National Library of Energy BETA

Sample records for hydrocarbon-bearing geological formations

  1. SPE 159255-PP Rock Classification from Conventional Well Logs in Hydrocarbon-Bearing

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 159255-PP Rock Classification from Conventional Well Logs in Hydrocarbon-Bearing Shale Andrew C typing method for application in hydrocarbon-bearing shale (specifically source rock) reservoirs using-hoc correlations where the interpretation becomes a core matching exercise. Scale effects on measurements

  2. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  3. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  4. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  5. Geologic Maps Geology 200

    E-Print Network [OSTI]

    Kammer, Thomas

    Geologic Maps Geology 200 Geology for Environmental Scientists #12;Geologic Map of the US #12;Symbols found on geologic maps #12;Horizontal Strata #12;Geologic map of part of the Grand Canyon. Each color represents a different formation. #12;Inclined Strata #12;Dome #12;Geologic map of the Black Hills

  6. Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations

    E-Print Network [OSTI]

    Mills, Richard

    Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

  7. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  8. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    in U.S. Geological Survey Oil Shale Assessment Team, ed. ,Oil shale resources in the Eocene Green River Formation,Assessment of in-place oil shale resources in the Eocene

  9. DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2).

  10. Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Abstract Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy that can contribute to stabilize the atmospheric concentration of carbon dioxide to maintain adsorbed methane in the coalbed formation. But now carbon dioxide will replace the methane

  11. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect (OSTI)

    Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  12. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO?) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO? storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  13. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  14. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  15. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  16. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  17. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  18. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  19. Universitt StuttgartInstitut fr Wasserbau, Lehrstuhl fr Hydromechanik und Hydrosystemmodellierung Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    Hydrosystemmodellierung Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations 1/16 Modelling April 2008 Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations #12 on Numerical Models for Carbon Dioxide Storage in Geological Formations 2/16 CO2 leakage mitigation using

  20. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

    SciTech Connect (OSTI)

    Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

    2012-02-01

    The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.

  1. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

    SciTech Connect (OSTI)

    Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

    2011-11-29

    Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.

  2. Method of detecting leakage from geologic formations used to sequester CO.sub.2

    DOE Patents [OSTI]

    White, Curt (Pittsburgh, PA); Wells, Arthur (Bridgeville, PA); Diehl, J. Rodney (Pittsburgh, PA); Strazisar, Brian (Venetia, PA)

    2010-04-27

    The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

  3. Joint Radial Inversion of Resistivity and Sonic Logs to Estimate In-Situ Petrophysical and Elastic Properties of Formations

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    's dry bulk and shear moduli, porosity, and water saturation from the joint inversion of borehole array, with the formation model described by a radial variation of water and hydrocarbon saturations representative of mud in the frequency domain. Synthetic cases consider water-base mud filtrate invading a hydrocarbon-bearing sand

  4. Supercritical fluid behavior at nanoscale interfaces: implications for CO2 sequestration in geologic formations

    SciTech Connect (OSTI)

    Cole, David R [ORNL; Chialvo, Ariel A [ORNL; Rother, Gernot [ORNL; Vlcek, L. [Vanderbilt University; Cummings, Peter T [ORNL

    2010-01-01

    Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. A key aspect of this process is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We report the behavior of pure CO2 interacting with simple substrates, i.e. SiO2 and mica, that act as proxies for more complex mineralogical systems. Modeling of small-angle neutron scattering (SANS) data taken from CO2- silica aerogel (95% porosity; 6 nm pores) interactions indicates the presence of fluid depletion for conditions above the critical density. A theoretical framework, i.e. integral equation approximation (IEA), is presented that describes the fundamental behavior of near-critical adsorption onto a non-confining substrate that is consistent with SANS experimental results. Structural and dynamic behavior for supercritical CO2 interaction in K-mica slit pores was assessed by classical molecular dynamics (CMD). These results indicate the development of distinct layers of CO2 within slit pores, reduced mobility by one to two orders of magnitudes compared to bulk CO2 depending on pore size and formation of bonds between CO2 oxygens and H from mica hydroxyls. Analysis of simple, well-characterized fluid-substrate systems can provide details on the thermodynamic, structural and dynamic properties of CO2 at conditions relevant to sequestration.

  5. Geological Engineering Geological Engineering

    E-Print Network [OSTI]

    Wehlau, David

    1 Geological Engineering l 1 Geological Engineering www.geol.ca Queen's Geological Engineering Vicki Remenda, PEng ­ GEOENG Head Department of Geological Sciences and Geological Engineering Miller Hall Welcome to... Orientation CLASS OF 2018 What is Geological Engineering ? Geological Engineering

  6. Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2008-09-18

    This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

  7. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    W PROGRAMME Geological characterization prior to repositoryShort-term Characterization Program Geological Formations toexisting geological information, site characterization and

  8. Forward Modeling of the Induction Log Response of a Fractured Geologic Formation 

    E-Print Network [OSTI]

    Bray, Steven Hunter

    2013-05-02

    is a very powerful tool that provides valuable information to industry and researchers. Any way to further develop this proven method is beneficial. Whether it is characterizing hydro-fracking jobs or evaluating formations in exploration...

  9. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    SciTech Connect (OSTI)

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  10. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    SciTech Connect (OSTI)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  11. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    SciTech Connect (OSTI)

    Dobson, Patrick; Houseworth, James

    2013-11-22

    The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.

  12. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along the Ohio River Valley corridor in the Appalachian Basin, which underlies large concentrations of CO{sub 2} emission sources. In addition, some wells in the Michigan basin are included. Assessment of the geologic and petrophysical properties of zones of interest has been conducted. Although a large number of formations have been evaluated across the geologic column, the primary focus has been on evaluating the Cambrian sandstones (Mt. Simon, Rose Run, Kerbel) and carbonates layers (Knox Dolomite) as well as on the Silurian-Devonian carbonates (Bass Island, Salina) and sandstones (Clinton, Oriskany, Berea). Factors controlling the development of porosity and permeability, such as the depositional setting have been explored. In northern Michigan the Bass Islands Dolomite appears to have favorable reservoir development. In west central Michigan the St. Peter sandstone exhibits excellent porosity in the Hart and Feuring well and looks promising. In Southeastern Kentucky in the Appalachian Basin, the Batten and Baird well provided valuable data on sequestration potential in organic shales through adsorption. In central and eastern Ohio and western West Virginia, the majority of the wells provided an insight to the complex geologic framework of the relatively little known Precambrian through Silurian potential injection targets. Although valuable data was acquired and a number of critical data gaps were filled through this effort, there are still many challenges ahead and questions that need answered. The lateral extent to which favorable potential injection conditions exist in most reservoirs is still generally uncertain. The prolongation of the characterization of regional geologic framework through partnership would continue to build confidence and greatly benefit the overall CO{sub 2} sequestration effort.

  13. Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations

    SciTech Connect (OSTI)

    Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

    2014-03-01

    Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102–103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s–1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

  14. Phased Array Approach To Retrieve Gases, Liquids, Or Solids From Subsurface And Subaqueous Geologic Or Man-Made Formations

    DOE Patents [OSTI]

    Rynne, Timothy M. (Long Beach, CA); Spadaro, John F. (Huntington Beach, CA); Iovenitti, Joe L. (Pleasant Hill, CA); Dering, John P. (Lakewood, CA); Hill, Donald G. (Walnut Creek, CA)

    1998-10-27

    A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.

  15. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  16. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 9, Formation and stability of gas hydrates of the Middle America Trench

    SciTech Connect (OSTI)

    Finley, P.; Krason, J.

    1986-12-01

    This report presents a geological description of the Pacific margin of Mexico and Central America, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, and distribution of hydrates within the sediments are also included in this report. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 150 refs., 84 figs., 17 tabs.

  17. Geologic and climatic controls on the formation of the Permian coal measures in the Sohagpur coal field, Madhya Pradesh, India

    SciTech Connect (OSTI)

    Milici, R.C.; Warwick, P.D.; Mukhopadhyah, A.; Adhikari, S.; Roy, S.P.; Bhattacharyya, S.

    1999-07-01

    The U.S. Geological Survey (USGS) and the Geological Survey of India (GSI) are concluding a cooperative study of the coking coal deposits in the Sohagpur coal field in central India. Because of the importance of coal in India's economy, the Coal Wing of the Geological Survey of India has studied the area intensely since the early 1980's. This report summarizes the overall stratigraphic, tectonic, and sedimentologic framework of the Sohagpur coal field area, and the interpretations of the geologic and climatic environments required for the accumulation of the thick Gondwana coal deposits, both coking and non-coking.

  18. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  19. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  20. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO2 in Heterogeneous Geological Formations

    SciTech Connect (OSTI)

    Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif; Mori, Hiroko; Vargas-Johnson, Javier; González-Nicolás, Ana; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO2 in supercritical fluid phase (scCO2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanisms in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO2. Laboratory experiments using scCO2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods and research results.

  1. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO?

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO? storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO? plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO? storage in the area would represent higher risk than other similar size projects in the US and overseas.

  2. 1 Geological Sciences GEOLOGICAL SCIENCES

    E-Print Network [OSTI]

    Vertes, Akos

    1 Geological Sciences GEOLOGICAL SCIENCES Geological sciences' faculty members are engaged in research on the geology and paleontology of the Appalachian and Rocky mountains, Asia and elsewhere. They collaborate with scientists from the U.S. Geological Survey and other international organizations. Research

  3. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

  4. YOUNG GEOLOGY GEOLOGY OF THE

    E-Print Network [OSTI]

    Seamons, Kent E.

    YOUNG GEOLOGY UNIVERSITY May, 1962 GEOLOGY OF THE SOUTHERN WASATCH MOUNTAINS AND VICIN~IM,UTAH C O ....................J. Keith Rigby 80 Economic Geology of North-Central Utah ...,............... Kcnneth C.Bdodc 85 Rod Log ........................Lehi F. Hintze, J. Ka# Ri&, & ClydeT. Hardy 95 Geologic Map of Southern

  5. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  6. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  7. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I Preble Formation, a Cambrian Outer ..........................................................................J. Roger Olsen Geology of the Sterling Quadrangle, Sanpete County, Utah ..............................................................................James Michael Taylor Publications and Maps of the Geology Department Cover: Aertalphorograph rhowing

  8. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    GEOLOGICAL FORMATIONS IN UKRAINE D.P. Khrushchov , and V.M.25.1. Subdivision of the Ukraine on conditions of R A Win geological formations. UKRAINE CH. Figure 25.2. Concept

  9. Geological Carbon Storage: The Roles of Government

    E-Print Network [OSTI]

    Geological Carbon Storage: The Roles of Government and Industry in Risk Management ROSE MURPHY version of this publication, please send an email to Mark Jaccard (jaccard@sfu.ca). #12;8 Geological to a location suitable for long-term storage. CO2 can be stored in onshore or offshore geological formations

  10. Geology Major www.geology.pitt.edu/undergraduate/geology.html

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Geology Major www.geology.pitt.edu/undergraduate/geology.html Revised: 03/2013 Geology is a scientific discipline that aims to understand every aspect of modern and ancient Earth. A degree in geology the field of geology, environmental and geotechnical jobs exist for people with BS degrees. A master

  11. Structural and stratigraphic evolution of the central Mississippi Canyon Area: interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards 

    E-Print Network [OSTI]

    Brand, John Richard

    2006-04-12

    Approximately 720 square miles of digital 3-dimensional seismic data covering the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to examine the structural and stratigraphic evolution of the geology in the study area...

  12. Geological flows

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2008-11-19

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  13. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

  14. Mathematical Geology, Vol. 4, No. 3, 1972 Mathematical Techniques for Paleocurrent Analysis

    E-Print Network [OSTI]

    Jammalamadaka, S. Rao

    Mathematical Geology, Vol. 4, No. 3, 1972 Mathematical Techniques for Paleocurrent Analysis procedure. Finally, theprocedures for testing the homogeneity of directional data from several geological directions from different geological formations belong to significantly different populations. KEY WORDS

  15. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

  16. GEOLOGY, B.S.G. GEOLOGY OPTION

    E-Print Network [OSTI]

    Hamburger, Peter

    GEOLOGY, B.S.G. GEOLOGY OPTION (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32 credits GEOLOGY BSG CORE COURSES (66 credits) *Note: grades of C- or better required in GEOL courses/2.0 GPA ______ 3 - 5 Credits in Geology or Geography with Laboratory (Select 1 of the following): ___3 GEOL G103

  17. West Virginia University Geology 404, Geology Field Camp

    E-Print Network [OSTI]

    Kammer, Thomas

    .geo.wvu.edu/~kammer/geol404.htm Format: Five weeks of geologic field work in the Northern Rocky Mountains. Field areas, Wyoming, Bighorn Mountains, Wyoming, Yellowstone National Park, Grand Teton National Park, and Southwest will include the Black Hills, Big Horn Mountains, Yellowstone National Park, Grand Teton National Park

  18. Geological Characterization of California's Offshore

    E-Print Network [OSTI]

    for the various data generated by the West Coast Regional Carbon Sequestration Partnership. The project's goals are to: · Perform a preliminary geologic characterization of the carbon dioxide sequestration of carbon sequestration potential. · For select formations previously studied in the Southern Sacramento

  19. Comparison of methods for geologic storage of carbon dioxide...

    Office of Scientific and Technical Information (OSTI)

    storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate COsub 2 emissions....

  20. A Handbook for Geology Students Why study Geology?.............................................................................................3

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    1 A Handbook for Geology Students #12;2 Contents Why study Geology ..................................................................................7 Why Appalachian Geology?................................................................................10 Geology Faculty and Staff

  1. PHYSICAL GEOLOGY LABORATORY MANUAL

    E-Print Network [OSTI]

    Merguerian, Charles

    PHYSICAL GEOLOGY LABORATORY MANUAL Geology 001 Eleventh Edition by Professors Charles Merguerian and J Bret Bennington Department of Geology Hofstra University © 2010 #12;ii Table of Contents Lab and Find Out More about Geology at Hofstra Email: Geology professors can be contacted via Email: Full

  2. Principles of Historical Geology Geology 331

    E-Print Network [OSTI]

    Kammer, Thomas

    Unconformity #12;Application of the Principles of Historical Geology. What is present on the seismic cross geologist to understand stratigraphy and make correlations. #12;#12;William Smith's Geologic Map of England

  3. QUEEN'S UNIVERSITY GEOLOGICAL SCIENCES AND GEOLOGICAL ENGINEERING

    E-Print Network [OSTI]

    Sedimentology dalrymple@geol.queensu.ca Dr. M. Diederichs (Sabb Jan 15-July 15) Eng Geology; Geomech; Structural) Engineering Geology; Geohazards jhutchin@geol.queensu.ca Dr. N. James Sedimentology james@geol.queensu.ca Dr

  4. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  5. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  6. GEOLOGY (GEOL) Robinson Foundation

    E-Print Network [OSTI]

    Dresden, Gregory

    177Geology GEOLOGY (GEOL) Robinson Foundation PROFESSOR HARBOR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE A major in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology 160, 185, 211, 311, 330, 350

  7. Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California

    SciTech Connect (OSTI)

    Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

    2008-11-01

    The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

  8. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  9. Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation

    SciTech Connect (OSTI)

    Doughty, C.

    2009-04-01

    The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

  10. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    SciTech Connect (OSTI)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  11. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect (OSTI)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  12. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect (OSTI)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

  13. GEOLOGY 619 ADVANCED PETROLEUM GEOLOGY Wayne M. Ahr, Professor, CPG

    E-Print Network [OSTI]

    GEOLOGY 619 ­ ADVANCED PETROLEUM GEOLOGY Wayne M. Ahr, Professor, CPG Draft v.1 ­ October, 2008 Advanced Petroleum Geology is designed for graduate students in geology, geophysics, and engineering. This course differs from Geology 404 ­ Petroleum Geology ­ by its more rigorous treatment of subject matter

  14. Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section

    E-Print Network [OSTI]

    Harbor, David

    Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic maps and geologic cross sections. A big part

  15. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 33, Part 1 CONTENTS Tertiary Geologic History Geology of the Deadman Canyon 7112-Minute Quadrangle, Carbon County, Utah, Utah. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .James Douglas Smith 135 Geology

  16. Physical and geological processes of delta formation 

    E-Print Network [OSTI]

    Bates, Charles Carpenter

    1953-01-01

    This study was initiated to review the literature and technology applicable to coating beverage cans, to confirm previous assumptions made about the low air emissions impact of the UV can printing process, to determine energy estimates for thermal...

  17. Overview: Gas hydrate geology and geography

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-01-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  18. Overview: Gas hydrate geology and geography

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-06-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  19. 12.001 Introduction to Geology, Spring 2011

    E-Print Network [OSTI]

    Perron, Taylor

    This course introduces students to the basics of geology. Through a combination of lectures, labs, and field observations, we will address topics ranging from formation of the elements, mineral and rock identification, and ...

  20. Environmental Geology Major www.geology.pitt.edu/uprogs.html

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Environmental Geology Major www.geology.pitt.edu/uprogs.html Revised: 04/2004 Environmental geology in environmental geology provides the diverse skills required to work in many different employment settings issues. Within the field of geology, environmental and geotechnical jobs exist for people with BS degrees

  1. Department of Geology and Geological Engineering University of Mississippi Announces

    E-Print Network [OSTI]

    Elsherbeni, Atef Z.

    Department of Geology and Geological Engineering University of Mississippi Announces Krista Pursuing a degree within the Geology & Geological Engineering department Record of financial need the University of Mississippi with a Bachelor of Science degree in geological engineering in 1982. After earning

  2. Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section

    E-Print Network [OSTI]

    Harbor, David

    Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section Read Ch. 7 before you begin. The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic

  3. REMOTE SENSING GEOLOGICAL SURVEY

    E-Print Network [OSTI]

    sensing data used in CPRM geologic projects Future perspective: the Spectral Library of Geological Survey Pesquisa de Recursos Minerais (CPRM) is a state-owned company that carries out the functions of Brazil ­ CPRM #12;Examples of use of LANDSAT imagery in CPRM projects Field works planning ­ Enhancement

  4. GEOLOGY & GEOPHYSICS 2014-2015

    E-Print Network [OSTI]

    Bermúdez, José Luis

    GEOLOGY & GEOPHYSICS 2014-2015 Graduate Student Handbook - 1 · Geology & Geophysics Core Values - 2 · A Message from the Graduate Advisor - 3 · Department Organizations - 60 · Departmental Executive Committee - 61 · Geology& Geophysics Development Advisory Council

  5. Chapter 14 Geology and Soils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in bold and acronyms are defined in Chapter 32, Glossary and Acronyms. Chapter 14 Geology and Soils This chapter describes existing geological and soil conditions in the...

