources. The presence of measurable tritium, which suggests that the deep water has been underground about 20 to 30 years, also indicates a local source for the recharge.

  10. Self-powered Hydrogen + Oxygen Injection System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications PACCARHi-Z Thermoelectric Generator Project Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Caterpillar Diesel Racing: Yesterday & Today...

  11. Ceramic Membranes for Hydrogen/Oxygen Production - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene Network Shaping ofStaff HighlightCentralv0,

  12. Hydrogen (H2) Production by Oxygenic Phototrophs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., A High Pressure&

  13. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  14. Safetygram #9- Liquid Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  15. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  16. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  17. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  18. Hydrocarbon gases (free and sorbed) in waters and sediments of the mid-Atlantic ridge

    SciTech Connect (OSTI)

    Sudarikov, S.M.; Levshunova, S.P.

    1996-10-01

    Waters and sediments were sampled during the 10-th cruise of the R/V {open_quotes}Geolog Fersman{close_quotes} at several sites of the Mid-Atlantic rift zone. Extensive geochemical analyses including degasing of waters and sediments, luminescence-bituminological analyses, organic-carbon (OC) and C{sub 1}-C{sub 9} fraction content determining have been carried out. According to the microbiological investigations the 65% of the methane are thermogenic and 35% - bacterial. Correlation between bitumen and metals observed in waters may be explained by the formation of metal-organic complexes. Sediments from the Snake Pit field show high contents of bitumen (0.005%) and of C{sub 1}-C{sub 9} hydrocarbons. The process of hydrocarbons generation in ocean rift zones is treated as a result of the interaction between the OC and inorganic fluids containing hydrogen. We thank the Russian Fundamental Science Foundation for financial support.

  19. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  20. Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids

    DOE Patents [OSTI]

    Kong, Peter C.; Lessing, Paul A.

    2006-04-25

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  1. Improvement of hydrogen solubility and entrainment in hydrocracker feedstocks. Final technical report

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1997-02-01

    The project consisted of two tasks: (1) development of a thermodynamic model for hydrogen solubility in hydrocarbons and extension of this model to predict solubility of hydrogen in hydrocracker feedstocks at conditions similar to those of hydrocracking operations, and (2) design and construction of a gas solubility apparatus to measure solubility of hydrogen in hydrocarbons and in hydrocracker feedstocks. The theoretical work proposed was fully accomplished by developing a sophisticated model for hydrogen solubility in hydrocarbons and in hydrocracker feedstocks at advanced temperatures and pressures. The proposed experimental work ran into a number of obstacles, especially to get the original and newly designed on-line sampling technique to function properly. A number of calibrations and tests for reproducibility were necessary to assure the accuracy of measured data. Although a very well designed gas solubility apparatus was built, not much time was left to generate significant hydrogen solubility data. The plans are to use the apparatus in future to measure hydrogen solubility data in liquid fuels to facilitate more efficient design of fuel conversion systems.

  2. STUDIES OF WALL FLAME QUENCHING AND HYDROCARBON EMISSIONS IN A MODEL SPARK IGNITION ENGINE

    E-Print Network [OSTI]

    Ishikawa, Nobuhiko

    2011-01-01

    1 'Exhaust Hydrocarbon Measurement for Tuneup Diagnosis?"Methane Measurements Hydrocarbon measurements have been madealso induced. The hydrocarbon measurements reveal a general

  3. Measurement of Hydrocarbon Fluxes due to Natural Seepage in the Northern Santa Barbara Channel

    E-Print Network [OSTI]

    Washburn, Libe; Clark, Jordan F.

    2002-01-01

    of Energy 001 "MEASUREMENT OF HYDROCARBON FLUXES DUE TOauthors directly. Measurement of Hydrocarbon Fluxes due toflux measurements been obtained in the region of hydrocarbon

  4. On the use of hydrocarbons for the determination of tropospheric OH concentrations

    E-Print Network [OSTI]

    Ehhalt, D. H; Rohrer, F.; Wahner, A.; Prather, M. J; Blake, D. R

    1998-01-01

    ET AL. : USING HYDROCARBONS chemical and heterogeneous datade- cay of many reactive hydrocarbons in well-defined urbanseasonality of selected hydrocarbons and halocarbons over

  5. Massively-parallel electrical-conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer

    E-Print Network [OSTI]

    2008-01-01

    CONDUCTIVITY IMAGING OF HYDROCARBONS USING THE BLUE GENE/Lidentification of hydrocarbon filled layers in deepwater,”Remote sensing of hydrocarbon layers by seabed logging (

  6. Variability of gas composition and flux intensity in natural marine hydrocarbon seeps

    E-Print Network [OSTI]

    Clark, Jordan F.; Washburn, Libe; Schwager Emery, Katherine

    2010-01-01

    in natural marine hydrocarbon seeps Jordan F. Clark & Libeenters, and CO 2 and hydrocarbon gases leave the bubbles.Introduction Natural hydrocarbon seeps are important

  7. Isolation, Determination of Absolute Stereochemistry, and Asymmetric Synthesis of Insect Methyl-Branched Hydrocarbons

    E-Print Network [OSTI]

    Bello, Jan Edgar

    2014-01-01

    d’Ettore, P. In Insect Hydrocarbons: Biology, Biochemistry,A.G. In Insect Hydrocarbons: Biology, Biochemistry, ChemicalMillar, J.G. In Insect Hydrocarbons: Biology, Biochemistry,

  8. On the radiolysis of ethylene ices by energetic electrons and implications to the extraterrestrial hydrocarbon chemistry

    SciTech Connect (OSTI)

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-20

    The chemical processing of ethylene ices (C{sub 2}H{sub 4}) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH{sub 4}), the C2 species acetylene (C{sub 2}H{sub 2}), ethane (C{sub 2}H{sub 6}), the ethyl radical (C{sub 2}H{sub 5}), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C{sub 4}H{sub 8}) and n-butane (C{sub 4}H{sub 10}). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  9. Iron-titanium-mischmetal alloys for hydrogen storage

    DOE Patents [OSTI]

    Sandrock, Gary Dale (Ringwood, NJ)

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  10. Macrobenthic community structure and total sediment respiration at cold hydrocarbon seeps in the northern Gulf of Mexico 

    E-Print Network [OSTI]

    Nunnally, Clifton Charles

    2004-11-15

    respiration should signal clear differentiation between macrobenthic communities at seeps and those away from seeps. These changes could possibly be exhibited in a gradient separating seep locales from the background benthic... pathway that metabolizes methane and other hydrocarbons results with the production of hydrogen sulfide (Boetius et al., 2000; DeLong, 2000; Hansen et al., 1998; Hoehler et al., 1994). This occurs in a coupled reaction of anaerobic methane oxidation...

  11. A calcium oxygen secondary battery

    SciTech Connect (OSTI)

    Pujare, N.U.; Semkow, K.W.; Sammells, A.F.

    1988-01-01

    The authors report preliminary work performed in their laboratory on a high-temperature electrochemically reversible calcium-oxygen cell. Following an analogous strategy to that recently discussed for the lithium-oxygen secondary system, this calcium-oxygen cell utilizes stabilized zirconia oxygen vacancy conducting solid electrolytes to achieve effective separation between half-cell reactions.

  12. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  13. Method for providing oxygen ion vacancies in lanthanide oxides

    DOE Patents [OSTI]

    Kay, D. Alan R. (4305 Lakeshore Rd., Burlington, CA); Wilson, William G. (820 Harden Dr., Pittsburgh, PA 15229)

    1989-12-05

    A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

  14. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  15. Effects of Hydrogen Sulfide on the Performance of a PEMFC R. Mohtadi,a,

    E-Print Network [OSTI]

    Van Zee, John W.