  6. BS in GEOLOGY (694022) MAP Sheet Department of Geological Sciences

    E-Print Network [OSTI]

    Seamons, Kent E.

    351 Mineralogy Geol 352 Petrology Geol 370 Sedimentology and Stratigraphy Geol 375 Structural Geology

  7. 460:410--Field Geology COURSE INFORMATION

    E-Print Network [OSTI]

    sedimentology, stratigraphy, and structural geology. Students gain skills in geologic mapping on air: Structural Geology AND Stratigraphy or Sedimentary Geology; OR permission of instructors IV. Instructors 21 Aug Museum: Quiz; lectures and exercises on Fundy basin geology; stratigraphy & depositional

  8. BS in GEOLOGY: Environmental Geology Emphasis (694029) MAP Sheet Department of Geological Sciences

    E-Print Network [OSTI]

    Seamons, Kent E.

    Mineralogy Geol 352 Petrology Geol 370 Sedimentology and Stratigraphy Geol 375 Structural Geology Geol 410

  9. Cigeo, the French Geological Repository Project - 13022

    SciTech Connect (OSTI)

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)] [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)

    2013-07-01

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  10. Critical Issues Geologic mapping

    E-Print Network [OSTI]

    Polly, David

    , and productive cooperation with many other organizations all combine to enhance the IGS-bed methane, and geothermal energy. The IGS's important sources of information--geologic maps, rock and core technologies of energy production, such as integrated gasification combined cycle systems and underground coal

  11. Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico 

    E-Print Network [OSTI]

    Al Haddad, Sharbel

    2012-10-19

    -carbonaceous facies of the Haynesville Formation. These carbonate reservoirs are composed of vuggy boundstone and moldic grainstone, and the petroleum trap is stratigraphic being controlled primarily by changes in depositional facies. To maximize recovery...

  12. Geology and Geophysics 454: Engineering Geology Spring Semester, 2015, 3.0 Units

    E-Print Network [OSTI]

    1 Geology and Geophysics 454: Engineering Geology Spring Semester, 2015: "Engineering Geology" by Perry Rahn, or "Practical Engineering Geology" by Steve Hencher Class Themes This class emphasizes a modern approach to engineering geology

  13. The Lapworth Museum of Geology

    E-Print Network [OSTI]

    Birmingham, University of

    The Lapworth Museum of Geology www.lapworth.bham.ac.uk www.bham.ac.uk Events The Lapworth Lectures take place on evenings during University term time. These lectures are on a wide range of geological geological topics, usually based around collections in the museum. These provide an opportunity to see

  14. DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE

    E-Print Network [OSTI]

    DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE SURVIVAL MANUAL 2014-2015 SCHOOL OF OCEAN & EARTH SCIENCE & TECHNOLOGY UNIVERSITY OF HAWAI`I AT MNOA Updated January 2015 #12;INTRODUCTION 1 Geology OF GEOLOGY & GEOPHYSICS _ 2 Who We Are _ 2 Where To Get Help _ 2 POLICIES, PROCEDURES & REQUIREMENTS 3

  15. GEOLOGY, September 2010 823 INTRODUCTION

    E-Print Network [OSTI]

    Demouchy, Sylvie

    GEOLOGY, September 2010 823 INTRODUCTION Deformations around transpressive plate boundaries numerical models constrained by global positioning system (GPS) observations and Geology, September 2010; v. 38; no. 9; p. 823­826; doi: 10.1130/G30963.1; 3 figures; 1 table. © 2010 Geological Society

  16. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  17. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  18. Process for structural geologic analysis of topography and point data

    DOE Patents [OSTI]

    Eliason, Jay R. (Richland, WA); Eliason, Valerie L. C. (Richland, WA)

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  19. Gravity modeling of Cenozoic extensional basins, offshore Vietnam 

    E-Print Network [OSTI]

    Mauri, Steven Joseph

    1993-01-01

    Integrating Bouguer gravity and satellite-derived free-air gravity data with published geological and geophysical data allows modeling crustal structure and estimating crustal extension for the hydrocarbon bearing Mekong and Song Hong - Yinggehai...

  20. Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra,

    E-Print Network [OSTI]

    Hassanizadeh, S. Majid

    of radioactive waste in geological formations, simulation of radionuclide transport by groundwater playsMathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra, Australia waste disposal safety assessment studies. The Koongarra uranium deposit in the Alligator Rivers region

  1. BULLETIN OF CANADIAN PETROLEUM GEOLOGY VOL. 47, NO. 3 (SEPTEMBER, 1999), R 270-297

    E-Print Network [OSTI]

    strata of northern Alberta. The Peace River deposit comprises bitumen-rich sands from the Aptian Formation. Mississippian carbonates, although saturated with bitumen locally, in effect provided the bottomBULLETIN OF CANADIAN PETROLEUM GEOLOGY VOL. 47, NO. 3 (SEPTEMBER, 1999), R 270-297 Regional geology

  2. Geology of the Hawaiian Islands GG103 Spring 2015

    E-Print Network [OSTI]

    , Magmatic Differentiation 3, 5 Soils and Soil Formation 1, 3, 5 Kohala, Streams, Water Erosion (P Topics due to water to soils. The goal is to achieve a basic understanding of the geological interpretations of our followed. Please read the guidelines (http://www.catalog.hawaii.edu/about-uh/campus-policies1.htm

  3. Paleoecology and paleontology of the Lower Cretaceous Kiowa Formation, Kansas

    E-Print Network [OSTI]

    Scott, R. W.

    1970-01-15

    OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS ARTICLE 52 (CRETACEOUS 1) PALEOECOLOGY AND PALEONTOLOGY OF THE LOWER CRETACEOUS KIOWA FORMATION, KANSAS ROBERT W. SCOTT Department of Geology, University of Kansas, Lawrence Present address: Waynesburg College... PALEOECOLOGY AND PALEONTOLOGY OF THE LOWER CRETACEOUS KIOWA FORMATION, KANSAS ROBERT W. SCOTT Department of Geology, University of Kansas, Lawrence Present address: Waynesburg College, Waynesburg, Pennsylvania CONTENTS PAGE ABSTRACT 5 Interspecific...

  4. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  5. DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide stored in geologic formations.

  6. Database for Regional Geology, Phase 1: A Tool for Informing Regional Evaluations of Alternative Geologic Media and Decision Making

    SciTech Connect (OSTI)

    Perry, Frank Vinton; Kelley, Richard E.; Birdsell, Suzanne M.; Lugo, Alexander Bryan; Dobson, Patrick; Houseworth, James

    2014-11-12

    Reported is progress in the following areas: Phase 1 and 2 websites for the regional geology GIS database; terrane maps of crystalline basement rocks; inventory of shale formations in the US; and rock properties and in-situ conditions for shale estimated from sonic velocity measurements.

  7. Montana State University 1 Geology Option

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Geology Option The Geology Option is a degree program designed and private sectors in fields such as petroleum geology, mining geology, seismology (including earthquake and volcanic risk assessment), hydrology (surface and ground water) natural-hazard geology, environmental clean

  8. WSU B.S. Geology Curriculum (structural)

    E-Print Network [OSTI]

    Berdichevsky, Victor

    WSU B.S. Geology Curriculum Geology GEL 3300 (structural) GEL 3400 (sed/strat) Geology Elective 1 Geology Elective 2 Yr 1 Yr 2 Yr 3 Yr 4 PHY 2130/31 MAT 2010 PHY 2140/41 CHEM 1220/30 MAT 1800 Cognates GEL 5593 (writing intensive) GEL 3160 (petrology) GEL 3650 (field camp) Geology Elective 3 GEL 2130

  9. GEOLOGY, December 2009 1115 INTRODUCTION

    E-Print Network [OSTI]

    Törnqvist, Torbjörn E.

    for land movements is to use geological data. Salt- marsh sedimentary sequences enable the recon- struction-based approaches, because subtle tectonic effects are incorporated into both the geological and 20th century rates., 2005; Church et al., 2008). It is widely accepted that the tectonic component along the passive marg

  10. Approved Module Information for EC112C, 2014/5 Module Title/Name: Geology and Soil Science Module Code: EC112C

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for EC112C, 2014/5 Module Title/Name: Geology and Soil Science Module with an introduction to: geology and rock types; the surface weathering and erosion processes leading to the formation: Knowledge and Understanding i. an appreciation of geological processes and timescale; ii. an understanding

  11. The Cleveland MuseuM of naTural hisTorY nuMber 56 GEOLOGY AND PALEONTOLOGY OF LEMUDONG'O, KENYA

    E-Print Network [OSTI]

    Hlusko, Leslea J.

    The Cleveland MuseuM of naTural hisTorY nuMber 56 GEOLOGY AND PALEONTOLOGY OF LEMUDONG'O, KENYA J. Hlusko GEOLOGY, GEOCHEMISTRY, AND STRATIGRAPHY OF THE LEMUDONG'O FORMATION, KENYA RIFT VALLEY 53: Cultural and Physical Anthropology; Archaeology; Botany; Geology; Paleobotany; Invertebrate and Vertebrate

  12. Geology and Geophysics 303: Structural Geology Fall Semester, 2015, 3.0 Units

    E-Print Network [OSTI]

    Geology and Geophysics 303: Structural Geology Fall Semester, 2015, 3.0 Units Lectures: MW 10 Geology: An Introduction, by Pollard and Martel (PM) Basic Methods of Structural Geology, by Marshak geologic structures depends largely on how we perceive them. Few geologic structures form by trivially

  13. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect (OSTI)

    Price, P.N.; Oldenburg, C.M.

    2009-02-23

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  14. Evolution: Geology and climate drive diversification

    E-Print Network [OSTI]

    Gillespie, RG; Roderick, GK

    2014-01-01

    on 7 May 2014. EVO LU TI O N Geology and climate driveIslands exemplify how geology and climate can interact toevents, the dynamics of geology and climate can be powerful

  15. GEOLOGY AND FRACTURE SYSTEM AT STRIPA

    E-Print Network [OSTI]

    Olkiewicz, O.

    2010-01-01

    of underground test site •• 1.5 Regional bedrock geology.Stripa mine, sub-till geology in the immediate mine area.Fig. 2.1 Stripa mine, sub-till geology in the immediate mine

  16. Geology, Environmental Science, Geography, Environmental Management

    E-Print Network [OSTI]

    Goodman, James R.

    2011 Geology, Environmental Science, Geography, Environmental Management Postgraduate Handbook #12 Environmental Management 14 Environmental Science 18 Geography 22 Geographic Information Science 26 Geology, Applied Geology and Geoscience 30 Course descriptions 36 Masters and PhD programmes 52 The Masters

  17. West Virginia University Geology 404, Geology Field Camp

    E-Print Network [OSTI]

    Kammer, Thomas

    , Stratigraphy-Sedimentation. Grades: Grades are based on field exercises. The final grade is based on the maps to describe and log stratigraphic sequences of sedimentary rocks. 2. To learn how to construct geologic maps

  18. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  19. On Leakage from Geologic Storage Reservoirs of CO2

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  20. Central American geologic map project

    SciTech Connect (OSTI)

    Dengo, G.

    1986-07-01

    During the Northeast Quadrant Panel meeting of the Circum-Pacific Map Project held in Mexico City, February 1985, Central American panel members proposed and adopted plans for compiling a geologic map of Central America, probably at a scale of 1:500,000. A local group with participants from each country was organized and coordinated by Rolando Castillo, director, Central American School of Geology, University of Costa Rica, for the geologic aspects, and Fernando Rudin, director, Geographic Institute of Costa Rica, for the topographic base. In 1956, the US Geological Survey published a geologic map of the region at a scale of 1:1 million. Subsequent topographic and geologic mapping projects have provided a large amount of new data. The entire area is now covered by topographic maps at a scale of 1:50,000, and these maps have been used in several countries as a base for geologic mapping. Another regional map, the Metallogenic Map of Central America (scale = 1:2 million), was published in 1969 by the Central American Research Institute for Industry (ICAITI) with a generalized but updated geologic base map. Between 1969 and 1980, maps for each country were published by local institutions: Guatemala-Belize at 1:500,000, Honduras at 1:500,000, El Salvador at 1:100,000, Nicaragua at 1:1 million, Costa Rica at 1:200,000, and Panama at 1:1 million. This information, in addition to that of newly mapped areas, served as the base for the Central American part of the Geologic-Tectonic Map of the Caribbean Region (scale = 1:2.5 million), published by the US Geological Survey in 1980, and also fro the Northeast Quadrant Maps of the Circum-Pacific Region. The new project also involves bathymetric and geologic mapping of the Pacific and Caribbean margins of the Central American Isthmus. A substantial amount of new information of the Middle America Trench has been acquired through DSDP Legs 67 and 84.

  1. International Symposium on Site Characterization for CO2Geological Storage

    SciTech Connect (OSTI)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  2. Dr Eugenio Carminati Associate Professor (Structural Geology)

    E-Print Network [OSTI]

    Dr Eugenio Carminati Associate Professor (Structural Geology) room 216 ph: +39 0649914950 fax a degree in Geological Sciences at the University of Milano with a thesis in Structural Geology. I achieved. I'm fellow of the Geological Society of Italy and of the American Geophysical union. Between 2004

  3. 242 Department of Geology Undergraduate Catalogue 201415

    E-Print Network [OSTI]

    242 Department of Geology Undergraduate Catalogue 2014­15 Department of Geology Chairperson: Abdel. Assistant Instructor: P Hajj-Chehadeh, Abdel-Halim The Department of Geology offers programs leading to the degree of Bachelor of Science in Geology, and Master of Science degrees in certain areas of the vast

  4. Geology of the Shenandoah National Park Region

    E-Print Network [OSTI]

    Eaton, L. Scott

    1 Geology of the Shenandoah National Park Region 39th Annual Virginia Geological Field Conference October 2nd - 3rd, 2009 Scott Southworth U. S. Geological Survey L. Scott Eaton James Madison University Meghan H. Lamoreaux College of William & Mary William C. Burton U. S. Geological Survey Christopher M

  5. Assessment Report, Department of Geology August, 2012

    E-Print Network [OSTI]

    Bogaerts, Steven

    Assessment Report, Department of Geology August, 2012 1. Learning Goals ALL students in geology, classification schemes, geologic history and processes, and the structure of the Earth. 3. demonstrate an understanding of the variability, complexity, and interdependency of processes within geologic systems. 4. use

  6. Reprinted February 2003 4-H Geology

    E-Print Network [OSTI]

    Tullos, Desiree

    4-H 340 Reprinted February 2003 4-H Geology Member Guide OREGON STATE UNIVERSITY EXTENSION SERVICE #12;Contents 4-H Geology Project 3 Project Recommendations 3 Books on Geology 4 Trip Planning 4 Contests 7 Identification of Rocks and Minerals 7 Physical Properties of Minerals 8 Generalized Geologic

  7. doi:10.1130/G25412A.1 2009;37;35-38Geology

    E-Print Network [OSTI]

    Wilkinson, Mark

    -associated gas (Baines and Worden, 2004). The Kimmeridge Clay Formation forms a mudrock seal, and has been exposed to the high levels of CO2 on geological time scales. We compare the Kimmeridge Clay Formation seal from the Miller field (well 16/8b-A2) to a similar Kimmeridge Clay For- mation sequence from a low-CO2

  8. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

  9. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

  10. Geological Visualization Tools and Structural Geology Geologists use several visualization tools to understand rock outcrop

    E-Print Network [OSTI]

    Li, X. Rong

    Geological Visualization Tools and Structural Geology Geologists use several visualization tools to understand rock outcrop relationships, regional patterns and subsurface geology in 3D and 4D. Geological maps to studying geologic maps. Cross sections are vertical "slices" into the earth that are used to interpret

  11. BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE

    E-Print Network [OSTI]

    Jiang, Huiqiang

    BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE WWW.GEOLOGY" for a complete range of advising information plus the latest Environmental Geology requirements. CORE COURSES (check each as completed): (30 credits) ____Choose one of the following introductory geology classes

  12. A Fundamental Study of Convective Mixing of CO2 in Heterogeneous Geologic Media using Surrogate Fluids and Numerical Modeling

    E-Print Network [OSTI]

    , H. A., and Huppert H. E., 2010, Convective dissolution of carbon dioxide in saline aquifers, GeophysA Fundamental Study of Convective Mixing of CO2 in Heterogeneous Geologic Media using Surrogate mechanisms contributing to storage of supercritical CO2 (scCO2) in deep saline geologic formations. When

  13. International Journal of Coal Geology 80 (2009) 196-210 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Bermingham, Eldredge

    2009-01-01

    International Journal of Coal Geology 80 (2009) 196-210 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Spontaneous combustion of the Upper Paleocene Cerrejon Formation coal and generation of clinker in La Guajira Peninsula (Caribbean

  14. Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology

    E-Print Network [OSTI]

    Nimmo, F.; Spencer, J.R.

    2015-01-01

    Strom, R. G. , 1995. The geology of Triton. In: Cruikshank,layering and instability. Geology 21, 299–302. Schenk, P.generating the surface geology and heat flow on Enceladus.

  15. Site Characterization of Promising Geologic Formations for CO2 Storage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » SearchwithSimulation andAttracts Private

  16. Geologic Study of the Coso Formation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii | Open EnergyStudy of the

  17. GEOLOGY, September 2007 771Geology, September 2007; v. 35; no. 9; p. 771774; doi: 10.1130/G23841A.1; 3 figures. 2007 The Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

    E-Print Network [OSTI]

    .1; 3 figures. © 2007 The Geological Society of America. For permission to copy, contact Copyright, 1992; Hyde et al., 1999) and the role of tropical mountains in promoting coal formation

  18. Reservoir architecture modeling: Nonstationary models for quantitative geological characterization. Final report, April 30, 1998

    SciTech Connect (OSTI)

    Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.

    1998-12-01

    The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.

  19. pre or co-requisite Geology Course Prerequisite Chart

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    pre or co-requisite Geology Course Prerequisite Chart 1101, 1102, 1103,1104, 1105 2250 3160 2500 hours geology junior standing; six hours geology depends on course senior standing, permission hours geology six hours geology Evolution of the Earth Geophysics Physical Geology , Historical Geology

  20. www.geology.pdx.edu Undergraduate Degrees Offered

    E-Print Network [OSTI]

    , geomorphology, geomechanics, engineering geology, and teaching and learning. e PSU program serves geology majors Glaciology Geomechanics Environmental and engineering geology K-12 education In addition to their work

  1. Why Geology Matters: Decoding the Past, Anticipating the Future

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    Review: Why Geology Matters: Decoding the Past, AnticipatingUSA Macdougall, Doug. Why Geology Matters: Decoding theE-book available. Why Geology Matters pursues two goals: to

  2. Risk assessment framework for geologic carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01

    Framework for geologic carbon sequestration risk assessment,for geologic carbon sequestration risk assessment, Energyfor Geologic Carbon Sequestration, Int. J. of Greenhouse Gas

  3. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01

    workshop on geologic carbon sequestration, 2002. Benson,verification of geologic carbon sequestration, Geophys. Res.CO 2 from geologic carbon sequestration sites, Vadose Zone

  4. GEOLOGY, February 2009 155 INTRODUCTION

    E-Print Network [OSTI]

    Huybers, Peter

    GEOLOGY, February 2009 155 INTRODUCTION Polar layered deposits (PLD)--stratigraphic sequences revealed a more complex stratigraphy, which has also been hypothesized to contain orbital features (Laskar signal, we construct a model of the north PLD (NPLD) stratigraphy from space- craft images, measure

  5. GEOLOGY, April 2011 315 INTRODUCTION

    E-Print Network [OSTI]

    Stern, Robert J.

    GEOLOGY, April 2011 315 INTRODUCTION The Gulf of Mexico opened as the western- most arm of). In spite of this general understanding about when and how it opened, the Gulf of Mexico is a rare example transitional crust thought to have formed during Gulf of Mexico opening (Dobson and Buffler, 1997; Harry

  6. Hanford Borehole Geologic Information System (HBGIS)

    SciTech Connect (OSTI)

    Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

    2005-09-26

    This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

  7. Geological carbon sequestration: critical legal issues

    E-Print Network [OSTI]

    Watson, Andrew

    Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

  8. PRECAMBRIAN GEOLOGY OF THE OJO CALIENTE QUADRANGLE,

    E-Print Network [OSTI]

    Treiman, Allan H.

    PRECAMBRIAN GEOLOGY OF THE OJO CALIENTE QUADRANGLE, RIO ARRIBA AND TAOS COUNTIES, NEW MEXICO A THESIS SUBMITTED TO THE DEPARTMENT OF GEOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD Treiman June 1977 PRECAMBRIAN GEOLOGY OF THE OJO CALIENTE QUADRANGLE, RIO ARRIBA AND TAOS COUNTIES, NEW

  9. Inner model theoretic geology Gunter Fuchs

    E-Print Network [OSTI]

    Schindler, Ralf

    Inner model theoretic geology Gunter Fuchs Ralf Schindler November 18, 2014 Abstract One of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection in what was dubbed Set Theoretic Geology in that paper. One of the main results of [FHR] was that any

  10. Geological Society of America 3300 Penrose Place

    E-Print Network [OSTI]

    Chapman, Clark R.

    Geological Society of America 3300 Penrose Place P.O. Box 9140 Boulder, CO 80301 (303) 447 and restrictions: Copyright © 2002, The Geological Society of America, Inc. (GSA). All rights reserved. Copyright. Opinions presented in this publication do not reflect official positions of the Society. #12;Geological

  11. INTERAGENCY REPORT APOLLO 17 LANDING SITE GEOLOGY

    E-Print Network [OSTI]

    Rathbun, Julie A.

    INTERAGENCY REPORT APOLLO 17 LANDING SITE GEOLOGY UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY ASTROGEOLOGY #73 JUNE 1975 Prepared under NASA Contract T-5874A and W13,130 NATIONAL STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY INTERAGENCY REPORT: ASTROGEOLOGY 73 Part I

  12. Bob Campbell Geology Museum Mission Statement

    E-Print Network [OSTI]

    Stuart, Steven J.

    Bob Campbell Geology Museum Mission Statement: To foster a greater awareness, understanding, and appreciation of the complex and dynamic nature of geology. The Museum's collection focuses on rocks, minerals and fossils of Southeastern US, but includes specimens from around the world. Bob Campbell Geology Museum

  13. GEOLOGY, B.S.G. ENVIRONMENTAL OPTION

    E-Print Network [OSTI]

    Hamburger, Peter

    GEOLOGY, B.S.G. ENVIRONMENTAL OPTION (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32/Gen Ed GEOLOGY BSG CORE COURSES (66 credits) *Note: grades of C- or better required in GEOL courses/2.0 GPA ______ 3 - 5 Credits in Geology or Geography with Laboratory (Select 1 of the following): ___3

  14. FLORIDA STATE UNIVERSITY GEOLOGY FIELD CAMP

    E-Print Network [OSTI]

    FLORIDA STATE UNIVERSITY GEOLOGY FIELD CAMP IN NORTHERN NEW MEXICO May 9, through June 15, 2015 The Department of Earth, Ocean & Atmospheric Science, Geological Science at FSU offers a 6 semester-hour course in Field Geology (GLY4790). We have been teaching this highly successful course from a facility north

  15. GeoloGy (Geol) Robinson Foundation

    E-Print Network [OSTI]

    Dresden, Gregory

    182 GeoloGy (Geol) Robinson Foundation PROFESSOR HARBoR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE Amajor in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology160,185,211,311,330,350,andacom- prehensive

  16. A publication of the Department of Geology

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;A publication of the Department of Geology Brigharn Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M. Gardner Brigham Young University Geology Studies is published semiannually by the department. Geology Studies consists of graduate-student and staff research

  17. , UNIVERSITY Brigham Young University Geology Studies

    E-Print Network [OSTI]

    Seamons, Kent E.

    , UNIVERSITY #12;Brigham Young University Geology Studies Volume 1 5 - 1968 Part 2 Studies for Students No. 1 Guide to the Geology of the Wasatch Mountain Front, Between Provo Canyon and Y Mountain, Northeast of Provo, Utah by J. Keith Rigby and Lehi F. Hintze #12;A publication of the Department of Geology

  18. Courses: Geology (GEOL) Page 321Sonoma State University 2012-2013 Catalog Geology (GEOL)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Geology (GEOL) Page 321Sonoma State University 2012-2013 Catalog Geology (GEOL) GEOL 102 Our Dynamic Earth: intrODuctiOn tO GEOLOGy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Emphasis on local geology, including earthquakes and other environmental aspects. Laboratory study

  19. Roadmap: Geology Environmental Geology -Bachelor of Science [AS-BS-GEOL-EGEO

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS-BS-GEOL-EGEO] College of Arts This roadmap is a recommended semester-by-semester plan of study for this major. However, courses on page 2 General Elective 8 #12;Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS

  20. ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has

    E-Print Network [OSTI]

    Mateo, Jill M.

    ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has promoted the systematic philosophical and fundamental study of geology since 1893. The Journal publishes original research are available for rental. For more information contact: J-advertising@press.uchicago.edu Journal of Geology

  1. Formal Concept Analysis in Geology 1 7 Formal Concept Analysis in Geology

    E-Print Network [OSTI]

    Belohlavek, Radim

    Formal Concept Analysis in Geology 1 7 Formal Concept Analysis in Geology: Attribute Tables-attribute knowledge is vague (fuzzy), which is typical of sciences like geology, biology etc. Basically, formal of fuzzy data and its possible applications in geological and related sciences. The presen- #12;Formal

  2. Courses: Geology (GEOL) Page 319Sonoma State University 2015-2016 Catalog Geology (GEOL)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Geology (GEOL) Page 319Sonoma State University 2015-2016 Catalog Geology (GEOL) geoL 102 our dynAMiC eArtH: introduCtion to geoLogy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Emphasis on local geology, including earthquakes and other environmental as- pects. Laboratory study

  3. Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological Structures

    E-Print Network [OSTI]

    Baran, Sándor

    Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological there is a large amount of missing observations, which often is the case in geological applications. We make,predictions,MarkovchainMonteCarlo,simulatedannealing,incomplete observations. INTRODUCTION In many geological applications, there is an interest in predicting properties

  4. ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has

    E-Print Network [OSTI]

    Mateo, Jill M.

    ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has promoted the systematic philosophical and fundamental study of geology since 1893. The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology

  5. Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL) geoL 102 our dynAMiC eArtH: introduCtion to geoLogy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Empha- sis on local geology, including earthquakes and other environmental aspects. Labo- ratory study

  6. Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington

    E-Print Network [OSTI]

    Merguerian, Charles

    Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington Geology Department Hofstra University © 2006 #12;i PHYSICAL GEOLOGY LABORATORY MANUAL Ninth Edition Professors Charles Merguerian and J Bret Bennington Geology Department Hofstra University #12;ii ACKNOWLEDGEMENTS We thank

  7. Boullier The fault zone geology 1 Fault zone geology: lessons from drilling through the Nojima and 1

    E-Print Network [OSTI]

    Boyer, Edmond

    Boullier The fault zone geology 1 Fault zone geology: lessons from active faults with the aim of 11 learning about the geology of the fault all 18 their objectives, have still contributed to a better geological

  8. MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 Geology and Geoenvironment

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 1 Geology and Geoenvironment MSc Programme STUDENT HANDBOOK Applied Environmental Geology, Stratigraphy Paleontology, Geography and Environment, Dynamic Geology and Tectonics/ Hydrogeology, Geophysics

  9. B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9-10 courses, 33-34 credits

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9 - Experiencing Geology Lab and either GEOSCI 103 - Intro to Oceanography or GEOSCI 105 - Dynamic Earth 4 (1) (4 semester GEOSCI 201 ­ History of the Earth 4 1st or 2nd year, spring semester GEOSCI 231 ­ Geological Field

  10. Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of SPE copyright. Abstract The estimation of porosity, water saturation, kerogen concentration, water saturation, and kerogen content determine the amount of hydrocarbon-in-place while mineral

  11. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  12. doi:10.1130/G25699A.1 2009;37;615-618Geology

    E-Print Network [OSTI]

    Benning, Liane G.

    a reference to the article's full citation. GSA provides this and other forums for the the abstracts only;GEOLOGY, July 2009 615 ABSTRACT Plant-driven fungal weathering is a major pathway of soil formation, yet. Our study demonstrates the biomechanical-chemical alteration interplay at the fungus-biotite interface

  13. GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

  14. Regional geophysics, Cenozoic tectonics and geologic resources...

    Open Energy Info (EERE)

    adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Regional geophysics, Cenozoic tectonics and geologic resources of the...

  15. Carbonic Acid Shows Promise in Geology, Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23,...

  16. Geology and Geophysics at The University of Kansas Geology's High-Tech Revolution

    E-Print Network [OSTI]

    GHAWKER Geology and Geophysics at The University of Kansas Fall 2009 Geology's High-Tech Revolution Associates Program of the Kansas University Endowment Association. The High-Tech Revolution A geologist

  17. Flemish fieldstone: unravelling lithological differences and diagenesis Research Unit: Sedimentary Geology and Engineering Geology

    E-Print Network [OSTI]

    Gent, Universiteit

    Flemish fieldstone: unravelling lithological differences and diagenesis Research Unit: Sedimentary Geology and Engineering Geology Topic: Fieldstone, natural stone, diagenesis, microscopy with a great interest in sedimentation processes and diagenesis, in petrology and Flemish stratigraphy

  18. Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration

    E-Print Network [OSTI]

    Zhou, R.

    2010-01-01

    Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

  19. Jeffrey A. Karson Structural Geology & Tectonics Born November 3, 1949

    E-Print Network [OSTI]

    Raina, Ramesh

    Jeffrey A. Karson Structural Geology & Tectonics Born November 3, 1949 204 Heroy Geology Laboratory-443-3363 Syracuse, NY 13244-1070 email: jakarson@syr.edu Education B.S. (Geology) Case Institute of Technology (CWRU), 1972 M.S. (Geology) State University of New York at Albany (SUNYA), 1975 Ph.D. (Geology) State

  20. Geologic mapping of tectonic planets Vicki L. Hansen *

    E-Print Network [OSTI]

    Hansen, Vicki

    Geologic mapping of tectonic planets Vicki L. Hansen * Department of Geological Sciences, Southern 2000; accepted 14 January 2000 Abstract Geological analysis of planets typically begins with the construction of a geologic map of the planets' surfaces using remote data sets. Geologic maps provide the basis

  1. Petroleum Geology Conference series doi: 10.1144/0070921

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Petroleum Geology Conference series doi: 10.1144/0070921 2010; v. 7; p. 921-936Petroleum Geology Collection to subscribe to Geological Society, London, Petroleum Geologyhereclick Notes on January 5, 2011Downloaded by by the Geological Society, London © Petroleum Geology Conferences Ltd. Published #12;An

  2. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  3. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect (OSTI)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  4. Panel Organization 1. Panel on Structural Geology & Geoengineering

    E-Print Network [OSTI]

    Appendix A Panel Organization 1. Panel on Structural Geology & Geoengineering Chair: Dr. Clarence R Technical Exchange (open) Panel on Structural Geology & Geoengineering Denver, Colorado Topic: DOE & Performance Analysis and the Panel on Structural Geology & Geoengineering Denver, Colorado Topic: Repository

  5. Panel Organization 1. Panel on Structural Geology & Geoengineering

    E-Print Network [OSTI]

    Appendix A Panel Organization 1. Panel on Structural Geology & Geoengineering Chair: Dr. Clarence R) Panel on Structural Geology & Geoengineering Denver, Colorado Topic: DOE presentation on the exploratory and the Panel on Structural Geology & Geoengineering Denver, Colorado Topic: Repository system design

  6. Ronald Greeley Planetary Geology Scholarship for Undergraduate Students

    E-Print Network [OSTI]

    Rhoads, James

    Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Application ASU ID#: Date of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

  7. Brigham Young University Geology Studies Volume 28, Part 3

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 28, Part 3 CONTENTS Three Creeks Caldera ................................................................................................................................... Scott Dean Geology of the Antelope Peak Area of the Southern .................................................................................................................. Craig D. Hall Geology of the Longlick and White Mountain Area, Southern San Francisco Mountains

  8. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  9. Role of Geological and Geophysical Data in Modeling a Southwestern...

    Open Energy Info (EERE)

    a ground-water flow model of the Animas Valley, southwest New Mexico. Complete Bouguer gravity anomaly maps together with seismic-refraction profiles, geologic maps, geologic,...

  10. Geologic interpretation of gravity and magnetic data in the Salida...

    Open Energy Info (EERE)

    Geologic interpretation of gravity and magnetic data in the Salida region, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geologic...

  11. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY...

  12. UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS

    E-Print Network [OSTI]

    UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS Graduate Admissions 1680 East * Geophysics & Tectonics; Marine & Environmental Geology; Planetary Geosciences; Volcanology, Geochemistry

  13. On leakage and seepage from geological carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-01-01

    from Geologic Carbon Sequestration Sites Orlando Lawrencefrom Geologic Carbon Sequestration Sites Farrar, C.D. , M.L.1999. Reichle, D. et al. , Carbon sequestration research and

  14. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  15. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  16. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  17. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  18. Page 1 | B.S. in Geology | Academic Plan of Study Updated April 2014 B.S. in Geology

    E-Print Network [OSTI]

    Wang, Yongge

    in topics like sedimentology, structural geology and mineralogy. Extracurricular experiences are important in the subjects of geomorphology, sedimentology, and structural geology. In addition, students at UNC Charlotte

  19. Evaluating permeability anisotropy in the early Jurassic Tilje formation, offshore mid-Norway 

    E-Print Network [OSTI]

    Aliyev, Kanan

    2005-11-01

    The problem of evaluating permeability anisotropy in the Tilje Formation, Heidrum field, offshore mid-Norway, has been investigated by the Statoil Research Centre by a detailed combination of the geological and petrophysical data. The large...

  20. Quantification of Ichnological, Paleoecological, Paleohydrological, and Paleoclimatological Information from the Upper Jurassic Morrison Formation

    E-Print Network [OSTI]

    Platt, Brian Frederic

    2012-05-31

    This dissertation takes a multifaceted approach to interpreting paleoenvironments and paleoclimate represented by the strata of the Morrison Formation (MF). The MF has been the subject of geological and paleontological ...

  1. GEOL 102 Historical Geology Exam 1 Review

    E-Print Network [OSTI]

    Holtz Jr., Thomas R.