    Effects of Hydrogen Sulfide on the Performance of a PEMFC R. Mohtadi,a, * W.-k. Lee,a, ** S. Cowan exchange membrane fuel cells PEMFCs consisting of Pt and Pt-Ru alloy electrodes is presented. Steady PEMFCs is produced mainly from reformed hydrocarbons. Thus the anode may be exposed to undesir- able by

  16. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  17. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  18. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  19. Hydrogen production by methanogens under low-hydrogen conditions

    E-Print Network [OSTI]

    Valentine, DL; Valentine, DL; Blanton, DC; Reeburgh, WS

    2000-01-01

    greatly decreased hydrogen production. The addition ofThe lack of sustained hydrogen production by the cultures inMethanogens · Hydrogen production · Storage compounds ·

  20. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect (OSTI)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  1. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    SciTech Connect (OSTI)

    Angela D. Lueking; Qixiu Li; John V. Badding; Dania Fonseca; Humerto Gutierrez; Apurba Sakti; Kofi Adu; Michael Schimmel

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  2. Surface Segregation in a PdCu Alloy Hydrogen Separation Membrane

    SciTech Connect (OSTI)

    Miller, J.B.; Matranga, C.S.; Gellman, A.J.

    2007-06-01

    Separation of hydrogen from mixed gas streams is an important step for hydrogen generation technologies, including hydrocarbon reforming and coal/biomass gasification. Dense palladium-based membranes have received significant attention for this application because of palladium’s ability to dissociatively adsorb molecular hydrogen at its surface for subsequent transport of hydrogen atoms through its bulk. Alloying palladium with minor components, like copper, has been shown to improve both the membrane’s structural characteristics and resistance to poisoning of its catalytic surface [1]. Surface segregation—a composition difference between the bulk material and its surface—is common in alloys and can affect important surface processes. Rational design of alloy membranes requires that surface segregation be understood, and possibly controlled. In this work, we examine surface segregation in a polycrystalline Pd70Cu30 hydrogen separation membrane as a function of thermal treatment and adsorption of hydrogen sulfide.

  3. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen...

  4. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  5. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01

    the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

  6. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas....

  7. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of...

  8. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01

    carbon emissions from a hydrogen fuel cell vehicle will beis threefold. First, hydrogen fuel cell vehicles appear tobecome competitive and if hydrogen fuel can be made widely

  9. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  10. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  11. Using supercritical fluids to refine hydrocarbons

    DOE Patents [OSTI]

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  12. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  13. Sustainable treatment of hydrocarbon-contaminated industrial land 

    E-Print Network [OSTI]

    Cunningham, Colin John

    2012-06-25

    Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. ...

  14. Conversion of methane and acetylene into gasoline range hydrocarbons 

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01

    Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene...

  15. A Parametric Study of the Effect of Temperature and Hydrocarbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Temperature and Hydrocarbon Species on the Product Distribution from a Non-Thermal Plasma Reactor A Parametric Study of the Effect of Temperature and Hydrocarbon Species on the...

  16. Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons

    E-Print Network [OSTI]

    Chickos, James S.

    values for these thermochemical properties and for the enthalpies of formation in the gas state at T=298Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons María Victoria Experimental thermochemical properties of benzene, toluene, and 63 polycyclic aro- matic hydrocarbons

  17. Seismic Analysis Using Wavelet Transform for Hydrocarbon Detection 

    E-Print Network [OSTI]

    Cai, Rui

    2012-02-14

    result in successful hydrocarbon finds because abnormal seismic amplitude variations can sometimes be caused by other factors, such as alternative lithology and residual hydrocarbons in certain depositional environments. Furthermore, not all gas fields...