    & Last Appearance Datum; Zone Other Methods of Stratigraphy Magnetostratigraphy (Chron); Sequence Stratigraphy (Sequence) #12;Geologic Column Chronostratigraphy (Rock) Geochronology (Time) Eonthem Eon Erathem Facies concept Transgressions (onlap sequences) & Regressions (offlap sequences) Sources of coastline

  2. GEOLOGIC NOTE Fault linkage and graben

    E-Print Network [OSTI]

    Fossen, Haakon

    . Schultz $ Geomechanics-Rock Fracture Group, Department of Geological Sciences and Engineering/172 (1982), and his Ph.D. in geomechanics from Purdue University (1987). He worked at the Lunar

  3. Department of Geology & Geophysics University of Hawaii

    E-Print Network [OSTI]

    Department of Geology & Geophysics University of Hawaii THE APPLICATION CHECKLIST SEND THESE ITEMS TO : University of Hawaii Graduate Division Admissions Office 2540 Maile Way, Spalding Hall 354 Honolulu, HI 96822 Original application and fees. http://www.hawaii

  4. 149Department of Geology Graduate Catalogue 201516

    E-Print Network [OSTI]

    , hydro, wind, solar, and geothermal methods, with practical applications. P part time #12;150 Department of planimetric geological maps, profiles and mosaics from vertical photographs using pocket and mirror

  5. 149Department of Geology Graduate Catalogue 201415

    E-Print Network [OSTI]

    , hydro, wind, solar, and geothermal methods, with practical applications. P Part time #12;150 Department of planimetric geological maps, profiles and mosaics from vertical photographs using pocket and mirror

  6. Department of Geological Sciences Postgraduate Handbook 2015

    E-Print Network [OSTI]

    Hickman, Mark

    Field Work and Equipment Costs 18 Careers in Geology 19 Postgraduate Programme 20 Teaching Staff 21 Design your Degree 22 Contact Information Cover Image Drilling Machine called `Sissi', NEAT Gotthard Base

  7. JUDSON MEAD GEOLOGIC FIELD STATION OF INDIANA UNIVERSITY 2013 APPLICATION FOR ADMISSION

    E-Print Network [OSTI]

    Polly, David

    Geology G Structural Geology G Sedimentology/Stratigraphy G Sedimentology/Stratigraphy G Sophomore G

  8. Brigham Young University Geology Studies Volume 28, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 28, Part 2 Lower and Middle Ordovician at Section G, Ibex, Utah. #12;A publication of the Department of Geology Brigham Young University Provo, Utah o ~ l z gUfziversity Geology Studies is published by the Department of Geology. This publication

  9. CRISM: Exploring the Geology of Mars Tech Splash Open Music

    E-Print Network [OSTI]

    CRISM: Exploring the Geology of Mars Tech Splash Open Music Exploring the geology of Mars Marineris simply pulled apart, we would expect the geology on the North and South side of the canyon that make up the rocks. Using the CRISM data we can put together a very simplistic geologic profile

  10. November 47 Geological Society of America 2012 Annual Meeting

    E-Print Network [OSTI]

    Polly, David

    , Jason F., Illinois State Geological Survey, University of Illinois Urbana-Champaign, 615 E. Peabody Dr, Champaign, IL 61820, jthomaso@illinois.edu and KEEFER, Donald A., Illinois State Geological Survey, Prairie, Quaternary and Engineering Geology Section, Illinois State Geological Survey, 615 E. Peabody Drive, Champaign

  11. Title: Alberta Geological Survey GIS Downloads Data Creator /

    E-Print Network [OSTI]

    Title: Alberta Geological Survey GIS Downloads Data Creator / Copyright Owner: Alberta Geological Survey Publisher: Alberta Geological Survey Edition: N/A Versions: N/A Publication Date: N/A Coverage Date(s): N/A Updates: N/A Abstract: Dataset contains geological information for the province of Alberta

  12. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1 Papers reviewing geology of field trip areas, 31st annual meeting, Rocky Mountain Section, Geological Society of America, April 28 ....................................................................................................................................................... Geology of Volcanic Rocks and Mineral Deposits in the Southern Thomas Range, Utah: A Brief Summary

  13. Missouri University of Science and Technology 1 Geology and Geophysics

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    Missouri University of Science and Technology 1 Geology and Geophysics Graduate work in Geology are designed to provide you with an understanding of the fundamentals and principles of geology, geochemistry and Environmental Geochemistry · Mineralogy/Petrology/Economic Geology · Geophysics/Tectonics/Remote Sensing

  14. Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)

    E-Print Network [OSTI]

    Johnson, Cari

    Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year): General Academic Advising for Geology & Geophysics Majors ­ Ms. Judy for Geology Emphasis, Geoscience Major ­ Prof. Brenda Bowen (email: brenda.bowen@ utah.edu, office: 341 FASB

  15. 2003 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. Geology; December 2003; v. 31; no. 12; p. 10971100; 4 figures; Data Repository item 2003163. 1097

    E-Print Network [OSTI]

    Licciardi, Joseph M.

    : Evidence from the Ghazij Formation, Balochistan, Pakistan William C. Clyde Department of Earth Sciences, and Geological Survey of Pakistan, Sariab Road, Box 15, Quetta, Pakistan Philip D. Gingerich Department of western Pakistan records continental sedimentation and mammalian dispersal associated with initial India

  16. A Strategy for Monitoring of Geologic Sequestration of CO2

    SciTech Connect (OSTI)

    Myer, Larry R.

    2000-04-17

    Monitoring of geologic sequestration projects will require the measurement of many different parameters and processes at many different locations at the surface and in the subsurface. The greatest need for technology development is for monitoring of processes in the subsurface in the region between wells. The approach to fitting this need is to build upon decades of experience in use of geophysics in the oil and gas industry. These methods can be optimized for CO2 monitoring, and customized and extended in order to meet the need for cost-effective methods applicable to saline disposal sites, coal bed methane sites, as well as oil and gas reservoir sequestration sites. The strategy for development of cost-effective methods follows a three step iterative process of sensitivity analysis using numerical and experimental techniques, field testing at a range of scale in different formations, and analysis and integration of complimentary types of data.

  17. Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience Winter Break the tropics over winter break? Sunday, March 2, 14 #12;Contents: The Course Why Taiwan Logistics The Instructors The Cost Comments from 2013 Fact Sheet & Links GEOLOGYANDGEOHAZARDS TAIWAN2013 Sunday, March 2, 14

  18. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    SciTech Connect (OSTI)

    Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

  19. The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test

    SciTech Connect (OSTI)

    Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

    2006-01-30

    WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

  20. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  1. Viscoelastic damage modeling of sinkhole formation Eyal Shalev*, Vladimir Lyakhovsky

    E-Print Network [OSTI]

    Lyakhovsky, Vladimir

    Viscoelastic damage modeling of sinkhole formation Eyal Shalev*, Vladimir Lyakhovsky Geological 2012 Keywords: Sinkholes Damage Viscoelasticity Modeling a b s t r a c t The sinkholes along the Dead Sea coast are observed in two main sedimentary environments: alluvial fan sinkholes, which usually

  2. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Government or any agency thereof. Cover Illustration: Faults, folds, and salt in the northern Gulf of Mexico Basin. Structural geology plays an important role in the...

  3. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01

    offshore oil production. Geology 27:1047–1050 Shindell DT,between the subsurface geology and gas-phase (methane)emission distribution. Geology and seeps Vertical migration

  4. Kinetics of the Dissolution of Scheelite in Groundwater: Implications for Environmental and Economic Geology

    E-Print Network [OSTI]

    Montgomery, Stephanie Danielle

    2012-01-01

    Tungsten, Its History, Geology, Ore-dressing, Metallurgy,5.1 Implications for Environmental Geology…………………………..26 5.2Implications for Economic Geology………………………………..27 6. Future

  5. 1. Study programme for the Master of Science in Geology, 120 Higher Education Credits, at

    E-Print Network [OSTI]

    geology, paleoecology and paleontology, sedimentology and glacial geology, stratigraphy, geochronology sedimentology ­ processes, sediments and landform systems 2. Quaternary Geology: Paleoecological methods

  6. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01

    to two geologic carbon sequestration sites, Energy Procedia,for Geologic Carbon Sequestration Based on Effectivefor geologic carbon sequestration risk assessment, Energy

  7. Case studies of the application of the Certification Framework to two geologic carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01

    from geologic carbon sequestration sites: unsaturated zoneverification of geologic carbon sequestration, Geophys. Res.to two geologic carbon sequestration sites Curtis M.

  8. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01

    from geologic carbon sequestration sites: unsaturated zone2 from geologic carbon sequestration sites: CO 2 migrationGeologic Carbon Sequestration as a Global Strategy to

  9. GEOLOGIC NOTE A simple model of gas

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    GEOLOGIC NOTE A simple model of gas production from hydrofractured horizontal wells in shales Tad Patzek, Frank Male, and Michael Marder ABSTRACT Assessing the production potential of shale gas can a nonlinear initial boundary value problem for transient flow of real gas that may sorb on the rock and solve

  10. Geological and geotechnical databases and developments

    E-Print Network [OSTI]

    Hack, Robert

    in NL - Hack & Tegtmeier 17 Tower of Pisa (trial and error....) Tower of Pisa (photo Pisa, 2006) #12 was adjusted, result: Pisa a leaning curved tower, Delft a leaning bended tower Oude Kerk, Delft, The Netherlands (photo Oude Kerk (Delft), 2006) Tower of Pisa (photo Pisa, 2006) #12;9 October 2007 Geological

  11. GEOL 102: Historical Geology Final Exam Review

    E-Print Network [OSTI]

    Holtz Jr., Thomas R.

    collides with western North America Triassic Climates: Redbeds; Coal Gap; Megamonsoons Tr marine life: Rise patterns of: The Geologic History of major sections of North America (East, Gulf Coast, Midwest plate underneath western North America; standard Andean-style orogeny. Fransiscan mélange; molasse

  12. Geological Society of America 3300 Penrose Place

    E-Print Network [OSTI]

    Rose, William I.

    runoff at Volcán Santiaguito, Guatemala Andrew J.L. Harris* Hawaii Institute of Geophysics-57, Zona 13, Guatemala City, Guatemala Elly Bunzendahl Department of Geological Engineering and Sciences at the Santiaguito dome complex (Guatemala) results in continuous lahar activity and river bed aggradation downstream

  13. 145Department of Geology Graduate Catalogue 201314

    E-Print Network [OSTI]

    Shihadeh, Alan

    . An introduction to seismic, gravity, and magnetic methods and their interpretation procedures and applications and their methods of interpretation. Pre- or corequisites: GEOL 221 and GEOL 222. GEOL 306 Economic Minerals Geology.2; 3 cr. A course on the principles of air photo interpretation and remote sensing; the construction

  14. Geological Society of America Special Paper 255

    E-Print Network [OSTI]

    Hacker, Bradley R.

    Mesozoichigh-pressurerocks in theKlamath Mountains and SierraNevada Bradley R. Hacker* Departmentof Earth and Space, 1990) and tains and easternSierra Nevada attest to convergencebetween B. R. Hacker (unpublished data:Departmentof Geology,StanfordUniversity,Stanford, Nevada. California 94305-2115. Hacker,B.R.,andGoodge,J. W., 1990

  15. Geological Society of America Special Paper 255

    E-Print Network [OSTI]

    Hacker, Bradley R.

    and Trinity terrane of theKlamath Mountains with theFeatherRiver terrane of theSierraNevada Bradley R. Hacker. The California94305-2115. descriptionsof the Central Metamorphic Belt, the Trinity terrane, Hacker, B. R:Boulder, Colorado, Geological Society of America Special Paper255. 75 - #12;76 Hacker and Peacock I and the Feather

  16. Geological Modeling of Dahomey and Liberian Basins 

    E-Print Network [OSTI]

    Gbadamosi, Hakeem B.

    2010-01-16

    in the last 10 years or so. We proposed geological descriptions of these two Basins. The key characteristics of the two models are the presence of channels and pinch-outs for depths of between 1 km and 2 km (these values are rescaled for our numerical purposes...

  17. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe

    2009-01-15

    We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO{sub 2} and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO{sub 2} leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO{sub 2} fluxes and concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO{sub 2} plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk of CO{sub 2} and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country.

  18. Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1

    E-Print Network [OSTI]

    Polly, David

    . Iowa Tracheophyta (vascular plants) Spores, New Albany Shale Sporing bodies, Dugger Fm. #12;Department (conifers) Walchia, Abo Fm. New Mexico (Permian) #12;Department of Geological Sciences | P. David Polly 5

  19. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    Internal Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology...

  20. UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS

    E-Print Network [OSTI]

    UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS Graduate Admissions 1680 East's admissibility into the Graduate Program in Geology and Geophysics at the University of Hawaii at Manoa. Strongly

  1. Geology and Geothermal Potential of the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Geology and Geothermal Potential of the Roosevelt Hot Springs Area, Beaver County, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geology and...

  2. A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James

    2010-10-01

    The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

  3. Map of Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

  4. Risk assessment framework for geologic carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01

    carbon sequestration risk assessment, in Carbon Dioxidecarbon sequestration risk assessment, Energy Procedia,Risk Assessment Framework for Geologic Carbon Sequestration

  5. GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,

    E-Print Network [OSTI]

    Seamons, Kent E.

    GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN, SOUTHERN UASCSTCH H Q - W T A X H E i i - UT&H #12;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Department of Gedogy Provo, Utah #12;GEOLOGY OF THE NORTHERN PART OF DRY MOUNTAIN, SOUTHERN WASATCH M O U N

  6. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN

    E-Print Network [OSTI]

    Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

  7. What can I do with a degree in Geology?

    E-Print Network [OSTI]

    Hickman, Mark

    What can I do with a degree in Geology? Science Planning your career Choosing a career involves.canterbury.ac.nz/liaison/best_prep.shtml What is Geology? Geology in the twenty-first century is a fascinating, exciting,incredibly diverse,earthquakes,dramatic and varied geomorphology,and its 500 million years of pre and post-Gondwana geological history,is one

  8. Geological and geophysical studies of a geothermal area in the...

    Open Energy Info (EERE)

    pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks...

  9. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01

    for  Geologic  Carbon  Sequestration. ”   International  of  Energy.  “Carbon  Sequestration  Atlas  of  the  Water  Extracted  from  Carbon  Sequestration  Projects."  

  10. Towards Reliable SubDivision of Geological Areas: Interval Approach

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Towards Reliable Sub­Division of Geological Areas: Interval Approach David D. Coblentz 1;2 , Vladik difficult to produce a reliable subdivision. The subdivision of a geological zone into segments is often, and often, we do not have a statistically sufficient amount of thoroughly analyzed geological samples

  11. Towards Reliable SubDivision of Geological Areas: Interval Approach

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Towards Reliable Sub­Division of Geological Areas: Interval Approach David D. Coblentz 1;2 , Vladik Difficult to Produce a Reliable Subdivision The subdivision of a geological zone into segments is often the area, and often, we do not have a statistically sufficient amount of thoroughly analyzed geological

  12. The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage

    E-Print Network [OSTI]

    The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski S Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski Submitted to the Department capture and storage (CCS), CO2 is captured at power plants and then injected into deep geologic reservoirs

  13. Lab 4: Plate Tectonics Locating Geologic Hazards Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 4: Plate Tectonics ­ Locating Geologic Hazards Introduction The likelihood of major geologic hazards associated with the lithosphere, such as earthquakes and volcanoes, is not uniform around provides a ready explanation for the distribution of these types of geologic hazards. It is useful

  14. Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING 3:00 p.m. Waterway. The Geological History of Venus: Constraints from Buffered Crater Densities [#1096] We apply buffered crater density technique to a new global geological map of Venus (Ivanov, 2008) and obtain robust constraints

  15. One-Year Term Position Department of Geology

    E-Print Network [OSTI]

    POSITION VACANCY One-Year Term Position Department of Geology Brandon University is a leader are invited for a one-year term sabbatical replacement position in the Department of Geology, effective August) in Geology. Experience in undergraduate teaching would be an asset. Teaching responsibilities: The ideal

  16. Semantic e-Science and Geology Clinton Smyth1

    E-Print Network [OSTI]

    Poole, David

    Semantic e-Science and Geology Clinton Smyth1 , David Poole2 and Rita Sharma3 1 Georeference Online@cs.ubc.ca Abstract e-Science, as implemented for the study of geology with Geographic Information Systems over the Internet, has highlighted the need for standardization in the semantics of geology, and stimulated

  17. MAJOR TO CAREER GUIDE B.S. Geology

    E-Print Network [OSTI]

    Walker, Lawrence R.

    MAJOR TO CAREER GUIDE B.S. Geology College of Sciences geoscience.unlv.edu/ Mission of the College: MPE-A 130 www.unlv.edu/sciences/advising About the Geology Career Geoscientists are stewards understanding of Earth processes and history. Value of the Geology Degree Opportunities for interesting

  18. CHAPTER II GEOLOGY Blank page retained for pagination

    E-Print Network [OSTI]

    CHAPTER II GEOLOGY #12;Blank page retained for pagination #12;SHORELINES AND COASTS OF THE GULF or discordant with the grain (dominant trend) of the geologic structures of a coastal regi?n, but King (1942, pIOnal geology, geomorphology, sedimentation, oceanography of the inshore zone, meteorology, climatology, biol

  19. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2015 Department of Earth, Atmospheric, and Planetary

  20. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Geology Field Experience (summer) (3) Science/Engineering Elective (2xxxx or above) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics http

  1. State of Oregon Department of Geology and Mineral Industries

    E-Print Network [OSTI]

    Goldfinger, Chris

    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist A ND M INERALINDUSTRIES 1937 2009 1 Oregon Department of Geology and Mineral Industries, Coastal Field Department of Geology and Mineral Industries Special Paper 41 Published in conformance with ORS 516

  2. SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology

    E-Print Network [OSTI]

    Kimbrough, David L.

    SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology Course Syllabus Spring 2011 Instructor: Professor David L. Kimbrough email: dkimbrough@geology.sdsu.edu, Phone: 594-1385 Office: GMCS-229A; Office Necessary: Field notebook similar to "Rite in the Rain" all-weather Geological Field Book No., 540F J

  3. University of North Carolina Wilmington Master of Science in Geology

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    University of North Carolina Wilmington Master of Science in Geology Department of Geography & Geology Program Review 2001-2007 Self-Study December 2007 Self-Study Program Review Committee: Richard Laws, Chair Nancy Grindlay, Geology Graduate Coordinator Doug Gamble, Eric Henry, John Huntsman

  4. State of Oregon Department of Geology and Mineral Industries

    E-Print Network [OSTI]

    Goldfinger, Chris

    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist Open-File Report O-08-14 PRELIMINARY GEOLOGIC MAPS OF THE CORVALLIS, WREN, AND MARYS PEAK 7 G Y A ND M INERALINDUSTRIES 1937 2008 1 Oregon Department of Geology and Mineral Industries, Grants

  5. GEOLOGY, B.A. (Fall 2015-Summer 2016)

    E-Print Network [OSTI]

    Hamburger, Peter

    GEOLOGY, B.A. (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32 credits at 200 level credits 300­400 level ____2.0 GPA Degree/Major/Gen Ed ____C- or above in Major/Gen Ed GEOLOGY BA CORE in Geology or Geography with Laboratory (Select 1 of the following): ___3 GEOL G103 Earth Science: Materials

  6. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2014 Department of Earth, Atmospheric, and Planetary

  7. UNLV B.S. Geology 2008-2010 Catalog

    E-Print Network [OSTI]

    Walker, Lawrence R.

    UNLV B.S. Geology 2008-2010 Catalog Log-in to your student account at UNLV to access your: required ONLY to reach 124 total credits (these can be ANY 100-400 level courses offered at UNLV) Geology Major Requirements: Minimum grade C or better Geology Core Course Requirements GEOL 101/101D Intro

  8. Inverse Modelling in Geology by Interactive Evolutionary Computation

    E-Print Network [OSTI]

    Boschetti, Fabio

    Inverse Modelling in Geology by Interactive Evolutionary Computation Chris Wijns a,b,, Fabio of geological processes, in the absence of established numerical criteria to act as inversion targets, requires evolutionary computation provides for the inclusion of qualitative geological expertise within a rigorous

  9. Geological and mathematical framework for failure modes in granular rock

    E-Print Network [OSTI]

    Borja, Ronaldo I.