  18. Calculating the hyper--Wiener index of benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Calculating the hyper--Wiener index of benzenoid hydrocarbons Petra Ÿ Zigert 1 , Sandi KlavŸ zar 1. (1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons

  19. Calculating the hyperWiener index of benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Calculating the hyper­Wiener index of benzenoid hydrocarbons Petra Zigert1 , Sandi Klavzar1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons. Some time

  20. Hydrogen separation membranes annual report for FY 2006.

    SciTech Connect (OSTI)

    Balachandran, U.; Chen, L.; Ciocco, M.; Doctor, R. D.; Dorris, S.E.; Emerson, J. E.; Fisher, B.; Lee, T. H.; Killmeyer, R. P.; Morreale,B.; Picciolo, J. J.; Siriwardane, R. V.; Song, S. J.

    2007-02-05

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. This goal of this project is to develop two types of dense ceramic membrane for producing hydrogen nongalvanically, i.e., without electrodes or external power supply, at commercially significant fluxes under industrially relevant operating conditions. The first type of membrane, hydrogen transport membranes (HTMs), will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. The second type of membrane, oxygen transport membranes (OTMs), will produce hydrogen by nongalvanically removing oxygen that is generated when water dissociates at elevated temperatures. This report describes progress that was made during FY 2006 on the development of OTM and HTM materials.

  1. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul (Acton, MA)

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  2. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  3. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  4. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  5. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  6. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAE; ALGAL BIOMASS; HYDROCARBON BIOFUELS; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy BIOMASS...

  7. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOE Patents [OSTI]

    Reagen, William Kevin (Stillwater, MN); Janikowski, Stuart Kevin (Idaho Falls, ID)

    1999-01-01

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  8. Direct Observation of the Oxygenated Species during Oxygen Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray...

  9. In situ method for recovering hydrocarbon from subterranean oil shale deposits

    SciTech Connect (OSTI)

    Friedman, R.H.

    1987-11-03

    This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

  10. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  11. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  12. RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART I: ALLENE developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reaction pathways2007 #12;3 INTRODUCTION Soots and polyaromatic hydrocarbons (PAH), which are present in the exhaust gas

  13. The Production of Non-Methane Hydrocarbons by Marine Plankton

    E-Print Network [OSTI]

    The Production of Non-Methane Hydrocarbons by Marine Plankton Stephanie Lyn Shaw Center for Global://web.mit.edu/cgcs/ Printed on recycled paper #12;1 The Production of Non-Methane Hydrocarbons by Marine Plankton by Stephanie of Non-Methane Hydrocarbons by Marine Plankton by Stephanie Lyn Shaw Submitted to the Department of Earth

  14. 2004-01-2299 Elevated Carbon Dioxide Alters Hydrocarbon

    E-Print Network [OSTI]

    Paré, Paul W.

    2004-01-2299 Elevated Carbon Dioxide Alters Hydrocarbon Emissions and Flavor in Onion P. W. Paré, R of low-molecular-weight hydrocarbons and sulfur derivatives. Odd-chain ketones are emitted from onion-through chambers, volatile hydrocarbons from undamaged plants can be collected under different environmental

  15. Production of hydrocarbons from hydrates. [DOE patent application

    DOE Patents [OSTI]

    McGuire, P.L.

    1981-09-08

    An economical and safe method of producing hydrocarbons (or natural gas) from in situ hydrocarbon-containing hydrates is given. Once started, the method will be self-driven and will continue producing hydrocarbons over an extended period of time (i.e., many days).

  16. Method for removing chlorine compounds from hydrocarbon mixtures

    DOE Patents [OSTI]

    Janoski, E.J.; Hollstein, E.J.

    1984-09-29

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  17. Binary coding of Kekule structures of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Binary coding of Kekulâ??e structures of catacondensed benzenoid hydrocarbons Sandi KlavŸzar, aâ??e structures of benzenoids Key words: benzenoid hydrocarbons, benzenoid graph, resonance graph, Kekul easily be recovered from its binary code. Key words: benzenoid hydrocarbons, benzenoid graph, resonance

  18. Hydrocarbon Formation in Metallic Iron/Water Systems

    E-Print Network [OSTI]

    Deng, Baolin

    Hydrocarbon Formation in Metallic Iron/Water Systems B A O L I N D E N G , , § T I M O T H Y J . C-labeled hydrocarbons are produced. In the absence of chlorinated ethenes, however, lower con- centrations of many of the same hydrocarbons (methane and C2-C6 alkanes and alkenes) are also produced. Hardy and Gillham (1996

  19. Binary coding of Kekule structures of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Binary coding of Kekul´e structures of catacondensed benzenoid hydrocarbons Sandi Klavzar of benzenoids Key words: benzenoid hydrocarbons, benzenoid graph, resonance graph, Kekul´e structure, algorithm easily be recovered from its binary code. Key words: benzenoid hydrocarbons, benzenoid graph, resonance

  20. Wiener Numbers of Pericondensed Benzenoid Hydrocarbons Sandi Klav zar

    E-Print Network [OSTI]

    Klavzar, Sandi

    Wiener Numbers of Pericondensed Benzenoid Hydrocarbons Sandi Klav#20;zar Department of Mathematics expressions for W for several homologous series of pericondensed benzenoid hydrocarbons. An elementary proof polycyclic systems studied were catacondensed benzenoid hydrocarbons. 11{14 Few years ago the situation

  1. Atomic displacements due to spinspin repulsion in conjugated alternant hydrocarbons

    E-Print Network [OSTI]

    Benzi, Michele

    Atomic displacements due to spin­spin repulsion in conjugated alternant hydrocarbons Ernesto-induced atomic displacements in conjugated alt- ernant hydrocarbons. It appears to be responsible alternant hydrocarbons (CAHs) have played a fun- damental role in the development of theoretical chemistry

  2. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  3. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  4. Hydrogen production from water: Recent advances in photosynthesis research

    SciTech Connect (OSTI)

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  5. Petroleum Supply Annual 2004 Volume 1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    losses of crude oil and petroleum products (e.g., spills, fire losses, contamination, etc.) Includes pentanes plus, other hydrocarbons, oxygenates, hydrogen,...

  6. Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, G.R.B.; Barraclough, B.L.; Vanderborgh, N.E.

    1981-02-19

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus, and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  7. Mass Transfer of Polynuclear Aromatic Hydrocarbons from

    E-Print Network [OSTI]

    Peters, Catherine A.

    ). Many PAHs are only sparingly soluble, and large volumes of water can therefore be contaminated by smallMass Transfer of Polynuclear Aromatic Hydrocarbons from Complex DNAPL Mixtures S U P A R N A M U K . * , Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, The University

  8. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  9. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-09-24

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  10. Reduction of Hydrocarbon Losses to Flare Systems 

    E-Print Network [OSTI]

    Page, J.

    1979-01-01

    action to minimize hydrocarbon releases, 2) install flare gas recovery systems, and 3) recover or reduce process streams which have to be continuous1y vented to the flare system. This report discusses alternate designs for flare gas monitoring and flare...

  11. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  12. Anti-Hydrogen Jonny Martinez

    E-Print Network [OSTI]

    Budker, Dmitry

    Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

  13. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect (OSTI)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in air) for the duration of the tests. However, catalytic reaction of hydrogen with carbon triple or double bonds in the getter materials did not take place. Instead, catalytic recombination was the predominant gettering mechanism in both getter materials as evidenced by (1) consumption of oxygen in the belljars, (2) production of free water in the belljars, and (3) absence of chemical changes in both getter materials as shown by nuclear magnetic resonance spectra.