    Geological and mathematical framework for failure modes in granular rock Atilla Aydina, *, Ronaldo I. Borjab , Peter Eichhubla,1 a Department of Geological and Environmental Sciences, Stanford processes in granular rock and provide a geological framework for the corresponding structures. We describe

  10. Brigham Young University Geology Studies Volume 29, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 29, Part 2 CONTENTS Stratigraphy ...................................................................................................... Terry C. Gosney 27 Geology of the Champlin Peak Quadrangle,Juab and Millard Counties, Utah ..................................................................................................................................... David R. Keller 103 Publications and Maps of the Department of Geology 117 Cover: Rafted orjoreign

  11. VOLUMF -31, PART 1 BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES

    E-Print Network [OSTI]

    Seamons, Kent E.

    Y O U N G VOLUMF -31, PART 1 #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES VOLUME 31.PART 1 CONTENTS .................................................................. Ralph E.Lambert Geology of the Mount Ellen Quadrangle. Henry Mountains. Garfield County. Utah near White Horse Pass. Elko County. Nevada ............Stephen M Smith Geology of the Steele Butte

  12. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3 CONTENTS Studies for Students #lo, Geologic Guide to Provo Canyon and Weber Canyon, Central Wasatch Mountains, Utah ............................................................................................................................. Randy L. Chamberlain The Geology of the Drum Mountains, Millard and Juab Counties, Utah

  13. Brigham Young University Geology Studies Volume 27, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 27, Part 2 CONTENTS The Kinnikinic Quartzite ........................................................Robert Q. Oaks,Jr., and W . Calvin James Geology of the Sage Valley 7 W'Quadrangle, Caribou County, Idaho, and Lincoln County, Wyoming ....................J ohn L. Conner Geology of the Elk Valley Quadrangle, Bear

  14. Brigham Young University Geology Studies Volume 30, Part 1

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 30, Part 1 CONTENTS Diagenetic Aspects ................................................................................................... Steven G. Driese Geology of the Dog Valley-Red Ridge Area, Southern Pavant Mountains, Millard County .................................................................................................. Lynn C Meibos Geology of the Southwestern Quarter of the Scipio North (15-Minute) Quadrangle, Millard

  15. Ronald Greeley Planetary Geology Scholarship for Undergraduate Students

    E-Print Network [OSTI]

    Rhoads, James

    Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2012 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

  16. Job Vacancy Notice Job Title: Assistant Professor -Geology

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    1 Job Vacancy Notice Job Title: Assistant Professor - Geology Job ID: 6477 Location: Regular-track Assistant Professor in the general area of "hardrock" geology. The SEES community includes 14 full-time faculty members, 25 Masters and PhD candidates, and approximately 150 Geology, Environmental Science

  17. Brigham Young University Geology Studies Volume 26, Part 3

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;P I - #12;Brigham Young University Geology Studies Volume 26, Part 3 Conodont Biostratigraphy-meeting field trip held in conjunction with the Rocky Mountain section, Geological Society of America of the Department of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M

  18. Brigham Young University Geology Studies Volume 25, Part 3

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 25, Part 3 CONTENTS Remains of Ornithopod ...........................................................................................................................................................ames M. Stolle Publications and Maps of the Geology Department Index to volumes 21-25 of Brigham Young University Geology Studies ........................................Carol T . Smith and Nathan M. Smith Cwec

  19. Brigham Young University Geology Studies Volume 26, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 26, Part 2 CONTENTS A New Large Theropod................................................................................................................................................................ Danny J. Wyatt Publications and Maps of the Geology Department Cover: Cretaceouscoals near Castle Gate, Utab. #12;A publication of the Department of Geology Brigham Young University Provo, Utah 84602 Editors

  20. Ronald Greeley Planetary Geology Scholarship for Undergraduate Students

    E-Print Network [OSTI]

    Rhoads, James

    Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2014 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

  1. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4 The Fossil Vertebrates of Utah Salt Lake Gty, Utah 84102 W .E. Miller Deparlment~of Geology and Zoology Bngham Young Unrwerrrly Provo of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblln Cynthia M. Gardner Issue

  2. Brigham Young University Geology Studies Volume 24, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 24, Part 2 CONTENTS Studies for Students ............................................................................................................................... Robert C. Ahlborn Publications and Maps of the Geology Department Cover: Sahara dune sand, X130. Photo, Univer~ityof Cincinnati, Cincinnati, Ohio 45221. #12;A publication of the Department of Geology Brigham

  3. Brigham Young University Geology Studies Volume 26, Part I

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 26, Part I Papers presented at the 31st annual meeting, Rocky Mountain Section, Geological Society of America, April 28-29, 1978, at Brig- ham Young ............................................................................................................................Publications and Maps of the Geology Department 91 Cover The Great Basrn seen from a htgh

  4. PNNL's Community Science & Technology Seminar Series Geology and the

    E-Print Network [OSTI]

    PNNL's Community Science & Technology Seminar Series Geology and the Nuclear Fuel Cycle Presented, the nuclear industry faces unique hurdles to expansion and waste management. Geology plays a critical role Arbor (both in geology). In September of 2007, Frannie joined the Geochemistry group at PNNL as a post

  5. DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology

    E-Print Network [OSTI]

    DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology University of Hawaii at Manoa REQUIREMENTS FOR A MINOR IN GEOLOGY & GEOPHYSICS The minor requires GG 101 (or 103) & 101L or GG 170, 200, and 11 credits hours of non-introductory Geology and Geophysics courses at the 300

  6. Ronald Greeley Planetary Geology Scholarship for Undergraduate Students

    E-Print Network [OSTI]

    Rhoads, James

    Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2013 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

  7. Geology Department Graduate Certificates: These certificates are designed to provide practicing professionals an opportunity to

    E-Print Network [OSTI]

    Geology Department Graduate Certificates: These certificates are designed to provide practicing are offered: Certificate in Engineering Geology Purpose The Graduate Certificate in Engineering Geology provides practicing geologists an opportunity to upgrade their engineering geology credentials while

  8. Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)

    E-Print Network [OSTI]

    Johnson, Cari

    Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year): General Academic Advising for Geology & Geophysics Majors ­ Ms. Judy.dinter@utah.edu, office: 321 FASB, phone 801-581-7937) Faculty Advisor for Geophysics Emphasis, Geoscience Major ­ Prof

  9. International Journal of Geography and Geology, 2013, 2(1):1-13 THE REMOTE SENSING IMAGERY, NEW CHALLENGES FOR GEOLOGICAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    International Journal of Geography and Geology, 2013, 2(1):1-13 1 THE REMOTE SENSING IMAGERY, NEW CHALLENGES FOR GEOLOGICAL AND MINING MAPPING IN THE WEST AFRICAN CRATON - THE EXAMPLE OF CÔTE D'IVOIRE Gbele of the evolution on the use of remote sensing imagery for geological and mining mapping in West Africa

  10. Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

  11. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Assessing Habitat Quality of

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

  12. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note

  13. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology and imple- #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

  14. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note EN-007

  15. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Relationships between Elevation and Slope

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

  16. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Silvicultural Treatments for Enhancing

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS EXECUTIVE SUMMARY

  17. Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

  18. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Biology, Ecology, and Management

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS ABSTRACT

  19. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Using Combined Snowpack and

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture, BCMOF 1 Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

  20. The consequences of failure should be considered in siting geologic carbon sequestration projects

    E-Print Network [OSTI]

    Price, P.N.

    2009-01-01

    2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

  1. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect (OSTI)

    Venable, S.D.

    1992-10-01

    The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

  2. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect (OSTI)

    Venable, S.D.

    1992-01-01

    The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

  3. A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Gasperikova, Erika; Hoversten, G. Michael

    2006-07-01

    Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

  4. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  5. doi: 10.1130/G36267.1 2014;42;1091-1094Geology

    E-Print Network [OSTI]

    Singer, Michael

    Geology doi: 10.1130/G36267.1 2014;42;1091-1094Geology Michael Bliss Singer and Katerina Geological Society of America on November 25, 2014geology.gsapubs.orgDownloaded from on November 25, 2014geology.gsapubs.orgDownloaded from #12;GEOLOGY | December 2014 | www.gsapubs.org 1091 How is topographic

  6. doi: 10.1130/G35342.1 published online 10 January 2014;Geology

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Geology doi: 10.1130/G35342.1 published online 10 January 2014;Geology Burch Fisher, Adrien Moulin for publication but have not © Geological Society of America as doi:10.1130/G35342.1Geology, published online on 10 January 2014 as doi:10.1130/G35342.1Geology, published online on 10 January 2014 #12;GEOLOGY

  7. doi: 10.1130/G35915.1 published online 15 September 2014;Geology

    E-Print Network [OSTI]

    Jones, Peter JS

    Geology doi: 10.1130/G35915.1 published online 15 September 2014;Geology and Anson W. Mackay Katy E for publication but have not © Geological Society of America as doi:10.1130/G35915.1Geology, published online on 15 September 2014 as doi:10.1130/G35915.1Geology, published online on 15 September 2014 #12;GEOLOGY

  8. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  9. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  10. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  11. Banded Iron Formations from the Eastern Desert of Egypt: A new type of Ore? KHALIL, Khalil Isaac1 and EL-SHAZLY, Aley K.2

    E-Print Network [OSTI]

    El-Shazly, Aley

    Banded Iron Formations from the Eastern Desert of Egypt: A new type of Ore? KHALIL, Khalil Isaac1 and EL-SHAZLY, Aley K.2 1 Department of Geology, University of Alexandria, Egypt 2 Geology Department localities in an area approximately 30,000 km2 within the eastern desert of Egypt. With the exception

  12. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experienced in drilling, such as H 2 S from the geologic deposits and chloride ions from drilling fluids (Hill et al., 1992; Vaisberg et al., 2002). 2. Fatigue cracking initiating...

  13. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  14. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,Information PromotingProperty Edit withAreaGeology

  15. Fluid flow migration study inside geomaterials Research Unit: Sedimentary Geology and Engineering Geology

    E-Print Network [OSTI]

    Gent, Universiteit

    of the study is to study internal processes of porous geomaterials by analysis the pore structure in 2D and 3D geomaterials, fluid flow, modelling, optical microscopy and 3D image analysis. Promotor: Prof. Dr. Veerle of the geological material. Petrographical research with optical and fluorescence microscopy and SEM. Non

  16. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  17. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross?sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  18. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Arnold, Bill W.; Brady, Patrick; Sutton, Mark; Travis, Karl; MacKinnon, Robert; Gibb, Fergus;...

  19. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  20. Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL

    Office of Scientific and Technical Information (OSTI)

    Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL SCIENCES The main objective of this project is to...

  1. Regional Geology: GIS Database for Alternative Host Rocks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    three alternative geologic host rocks for mined repositories (granitic crystalline, salt, and clay shale) and crystalline basement rock for deep borehole disposal. This...

  2. Evaluation of Options for Permanent Geologic Disposal of Spent...

    Energy Savers [EERE]

    disposal concepts are addressed: mined repositories in three geologic media-salt, clayshale rocks, and crystalline (e.g., granitic) rocks-and deep borehole disposal in...

  3. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    and petrology, mineralogy, geochemistry, of surface rocksamples. 2) Describe borehole geology by creating lithologic logs for each of the 10 CHSgeothermal wells...

  4. Rock Physics of Geologic Carbon Sequestration/Storage Dvorkin...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Dvorkin, Jack; Mavko, Gary 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES This report covers the results of developing the rock...

  5. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  6. State Geological Survey Contributions to the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System (NGDS) with state-specific data by creating a national, sustainable, distributed, interoperable network of state geological survey-based data...

  7. Z .Chemical Geology 171 2000 3347 www.elsevier.comrlocaterchemgeo

    E-Print Network [OSTI]

    Zou, Haibo

    .rChemical Geology 171 2000 33­4734 occurrence of Pb-Dupal signatures in these central-eastern China basalts may

  8. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  9. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    Gas Reservoirs for Carbon Sequestration and Enhanced Gasfrom geologic carbon sequestration sites, Vadose Zonethe feasibility of carbon sequestration with enhanced gas

  10. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  11. Geophysics, Geology and Geothermal Leasing Status of the Lightning...

    Open Energy Info (EERE)

    Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

  12. Paleomagnetism, Potassium-Argon Ages, and Geology of Rhyolites...

    Open Energy Info (EERE)

    and Dalrymple, 1966). Authors Richard R. Doell, G. Brent Dalrymple, Robert Leland Smith and Roy A. Bailey Published Journal Geological Society of America Memoirs, 1968 DOI...

  13. Geological and geophysical analysis of Coso Geothermal Exploration...

    Open Energy Info (EERE)

    logs were employed to characcterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the accoustic logs indicate fractured rock...

  14. Development of a Geological and Geomechanical Framwork for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geomechanical Framwork for the Analysis of MEQ in EGS Experiments Development of a Geological and Geomechanical Framwork for the Analysis of MEQ in EGS Experiments Development of a...

  15. Database for Regional Geology, Phase 1- A Tool for informing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Oil Shale Research in the United States Evaluation Of Used Fuel Disposition In Clay-Bearing...

  16. GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD:...

    Open Energy Info (EERE)

    The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations...

  17. State Geological Survey Contributions to NGDS Data Development...

    Open Energy Info (EERE)

    State Geological Survey Contributions to NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project...

  18. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  19. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    Monograph M11 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

  20. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    insulation. These characteristics CROATIA CH. Figure 7.3.Geologic map of Croatia:. 1- Precambrian (metamorphicChina Other Studies China Croatia Site Selection of Low and

  1. GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation

    SciTech Connect (OSTI)

    Benson, Sally M.; Myer, Larry R.; Oldenburg, Curtis M.; Doughty, Christine A.; Pruess, Karsten; Lewicki, Jennifer; Hoversten, Mike; Gasperikova, Erica; Daley, Thomas; Majer, Ernie; Lippmann, Marcelo; Tsang, Chin-Fu; Knauss, Kevin; Johnson, James; Foxall, William; Ramirez, Abe; Newmark, Robin; Cole, David; Phelps, Tommy J.; Parker, J.; Palumbo, A.; Horita, J.; Fisher, S.; Moline, Gerry; Orr, Lynn; Kovscek, Tony; Jessen, K.; Wang, Y.; Zhu, J.; Cakici, M.; Hovorka, Susan; Holtz, Mark; Sakurai, Shinichi; Gunter, Bill; Law, David; van der Meer, Bert

    2004-10-23

    The first phase of the GEO-SEQ project was a multidisciplinary effort focused on investigating ways to lower the cost and risk of geologic carbon sequestration. Through our research in the GEO-SEQ project, we have produced results that may be of interest to the wider geologic carbon sequestration community. However, much of the knowledge developed in GEO-SEQ is not easily accessible because it is dispersed in the peer-reviewed literature and conference proceedings in individual papers on specific topics. The purpose of this report is to present key GEO-SEQ findings relevant to the practical implementation of geologic carbon sequestration in the form of a Best Practices Manual. Because our work in GEO-SEQ focused on the characterization and project development aspects, the scope of this report covers practices prior to injection, referred to as the design phase. The design phase encompasses activities such as selecting sites for which enhanced recovery may be possible, evaluating CO{sub 2} capacity and sequestration feasibility, and designing and evaluating monitoring approaches. Through this Best Practices Manual, we have endeavored to place our GEO-SEQ findings in a practical context and format that will be useful to readers interested in project implementation. The overall objective of this Manual is to facilitate putting the findings of the GEO-SEQ project into practice.

  2. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    SciTech Connect (OSTI)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  3. Geology. Most of the Guadalupe River flows through either Glen Rose Limestone, or Fluviatile Terrace Deposits. Combined geologic categories are designated where two geologic units exist in cross section and the channel flows along a boundary between the t

    E-Print Network [OSTI]

    Curran, Joanna C.

    Results Geology. Most of the Guadalupe River flows through either Glen Rose Limestone, or Fluviatile Terrace Deposits. Combined geologic categories are designated where two geologic units exist length. The highest percentage of bedrock coverage per geologic type appears in combined categories (Fig

  4. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    SciTech Connect (OSTI)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  5. Modeling and Risk Assessment of CO{sub 2} Sequestration at the Geologic-basin Scale

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-08-31

    Objectives. The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO{sub 2} permanence in geologic formations at the geologic basin scale. The main motivation was that carbon capture and storage (CCS) will play an important role as a climate change mitigation technology only if it is deployed at scale of gigatonne per year injections over a period of decades. Continuous injection of this magnitude must be understood at the scale of a geologic basin. Specifically, the technical objectives of this project were: (1) to develop mathematical models of capacity and injectivity at the basin scale; (2) to apply quantitative risk assessment methodologies that will inform on CO{sub 2} permanence; (3) to apply the models to geologic basins across the continental United States. These technical objectives go hand-in-hand with the overarching goals of: (1) advancing the science for deployment of CCS at scale; and (2) contributing to training the next generation of scientists and engineers that will implement and deploy CCS in the United States and elsewhere. Methods. The differentiating factor of this proposal was to perform fundamental research on migration and fate of CO{sub 2} and displaced brine at the geologic basin scale. We developed analytical sharp-interface models of the evolution of CO{sub 2} plumes over the duration of injection (decades) and after injection (centuries). We applied the analytical solutions of CO{sub 2} plume migration and pressure evolution to specific geologic basins, to estimate the maximum footprint of the plume, and the maximum injection rate that can be sustained during a certain injection period without fracturing the caprock. These results have led to more accurate capacity estimates, based on fluid flow dynamics, rather than ad hoc assumptions of an overall “efficiency factor.” We also applied risk assessment methodologies to evaluate the uncertainty in our predictions of storage capacity and leakage rates. This was possible because the analytical mathematical models provide ultrafast forward simulation and they contain few parameters. Impact. The project has been enormously successful both in terms of its scientific output (journal publications) as well as impact in the government and industry. The mathematical models and uncertainty quantification methodologies developed here o?er a physically-based approach for estimating capacity and leakage risk at the basin scale. Our approach may also facilitate deployment of CCS by providing the basis for a simpler and more coherent regulatory structure than an “individual-point-of-injection” permitting approach. It may also lead to better science-based policy for post-closure design and transfer of responsibility to the State.

  6. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

  7. A Geologic Prediction Model For Tunneling By Photios G. Ioannou, A.M. ASCE

    E-Print Network [OSTI]

    A Geologic Prediction Model For Tunneling By Photios G. Ioannou, A.M. ASCE Abstract: Geologic to inflated costs. This paper presents a general model for the probabilistic prediction of tunnel geology. The geologic conditions along the tunnel alignment are modeled by a set of geologic parameters (such as rock

  8. Geology Page 145Sonoma State University 2015-2016 Catalog DEPARTMENT OFFICE

    E-Print Network [OSTI]

    Ravikumar, B.