  14. THE ROLE OF POLYCYCLIC AROMATIC HYDROCARBONS IN ULTRAVIOLET EXTINCTION. I. PROBING SMALL MOLECULAR POLYCYCLIC AROMATIC HYDROCARBONS1

    E-Print Network [OSTI]

    THE ROLE OF POLYCYCLIC AROMATIC HYDROCARBONS IN ULTRAVIOLET EXTINCTION. I. PROBING SMALL MOLECULAR POLYCYCLIC AROMATIC HYDROCARBONS1 Geoffrey C. Clayton,2 Karl D. Gordon,3 F. Salama,4 L. J. Allamandola,4, with particular emphasis on a search for absorp- tion features produced by polycyclic aromatic hydrocarbons (PAHs

  15. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame

    SciTech Connect (OSTI)

    Castaldi, M.J.; Marinov, N.M.; Melius, C.F.

    1996-02-01

    Experimental and detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in a rich, sooting, ethylene-oxygen-argon premixed flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer (GC/MS) technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings. The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon growth involve the combination of resonantly stabilized radicals. In particular, propargyl and 1-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl radicals and fused rings that have a shared C{sub 5} side structure. Naphthalene production through the reaction step of cyclopentadienyl self-combination and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be important in the flame modeling study. The removal of phenyl by O{sub 2} leading to cyclopentadienyl formation is expected to play a pivotal role in the PAH or soot precursor growth process under fuel-rich oxidation conditions.

  16. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  17. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  18. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  19. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    SciTech Connect (OSTI)

    King, Sean W. Tanaka, Satoru; Davis, Robert F.; Nemanich, Robert J.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000?°C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550?°C) as well as higher temperatures (>700?°C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ?750?°C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800?°C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700?°C remain terminated by some surface C–O and Si–O bonding, they may still exhibit significant chemical reactivity due to the creation of surface dangling bonds resulting from H{sub 2} desorption from previously undetected silicon hydride and surface hydroxide species.

  20. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    SciTech Connect (OSTI)

    Lewis, Alex J; Ren, Shoujie; Ye, Philip; Kim, Pyoungchung; Labbe, Niki; Borole, Abhijeet P

    2015-01-01

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.

  1. Selective electrochemical generation of hydrogen peroxide from water oxidation

    E-Print Network [OSTI]

    Viswanathan, Venkatasubramanian; Nørskov, Jens K

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet, over a billion people lack access to clean drinking water. Present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH$^*$ can be used as a descriptor to screen for selectivity trends between the 2e$^-$ water oxidation to H$_2$O$_2$ and the 4e$^-$ oxidation to O$_2$. We show that materials that bind oxygen intermediates sufficiently weakly, such as SnO$_2$, can activate hydrogen peroxide evolution. We present a rati...

  2. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOE Patents [OSTI]

    Adzic, Radoslav (East Setauket, NY); Zhang, Junliang (Stony Brook, NY); Vukmirovic, Miomir (Port Jefferson Station, NY)

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  3. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  4. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  5. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Patents [OSTI]

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  6. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  7. Method and apparatus for synthesizing hydrocarbons

    DOE Patents [OSTI]

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21

    A method and apparatus for synthesizing a mixture of hydrocarbons having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further includes Na present as a substitutional cation in an amount of about 5 to 10 atom %. At a temperature of about 340 to 360/sup 0/C, and at pressures of about 20 to 50 atm, CH/sub 3/OH is produced in an amount of about 90 wt % of the total hydrocarbon mixture, and comprised 1 mole % of the effluent gas.

  8. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  9. Conversion method for gas streams containing hydrocarbons

    DOE Patents [OSTI]

    Mallinson, Richard G. (Norman, OK); Lobban, Lance (Norman, OK); Liu, Chang-jun (Tianjin, CN)

    2000-01-01

    An apparatus and a method of using the apparatus are provided for converting a gas stream containing hydrocarbons to a reaction product containing effluent molecules having at least one carbon atom, having at least one interior surface and at least one exterior surface, a first electrode and a second electrode with the first and second electrodes being selectively movable in relation to each other and positioned within the housing so as to be spatially disposed a predetermined distance from each other, a plasma discharge generator between the first and second electrodes, gas stream introducer and a collector for collecting the reaction product effluent produced by the reaction of the gas stream containing hydrocarbons with the plasma discharge between the first and second electrodes.

  10. Characterization and quantitative analyses of polychlorinated hydrocarbons 

    E-Print Network [OSTI]

    Richardson, Robert Leary

    1974-01-01

    and quantitativ' analyses of certain poly- chlorinated hydrocarbons (PCB, !iDT and its metabolites in marine biota) were investigated. The occurence ot these compounds were expected at such low concentrations the use of the elec, tron capt gas... of contamination improved the sensitivity of detection of these chlorinated hydro- carbons to the parts per bi'!lion range. A variety of samples from the Gulf of Nexi co and Northern Caribbean were analyzed. The analytical procedure consisted of macerating...

  11. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  12. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  13. Hydrocarbon Fouling of SCR during PCCI combustion

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

    2012-01-01

    The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

  14. Sandia Energy - Technical Reference for Hydrogen Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Reference for Hydrogen Compatibility of Materials Home Transportation Energy Hydrogen Materials & Components Compatibility Technical Reference for Hydrogen Compatibility...

  15. Hydrogen Production: Electrolysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Hydrogen Production: Electrolysis Hydrogen Production: Electrolysis Electrolysis is a promising option for hydrogen production from renewable resources. Electrolysis...

  16. Dynamics of the Dissociation of Hydrogen on Stepped Platinum Surfaces Using the ReaxFF Reactive Force Field

    E-Print Network [OSTI]

    van Duin, Adri

    for Catalytic Science and Technology, UniVersity of Delaware, Newark, Delaware 19716-3110 Adri C. T. van Duin-board hydrocarbon reforming, and preferential oxidation reactions for hydrogen-purification needs in fuel cells challenges because the typical methods for studying catalytic reactions, density functional theory (DFT) used

  17. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  18. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  19. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  20. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  1. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  2. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  3. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  4. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  5. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  6. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generator currently used to provide power for refrigerated containers on land and on transport barges. Hydrogenics Corp. is designing and manufacturing a containerized...

  7. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  8. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  9. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  10. Novel Hydrogen Carriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carriers Novel Hydrogen Carriers Hydrogen carriers store hydrogen in some other chemical state rather than as free hydrogen molecules. Additional research and analyses are...

  11. Gaseous Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen Delivery Gaseous Hydrogen Delivery Gaseous hydrogen is most commonly delivered either by trucks or through pipelines. Because gaseous hydrogen is typically...

  12. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  13. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  14. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  15. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U-based technology. (a) Based on equal quantities of coal used to produce hydrogen and electricity 4 #12;Why Hydrogen From Coal? Huge U.S. coal reserves Hydrogen can be produced cleanly from coal Coal can provide

  16. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  17. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  18. Palladium-coated zirconium membranes for oxidative extraction of hydrogen

    SciTech Connect (OSTI)

    Hsu, C.; Buxbaum, R.E.

    1987-01-01

    Palladium-coated metal membranes are attractive choices for low pressure, high temperature hydrogen and hydrogen isotope extractions, e.g. from fusion blanket fluids. The authors present experimental data on hydrogen transport through palladium-coated zirconium membranes at 600 - 700/sup 0/K. The upstream hydrogen pressure range is 10/sup -4/ to 10/sup -6/ torr and an oxygen-containing gas flows over the downstream side of the membrane. Thus, the irreversible oxidation reaction drives the flux. Deuterium permeabilities in zirconium are 2.00x10/sup -6/exp(59/T)+-20% g-mol/m.s.Pa/sup 1/2/, similar to the values obtained from diffusivity and solubility measurements. Extrapolated deuterium absorptive sticking coefficients on palladium are about .05.

  19. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  20. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.