    Geology Page 145Sonoma State University 2015-2016 Catalog GEOLOGY DEPARTMENT OFFICE Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology DEPARTMENT CHAIR Matthew J. James ADMINISTRATIVE COORDINATOR Offered Bachelor of Science in Geology Bachelor of Arts in Earth Science Minor in Geology Minor

  9. doi: 10.1130/G31117.1 2010;38;1091-1094Geology

    E-Print Network [OSTI]

    Hu, Feng Sheng

    Geology doi: 10.1130/G31117.1 2010;38;1091-1094Geology Pearson and Feng Sheng Hu Michael A. Urban prepared wholly by U.S. government employees within scope of Notes © 2010 Geological Society of America on January 11, 2012geology.gsapubs.orgDownloaded from #12;GEOLOGY, December 2010 1091 ABSTRACT C4 plants

  10. ISABEL PATRICIA MONTAEZ Education: B.A. Geology (May 1981) Bryn Mawr College, Bryn Mawr, PA

    E-Print Network [OSTI]

    Montañez, Isabel Patricia

    ISABEL PATRICIA MONTAÑEZ Education: B.A. Geology (May 1981) Bryn Mawr College, Bryn Mawr, PA Ph.D. Geology (Dec. 1989) Virginia Polytechnic Institute, Blacksburg, VA Employment: Department of Geology, University of California, Davis Full Professor of Geology July 2000 to present Associate Professor of Geology

  11. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  12. Page144 Geology Sonoma State University 2013-2014 Catalog Department Office

    E-Print Network [OSTI]

    Ravikumar, B.

    Page144 Geology Sonoma State University 2013-2014 Catalog geology Department Office DarwinHall116 (707)664-2334 www.sonoma.edu/geology Department chair MatthewJ.James aDministrative cE.Smith Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Science Minor in Geology Minor

  13. Page 148 Geology Sonoma State University 2014-2015 Catalog DEPARTMENT OFFICE

    E-Print Network [OSTI]

    Ravikumar, B.

    Page 148 Geology Sonoma State University 2014-2015 Catalog GEOLOGY DEPARTMENT OFFICE Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology DEPARTMENT CHAIR Matthew J. James ADMINISTRATIVE COORDINATOR. Smith Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Science Minor in Geology

  14. Page 204 Geology Sonoma State University 2006-2008 Catalog Department Office

    E-Print Network [OSTI]

    Ravikumar, B.

    Page 204 Geology Sonoma State University 2006-2008 Catalog Department Office Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology Department chair Matthew J. James aDministrative cOOrDinatOr Gayle Offered Bachelor of Science in Geology Bachelor of Arts in Geology Minor in Geology Secondary Education

  15. Geology Page 145Sonoma State University 2012-2013 Catalog DEPARTMENT OFFICE

    E-Print Network [OSTI]

    Ravikumar, B.

    Geology Page 145Sonoma State University 2012-2013 Catalog GEOLOGY DEPARTMENT OFFICE Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology DEPARTMENT CHAIR Matthew J. James ADMINISTRATIVE COORDINATOR Cory Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Sciences Minor in Geology Minor

  16. New Strategies for Finding Abandoned Wells at Proposed Geologic Storage Sites for CO2

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.

    2007-09-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys.

  17. Interactive software integrates geological and engineering data

    SciTech Connect (OSTI)

    Srivastava, G.S. (Oxy USA Inc., Tulsa, OK (United States))

    1994-09-05

    A comprehensive software package provides Oxy USA Inc. a set of interactive tools for rapid and easy integration of geological, geophysical, petrophysical, and reservoir engineering data for the purpose of reservoir characterization. The stacked curves system (SCPC), proprietary software of Oxy USA Inc., is used extensively within Occidental Petroleum Corp. to determine detailed knowledge of reservoir geometry and associated parameters crucial in infill drilling, field extension, and enhanced recovery projects. SCPC has all the desk top management and mapping software tools necessary to fully address, analyze, and resolve three components of reservoir characterization: defining the geometry; calculating reservoir properties; and making volumetric estimates. The paper discusses the background of the software, describes its functions of data base management and transformation, and explains the types of displays it is capable of producing.

  18. 1 INSTRODUCTION In the concept of geological radioactive waste disposal,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being-hydro-mechanical characterization of Opalinus clay are presented. The material is one of the argillites being studied in several research projects in Europe in the context of geological radioactive waste disposal. 2 MATERIAL STUDIED

  19. The Geological Society of America Field Guide 11

    E-Print Network [OSTI]

    Frankel, Kurt L.

    43 The Geological Society of America Field Guide 11 2008 Active tectonics of the eastern California, Pennsylvania 16802, USA John M. Bartley Department of Geology and Geophysics, University of Utah, Salt Lake., Morrero, S., Owen, L.A., and Phillips, F., 2008, Active tectonics of the eastern California shear zone

  20. Progress in Understanding the Structural Geology, Basin Evolution,

    E-Print Network [OSTI]

    and local geologic mapping, drilling and coring, and seismic reflection profiling have in- creased vastly by intrabasinal highs. 4. Integration of stratigraphy and structural geology. The sedimentary deposits of half-graben are influenced by basin geometry; consequently, stratigraphy can be used to infer aspects of basin evolution

  1. Geologic Map and GIS Data for the Wabuska Geothermal Area

    SciTech Connect (OSTI)

    Hinz, Nick

    2013-09-30

    Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross?section.

  2. DENISE M. AKOB U.S. Geological Survey

    E-Print Network [OSTI]

    DENISE M. AKOB U.S. Geological Survey National Research Program (Water) 12201 Sunrise Valley Dr. w, U.S. Geological Survey, National Research Program (Water), Microbiology and Molecular Ecology Ecology w Environmental Microbiology w Bioremediation w Biogeochemistry PUBLICATIONS Akob, D. M.*, S. H

  3. Z .Marine Geology 162 2000 303316 www.elsevier.nlrlocatermargeo

    E-Print Network [OSTI]

    Resources and Energy Directorate, PB 5091 Majorstua, 0301 Oslo, Norway b Institute of Geology, UniÕersity of Oslo, PB 1047, Blindern, N-0316 Oslo, Norway c Institute of Geology, UniÕersity of Oslo, PB 1047, Blindern, N-0316 Oslo, Norway d J.S.I. Oil and Gas Consultants AS, PB 218, 1301 SandÕika, Norway e

  4. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.; Mackley, Rob D.

    2005-08-01

    This revision of the geologic data catalog incorporates new boreholes drilled after September 2002 as well as other older wells, particularly from the 600 Area, omitted from the earlier catalogs. Additionally, borehole geophysical log data have been added to the catalog. This version of the geologic data catalog now contains 3,519 boreholes and is current with boreholes drilled as of November 2004.

  5. FourYear Academic Plan 20122013 BA in Geology

    E-Print Network [OSTI]

    FourYear Academic Plan 20122013 BA in Geology Internal Use Version Year 1 Year 2 Year 3 Year 4: Total UD Credits: 46 Total Credits: 120 3/19/12 #12;FourYear Academic Plan 20122013 BA in Geology

  6. Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites

    E-Print Network [OSTI]

    Chow, Fotini K.

    2009-01-01

    CO 2 from geologic carbon sequestration sites, Vadose Zoneleakage at geologic carbon sequestration sites Fotini K.assessment for geologic carbon sequestration sites. We have

  7. Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    E-Print Network [OSTI]

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

  8. The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as

    E-Print Network [OSTI]

    Lee Jr., Richard E.

    The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as Illustrated by Native American Stories Robert G. McWilliams Professor Emeritus Department of Geology Miami University Oxford, Ohio 45056 mcwillrg@muohio.edu #12;The Geology of North

  9. Guidelines for Geology Capstone Project The purpose of the geology capstone experience (GLY 491/492) at Marshall is to give

    E-Print Network [OSTI]

    Sanyal, Suman

    1 Guidelines for Geology Capstone Project The purpose of the geology capstone experience (GLY 491/492) at Marshall is to give students experience doing research or project-related work. Geology majors may fulfill the capstone requirements by registering for 2, 3 or 4 credit hours (students pursuing the Engineering Geology

  10. Application for Field Camp Scholarship (Geology 560 and 561) Apply separately for a scholarship for Geology 360. Do not use this form.

    E-Print Network [OSTI]

    Application for Field Camp Scholarship (Geology 560 and 561) Apply separately for a scholarship for Geology 360. Do not use this form. To be considered for a departmental scholarship, you must have declared a geology major at KU, and you must see your geology faculty advisor and get his signature. Please fill out

  11. Checklist for Minor in GEOLOGY The minor in geology is flexible, so that it can complement the student's major in the best

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Checklist for Minor in GEOLOGY The minor in geology is flexible, so that it can complement the student's major in the best possible manner. Students minoring in Geology are strongly encouraged to plan their programs with an undergraduate geology advisor. A total of 20 credits are required for the minor as follows

  12. Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration

    E-Print Network [OSTI]

    Bau, Domenico A.

    Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

  13. Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

  14. 3D Geological Modelling In Bavaria - State-Of-The-Art At A State...

    Open Energy Info (EERE)

    3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3D Geological...

  15. Lineage Diversification of Lizards (Phrynosomatidae) in Southwestern North America: Integrating Genomics and Geology

    E-Print Network [OSTI]

    Gottscho, Andrew David

    2015-01-01

    the Natural History and Geology of the Countries VisitedSunderland. Lonsdale P. 1989. Geology and tectonic historyDM, Decker RW editors. The Geology of North America, Vol. N:

  16. Graduate Studies in Volcanology, Igneous Petrology & Economic Geology For more information

    E-Print Network [OSTI]

    Kurapov, Alexander

    Graduate Studies in Volcanology, Igneous Petrology & Economic Geology VIPER For more information Volcanology, Igneous Petrology and Economic geology Research group Interested in Volcanoes? Magmas? Ore) John Dilles (ore deposits, igneous petrology) Randy Keller (igneous petrology, marine geology) Roger

  17. Public Geology at Griffith Park in Los Angeles: A Sample Teachers’ Guide

    E-Print Network [OSTI]

    Helman, Daniel S

    2012-01-01

    http://www.geo.cornell.edu/geology/faculty/RWA/programs.htmlR. J. (1987). Quaternary geology and seismic hazard of the1953). Special Report 33: Geology of the Griffith Park area,

  18. GARY KOCUREK Department of Geological Sciences, Jackson School, University of Texas, 1 University Station

    E-Print Network [OSTI]

    Yang, Zong-Liang

    .D., Geology, University of Wisconsin, 1980 RESEARCH AREAS: Sedimentology, stratigraphy, geomorphology, aeolian ­ Sedimentary Geology, Sedimentology, Summer Field Camp, Field Methods, Geology of the National Parks, Earth Committee, First International Conference on Mars Sedimentology & Stratigraphy, 2009 - 2010, El Paso Field

  19. Water Formatics Engineered formation of nanobubbles networks

    E-Print Network [OSTI]

    Jacob, Eshel Ben

    Water Formatics Engineered formation of nanobubbles networks in water and aqueous solutions We present the idea that the anomalous effects of rf-treatments of water and aqueous solution resulted from-bubble exchange interactions. These exchange interactions are mediated by the ordering of the water molecules

  20. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01

    1495.5 MMTC/yr Global Annual Crude Oil Production, U.S. DOEConsumption - 1998 Global Annual Crude Oil Production - 1998Consumption - 1998 Global Annual Crude Oil Production - 1998

  1. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    Pashin, J.C. , 2008. Gas shale potential of Alabama.International Coalbed and Shale Gas Symposium, Paper 808.permeable are clays and shales? Water Resources Research,

  2. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    the Haynesville Shale, Gulf of Mexico Basin. Figure producedthe Haynesville Shale, Gulf of Mexico Basin. Figure producedThe Woodford Shale in southeastern New Mexico: distribution

  3. A STUDY OF THE RELATIONSHIP OF GEOLOGICAL FORMATION TO THE NORM

    SciTech Connect (OSTI)

    Derald Chriss; Talmage P. Bursh

    2002-11-26

    Naturally occurring radioactive materials (NORM) are everywhere and we are constantly exposed to it. Natural radiation has been around since the beginning of the Earth and is found in our bodies, our food, and in the products we use. This study investigates the presence and activity of naturally occurring radioactive materials contained in produced water which is associated with oil and gas exploration. Specifically the principal radionuclide used to measure NORM was radium. We also measured , where possible, other parameters which may have had an effect on the NORM activity. Produced water samples from two different oil field sites, Fausse Pointe and North Broussard, have been used as test sites for this water analysis study. The overall purpose was to determine the specific, selected parameters associated with the produced waters, which are defined as the waters which are brought to the surface along with oil and natural gas. This study is also a precursor in an attempt to predict the activity of naturally occurring radioactive materials and the other factors which may affect the activity and/or occurrence of NORM in produced water samples. A control site used for comparison, was Lake Kernan on the Southern University Campus. The average reading for the first site, Fausse Point, was pH 6.39, with the total dissolved solids, and conductivity readings off scale for our system. The radium analysis of the Fausse Point site (avg value of 0.5291 pCi/mL) indicates a relatively ''hot'' NORM area of activity. This activity indicates a potential, future NORM regulatory problem for this site. The average reading for the second site, North Broussard, was pH 7.39, with the total dissolved solids, and conductivity readings again being very high. The radium analysis of the North Broussard site (avg. of 0.4697 pCi/mL) also indicates a relatively ''hot'' NORM area of activity. The average readings for our control site, Lake Kernan, were pH 7.29, total dissolved solids 62.5 milligrams per liter and conductivity, 141.7 microsiemens, respectively. The radium activity of the Lake Kernan site was, as expected, negligible. Metals analysis for each of the sites was also performed.

  4. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    of the Mississippian Barnett Shale, Barnett-Paleozoic totalof the Mississippian Barnett Shale, Fort Worth Basin, andisopach maps of the Barnett Shale, Fort Worth Basin. Figure

  5. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN) [Knoxville, TN; Wesolowski, David J. (Kingston, TN) [Kingston, TN

    2010-02-23

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  6. Geologic history of the Pettet Zone of the Sligo formation at Lisbon Field, Claiborne Parish, Louisiana 

    E-Print Network [OSTI]

    Ford, James Patrick

    1985-01-01

    . Aragonite allochems were selectively dissolved, and magnesium calcites were stabilized to low magnesium calcite. Abundant aragonite bivalve fragments formed nuclei of superficial ooids. All original oolitic coatings were probably calcite. Dissolution... occluding porosity. Late dissolution and minor replacement and cementation by saddle dolomite and anhydrite occurred in the deep subsurface (below 5000 ft. ). These reactions were related to the depth-temperature dependent migration of hydrocarbons...

  7. Numerical Modeling of CO2 Sequestration in Geologic Formations - Recent Results and Open Challenges

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    crustal conditions of a geothermal gradient of 30 ?C/km andwater in a normal geothermal gradient of 30 ?C/km with ais held in a normal geothermal gradient of 30 ?C/km and is

  8. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    and isopach maps of the Maquoketa Shale, Illinois Basin.Figure 6) Illinois Basin Maquoketa Shale New Albany Shaleinformation on the Ordovician Maquoketa Shale. Bristol and

  9. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01

    Soda Ash Manufacture and Consumption Carbon Dioxide Consumption* Iron and Steel Production** Ammonia

  10. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    of its prolific shale gas resources. GIS data were obtainedestimated recoverable shale gas resources of 20 trillionrecoverable shale gas and shale oil resources are in

  11. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    International Coalbed and Shale Gas Symposium, Paper 808.Shale RVSP, New Albany Shale Gas Project, RVSP SeismicWave Analysis from Antrim Shale Gas Play, Michigan Basin,

  12. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01

    used to preserve food from insects, microbes, and fungi isFungi Effective Control of Insect Pests in Food Storage Marshemolymph. Food preservation research has shown that insects

  13. DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof Energy ConsentCertify DOEDOEof EnergySurpasses CleanupDepartment

  14. MICROBIAL AND CHEMICAL ENHANCEMENT OF IN-SITU CARBON MINERALIZATION IN GEOLOGICAL FORMATION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _s - " L~-lJRo4--

  15. Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia

    E-Print Network [OSTI]

    Halazonetis, Thanos

    Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia Creating links Tripodi, Vanga Resources, Geneva · A student view of economic geology. Honza Catchpole, President

  16. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology-748-1331. mdeact@shaw.ca #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology

  17. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Rd., Black Creek, BC, V9J 1G4 #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology

  18. Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife

    E-Print Network [OSTI]

    Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology.for.gov.bc.ca/vancouvr/research/research_index.htm #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

  19. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Using Airphotos to Interpret

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture March 2004 Research Section, Coast Forest Region, BCMOF 1 Research Disciplines: Ecology ~ Geology

  20. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology, BC, V9J 1G4 #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology

  1. LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration

    E-Print Network [OSTI]

    Peters, C. A.

    2011-01-01

    study of geologic carbon sequestration Catherine A. Petersleakage at geologic carbon sequestration sites. Env EarthDOE) Conference on Carbon Sequestration, 2005. Alexandria,

  2. Status report on the geology of the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  3. Environments of deposition of the Yegua Formation (Eocene), Brazos County, Texas 

    E-Print Network [OSTI]

    LeBlanc, Rufus Joseph

    1970-01-01

    ENVIRONMENTS OF DEPOSITION OF THE YEGUA FORMATION (EOCENE), BRAZOS COUNTY, TEXAS A Thesis by RUFUS JOSEPH LEBLANC, JR. Submitted to the Graduate College of ' Texas A@M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1970 Major Subject: Geology ENVIRONMENTS OF DEPOSITION OF THE YEGUA FORMATION (EOCENE), BRAZOS COUNTY, TEXAS A Thesis by RUFUS JOSEPH LEBLANC, JR. Approved as to style and content by: (Charrman o ominittee) (Head...

  4. A Methodological Approach For Reservoir Heterogeneity Characterization Using Artificial Neural Networks

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    distribution of rock properties. Characterization of porosity, permeability, oil, gas and water saturation of hydrocarbon bearing rocks is the focus of this technical paper. Calculating formation porosity and water between porosity and water saturation with density and resistivity log responses. The term modeled non

  5. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  6. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  7. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  8. DEPARTMENT OF GEOLOGY AND GEOPHYSICS UNDERGRADUATE SCHOLARSHIP APPLICATION

    E-Print Network [OSTI]

    Johnson, Cari

    DEPARTMENT OF GEOLOGY AND GEOPHYSICS UNDERGRADUATE SCHOLARSHIP APPLICATION Environment Geophysics Other: GeoEng Earth Science Teaching Anticipated & Geophysics 115 S. 1460 E. Room 383, Salt Lake City, UT 84112-0102 Phone 801

  9. Statistical approaches to leak detection for geological sequestration

    E-Print Network [OSTI]

    Haidari, Arman S

    2011-01-01

    Geological sequestration has been proposed as a way to remove CO? from the atmosphere by injecting it into deep saline aquifers. Detecting leaks to the atmosphere will be important for ensuring safety and effectiveness of ...

  10. Geology, Water Geochemistry And Geothermal Potential Of The Jemez...

    Open Energy Info (EERE)

    Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  11. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    WITH SITE SCREENING AND SELECTION FOR CO 2 STORAGE D. A.77 ASSESSING AND EXPANDING CO 2 STORAGE CAPACITY IN DEPLETEDFOR CO 2 GEOLOGICAL STORAGE IN CENTRAL COAL BASIN (NORTHERN

  12. Structural Geology and Tectonics Group: Students STUDENTS SUPERVISED AT RUTGERS

    E-Print Network [OSTI]

    Structural Geology and Tectonics Group: Students STUDENTS SUPERVISED AT RUTGERS UNDERGRADUATE Trent Institute, Iceland Michael Durcanin, M.S. (2006 ­ 2009); "Influence of synrift salt on rift the Tectonic History

  13. Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana)

    Broader source: Energy.gov [DOE]

    This law establishes that carbon dioxide and sequestration is a valuable commodity to the citizens of the state. Geologic storage of carbon dioxide may allow for the orderly withdrawal as...

  14. Minor actinide waste disposal in deep geological boreholes

    E-Print Network [OSTI]

    Sizer, Calvin Gregory

    2006-01-01

    The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

  15. DENISE M. AKOB U.S. Geological Survey

    E-Print Network [OSTI]

    DENISE M. AKOB U.S. Geological Survey National Research Program (Water) 430 National Center Reston, National Research Program (Water), Microbiology and Molecular Ecology Laboratory. 2012-current Environmental Microbiology w Bioremediation w Biogeochemistry w Bioenergy PUBLICATIONS 1. Keiner, R., A

  16. Geological aspects of the nuclear waste disposal problem

    SciTech Connect (OSTI)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  17. Z .Chemical Geology 175 2001 133147 www.elsevier.comrlocaterchemgeo

    E-Print Network [OSTI]

    Grossman, Ethan L.

    of Geology and Geochemistry, Russian Academy of Science, Urals Branch, PochtoÕyi per. 7, Ekaterinburg, Russia c Geocenter, Ltd., 5 block 3 KrjijanoÕsky St., Moscow, Russia Abstract We performed isotopic

  18. A Geological And Geophysical Appraisal Of The Baca Geothermal...

    Open Energy Info (EERE)

    A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  19. Geology and geothermal waters of Lightning Dock region, Animas...

    Open Energy Info (EERE)

    Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to...

  20. Cenozoic volcanic geology of the Basin and Range province in...

    Open Energy Info (EERE)

    Cenozoic volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  1. 12.001 Introduction to Geology, Spring 2008

    E-Print Network [OSTI]

    Elkins-Tanton, Lindy

    This undergraduate level course presents a basic study in geology. It introduces major minerals and rock types, rock-forming processes, and time scales; temperatures, pressures, compositions, structure of the Earth, and ...

  2. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Geology of the Florida Canyon gold deposit, Pershing County, Nevada, in: Gold and Silver Deposits of Western Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to...

  3. Geological Society of America selects Los Alamos scientist Claudia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a stable-isotope geochemist whose research spans the traditional fields of geology, soil science and climate science. July 9, 2015 Claudia Mora Claudia Mora Contact Los Alamos...

  4. Occurrence and Stability of Glaciations in Geologic Time 

    E-Print Network [OSTI]

    Zhuang, Kelin

    2011-10-21

    Earth is characterized by episodes of glaciations and periods of minimal or no ice through geologic time. Using the linear energy balance model (EBM), nonlinear EBM with empirical ice sheet schemes, the general circulation model coupled with an ice...

  5. Geologic evolution of Iron Mountain, central Mojave Desert, California

    E-Print Network [OSTI]

    Boettcher, Stefan S.; Walker, J. Douglas

    1993-04-01

    Geologic mapping, structural analysis, petrologic study, and U-Pb geochronology at Iron Mountain, 20 km southwest of Barstow, California, place important constraints on the paleogeographic affinities of metasedimentary rocks in the area and provide...

  6. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV Geothermal Development Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  7. Geological oceanography of the Atchafalaya Bay area, Louisiana 

    E-Print Network [OSTI]

    Thompson, Warren Charles

    1953-01-01

    GEOLOGICAL OCEANOGRAPHY OF THE ATCHAFALAYA BAY AREA, LOUISIANA A Dissertation By WARREN CHARLES THOMPSON Approved as to style and content by: t/yu*-. W. Armstrong Price,' Chairman of Committee Dale F. Leipper, Head of May 1953 GEOLOGICAL... OCEANOGRAPHY OF THE ATCHAFALAYA BAY AREA, LOUISIANA By WARREN CHARLES THOMPSON111 A Dissertation Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of DOCTOR...

  8. The French Geological Repository Project Cigeo - 12023

    SciTech Connect (OSTI)

    Harman, Alain; Labalette, Thibaud; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, Chatenay-Malabry (France)

    2012-07-01

    The French Agency for Radioactive Waste Management, ANDRA, was launched by law in 1991 to perform and develop the research programme for managing high level and intermediate level long-lived radioactive waste generated by the French nuclear fleet. After a 15-year intensive research programme, including the study of alternative solutions, an overall review and assessment of the results was organized, including a national public debate. As a result, the Parliament passed a Planning Act on radioactive waste management in 2006. Commissioning of a geological repository by 2025 was one of the most important decisions taken at that time. To reach this goal, a license application must be submitted and reviewed by the competent authorities by 2015. A detailed review and consultation process is, as well, defined in the Planning Act. Beside the legal framework the project needs to progress on two fronts. The first one is on siting. A significant milestone was reached in 2009 with the definition of a defined area to locate the underground repository facilities. This area was approved in March 2010 by the Government, after having collected the opinions and positions of all the interested parties, at both National and local levels. A new phase of dialogue with local players began to refine the implementation scenarios of surface facilities. The final site selection will be approved after a public debate planned for 2013. The second one is the industrial organization, planning and costing. The industrial project of this geological repository was called Cigeo (Centre Industriel de Stockage Geologique). Given the amount of work to be done to comply with the given time framework, a detailed organization with well-defined milestones must be set-up. Cigeo will be a specific nuclear facility, built and operated underground for over a hundred years. The consequence of this long duration is that the development of the repository facilities will take place in successive operational phases. The characteristics of the first waste packages received will determine the work and the corresponding investments by 2025 on the repository site. One of the main challenges will be to accommodate both activities of mining and nuclear operations at the same time and at the same location. From the technical standpoint, ventilation and fire risk cannot be managed through a simple transposition from current nuclear industry practices. The reversibility demand also leads to concrete proposals with regard to repository management flexibility and waste package retrievability. These proposals contribute to the dialogue with stakeholders to prepare for the public debate and a future law which will determine the reversibility conditions. New design developments are expected to be introduced in the application from the current studies conducted until 2014. The possibility of optimization beyond 2015 will be kept open taking into account the one hundred years operating time as well as the capability to integrate feedback gained from the first construction and operation works. The industrial committed work aims to reach the application stage by 2015. The license application procedure was defined by the 2006 Act. Subject to authorization, the construction might begin in 2017. (authors)

  9. Geologic and tectonic characteristics of rockbursts

    SciTech Connect (OSTI)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Charlamov, V.A.; Kondratyev, S.V.; Rybnov, Y.S.; Shemyakin, V.M.; Sisov, I.A.; Syrnikov, N.M.; Turuntaev, S.B.; Vasilyeva, T.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that case to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.

  10. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

  11. U.S. Geological Survey Library Classification By R. Scott Sasscer

    E-Print Network [OSTI]

    Torgersen, Christian

    U.S. Geological Survey Library Classification System By R. Scott Sasscer U.S. Geological Survey classification system is a tool for classifying and retrieving geoscience library materials. The index promotes.S. Geological Survey Library classification system / by R. Scott Sasscer. p. cm. ­ (U.S. Geological Survey

  12. GEOL 301 --GEOLOGY OF NATIONAL PARKS AND MONUMENTS Dr. Vic Camp

    E-Print Network [OSTI]

    Camp, Vic

    GEOL 301 -- GEOLOGY OF NATIONAL PARKS AND MONUMENTS Dr. Vic Camp Office: CG-225 Office Hours: MWF 11:00-12:00 a.m. E-mail: vcamp@geology.sdsu.edu Text: Harris et al. (1995) Geology of National Parks Course Description: The constantly evolving earth has been shaped by a variety of geologic processes

  13. APOLLO 17 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO 17 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 17 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bai ley and G.E. Ulrich U.s. Geological 5. Report Date Apollo 17 Voice Transcript 1975 Pertaining to the Geology of the Landing Site 6. 7

  14. Physical Geology Laboratory J Bret Bennington, Charles Merguerian and John E. Sanders

    E-Print Network [OSTI]

    Merguerian, Charles

    Physical Geology Laboratory Manual J Bret Bennington, Charles Merguerian and John E. Sanders Geology Department Hofstra University © 1999 #12;PHYSICAL GEOLOGY LABORATORY MANUAL Third Edition (Revised) by J Bret Bennington, Charles Merguerian, and John E. Sanders Department of Geology Hofstra University

  15. * * * *APOLLO 12 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    * * * *APOLLO 12 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 12 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bailey and G.E. Ulrich U.S. Geological to the Geology of the Landing Site 7. Auchor(s) 8. Performing Organization Repr. N. G. Bailey and G. E. Ulrich No

  16. Bachelor of Science in Geosciences: Sample Curriculum for a Concentration in Geology

    E-Print Network [OSTI]

    Rock, Chris

    Bachelor of Science in Geosciences: Sample Curriculum for a Concentration in Geology FIRST YEAR Fall Spring GEOL 1303/1101, Physical Geology 4 GEOL 2401, Historical Geology 4 MATH 1451, Calculus I 4 Geology 4 GEOL 4321, Igneous/Metamorph. Petrog. 3 GEOL 4325, Sediment. & Stratigraphy 3 GEOL 4201, Field

  17. INTERAGENCY REPORT: ASTROGEOLOGY 14 FIVE-DAY MISSION PLAN TO INVESTIGATE THE GEOLOGY

    E-Print Network [OSTI]

    Rathbun, Julie A.

    #12;INTERAGENCY REPORT: ASTROGEOLOGY 14 FIVE-DAY MISSION PLAN TO INVESTIGATE THE GEOLOGY Preliminary small-scale geologic map of the Marius Hills region. Preliminary large-scale geologic map of part of the Marius Hills region. Explanation for geologic maps of the Marius Hills re- gion. Page Launch vehicle

  18. October 27-30 Geological Society of America 2013 Annual Meeting

    E-Print Network [OSTI]

    Polly, David

    -D geologic mapping program--Paper Withdrawn Keefer, Donald A., Illinois State Geological Survey/710 Threedimensional geologic mapping of Lake County, Illinois: no small task Brown, Steven, E., Illinois State Geological Survey Separate workshop publication as: Thorleifson, L. H., Berg, R. C., and Russell, H. A. J

  19. BS in EARTH AND SPACE SCIENCE EDUCATION (694020) MAP Sheet Department of Geological Sciences

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    Sedimentology and Stratigraphy Geol 375 Structural Geology Geol 405 Applied Math in Geol Sciences Geol 435

  20. BS in EARTH AND SPACE SCIENCE EDUCATION (694020) MAP Sheet Department of Geological Sciences

    E-Print Network [OSTI]

    Seamons, Kent E.

    of the Planets Geol 230 Geological Communications Geol 351 Mineralogy Geol 352 Petrology Geol 370 Sedimentology

  1. BS in EARTH AND SPACE SCIENCE EDUCATION (694020) MAP Sheet Department of Geological Sciences

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    Sedimentology and Stratigraphy Geol 375 Structural Geology Geol 435 Introduction to Groundwater Geol 440 Solid

  2. Journal of the Geological Society doi: 10.1144/gsjgs.150.5.0823

    E-Print Network [OSTI]

    Torsvik, Trond Helge

    Journal of the Geological Society doi: 10.1144/gsjgs.150.5.0823 1993; v. 150; p. 823-831Journal of this articlehereclick Subscribe Collection to subscribe to Journal of the Geological Society or the Lyellhereclick Notes on January 23, 2012Downloaded by © Geological Society of London 1993 #12;Journalof the Geological

  3. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN, WYOMING By R.M. Flores,1 A.M. Ochs,2 and L.R. Bader1 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 1999

  4. College of Natural Science and Mathematics Department of Geology and Geophysics

    E-Print Network [OSTI]

    Hartman, Chris

    gEology College of Natural Science and Mathematics Department of Geology and Geophysics 907-474-7565 www.uaf.edu/geology/ MS, phD Degrees Minimum Requirements for Degrees: MS: 30 credits; PhD: 18 thesis credits Graduates in geology have broad backgrounds in the earth sciences and firm foundations

  5. University of Calgary, Department of Geoscience Sessional Instructor Position in Petroleum Engineering Geology

    E-Print Network [OSTI]

    Garousi, Vahid

    in Petroleum Engineering Geology The Department of Geoscience at the University of Calgary is seeking a Sessional Instructor to fill 1/3 of course as lecturer for Geology 377 (Petroleum Engineering Geology to engineering students as part of the course GLGY 377 (Petroleum Engineering Geology). The topics covered

  6. Page 156 Geology Sonoma State University 2008-2010 Catalog Department Office

    E-Print Network [OSTI]

    Ravikumar, B.

    Page 156 Geology Sonoma State University 2008-2010 Catalog Department Office Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology Department chair Matthew J. James aDministrative cOOrDinatOr Gayle Early Retirement Program Programs Offered Bachelor of science in Geology Bachelor of arts in Geology

  7. doi:10.1130/0091-7613-37.6.506 2009;37;506Geology

    E-Print Network [OSTI]

    Utrecht, Universiteit

    for transcontinental dispersal and intraregional recycling of sediment: Geologi- cal Society of America Bulletin, v

  8. Geological and production characteristics of strandplain/barrier island reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

    1994-12-01

    The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

  9. Conceptual Model Summary Report Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

    SciTech Connect (OSTI)

    None

    2011-06-30

    A conceptual model was developed for the Arches Province that integrates geologic and hydrologic information on the Eau Claire and Mt. Simon formations into a geocellular model. The conceptual model describes the geologic setting, stratigraphy, geologic structures, hydrologic features, and distribution of key hydraulic parameters. The conceptual model is focused on the Mt. Simon sandstone and Eau Claire formations. The geocellular model depicts the parameters and conditions in a numerical array that may be imported into the numerical simulations of carbon dioxide (CO{sub 2}) storage. Geophysical well logs, rock samples, drilling logs, geotechnical test results, and reservoir tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. The geologic and hydraulic data were integrated into a three-dimensional (3D) grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data were corrected in locations where reservoir tests have been performed in Mt. Simon injection wells. The final geocellular model covers an area of 600 km by 600 km centered on the Arches Province. The geocellular model includes a total of 24,500,000 cells representing estimated porosity and permeability distribution. CO{sub 2} injection scenarios were developed for on-site and regional injection fields at rates of 70 to 140 million metric tons per year.

  10. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    SciTech Connect (OSTI)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  11. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  12. GPFA-AB_Phase1GeologicReservoirsContentModel10_26_2015.xls

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Teresa E. Jordan

    2015-09-30

    This dataset conforms to the Tier 3 Content Model for Geologic Reservoirs Version 1.0. It contains the known hydrocarbon reservoirs within the study area of the GPFA-AB Phase 1 Task 2, Natural Reservoirs Quality Analysis (Project DE-EE0006726). The final values for Reservoir Productivity Index (RPI) and uncertainty (in terms of coefficient of variation, CV) are included. RPI is in units of liters per MegaPascal-second (L/MPa-s), quantified using permeability, thickness of formation, and depth. A higher RPI is more optimal. Coefficient of Variation (CV) is the ratio of the standard deviation to the mean RPI for each reservoir. A lower CV is more optimal. Details on these metrics can be found in the Reservoirs_Methodology_Memo.pdf uploaded to the Geothermal Data Repository Node of the NGDS in October of 2015.

  13. Planet formation and migration

    E-Print Network [OSTI]

    John C B Papaloizou; Caroline Terquem

    2005-11-28

    We review the observations of extrasolar planets, ongoing developments in theories of planet formation, orbital migration, and the evolution of multiplanet systems.

  14. Hydrologic and geologic aspects of low-level radioactive-waste site management. [Shallow land burial at Oak Ridge

    SciTech Connect (OSTI)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations.

  15. All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and

    E-Print Network [OSTI]

    Fernandez, Eduardo

    All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating

  16. EG-1998-03-109-HQ Activities in Planetary Geology for the Physical and Earth Sciences Exercise Eleven: Geologic Features of Mars

    E-Print Network [OSTI]

    127 EG-1998-03-109-HQ Activities in Planetary Geology for the Physical and Earth Sciences Exercise Eleven: Geologic Features of Mars Purpose By examining images of martian surface features, students will learn to identify landforms and inter- pret the geologic processes which formed them. Background

  17. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect (OSTI)

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  18. Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen.

    SciTech Connect (OSTI)

    Lord, Anna Snider

    2009-09-01

    In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.

  19. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  20. Application of micro-PIXE method to ore geology

    SciTech Connect (OSTI)

    Murao, S.; Hamasaki, S.; Sie, S. H.; Maglambayan, V. B.; Hu, X.

    1999-06-10

    Specific examples of ore mineral analysis by micro-PIXE are presented in this paper. For mineralogical usage it is essential to construct a specimen chamber which is designed exclusively for mineral analysis. In most of the analysis of natural minerals, selection of absorbers is essential in order to obtain optimum results. Trace element data reflect the crystallographic characteristics of each mineral and also geologic settings of sampling locality, and can be exploited in research spanning mineral exploration to beneficiation. Micro-PIXE thus serves as a bridge between small-scale mineralogical experiments and understanding of large-scale geological phenomenon on the globe.

  1. High-resolution truncated plurigaussian simulations for the characterization of heterogeneous formations

    E-Print Network [OSTI]

    Mariethoz, Grégroire; Cornaton, Fabien; Jaquet, Olivier; 10.1111/j.1745-6584.2008.00489.x

    2011-01-01

    Integrating geological concepts, such as relative positions and proportions of the different lithofacies, is of highest importance in order to render realistic geological patterns. The truncated plurigaussian simulation method provides a way of using both local and conceptual geological information to infer the distributions of the facies and then those of hydraulic parameters. The method (Le Loc'h and Galli 1994) is based on the idea of truncating at least two underlying multi-Gaussian simulations in order to create maps of categorical variable. In this manuscript we show how this technique can be used to assess contaminant migration in highly heterogeneous media. We illustrate its application on the biggest contaminated site of Switzerland. It consists of a contaminant plume located in the lower fresh water Molasse on the western Swiss Plateau. The highly heterogeneous character of this formation calls for efficient stochastic methods in order to characterize transport processes.

  2. The occurrence of clays and their bearing on evaporite mineralogy in the Salado Formation, Delaware Basin, New Mexico 

    E-Print Network [OSTI]

    Harville, Donald Gene

    1985-01-01

    THE OCCURRENCE OF CLAYS AND THEIR BEARING ON EVAPORITE MINERALOGY IN THE SALADO FORMATION, DELAWARE BASIN, NEW MEXICO A Thesis by DONALD GENE HARVILLE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Geology THE OCCURRENCE OF CLAYS AND THEIR BEARING ON EVAPORITE MINERALOGY IN THE SALADO FORMATION, DELAWARE BASIN, NEW MEXICO A Thesis by DONALD GENE HARVILLE Approved as to style...

  3. Authigenic clay minerals in sandstones of the Delaware Mountain Group: Bell Canyon and Cherry Canyon Formations, Waha Field, West Texas 

    E-Print Network [OSTI]

    Walling, Suzette Denise

    1992-01-01

    AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS A Thesis by SUZETTE DENISE WALLING Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Geology AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS...

  4. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations

    E-Print Network [OSTI]

    Zhou, Quanlin

    the fraction of total pore space available for CO2 storage, limited by heterogeneity, buoyancy effectsA method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations, USA 1. Introduction Geological carbon dioxide (CO2) sequestration in deep forma- tions (e.g., saline

  5. Notes on Star Formation

    E-Print Network [OSTI]

    Krumholz, Mark R

    2015-01-01

    This book provides an introduction to the field of star formation at a level suitable for graduate students or advanced undergraduates in astronomy or physics. The structure of the book is as follows. The first two chapters begin with a discussion of observational techniques, and the basic phenomenology they reveal. The goal is to familiarize students with the basic techniques that will be used throughout, and to provide a common vocabulary for the rest of the book. The next five chapters provide a similar review of the basic physical processes that are important for star formation. Again, the goal is to provide a basis for what follows. The remaining chapters discuss star formation over a variety of scales, starting with the galactic scale and working down to the scales of individual stars and their disks. The book concludes with a brief discussion of the clearing of disks and the transition to planet formation. The book includes five problem sets, complete with solutions.

  6. Word formation in Thadou

    E-Print Network [OSTI]

    Haokip, Pauthang

    2014-01-01

    As stated above, compound words of Thadou are mostlyNote that the resulting new words are always nouns. a. b. c.bad’ (negative) Haokip: Word formation in Thadou a. â-sâa ?

  7. Economic Geology, Vol. 96, 2001, pp. 159-170

    E-Print Network [OSTI]

    Cartigny, Pierre

    Economic Geology, Vol. 96, 2001, pp. 159-170 Diamonds from Myanmar and Thailand: Characteristics University, Bangkok, Thailand, and GEMOC ARC National Key Centre, Macquarie University, New South Wales 2109 deposits at several localities in Myanmar, Thailand, and Sumatra; the deposits do not contain typical

  8. GEOLOGY | December 2012 | www.gsapubs.org 1139 INTRODUCTION

    E-Print Network [OSTI]

    Jones, Alan G.

    GEOLOGY | December 2012 | www.gsapubs.org 1139 INTRODUCTION The disastrous A.D. 2008 Wenchuan earth strong lithosphere, flow can be blocked and/or diverted and produce steep topographic gradients (Clark of shortening and uplift, which is evidence that uplift is locally caused by compression (Hubbard and Shaw, 2009

  9. MAY, 2008 VOLUME 47, NUMBER 5 WEST TEXAS GEOLOGICAL SOCIETY

    E-Print Network [OSTI]

    Fouke, Bruce W.

    GEOLOGICAL SOCIETY BULLETINBULLETIN P.O. Box 1595 Midland, TX 79702 New Shale Gas Analysis Desorption, lost Available for Out-of-Town Clients Petroleum Data for Texas & New Mexico THE SUBSURFACE LIBRARY www Subscription Service for Newly Released RRC Log Images Print Logs from the New Mexico Oil Conservation Division

  10. New Mexico Bureau of Geology & Mineral Resources A DIVISION OF

    E-Print Network [OSTI]

    Borchers, Brian

    , The Barnett Shale in southeastern New Mexico: Distribution, thickness, and source rock characterization: New interpretation and mapping techniques. Broadhead, R.F., 2010, The Woodford Shale in southeastern New MexicoNew Mexico Bureau of Geology & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING

  11. The Geological Society of America Special Paper 430

    E-Print Network [OSTI]

    The Geological Society of America Special Paper 430 2007 Global kinematics in deep versus shallow below the asthenosphere, and one fed by the asthenos- phere itself, provide different kinematic results pull as the first-or- der driving mechanism of plate dynamics. Keywords: plate motions, reference

  12. Implementation of graphical layout editor for geologic applications

    SciTech Connect (OSTI)

    Copper, D.H.; Heil, R.J.

    1984-04-01

    The increasing availability and sophistication of data processing technology have given geologists new insights into the interpretation and evaluation of geological data. In many instances, however, software and hardware limitations have prevented geologists from effectively combining the graphical results from many of these specialized packaged procedures. At Aramco, the emphasis has been toward providing geologists and geological technicians with a convenient, user-friendly approach to effectively margin the graphical results of the various software packages. Initially designed for an IBM graphics workstation, the graphics layout editor (GLE) offers the user a method of quickly merging or compositing the graphical results of the most frequently used geological software packages in a menu-driven, interactive environment. Applications of GLE technology not only allow the user to produce expanded or enhanced variations on the original graphical output, it also gives geologists the flexibility to conveniently experiment with combinations of graphical results which would otherwise be cost prohibitive owing to drafting complexities. To support final design and presentation, GLE in an interactive mode also provides high-quality text capability, allowing the cartographer to quickly build and annotate presentation quality composites. GLE techniques of graphical overlay, insertion, and interactive editing provide geologists with an infinite series of perspectives into geologic problem solving.

  13. What Geology Has To Say About Global Warming William Menke

    E-Print Network [OSTI]

    Menke, William

    insights about earth's climate that can be applied to the present-day global warming debate. The geological record of ancient climate is excellent. Ancient temperatures can be determined very precisely, because the composition of the shells of corals and other marine organisms varies measurably with it. Furthermore

  14. Bureau of Economic Geology Scott W. Tinker, Director

    E-Print Network [OSTI]

    Pillow, Jonathan

    Bureau of Economic Geology Scott W. Tinker, Director Jackson School of Geosciences The University-distribution and reservoir-quality prediction in Texas State Waters. This multidisciplinary study, conducted by a team. #12;16,200 ft Lower Texas Gulf Coast Vicksburg Middle Texas Gulf Coast Frio Lower Texas Gulf Coast

  15. Geology 103 The Dynamic Earth Syllabus and Schedule Fall 2007

    E-Print Network [OSTI]

    Kirby, Carl S.

    Geology 103 ­ The Dynamic Earth Syllabus and Schedule ­ Fall 2007 Dr. Carl Kirby 9:30-10:52 TTh O'Leary 232 Office: 226 O'Leary Lab T or Th 1-5 O'Leary 218 www.facstaff.bucknell.edu/kirby/ 577-1385; kirby

  16. Geologic mapping for groundwater resource protection and assessment

    SciTech Connect (OSTI)

    Shafer, J.M. (Univ. of South Carolina, Columbia, SC (United States). Earth Sciences and Resources Inst.); Berg, R.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    Groundwater is a vital natural resource in the US and around the world. In order to manage and protect this often threatened resource one must better understand its occurrence, extent, and susceptibility to contamination. Geologic mapping is a fundamental approach to developing more detailed and accurate assessments of groundwater resources. The stratigraphy and lithology of earth materials provide the framework for groundwater systems, whether they are deep confined aquifers or shallow, water table environments. These same earth materials control, in large part, the rates of migration of water and contaminants into and through groundwater systems thus establishing the potential yields of the systems and their vulnerability to contamination. Geologic mapping is used to delineate and display the vertical sequencing of earth materials either in cross-section or over lateral areas as in the stack-unit geologic map. These geologic maps, along with supportive hydrogeologic information, are used to identify the three-dimensional positioning and continuity of aquifer and non-aquifer earth materials. For example, detailed stack-unit mapping to a depth of 30 meters has been completed for a portion of a northern Illinois county. Groundwater contamination potentials were assigned to various vertical sequences of materials. Where aquifers are unconfined, groundwater contamination potentials are greatest. Conversely, other considerations being equal, the thicker the confining unit, the lower the contamination potential. This information is invaluable for land use decision-making; water supply assessment, development, and management; and environmental protection planning.

  17. Volume 8, February 2012 The KU Geologic Record

    E-Print Network [OSTI]

    the boundaries of the Wellington oil field south of Wichita in Sumner County. The CO2 of sedimentary basins in terms of clastic sedimentary geology. At the Peak. The Humboldt Research Award is for outstanding academics at the peak of the

  18. Planetary Geology Earth and the Other Terrestrial Worlds

    E-Print Network [OSTI]

    Crenshaw, Michael

    · A planet s outer layer of cool, rigid rock is called the lithosphere · It floats on the warmer, softer rock1 Chapter 9 Planetary Geology Earth and the Other Terrestrial Worlds What are terrestrial planets that lies beneath Terrestrial Planet Interiors · Applying what we have learned about Earth s interior

  19. The subsurface fluid mechanics of geologic carbon dioxide storage

    E-Print Network [OSTI]

    Szulczewski, Michael Lawrence

    2013-01-01

    In carbon capture and storage (CCS), CO? is captured at power plants and then injected into deep geologic reservoirs for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained ...

  20. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  1. Compatibility of monitor well completion methods with geologic conditions 

    E-Print Network [OSTI]

    Ten Wolde, Eric Jozef

    1996-01-01

    Proper completion of a well is essential to the protection of ground-water resources. Selecting a proper material for the annular seal should be based on the geologic conditions at the well site. Previous studies have not adequately linked annular...

  2. The Geographic, Geological and Oceanographic Setting of the Indus River

    E-Print Network [OSTI]

    Clift, Peter

    -west monsoon of Asia that largely fill the Indus River although most of the run-off north of the Tarbela DamL1 16 The Geographic, Geological and Oceanographic Setting of the Indus River Asif Inam1 , Peter D Large Rivers: Geomorphology and Management, Edited by A. Gupta © 2007 John Wiley & Sons, Ltd 16

  3. Seismic Reflection Interpretation Geology 556/764 Fall 2015

    E-Print Network [OSTI]

    Seismic Reflection Interpretation Geology 556/764 Fall 2015 This course is for graduate students seismic interpretation. (3 Credit Hours) EWS 201, 1:15 pm - 4:15 pm Tuesday Instructor: Jim Kellogg (7-4501) E-mail: kellogg@sc.edu Goals and Content of Course: Students will learn seismic interpretation

  4. ALGORITHMIC CLASSIFICATION OF DRAINAGE NETWORKS ON MARS AND ITS RELATION TO MARTIAN GEOLOGICAL UNITS. T. F. Stepinski1

    E-Print Network [OSTI]

    Vilalta, Ricardo

    ALGORITHMIC CLASSIFICATION OF DRAINAGE NETWORKS ON MARS AND ITS RELATION TO MARTIAN GEOLOGICAL locations covering 16 major geological units. The classification is quantitative and objective with an existing division into geological units. A morphological interpretation for this emergent classification

  5. Advancing the Science of Geologic Carbon Sequestration (Registration: www.earthsciences.osu.edu/~jeff/carbseq/carbseq 2009)

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    Advancing the Science of Geologic Carbon Sequestration (Registration: www & American Electric Power Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions, AEP) 3. Field Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle

  6. M.S. Economic Geology, Oregon State University College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR Expected Spring, 2015

    E-Print Network [OSTI]

    Kurapov, Alexander

    EDUCATION M.S. Economic Geology, Oregon State University College of Earth, Ocean. Dilles Relevant Courses Interpretation of Geologic Maps Igneous Petrology Tectonic Geomorphology B.S. Geology, University of Idaho College of Science, Moscow, ID; GPA: 3

  7. Careers Bachelor if Sciences in The future is bright for those pursuing an education in geology or a geoscience

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Careers ­ Bachelor if Sciences in Geology The future is bright for those pursuing an education in geology or a geoscience related field as demand and gas industry (median $125,350). Forbes recently ranked Geology #7 in its "15

  8. STRATIGRAPHY, STRUCTURAL GEOLOGY, AND TECTONIC IMPLICATIONS OF THE SHOO FLY COMPLEX

    E-Print Network [OSTI]

    Merguerian, Charles

    STRATIGRAPHY, STRUCTURAL GEOLOGY, AND TECTONIC IMPLICATIONS OF THE SHOO FLY COMPLEX and Sciences COLUMBIA UNIVERSITY 1985 #12;ABSTRACT Stratigraphy, Structural Geology, and Tectonic Implications form the basement to a middle Jurassic calc-alkaline plutonic arc (Jawbone granitoid sequence

  9. For permission to copy, contact editing@geosociety.org 2003 Geological Society of America 1265

    E-Print Network [OSTI]

    Najman, Yani

    . Early-Middle Miocene paleodrainage and tectonics in the Pakistan Himalaya Yani Najman Department Imran Khan Sedimentary Geology Division, Geological Survey of Pakistan, Sariab Road, Quetta, Pakistan region, Potwar Pla- teau, Pakistan, are characterized by: (1) lithofacies indicative of deposition

  10. The Macolumn: Desperately seeking software. [Geologic software for the Apple Macintosh

    SciTech Connect (OSTI)

    Busbey, A.B.

    1988-08-01

    The Apple Macintosh has been available since 1984, but there has been little development of commercial geological software for it. The author briefly reviews what geological software is available for the Macintosh

  11. A Field Demonstration of an Instrument Performing Automatic Classification of Geologic

    E-Print Network [OSTI]

    -sensitive classifications of geologic surfaces in mesoscale scenes. A series of tests at the Cima Volcanic Fields in the Mojave Desert, California demonstrate mesoscale surficial mapping at two distinct sites of geologic

  12. Department of Civil and Geological Engineering Assistant Professor in Geoenvironmental Engineering

    E-Print Network [OSTI]

    Saskatchewan, University of

    Department of Civil and Geological Engineering Assistant Professor in Geoenvironmental Engineering The Department of Civil and Geological Engineering at the University of Saskatchewan invites applications from outstanding candidates for a tenuretrack faculty position in Geoenvironmental Engineering at the Assistant

  13. Department of Geology & Geophysics, Spring 2015 GG304: Physics of the Earth and Planets

    E-Print Network [OSTI]

    1 Department of Geology & Geophysics, Spring 2015 GG304: Physics of the Earth and Planets The Earth's shape, orbit, interior structure, and geological evolution are all the result of the interaction

  14. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    Formation, Seeligson Field, South Texas, Topi- cal Report GRI-92/0244, Gas Research Institute, Chicago, Illinois,Illinois Basin contains deep coal seams, mature oil reservoirs, and deep, brine-filled formations

  15. Geological Society of America Centennial Field Guide--Northeastern Section, 1987 The Geology of Cameron's Line, West Torrington, Connecticut

    E-Print Network [OSTI]

    Merguerian, Charles

    of Cameron's Line, West Torrington, Connecticut Charles Merguerian, Geology Department, Hofstra University, Connecticut, and consists of two stops in the West Torrington 7 ½-minute quadrangle (Fig. 1). They can be reached from Exit 44 of Connecticut 8 by traveling southwestward on Connecticut 202 (East Main Street

  16. PROJECT APOLEO FIELD GEOLOGY P U N N I N G TEAM

    E-Print Network [OSTI]

    Rathbun, Julie A.

    PROJECT APOLEO FIELD GEOLOGY P U N N I N G TEAM OBJECTIVES OF APOLLO GEOLOGZCAL FIELD,JEC'IC APOLEO FIELD GEOLOGY P U N N I N G TEAM OBJECTIVES OF ABOELO GEOLOGICAL FIELD INVESTIGA of Apsllo geological f i e l d i n v e s t i g a t i o n --------------- I n t r o d u c t i ~ n

  17. Great Lakes Geologic Mapping Coalition -Annual Science Meeting April 15-17, 2014

    E-Print Network [OSTI]

    Polly, David

    :30 Housekeeping ­ the day's plans Kevin Kincare 8:45 Illinois State Geological Survey Olivier Caron 9:00 Indiana

  18. The University of Kansas Geology Field Camp -Summer 2016 APPLICATION FOR ADMISSION

    E-Print Network [OSTI]

    and sedimentology is a prerequisite. List by name all the courses in geology that you will have completed

  19. The University of Kansas Geology Field Camp -Summer 2015 APPLICATION FOR ADMISSION

    E-Print Network [OSTI]

    and sedimentology is a prerequisite. List by name all the courses in geology that you will have completed

  20. Figure 1. Location of geologic provinces considered in this study.

    E-Print Network [OSTI]

    of northeast Mexico and southeast Texas. The Pimienta Formation of the Tampico-Misantla Basin is equivalent equivalent to the Agua Nue- va Formation of northeast Mexico (Peterson, 1985). [Gp., Group; Fm., Formation; Cgl., conglomerate; Ls., limestone; Sh., shale; Evap., evaporite] Figure 3. Schematic diagram showing